
KARLSRUHER INSTITUT F ÜR TECHNOLOGIE (KIT)

MPI-Runner for CORSIKA Parallel Simulations
(Algorithms)

S. Sharma, G. Poghosyan,
Steinbuch Centre for Computing,

T. Pierog, D. Heck, J. Oehlschläger, and R. Engel
Institut für Kernphysik

Updated Version from November 18, 2011

KIT - Universität des Landes Baden-Ẅurttemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Copyright Notice

Copyright and any other appropriate legal protection of these computer programs and asso-
ciated documentation reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior writ-
ten consent of Karlsruhe Institute of Technology or its delegate.

The Karlsruhe Institute of Technology welcomes comments concerning the CORSIKA code
but undertakes no obligation for maintenance of the programs, nor responsibility for their cor-
rectness, and accepts no liability whatsoever resulting from the use of its programs.

Trademark notice: All trademarks appearing in this CORSIKA GUIDE are acknowledged
as such.

Abstract

Parallelizing the Air Shower Simulation Code CORSIKA Using Message Passing Inter-
face (MPI): A User’s Guide

CORSIKA (COsmic Ray SImulations for KAscade) is a program for detailed simulation
of extensive air showers initiated by high energy cosmic ray particles. Protons, light nuclei
up to iron, photons, and many other particles may be treated as primaries. The particles are
tracked through the atmosphere until they undergo reactions with the air nuclei or - in the case
of instable secondaries - decay. The hadronic interactions at high energies may be described by
several reaction models. The MPI-Runner works to parallelize the run of CORSIKA so as to
reduce the simulation time of the run and to get some performance speed up. It is construted
by use of multigrid or multilevel techniques, one of the most effective ways for achieving high
scalability parallel simulations on high performance computing systems.

Zusammenfassung

Parallelisierung des Luftschauer-Simulationscodes CORSIKA unter Benutzung des Mes-
sage Passing Interface (MPI): Eine Benutzeranleitung

CORSIKA (COsmic Ray SImulations for KAscade) ist ein Programm für die detaillierte
Simulation von ausgedehnten Luftschauern, die von hochenergetischen Teilchen der kosmis-
chen Strahlung ausgelöst werden. Protonen, leichte Kerne bis zum Eisen, Photonen und viele
andere Partikel k̈onnen als Prim̈arteilchen behandelt werden. Diese Teilchen werden durch
die Atmospḧare verfolgt, bis sie Reaktionen mit den Atomen der Luft erleiden oder - im Fall
instabiler Sekund̈arteilchen - zerfallen. Die hadronischen Wechselwirkungen bei den hohen
Energien k̈onnen mit verschiedenen Reaktionsmodellen beschrieben werden. Der MPI-Runner
bewirkt eine Parallelisierung von CORSIKA-Rechnungen in der Art, dass die Simulationszeit
eines Rechenlaufes reduziert und damit bei gleicher Leistung eine Beschleunigung erreicht
wird. Er benutzt die Multi-Grid oder Multi-Level-Technik, eine der effektivsten Arten um par-
allele Simulationen mit hoher Skalierbarkeit auf Hochleistungs-Rechensystemen zu erreichen.

i

Contents

1 Algorithmic Principles of MPI-RunnerCode 1
1.1 The MASTER-SLAVE Model . 1
1.2 Scheduling and Book-Keeping . 2

1.2.1 Assigning of Individual IDs . 2
1.2.2 Book-Keeping . 2
1.2.3 Scheduling . 2

2 Functions 5
2.1 Functionmain() . 5
2.2 Functionget free rank() . 6
2.3 Functioncheckfor finish() . 7
2.4 Functionfinish() . 7
2.5 Subroutinecorsika() . 7
2.6 Functionendoffile(array,runnum,seed,mpiid). 7
2.7 Functionnewparticle(index1,index2,runnum,seed,mpiid). 8

ii

1 Algorithmic Principles of MPI-RunnerCode

CORSIKA is a simulation code of cosmic ray interactions with the air particles. As any in-
teraction occurs, new particles are produced and we have a new sub-shower. For every newly
appeared high energy particle (energy> DECTMAX) a new parallel simulation task is started
using traditional sequential CORSIKA. As well for new secondary particles falling into a spec-
ified energy interval (DECTCUT< energy< DECTMAX), they are grouped together in an
additional task to be run as a stack of particles. For that we have modeled theMPI-Runnerthat
is starting, stopping, queueing, and bookkeeping the separate CORSIKA simulation tasks.

1.1 The MASTER-SLAVE Model

The MPI-Runner is a based on a classical MASTER-SLAVE model. One processor in the MPI-
environment is designated as the MASTER to perform functions like scheduling, book-keeping,
starting, and stopping separate simulations etc. It communicates with other processors in the
environment via MPI-messages. The messages are of different types:

1. START (MASTER→ SLAVE)
To order the SLAVE to start an execution of sub-shower/particle/group.

2. REQUEST (SLAVE→ MASTER)
The SLAVE can request for the execution of new sub-shower.

3. FINISH (SLAVE→ MASTER)
The SLAVE informs/reports the master, that the execution of a particular subshower is
now over.

4. STOP (MASTER→ ALL SLAVES)
To stop the execution and finalize/exit.

Figure 1: The Master-Slave Model.

1

1.2 Scheduling and Book-Keeping

1.2.1 Assigning of Individual IDs

Every job is assigned a unique ID (identification number) by the MASTER. This ID is assigned
as soon as a request for a new job is received by the MASTER. Later on the MASTER can
decide to START it or QUEUE it.

1.2.2 Book-Keeping

With the unique ID the MASTER can recognize every job and book-keeping is managed by
writing information on to disk in the following format. The interpretation of output files is
explained in the following sections.

RANK Time Real Cut Parent Status
(on which) (including Time File ID
running) Comm.) Name
2 100 sec 97 sec *.cut 1 F
3 - - *.cut 2 R
- - - *.cut 2 Q
- - - *.cut 3 E

1.2.3 Scheduling

To make decision whether a new job should run, the MASTER has to keep an account of the
free RANKs/processors. The MASTER performs this scheduling by maintaining an ARRAY.
The Master also keeps a QUEUE to store waiting processes. Whenever there is a request for a
new process, the MASTER traverses the ARRAY. If it finds a free RANK, a START message is
sent to the free RANK, otherwise the job is pushed into the QUEUE. Whenever the MASTER
receives a FINISH message, a job is over and a RANK is free. The MASTER checks for jobs
in the QUEUE. If there are jobs in the QUEUE, the MASTER simply reads the job from the
QUEUE and orders to execute on the newly freed RANK/processor.

RANK 0 (MASTER) 1 2 3 4 5 6 7 8 . . .
status 1 1 1 1 0 0 1 0 . . .
task running (ID of task) 10 34 56 15 - - 6 - . . .

‘1’ = BUSY
meaning of status

‘0’ = FREE

2

Figure 2: Scheduling of tasks.

3

Figure 3: Scheduling of tasks.

4

2 Functions

2.1 Functionmain()

In this function all the initializations are done. These initializations affect the QUEUE, the MPI
buffers, the MPI environment, and the book-keeping.
The action of themain function depends on whether the processor is a MASTER or a SLAVE.
By default the MASTER is with the RANK 0. All other RANKS are SLAVEs.

Functioning of MASTER
STEP 1:

Initialize the QUEUE.
Initialize the ARRAY(to keep track of free RANKs).
Set the unique IDto 0.
Initialize the MPI buffer.

STEP 2:
Set the MPI bufferfor the primary particle.
Send the ‘START’ message to a SLAVE (usually the SLAVE with RANK = 1)
Update the ARRAY by setting the RANK 1 to ‘BUSY’.

STEP 3:
Check if all the RANKs are ‘FREE’. (call to functioncheckfor finish())
If none of the RANK is ‘BUSY’, go to Step 8.

STEP 4:
Wait for any message from any SLAVE. On receiving any message, proceed to Step 5.

STEP 5:
The message is saved in an MPI buffer (say BUFF1).
If the type of message received is ‘REQUEST’, go to Step 6.
If the type of message received is ‘FINISH’, go to Step 7.

STEP 6:
If the type of message received is ‘REQUEST’, the job is assigned a unique ID.
Look for a free RANK (call to functionget free rank()).

If a free RANK is found (say RANK n):
Send ‘START’ message to RANK nwith the same buffer BUFF1.
Update the RANK nas ‘BUSY’.
Go to Step 3.

Else
Insert the contents of the BUFF1to the QUEUE(call to functionadd()).
Go to Step 3.

STEP 7:
If the type of message received is ‘FINISH’,
say that the message was sent by the RANK m.
Update the RANK mas ‘FREE’.

If the QUEUEis empty:

5

Go to Step 3.
Else

Read the contents of one job from the QUEUEinto a buffer (say BUFF2).
Send the ‘START’ message to the RANK mwith the buffer BUFF2.
Update the RANK mas ‘BUSY’.
Go to Step 3.

STEP 8:
Free the memory allocated initially.
Call to functionfinish().

Functioning of SLAVE (SLAVE is for all RANKs other than MASTER.)
STEP 1:

Initialize the MPI buffer.
STEP 2:

Wait for any message fromMASTER. On receiving any message, proceed to Step 3.
STEP 3:

The message is saved in an MPI buffer (say BUFF3).
Reconstruct theoutput file name, cut file namefrom therun-number, seed, MPI ID.

Example : 1, 23, 3432 maps toDAT000001-000000023-000003432.cut
If the type of message received is ‘START’, go to Step 4.
If the type of message received is ‘STOP’, go to Step 5.

STEP 4:
If the type of message received is ‘START’:
Execute subroutinecorsika()with the same arguments as received in buffer BUFF3.
SendFINISH message toMASTER.
Go to Step 2.

STEP 5:
If the type of message received is ‘STOP’, finalize the MPI environment and exit.

2.2 Functionget free rank()

This function is called from themain()(MASTER).
START
Search for a free processors from the list of RANKs.

If a free processor is found:
Returns the RANK of free processor.

Else
ReturnsNOT FOUND.

STOP

6

2.3 Functioncheckfor finish()

This function is called from the functionmain()(MASTER).
Checks if the simulation is over, i.e., if there is no processor ‘BUSY’.
START

If simulation over:
Returns TRUE

Else
Returns FALSE

STOP

2.4 Functionfinish()

This function is called from themain()(MASTER).
START
STEP 1:

Send ‘STOP’ message to all the SLAVEs.
STEP 2:

Finalizes the MPI environment and exit.
STOP

2.5 Subroutinecorsika()

For the detailed functioning of the subroutinecorsika(), please refer to the CORSIKA User’s
Guide.
Subroutinecorsika()is a code written inFORTRAN. It is called by themain()function (SLAVE).
It interacts with the MPI-Runner through the calls to the functionendoffile(). Whenever the pro-
duction of aDAT....cut file is complete,corsikacalls the functionendoffile()passing the name
of theDAT....cut file and the information about the particles/groups in theDAT....cut file.

2.6 Functionendoffile(array,runnum,seed,mpiid)

The run-number, seed, and the MPIIDdefine the name of theDAT....cut file to be used by the
daughter jobs. And the ARRAYdefines how thisDAT....cut file is to be read.

START
STEP 1:

For every job, a call is made to the functionnewparticle(index1,index2,runnum,seed,mpiid).
STOP

7

Example:
Let’s say that CUTFILEand ARRAYcontain the information about the following particles

CUTFILE:

particle number information
1
2
3
4
5
6
7
8

ARRAY:

1 2 3 5 6 7

This shows that the CUTFILEhas information about 9 particles.
ARRAY tells about the grouping (if any) of the particles.
Here, particle 1, 2 are to be simulated individually and particles 3 and 4 are grouped together.
And similarly, 5 and 6 are individual tasks, finally 7 and 8 are grouped.

job particles
1 1
2 2
3 3, 4
4 5
5 6
6 7, 8

NOTE: This shows that the size of the ARRAYgives the number of jobs (may be single parti-
cles or groups).

2.7 Functionnewparticle(index1,index2,runnum,seed,mpiid)

index1andindex2define the position of particles in the CUTFILE.
The run-number, seed, and MPIIDdefine the name of the CUTFILEto be used by the daughter
jobs. Therefore run-number, seed, MPIID, and the indexesdefine a unique job (say JOB1).

START
STEP 1:

Initialize the MPI buffer (say BUFF4).

8

Set the MPI buffer BUFF4with the parameters for the JOB1.
STEP 2:

Send a ‘REQUEST’ message to theMASTER with the buffer BUFF4.
END

9

