User Guide of MPI-Runner for parallel CORSIKA simulations on computing systems supporting Message Passing Interface

12/04/2013

Sushant Sharma, Gevorg Poghosyan Steinbuch Centre for Computing

Revision History		
Date	Туре	Author
16/11/2011	Initial Version	G. Poghosyan
18/11/2011	Typos and Formatting	D. Heck, G.Poghosyan
21/11/2011	Generalizing the "Getting starting" steps	J.Oehlschlaeger G.Poghosyan
24/11/2011	Changes of output files	G.Poghosyan
05/12/2011	Implementation of debug switch	G.Poghosyan
14/03/2012	Typos and Formatting	J.Oehlschlaeger G.Poghosyan
12/04/2013	Addition of unsetoptionflags	J.Oehlschlaeger D. Heck

Contents

Contents	3
1.Introduction	4
2.Getting Started	4
3.Inputs	5
4.Constants Integrated in the Source Code of the MPI-Runner	6
5.Outputs	7
6.Post-Processing	. 10

Copyright Notice: Copyright and any other appropriate legal protection of these computer programs and associated documentation reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior written consent of Karlsruhe Institute of Technology or its delegate.

The Karlsruhe Institute of Technology welcomes comments concerning the CORSIKA and MPI-Runner code but undertakes no obligation for maintenance of the programs, nor responsibility for their correctness, and accepts no liability whatsoever resulting from the use of its programs.

For support in using MPI-Runner or suggestions for improvement of the code, contact: Dr. Gevorg Poghosyan Karlsruhe Institute of Technology Steinbuch Centre for Computing Head of Simulation Lab Elementary- and Astro- Particle Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Tel: +49 721 608 25604. Fax: +49 721 608 24972 E-Mail: <u>Gevorg.Poghosyan@kit.edu</u> Web: http://www.scc.kit.edu/personen/gevorg.poghosyan.php

Trademark notice: All trademarks appearing in this GUIDE are acknowledged as such.

Bitte beachten Sie: Dieser interne Bericht enthält Informationen von vorläufigem Charakter und ist vorübergehend für den internen Gebrauch bestimmt.

Please note: This internal Report contains information by temporary nature. It is intended currently for use in the KIT.

1. Introduction

The second section describes the steps how to start quickly working with MPI-Runner. In the third section we talk about additional keywords that are required in the CORSIKA steering input file to run the air shower simulation in parallel.

Section four describes constants used in the MPI-Runner source code.

Fifth section explains the outputs produced by the MPI-Runner.

The last section represents the post-processing tools to be used for advanced analysis.

2. Getting Started

This section gives an explanation, how to compile and getting started with the MPI-Runner for parallel CORSIKA simulations.

Step 0:

Run script *src/parallel/unsetoptflags.sh* by typing *'. src/parallel/unsetoptflag.sh*' to exclude all environment variables concerning high compiler optimizations before creating a corsika parallel executable.

Step 1:

Compile the CORSIKA (using ./coconut) with the options PARALLEL, PARALLELIB and MPIRUNNER.

Note: The corsikacompilefile.f and mpi_runner.c will be compiled and linked to the executable mpi_corsikaXXXXX_runner, where XXXXXX is set upon the chosen CORSIKA version and the selected options. The post-processing code postprocess.c (see step 4) will also be compiled.

Step 2:

Edit or create the steering input file with the keywords PARALLEL. Also keyword CUTFILE must be used when secondary particle/subshower will be simulated using an additional input file.

Note: If the keyword CUTFILE is used, be sure that the corresponding input file exists (see section INPUTS of this document for more details). The run directory of CORSIKA distributive contains a sample steering file named parallel-inputs.

Step 3:

Submit the parallel job with the syntax:

[job_submitter] [mpi_executable] [input_file_name] [debug_switch]

Note: Job_submitter must be in syntax corresponding to used distributed parallel computation architecture with MPI support. When a debug switch as "T" is used a detailed protocol about all steps done by MPI-Runner will be saved in the FILE "mpirunprotocol.txt"

For example, to submit the parallel CORSIKA to <u>HP XC3000 multi-processor system</u> at Steinbuch Centre for Computing, using the <u>HP MPI</u> batch system, the following command line could be used to run mpi-executable of CORSIKA on 16 processors in parallel; complete job is limited to 10 minutes execution time and 1000 MB for the memory; parallel-inputs steering file will be used and a detailed protocol about running steps will be generated

job_submit -p 16 -c d -t 10 -m 1000 \

mpirun mpi_corsika72495Linux_QGSJET_gheisha_runner parallel-inputs

Step 4 (optional):

After the run the additional statistic for analysing the running process and results will be generated if the *postprocess* executable is copied and started in same folder where the output files are stored (see section Outputs of this document).

3. Inputs

To run CORSIKA in parallel the keyword *PARALLEL* in the steering (input) file of CORSIKA must be used (see also CORSIKA User's Guide). This keyword must be followed by 4 parameters in one line:

PARALLEL DECTCUT DECTMAX MPIID LCOUT

Fortran Format = (A8, 2F, I, L) Default values = 1000., 1000000., 1, F

DECTCUT	The lower energy threshold in GeV. All particles below this energy continue
	to run in the same job.
DECTMAX	The upper energy threshold in GeV. All particles above this threshold will be
	executed separately as a new job.
	The rest of the particles with energy between DECTCUT and DECTMAX are
	simulated together in different groups, such that the energy sum of each
	group is about DECTMAX.
MPIID	Unique identification number of each parallel task. Optional when running
	via MPI, but important for parallel simulations with job submission by shell
	scripts to distinguish sequential CORSIKA runs executed in parallel.
LCOUT	This logical parameter is passed to CORSIKA to prohibit (or enable) the
	production of CUTFILES with individual or groups of particles in each line.
	This is relevant when extra simulations of subshowers in separate CORSIKA
	runs are planned, e.g. to rerun uncompleted or incorrect parts.

For the separate simulation of a subshower the keyword *CUTFILE* in the steering (input) file of CORSIKA needs to be used (see also CORSIKA User's Guide). This has to be given with 3 parameter values in one line:

CUTFILE CFILINP I1CUTPAR I2CUTPAR

Fortran Format = (A7, A255, 2I) Default values = ' ', 0, 0

CFILINP	Filename to be read in case of secondary shower simulations, containing	
	parameters of individual particles or group of particles in each line.	
I1CUTPAR	Index (line number) of 1st particle to be read from the CFILINP and	
	processed in the actual run.	
I2CUTPAR	Index (line number) of last particle to be read from CFILINP and processed in	
	the actual run. In case of only one particle to be processed, I2CUTPAR	
	should have the same value as I1CUTPAR.	

If in the steering file the keyword *CUTFILE* is used, the LPRIM variable used in CORSIKA and MPI-Runner will be set to 0 for secondary particle simulation. By default LPRIM is set to 1 which means a shower from a primary particle will be simulated.

Example: PARALLEL 1000. 1000000. 1 F CUTFILE DAT000999-741188179-000000060.cut 23 25

Note: Here the second line is optional and needed for the simulation for secondary showers for particles 23 to 25 from DAT000999-741188179-00000060.cut.

4. Constants Integrated in the Source Code of the MPI-Runner

When adapting the code to a given parallel computing system to optimize MPI communication and memory usage, some parameters in the source code could be tuned before compilation:

MASTER	MPI rank of processor designated as MASTER.
	Default value: 0
MXLIST	Maximum value of new parallel simulations/jobs a SLAVE can
	request by MASTER in a single request.
	Default value: 200001
MAX_GROUP_SIZE	Maximum number of particles in a group to be used for MPI
	communication. If the number of jobs in any group increases
	at runtime, it can lead to memory leak as the buffer for MPI
	communication could be too small to transfer all the
	parameters for starting parallel simulations of subshowers.
	The actual value at run time depends on the chosen energy
	thresholds (see DECTCUT and DECTMAX parameters of
	PARALLEL keyword). It is always safe to keep
	MAX_GROUP_SIZE high.
	Default value: 200
PARTICLE_INFO_COUNT	Number of parameters that define a particle.
_	Default value: 19

5. Outputs

The MPI-Runner is generating output files in the subdirectory given by the keyword DIRECT of the CORSIKA steering file, as well some details would be stored directly in standard output of system (output file of job), where the simulation is running. This information could be useful when some of the subshowers have been simulated improperly and a part of the simulation should be repeated without the need to start all simulations from primary particle.

corsika_status_start1	This file contains information about the CORSIKA instance
	requested by the SLAVE. It could be used for debugging the
	interaction between the MPI-Runner and CORSIKA.
	The first column gives the unique MPIID of the job.
	Columns 2 and 3 give the index of the particle in the CUTFILE
	The 4th column tells whether the job was a primary (1) or a
	secondary (0) shower.
	Column 5 is the name of the CUTFILE if needed to be read by
	this instance of CORSIKA to fill 2nd stack.
corsika_status_finish1	This file has the same content as the file corsika status start1,
	but it is printed after the instance of CORSIKA has finished the
	subshower simulation.
Master2SlaveOrder	This file contains the list of the START messages sent by the
	MASTER to the SLAVES.
	The first 2 columns define the unique MPIID of the child and
	the parent jobs.
	The 3rd column tells whether the job was a primary (1) or
	secondary (0) shower.
	The columns 4 to 6 define the run number, seed, and MPIID
	which in-turn define the name of the CUTFILE to be read by the
	CORSIKA shower.
	Columns 7 and 8 give the indexes of the particles in the
	CUTFILE
Master2SlaveRecv	This file has the same information and format as the file
	Master2SlaveOrder and its content should match with the
	Master2SlaveOrder if the communication is correct.
queue	This file gives information about all the activities related to
	QUEUE, i.e. data added to QUEUE and data read from QUEUE
	and serves for bookkeeping.
	The first column reports about the type of requests that
	SLAVES sent to the MASTER as soon as a new subshower
	simulation is necessary or it is finished and must be removed
	from the bookkeeping buffer. Possible values are:
	ADD REQ – Request for new parallel subshower simulation
	received.
	ADDED – Request for new subshower simulation included into
	QUEUE.
	DEL REQ – Request for removing a parallel simulation from
	QUEUE received.

	<u>DELETED</u> – Parallel simulation is finished and removed from
	The second and third columns define the unique MPIID of the
	child process that would be used for a new simulation and the
	narent jobs – ID of slave/subshower that requested a new
	narallel simulation
	The 4^{th} column tells whether the job was a primary (1) or a
	secondary (0) shower.
	The 5 th column tells the name of CUTFILE defined using run-
	number, seed, and MPIID of a new child job for possible
	simulation using CUTFILE.
	The 6 th and 7 th columns are the indexes in CUTFILE that a new
	particle will have if a simulation must be made using CUTFILE.
queue_add	This file gives the detailed information on the jobs added to the
	QUEUE.
	The first 2 columns define the unique MPIID of the child and
	the parent jobs.
	The 3 rd column tells whether the job was a primary (1) or a
	secondary (0) shower.
	The columns 4 to 6 define the run-number, seed, and MPIID.
	The columns 7 and 8 give the indexes of the particles in case of
	the CUTFILE will be used.
	The column 9 gives the Linux time when the job was queued.
	The columns 11 to 14 give the snapshots of QUEUE as number
	of Jobs running, queued, finished and lost, respectively.
relation1	This file gives the relation between any 2 jobs by backtracking
	from the child to the parent. The file consists of MPIID of child
	This file will be generated if the debugging switch as "T" is
mpirunprotocoi.txt	This file will be generated if the debugging switch as T is
	input file name (see stop 2 in section "Cotting Started" of this
	document)
	It would contain the protocol about communications between
	MPL nodes including the time in seconds since an arbitrary time
	in the past and a types of book-keeping/debugging
	information:
	CUTFILE: information about particles to be used for running
	parallel simulations or generating external CUTFILE
	CUTFILENAME: report about usage of external CUTFILE
	FINISH: Master got information from slave about complete job
	<u>REQUEST</u> : Master got request from free slave for new job
	<u>RESUME</u> : Job waiting in queue sent to a free slave
	RUN_INFO: about the parameters used for initial start of
	simulation as primary or secondary shower
	SLAVE: Slave received order and going to start new parallel run
	START: Master ordering a free slave to start new parallel run
	<u>START</u> : Master ordering a free slave to start new parallel run <u>STOP</u> : Slave received order from Master to stop running

Slave2MasterRecv	This file shows the list of the requests received by the MASTER.
	The contents of this file should match to <i>Slave2MasterRequest</i>
	if the communication was correct.
Slave2MasterRequest	This file gives the list of the REQUEST messages sent by the
	SLAVES to the MASTER.
	The first column gives the unique MPIID of the job running on
	the SLAVE.
	The 3rd column tells whether the child job should be initiated
	as a primary (1) or a secondary (0) shower.
	The columns 4 to 6 define the run number, seed, and MPIID
	which in-turn define the name of the CUTFILE if it has to be
	read by the child job.
	The columns 7 and 8 give the indexes of the particles to be read
	from this CUTFILE.
status_finish1	This file contains the list of the FINISH messages received by
	the MASTER, i.e. the list of finished jobs.
	The first 2 columns define the unique MPIID of the child and
	the parent jobs.
	Column 3 is the end time of the snower/sub-snower
	Simulation.
	column 4 and 5 give the real start time and the end time of the
	The columns 6 to 9 give the snanshot of OUELIE as the number $\frac{1}{2}$
	of jobs running queued finished and lost respectively during
	simulations
status start	This file gives a list of the jobs initiated by the MASTER, entry is
	made as soon as a START message is sent to a SLAVE.
	The first 2 columns define the unique MPIID of the child and
	parent job.
	The 3rd column tells whether the job was a primary (1) or a
	secondary (0) shower.
	The columns 4 to 6 define the run-number, seed, and MPIID
	which in-turn defines the name of the CUTFILE to be read by
	the CORSIKA shower.
	The columns 7 and 8 give the indexes of the particles in the
	CUTFILE.
	The column 9 is the RANK (processor identifier) on which the
	job will run.
	Column 10 is a double value which is the start time of the
	shower/sub-shower (time in <i>sec</i> since Jan. 1, 1970).
	Columns 11 to 14 give the number of jobs running, queued,
	finished, and lost, respectively.
time.txt	Herewith the completeness of the simulation could be simply
	checked if this file is generated. It contains the start and stop
	time of simulation in seconds since an arbitrary time in the past
	and computation time spend for simulation in minits.

6. Post-Processing

The program *postprocess* analyses the output files *queue_add, status_start1, status_finish1, Slave2MasterRecv* produced during simulations by the MPI-Runner (see section Outputs). Simply copy and run the executable in a directory, where the outputs of MPI runner are stored to produce advanced data for analysing and visualising the parallel simulation procedure. It will extend following output files (or generate them, if they do not exist):

time.txt	This file displays information about:
	START TIME, STOP TIME and the TOTAL TIME taken by the simulation;
	MPIID of the longest job and the time taken by it;
	size (number of particles) of the largest group requested for parallel
	simulation;
	total number of jobs;
	actual aggregate CPU time consumed by the simulation.
	<i>NOTE</i> : If this information is unavailable, it might be the case that the
	simulation was not completed correctly.
plot_queue	These are scripts to be used for visualizing the outputs of MPI-Runner
plot_idv_time	using GNUPLOT.
Graph	This script can be used to picture with GRAPHVIZ a relation between
	the jobs.
result	This file is a compilation of all the outputs of MPI Runner in form of 19
	columns. This will be generated also if the simulation was not
	successful.
	The first 2 columns define the unique MPIID of child and parent job.
	The column 3 is the MPI rank on which the job ran (if started).
	The 4rd column tells whether the job was a primary (1) or a secondary
	(0) shower.
	The 5th column gives the status of the job:
	Q = queued, R = running, F = finished.
	The columns 6 to 8 define the run-number, seed, and MPIID.
	The columns 9 and 10 give the indexes of the particles in the CUTFILE.
	Colum 11 gives the size of the group (number of particles in the group)
	used for a new parallel simulation of a subshower.
	Columns 12 to 14 give the CPU time of a successful simulation.
	Columns 15 to 17 give the full time including the one spent for MPI
	communication.
	Columns 18 and 19 give the name of CUTFILES read and produced by
	the CORSIKA instance respectively.