

User Guide of MPI-Runner for
parallel CORSIKA simulations on
computing systems supporting
Message Passing Interface

12/04/2013

Sushant Sharma, Gevorg Poghosyan

Steinbuch Centre for Computing

Revision History

Date Type Author

16/11/2011 Initial Version G. Poghosyan

18/11/2011 Typos and Formatting D. Heck,
G.Poghosyan

21/11/2011 Generalizing the “Getting starting” steps J.Oehlschlaeger
G.Poghosyan

24/11/2011 Changes of output files G.Poghosyan

05/12/2011 Implementation of debug switch G.Poghosyan

14/03/2012 Typos and Formatting J.Oehlschlaeger
G.Poghosyan

12/04/2013 Addition of unsetoptionflags J.Oehlschlaeger
D. Heck

Contents
Contents ...3

1.Introduction ...4

2.Getting Started ..4

3.Inputs ...5

4.Constants Integrated in the Source Code of the MPI-Runner ..6

5.Outputs ..7

6.Post-Processing .. 10

Copyright Notice: Copyright and any other appropriate legal protection of these computer
programs and associated documentation reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior
written consent of Karlsruhe Institute of Technology or its delegate.

The Karlsruhe Institute of Technology welcomes comments concerning the CORSIKA and
MPI-Runner code but undertakes no obligation for maintenance of the programs, nor
responsibility for their correctness, and accepts no liability whatsoever resulting from the
use of its programs.

For support in using MPI-Runner or suggestions for improvement of the code, contact:
Dr. Gevorg Poghosyan
Karlsruhe Institute of Technology
Steinbuch Centre for Computing
Head of Simulation Lab Elementary- and Astro- Particle
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Germany
Tel: +49 721 608 25604.
Fax: +49 721 608 24972

E-Mail: Gevorg.Poghosyan@kit.edu

Web: http://www.scc.kit.edu/personen/gevorg.poghosyan.php

Trademark notice: All trademarks appearing in this GUIDE are acknowledged as such.

Bitte beachten Sie: Dieser interne Bericht enthält Informationen von vorläufigem
Charakter und ist vorübergehend für den internen Gebrauch bestimmt.

Please note: This internal Report contains information by temporary nature. It is intended
currently for use in the KIT.

mailto:Gevorg.Poghosyan@kit.edu
http://www.scc.kit.edu/personen/gevorg.poghosyan.php

1. Introduction

The second section describes the steps how to start quickly working with MPI-Runner.

In the third section we talk about additional keywords that are required in the CORSIKA

steering input file to run the air shower simulation in parallel.

Section four describes constants used in the MPI-Runner source code.

Fifth section explains the outputs produced by the MPI-Runner.

The last section represents the post-processing tools to be used for advanced analysis.

2. Getting Started

This section gives an explanation, how to compile and getting started with the MPI-Runner

for parallel CORSIKA simulations.

Step 0:

Run script src/parallel/unsetoptflags.sh by typing ‘. src/parallel/unsetoptflag.sh’ to exclude

all environment variables concerning high compiler optimizations before creating a corsika

parallel executable.

Step 1:
Compile the CORSIKA (using ./coconut) with the options PARALLEL, PARALLELIB and

MPIRUNNER.
Note: The corsikacompilefile.f and mpi_runner.c will be compiled and linked to the executable

mpi_corsikaXXXXXX_runner, where XXXXXX is set upon the chosen CORSIKA version and the

selected options. The post-processing code postprocess.c (see step 4) will also be compiled.

Step 2:
Edit or create the steering input file with the keywords PARALLEL. Also keyword CUTFILE

must be used when secondary particle/subshower will be simulated using an additional input

file.

Note: If the keyword CUTFILE is used, be sure that the corresponding input file exists (see

section INPUTS of this document for more details). The run directory of CORSIKA

distributive contains a sample steering file named parallel-inputs.

Step 3:
Submit the parallel job with the syntax:

[job_submitter] [mpi_executable] [input_file_name] [debug_switch]

Note: Job_submitter must be in syntax corresponding to used distributed parallel computation

architecture with MPI support. When a debug switch as “T” is used a detailed protocol about all

steps done by MPI-Runner will be saved in the FILE "mpirunprotocol.txt"

For example, to submit the parallel CORSIKA to HP XC3000 multi-processor system at

Steinbuch Centre for Computing, using the HP MPI batch system, the following command line

could be used to run mpi-executable of CORSIKA on 16 processors in parallel; complete job is

limited to 10 minutes execution time and 1000 MB for the memory; parallel-inputs steering file

will be used and a detailed protocol about running steps will be generated

job_submit -p 16 -c d -t 10 -m 1000 \

http://www.scc.kit.edu/dienste/hc3.php
http://www.scc.kit.edu/scc/docs/HP-XC/hpmpi/hp-mpi.02.00.ug.pdf

 mpirun mpi_corsika72495Linux_QGSJET_gheisha_runner parallel-inputs

Step 4 (optional):
After the run the additional statistic for analysing the running process and results will be

generated if the postprocess executable is copied and started in same folder where the output

files are stored (see section Outputs of this document).

3. Inputs
To run CORSIKA in parallel the keyword PARALLEL in the steering (input) file of

CORSIKA must be used (see also CORSIKA User’s Guide). This keyword must be followed

by 4 parameters in one line:

PARALLEL DECTCUT DECTMAX MPIID LCOUT

Fortran Format = (A8, 2F, I, L) Default values = 1000., 1000000., 1, F

DECTCUT The lower energy threshold in GeV. All particles below this energy continue
to run in the same job.

DECTMAX The upper energy threshold in GeV. All particles above this threshold will be
executed separately as a new job.
The rest of the particles with energy between DECTCUT and DECTMAX are
simulated together in different groups, such that the energy sum of each
group is about DECTMAX.

MPIID Unique identification number of each parallel task. Optional when running
via MPI, but important for parallel simulations with job submission by shell
scripts to distinguish sequential CORSIKA runs executed in parallel.

LCOUT This logical parameter is passed to CORSIKA to prohibit (or enable) the
production of CUTFILES with individual or groups of particles in each line.
This is relevant when extra simulations of subshowers in separate CORSIKA
runs are planned, e.g. to rerun uncompleted or incorrect parts.

For the separate simulation of a subshower the keyword CUTFILE in the steering (input) file

of CORSIKA needs to be used (see also CORSIKA User’s Guide). This has to be given with

3 parameter values in one line:

 CUTFILE CFILINP I1CUTPAR I2CUTPAR

Fortran Format = (A7, A255, 2I) Default values = ‘ ‘, 0, 0

CFILINP Filename to be read in case of secondary shower simulations, containing
parameters of individual particles or group of particles in each line.

I1CUTPAR Index (line number) of 1st particle to be read from the CFILINP and
processed in the actual run.

I2CUTPAR Index (line number) of last particle to be read from CFILINP and processed in
the actual run. In case of only one particle to be processed, I2CUTPAR
should have the same value as I1CUTPAR.

If in the steering file the keyword CUTFILE is used, the LPRIM variable used in CORSIKA

and MPI-Runner will be set to 0 for secondary particle simulation. By default LPRIM is set to

1 which means a shower from a primary particle will be simulated.

Example:
PARALLEL 1000. 1000000. 1 F

CUTFILE DAT000999-741188179-000000060.cut 23 25

Note: Here the second line is optional and needed for the simulation for secondary

showers for particles 23 to 25 from DAT000999-741188179-000000060.cut.

4. Constants Integrated in the Source Code of the MPI-Runner

When adapting the code to a given parallel computing system to optimize MPI

communication and memory usage, some parameters in the source code could be tuned before

compilation:

MASTER MPI rank of processor designated as MASTER.
Default value: 0

MXLIST Maximum value of new parallel simulations/jobs a SLAVE can
request by MASTER in a single request.
Default value: 200001

MAX_GROUP_SIZE Maximum number of particles in a group to be used for MPI
communication. If the number of jobs in any group increases
at runtime, it can lead to memory leak as the buffer for MPI
communication could be too small to transfer all the
parameters for starting parallel simulations of subshowers.
The actual value at run time depends on the chosen energy
thresholds (see DECTCUT and DECTMAX parameters of
PARALLEL keyword). It is always safe to keep
MAX_GROUP_SIZE high.
Default value: 200

PARTICLE_INFO_COUNT Number of parameters that define a particle.
Default value: 19

5. Outputs

The MPI-Runner is generating output files in the subdirectory given by the keyword DIRECT

of the CORSIKA steering file, as well some details would be stored directly in standard

output of system (output file of job), where the simulation is running. This information could

be useful when some of the subshowers have been simulated improperly and a part of the

simulation should be repeated without the need to start all simulations from primary particle.

corsika_status_start1 This file contains information about the CORSIKA instance
requested by the SLAVE. It could be used for debugging the
interaction between the MPI-Runner and CORSIKA.
The first column gives the unique MPIID of the job.
Columns 2 and 3 give the index of the particle in the CUTFILE
The 4th column tells whether the job was a primary (1) or a
secondary (0) shower.
Column 5 is the name of the CUTFILE if needed to be read by
this instance of CORSIKA to fill 2nd stack.

corsika_status_finish1 This file has the same content as the file corsika_status_start1,
but it is printed after the instance of CORSIKA has finished the
subshower simulation.

Master2SlaveOrder This file contains the list of the START messages sent by the
MASTER to the SLAVES.
The first 2 columns define the unique MPIID of the child and
the parent jobs.
The 3rd column tells whether the job was a primary (1) or
secondary (0) shower.
The columns 4 to 6 define the run number, seed, and MPIID
which in-turn define the name of the CUTFILE to be read by the
CORSIKA shower.
Columns 7 and 8 give the indexes of the particles in the
CUTFILE

Master2SlaveRecv This file has the same information and format as the file
Master2SlaveOrder and its content should match with the
Master2SlaveOrder if the communication is correct.

queue This file gives information about all the activities related to
QUEUE, i.e. data added to QUEUE and data read from QUEUE
and serves for bookkeeping.
The first column reports about the type of requests that
SLAVES sent to the MASTER as soon as a new subshower
simulation is necessary or it is finished and must be removed
from the bookkeeping buffer. Possible values are:
ADD_REQ – Request for new parallel subshower simulation
received.
ADDED – Request for new subshower simulation included into
QUEUE.
DEL_REQ – Request for removing a parallel simulation from
QUEUE received.

DELETED – Parallel simulation is finished and removed from
QUEUE.
The second and third columns define the unique MPIID of the
child process that would be used for a new simulation and the
parent jobs – ID of slave/subshower that requested a new
parallel simulation.
The 4th column tells whether the job was a primary (1) or a
secondary (0) shower.
The 5th column tells the name of CUTFILE defined using run-
number, seed, and MPIID of a new child job for possible
simulation using CUTFILE.
The 6th and 7th columns are the indexes in CUTFILE that a new
particle will have if a simulation must be made using CUTFILE.

queue_add This file gives the detailed information on the jobs added to the
QUEUE.
The first 2 columns define the unique MPIID of the child and
the parent jobs.
The 3rd column tells whether the job was a primary (1) or a
secondary (0) shower.
The columns 4 to 6 define the run-number, seed, and MPIID.
The columns 7 and 8 give the indexes of the particles in case of
the CUTFILE will be used.
The column 9 gives the Linux time when the job was queued.
The columns 11 to 14 give the snapshots of QUEUE as number
of jobs running, queued, finished and lost, respectively.

relation1 This file gives the relation between any 2 jobs by backtracking
from the child to the parent. The file consists of MPIID of child
and parent job in first and second column, respectively.

mpirunprotocol.txt This file will be generated if the debugging switch as “T” is
used: third argument in command line after executable and
input file name (see step 3 in section “Getting Started” of this
document).
It would contain the protocol about communications between
MPI nodes including the time in seconds since an arbitrary time
in the past and a types of book-keeping/debugging
information:
CUTFILE: information about particles to be used for running
parallel simulations or generating external CUTFILE
CUTFILENAME: report about usage of external CUTFILE
FINISH: Master got information from slave about complete job
REQUEST: Master got request from free slave for new job
RESUME: Job waiting in queue sent to a free slave
RUN_INFO: about the parameters used for initial start of
simulation as primary or secondary shower
SLAVE: Slave received order and going to start new parallel run
START: Master ordering a free slave to start new parallel run
STOP: Slave received order from Master to stop running
TIME: Start and end time of separate parallel simulation

Slave2MasterRecv This file shows the list of the requests received by the MASTER.
The contents of this file should match to Slave2MasterRequest
if the communication was correct.

Slave2MasterRequest This file gives the list of the REQUEST messages sent by the
SLAVES to the MASTER.
The first column gives the unique MPIID of the job running on
the SLAVE.
The 3rd column tells whether the child job should be initiated
as a primary (1) or a secondary (0) shower.
The columns 4 to 6 define the run number, seed, and MPIID
which in-turn define the name of the CUTFILE if it has to be
read by the child job.
The columns 7 and 8 give the indexes of the particles to be read
from this CUTFILE.

status_finish1 This file contains the list of the FINISH messages received by
the MASTER, i.e. the list of finished jobs.
The first 2 columns define the unique MPIID of the child and
the parent jobs.
Column 3 is the end time of the shower/sub-shower
simulation.
Column 4 and 5 give the real start time and the end time of the
simulation.
The columns 6 to 9 give the snapshot of QUEUE as the number
of jobs running, queued, finished, and lost, respectively, during
simulations.

status_start This file gives a list of the jobs initiated by the MASTER, entry is
made as soon as a START message is sent to a SLAVE.
The first 2 columns define the unique MPIID of the child and
parent job.
The 3rd column tells whether the job was a primary (1) or a
secondary (0) shower.
The columns 4 to 6 define the run-number, seed, and MPIID
which in-turn defines the name of the CUTFILE to be read by
the CORSIKA shower.
The columns 7 and 8 give the indexes of the particles in the
CUTFILE.
The column 9 is the RANK (processor identifier) on which the
job will run.
Column 10 is a double value which is the start time of the
shower/sub-shower (time in sec since Jan. 1, 1970).
Columns 11 to 14 give the number of jobs running, queued,
finished, and lost, respectively.

time.txt Herewith the completeness of the simulation could be simply
checked if this file is generated. It contains the start and stop
time of simulation in seconds since an arbitrary time in the past
and computation time spend for simulation in minits.

6. Post-Processing

The program postprocess analyses the output files queue_add, status_start1, status_finish1,

Slave2MasterRecv produced during simulations by the MPI-Runner (see section Outputs).

Simply copy and run the executable in a directory, where the outputs of MPI runner are stored

to produce advanced data for analysing and visualising the parallel simulation procedure.

It will extend following output files (or generate them, if they do not exist):

time.txt This file displays information about:
START TIME, STOP TIME and the TOTAL TIME taken by the simulation;
MPIID of the longest job and the time taken by it;
size (number of particles) of the largest group requested for parallel
simulation;
total number of jobs;
actual aggregate CPU time consumed by the simulation.
NOTE: If this information is unavailable, it might be the case that the
simulation was not completed correctly.

plot_queue
plot_idv_time

These are scripts to be used for visualizing the outputs of MPI-Runner
using GNUPLOT.

Graph This script can be used to picture with GRAPHVIZ a relation between
the jobs.

result This file is a compilation of all the outputs of MPI Runner in form of 19
columns. This will be generated also if the simulation was not
successful.
The first 2 columns define the unique MPIID of child and parent job.
The column 3 is the MPI rank on which the job ran (if started).
The 4rd column tells whether the job was a primary (1) or a secondary
(0) shower.
The 5th column gives the status of the job:
 Q = queued, R = running, F = finished.
The columns 6 to 8 define the run-number, seed, and MPIID.
The columns 9 and 10 give the indexes of the particles in the CUTFILE.
Colum 11 gives the size of the group (number of particles in the group)
used for a new parallel simulation of a subshower.
Columns 12 to 14 give the CPU time of a successful simulation.
Columns 15 to 17 give the full time including the one spent for MPI
communication.
Columns 18 and 19 give the name of CUTFILES read and produced by
the CORSIKA instance respectively.

