

KARLSRUHE INSTITUTE OF TECHNOLOGY

(KIT)

 Shell Scripts for Corsika Code

 Simulation

 (User Guide)
 (Version 0.4 June 15,2011)

Himani Singla, Shenan Kalra and Sushant Sharma

Internship Students at SCC under the guidance of Dr. Gevorg Poghosyan

Abstract: We have developed Scripts for parallelized run of CORSIKA code. CORSIKA is a
simulation code for extensive air showers initiated by high energy cosmic particles. The

user guide explains the working of scripts and how they are used for running CORSIKA.

Detailed explanation:
The five scripts are:

1. corsika-initial.sh

2. scriptrunnr.sh

3. corsika-initial.ll.sh

4. create-secondary.sh

5. corsika-secondary.ll.sh

 Flow Chart “Workflow of CORSIKA SCRIPTS”

Working of Scripts:

1.1 Script-initial.sh

Script-initial.sh is an executable which runs locally. It is the script which is to be run

initially. To run the script, issue the command:

 ./script-initial.sh parallel-inputs corsika-executable-name
where parallel inputs is the steering input file

It will automatically run the whole simulation.

Script-initial.sh forms a file called level-file which stores the information of job files, the

level to which they belong and the number of DAT files they will form.

Script-initial.sh also forms check-file and job-file which are used by corsika-seconday.ll.sh

to fill the required information in them (as explained in corsika-seconday.ll.sh section).

1.2 Scriptrunnr.sh

The script-initial.sh calls scriptrunnr.sh script which checks the run number of the input

file and looks if any DAT file with that run number is present. If the file is present then it

increments the run number of the input files by one.

It keeps on incrementing the run number until it finds any DAT file with same run number.

1.3 Corsika-initial.ll.sh

Script-initial.sh submits the input file using Loadleveler script called corsika-initial.ll.sh.

Corsika-initial.ll.sh script is based on the concept of multiple steps job in the file. In the

first step the script updates the entry in the status_start status file and then runs the

corsika executable with steering file as input and produces the output file. Then it waits

until first job step is complete so that we can be sure that the run was successful and output

and other files have appeared and are complete. In the second step it produces end file and

writes the entry into status_finish status files.

After submitting the input file, we will get the following files:

Output files, DAT files, end file, output and error file of job called myjob.

end file is being used as a indicator to decrement the count of number of jobs running.

1.4 Create-secondary.sh

The script-initial.sh searches for the job files. After getting the any job file, script-initial.sh

extracts the seed number and parent id of that job file. Then script-initial sends the initial

input file, the job file and the seed number to the function called function_start inside the

script called create-secondary.sh.

Then the function_start reads the job file sent to it line by line and forms new input files

for further runs and appends initial input file inside the new file produced locally. Then it

deletes the second instance of lines which are not required from the new input file

produced. This input file is unique. So, from the name of the input file we can know from

which job file it was made.

1.5 Corsika-secondary.ll.sh

Create-secondary.sh script submits the new input file to the Loadleveler script corsika-

secondary.ll.sh just after creating it. Corsika-secondary.ll.sh script also uses the same

concept of multiple step jobs as in corsika-initial.ll.sh. In the first step it updates

status_start and runs corsika executable and produces output file. Also it fills job-file

which contains information about the starting time, real time and CPU time of all the jobs.

In the second step it updates status_finish, produces end files and fills the check file with

the Loadleveler job ids of all submitted jobs.

Create-secondary.sh reads the next line of job file and follows the same procedure as

explained above.

Then it goes back to script-initial.sh. The job file just used is moved into the job sub-

directory for future reference. The script-initial.sh checks for the newer job files. If there

are any new job files then again it uses the create-secondary.sh script and follows the

same procedure.

And if there is no new job file i.e. the number of new job files is zero and there is no job

running then it exits.

In the end we have files namely: DAT files, input files, output files, level-file, check-file and

job-file, status files.

2.1 INPUTS:

a. Input Data file:
a) The steering file to be read by the CORSIKA program. Please Refer the CORSIKA

User Guide.

b. Individual input files:
a) The initial input file is read and is modified to generate an individual input file

for every parallel job. These input files can be found in the input sub-directory.

3.1 OUPTUT/STATUS:

a) CORSIKA Output:

The output files are saved in the directory (running_directory)/output/

The path of the directory for DAT and CUT files is given as input in the INPUT STEERING FILE.

Kindly refer the CORSIKA user guide.

NOTE: to know more about DAT files and CUT files, please refer the CORSIKA User guide.

b) Script Runner output

I. status_start

Saved in the directory (running_directory)/status/

Gives the list of the jobs .

FORMAT:

1 0 0 1 0 1 0 0 1308148278

2 1 0 1 000000006 2 1 7 1308148282

3 1 0 1 000000006 3 8 8 1308148282

4 1 0 1 000000006 4 9 9 1308148282

5 1 0 1 000000006 5 10 19 1308148282

6 1 0 1 000000006 6 20 20 1308148282

7 1 0 1 000000006 7 21 23 1308148282

8 1 0 1 000000006 8 24 37 1308148282

9 1 0 1 000000006 9 38 38 1308148282

10 1 0 1 000000006 10 39 39 1308148283

11 1 0 1 000000006 11 40 45 1308148283

Explaination:

The First 2 coloums defines the unique MPI ID of the job and the MPI ID of the parent job.

The 3rd Coloum tells whether the job was a primary shower (1) or a secondary shower (0)

The coloums 4 to 6 defines the Run-number, seed, and MPIID which in-turn defines the name of the

CUTFILE to be read by the CORSIKA shower.

The coloum 7 and 8 gives the index of the particle in the CUTFILE.

Coloum 9 is a double value which is the start time of the Shower/Sub-shower.

II. status_finish1

the list of Jobs finished.

FORMAT:

1 0 1 1 0 1 0 0 1308148282

3 1 0 1 000000006 3 8 8 1308148286

9 1 0 1 000000006 9 38 38 1308148286

6 1 0 1 000000006 6 20 20 1308148287

4 1 0 1 000000006 4 9 9 1308148287

20 6 0 1 586395971 20 81 81 1308148292

11 1 0 1 000000006 11 40 45 1308148297

10 1 0 1 000000006 10 39 39 1308148298

2 1 0 1 000000006 2 1 7 1308148301

21 6 0 1 586395971 21 82 97 1308148302

7 1 0 1 000000006 7 21 23 1308148305

8 1 0 1 000000006 8 24 37 1308148305

Explanation:

The First 2 coloums defines the unique MPI ID of the job and the MPI ID of the parent job.

The 3rd Coloum tells whether the job was a primary shower (1) or a secondary shower (0)

The coloums 4 to 6 defines the Run-number, seed, and MPIID which in-turn defines the name of the

CUTFILE to be read by the CORSIKA shower.

The coloum 7 and 8 gives the index of the particle in the CUTFILE.

Coloum 9 is a double value which is the end time of the Shower/Sub-shower.

2.1 Run TYPES:

By specifying the type of run you can select the architecture on which the

simulation runs.

Currently we support 2 types of runs.

1. LL -Load levellor.

a. To run it use :
./script-initial.sh parallel-inputs corsika-executable-name LL

The simulation will run on distributed architecture which has LL as a

scheduler.

2. Default:

a. To run it use :
./script-initial.sh parallel-inputs corsika-executable-name

 The simulation will run on the same system on which the scripts are

executed. It can send the jobs in the background and can therefore benefit

from the multicores in the same system.

3.1 Steps to run the scripts:

1. After the compilation, copy the scripts from the ‘parallel-sccripts’ directory to

the run directory.

2. Make sure that the run directory doesn’t have job-files from any previous

runs. If the script detects any old files, it will prompt you.

3. The parallel input files should not have the OUTPUT unit set to 89, which is for

the MPI Runner version. If you are not sure, please remove the OUTPUT option

from the input file.

4. The parallel input file should always contain the line:

PARALLEL T 1.000000000E+05 1.000000000E+06 1

As the 1st line.

Here the 2nd value should always be T (true) to treat the simulation parallel.

The 3rd and the 4th values are the DECTCUT and DECTMAX respectively.

The last value is the run-number (CAN BE CHANGED BY THE SCRIPT ITSELF IF NOT VALID)

5. All the scripts should have the access privilege set to executable.

6. To run the script use :

./script-initial.sh parallel-inputs corsika-executable-name type

7. The script will itself create some sub-directories. Please make sure you have

the rights to do that.

8. Output files can be found in the output directory. The status files in the status

directory. In the job directory you can find the used job files. The end directory

should be empty after a successful run. Input directory contains the input files

used by all the individual tasks.

4.1 Some Observed Results:

The following table shows the number of job files produced in each step of each run with

different energies in Gev. It also includes approximate time taken in minutes for complete

run for different energies.

Energy

Range

(in

Gev)

1st

2nd

3rd

Number

4th

 of

5th

jobs

6th

produced

7th

8th

9th

10th

11th

Total

Jobs

Time

taken

(in mins)

10^7

11 11 2 24 2 mins

 10^8 15 38 67 56 21 10 2 209 19 mins

 10^9 15 219 585 498 223 56 12 3 1 0 1612 150 mins

10^10

19 1429 4157 4370 3088 671 206 63 9 4 2 14008 1580

mins

The following graph shows the comparision between number of jobs produced and

sent in each step for different energies:

