"""Disk Cache Recipes """ import functools import math import os import random import sys import threading import time from .core import ENOVAL, args_to_key, full_name ############################################################################ # BEGIN Python 2/3 Shims ############################################################################ if sys.hexversion < 0x03000000: from thread import get_ident # pylint: disable=import-error else: from threading import get_ident ############################################################################ # END Python 2/3 Shims ############################################################################ class Averager(object): """Recipe for calculating a running average. Sometimes known as "online statistics," the running average maintains the total and count. The average can then be calculated at any time. >>> import diskcache >>> cache = diskcache.FanoutCache() >>> ave = Averager(cache, 'latency') >>> ave.add(0.080) >>> ave.add(0.120) >>> ave.get() 0.1 >>> ave.add(0.160) >>> ave.pop() 0.12 >>> print(ave.get()) None """ def __init__(self, cache, key, expire=None, tag=None): self._cache = cache self._key = key self._expire = expire self._tag = tag def add(self, value): "Add `value` to average." with self._cache.transact(retry=True): total, count = self._cache.get(self._key, default=(0.0, 0)) total += value count += 1 self._cache.set( self._key, (total, count), expire=self._expire, tag=self._tag, ) def get(self): "Get current average or return `None` if count equals zero." total, count = self._cache.get(self._key, default=(0.0, 0), retry=True) return None if count == 0 else total / count def pop(self): "Return current average and delete key." total, count = self._cache.pop(self._key, default=(0.0, 0), retry=True) return None if count == 0 else total / count class Lock(object): """Recipe for cross-process and cross-thread lock. >>> import diskcache >>> cache = diskcache.Cache() >>> lock = Lock(cache, 'report-123') >>> lock.acquire() >>> lock.release() >>> with lock: ... pass """ def __init__(self, cache, key, expire=None, tag=None): self._cache = cache self._key = key self._expire = expire self._tag = tag def acquire(self): "Acquire lock using spin-lock algorithm." while True: added = self._cache.add( self._key, None, expire=self._expire, tag=self._tag, retry=True, ) if added: break time.sleep(0.001) def release(self): "Release lock by deleting key." self._cache.delete(self._key, retry=True) def __enter__(self): self.acquire() def __exit__(self, *exc_info): self.release() class RLock(object): """Recipe for cross-process and cross-thread re-entrant lock. >>> import diskcache >>> cache = diskcache.Cache() >>> rlock = RLock(cache, 'user-123') >>> rlock.acquire() >>> rlock.acquire() >>> rlock.release() >>> with rlock: ... pass >>> rlock.release() >>> rlock.release() Traceback (most recent call last): ... AssertionError: cannot release un-acquired lock """ def __init__(self, cache, key, expire=None, tag=None): self._cache = cache self._key = key self._expire = expire self._tag = tag def acquire(self): "Acquire lock by incrementing count using spin-lock algorithm." pid = os.getpid() tid = get_ident() pid_tid = '{}-{}'.format(pid, tid) while True: with self._cache.transact(retry=True): value, count = self._cache.get(self._key, default=(None, 0)) if pid_tid == value or count == 0: self._cache.set( self._key, (pid_tid, count + 1), expire=self._expire, tag=self._tag, ) return time.sleep(0.001) def release(self): "Release lock by decrementing count." pid = os.getpid() tid = get_ident() pid_tid = '{}-{}'.format(pid, tid) with self._cache.transact(retry=True): value, count = self._cache.get(self._key, default=(None, 0)) is_owned = pid_tid == value and count > 0 assert is_owned, 'cannot release un-acquired lock' self._cache.set( self._key, (value, count - 1), expire=self._expire, tag=self._tag, ) def __enter__(self): self.acquire() def __exit__(self, *exc_info): self.release() class BoundedSemaphore(object): """Recipe for cross-process and cross-thread bounded semaphore. >>> import diskcache >>> cache = diskcache.Cache() >>> semaphore = BoundedSemaphore(cache, 'max-cons', value=2) >>> semaphore.acquire() >>> semaphore.acquire() >>> semaphore.release() >>> with semaphore: ... pass >>> semaphore.release() >>> semaphore.release() Traceback (most recent call last): ... AssertionError: cannot release un-acquired semaphore """ def __init__(self, cache, key, value=1, expire=None, tag=None): self._cache = cache self._key = key self._value = value self._expire = expire self._tag = tag def acquire(self): "Acquire semaphore by decrementing value using spin-lock algorithm." while True: with self._cache.transact(retry=True): value = self._cache.get(self._key, default=self._value) if value > 0: self._cache.set( self._key, value - 1, expire=self._expire, tag=self._tag, ) return time.sleep(0.001) def release(self): "Release semaphore by incrementing value." with self._cache.transact(retry=True): value = self._cache.get(self._key, default=self._value) assert self._value > value, 'cannot release un-acquired semaphore' value += 1 self._cache.set( self._key, value, expire=self._expire, tag=self._tag, ) def __enter__(self): self.acquire() def __exit__(self, *exc_info): self.release() def throttle(cache, count, seconds, name=None, expire=None, tag=None, time_func=time.time, sleep_func=time.sleep): """Decorator to throttle calls to function. >>> import diskcache, time >>> cache = diskcache.Cache() >>> count = 0 >>> @throttle(cache, 2, 1) # 2 calls per 1 second ... def increment(): ... global count ... count += 1 >>> start = time.time() >>> while (time.time() - start) <= 2: ... increment() >>> count in (6, 7) # 6 or 7 calls depending on CPU load True """ def decorator(func): rate = count / float(seconds) key = full_name(func) if name is None else name now = time_func() cache.set(key, (now, count), expire=expire, tag=tag, retry=True) @functools.wraps(func) def wrapper(*args, **kwargs): while True: with cache.transact(retry=True): last, tally = cache.get(key) now = time_func() tally += (now - last) * rate delay = 0 if tally > count: cache.set(key, (now, count - 1), expire) elif tally >= 1: cache.set(key, (now, tally - 1), expire) else: delay = (1 - tally) / rate if delay: sleep_func(delay) else: break return func(*args, **kwargs) return wrapper return decorator def barrier(cache, lock_factory, name=None, expire=None, tag=None): """Barrier to calling decorated function. Supports different kinds of locks: Lock, RLock, BoundedSemaphore. >>> import diskcache, time >>> cache = diskcache.Cache() >>> @barrier(cache, Lock) ... def work(num): ... print('worker started') ... time.sleep(1) ... print('worker finished') >>> import multiprocessing.pool >>> pool = multiprocessing.pool.ThreadPool(2) >>> _ = pool.map(work, range(2)) worker started worker finished worker started worker finished >>> pool.terminate() """ def decorator(func): key = full_name(func) if name is None else name lock = lock_factory(cache, key, expire=expire, tag=tag) @functools.wraps(func) def wrapper(*args, **kwargs): with lock: return func(*args, **kwargs) return wrapper return decorator def memoize_stampede(cache, expire, name=None, typed=False, tag=None, beta=1): """Memoizing cache decorator with cache stampede protection. Cache stampedes are a type of system overload that can occur when parallel computing systems using memoization come under heavy load. This behaviour is sometimes also called dog-piling, cache miss storm, cache choking, or the thundering herd problem. The memoization decorator implements cache stampede protection through early recomputation. Early recomputation of function results will occur probabilistically before expiration in a background thread of execution. Early probabilistic recomputation is based on research by Vattani, A.; Chierichetti, F.; Lowenstein, K. (2015), Optimal Probabilistic Cache Stampede Prevention, VLDB, pp. 886-897, ISSN 2150-8097 If name is set to None (default), the callable name will be determined automatically. If typed is set to True, function arguments of different types will be cached separately. For example, f(3) and f(3.0) will be treated as distinct calls with distinct results. The original underlying function is accessible through the `__wrapped__` attribute. This is useful for introspection, for bypassing the cache, or for rewrapping the function with a different cache. >>> from diskcache import Cache >>> cache = Cache() >>> @memoize_stampede(cache, expire=1) ... def fib(number): ... if number == 0: ... return 0 ... elif number == 1: ... return 1 ... else: ... return fib(number - 1) + fib(number - 2) >>> print(fib(100)) 354224848179261915075 An additional `__cache_key__` attribute can be used to generate the cache key used for the given arguments. >>> key = fib.__cache_key__(100) >>> del cache[key] Remember to call memoize when decorating a callable. If you forget, then a TypeError will occur. :param cache: cache to store callable arguments and return values :param float expire: seconds until arguments expire :param str name: name given for callable (default None, automatic) :param bool typed: cache different types separately (default False) :param str tag: text to associate with arguments (default None) :return: callable decorator """ # Caution: Nearly identical code exists in Cache.memoize def decorator(func): "Decorator created by memoize call for callable." base = (full_name(func),) if name is None else (name,) def timer(*args, **kwargs): "Time execution of `func` and return result and time delta." start = time.time() result = func(*args, **kwargs) delta = time.time() - start return result, delta @functools.wraps(func) def wrapper(*args, **kwargs): "Wrapper for callable to cache arguments and return values." key = wrapper.__cache_key__(*args, **kwargs) pair, expire_time = cache.get( key, default=ENOVAL, expire_time=True, retry=True, ) if pair is not ENOVAL: result, delta = pair now = time.time() ttl = expire_time - now if (-delta * beta * math.log(random.random())) < ttl: return result # Cache hit. # Check whether a thread has started for early recomputation. thread_key = key + (ENOVAL,) thread_added = cache.add( thread_key, None, expire=delta, retry=True, ) if thread_added: # Start thread for early recomputation. def recompute(): with cache: pair = timer(*args, **kwargs) cache.set( key, pair, expire=expire, tag=tag, retry=True, ) thread = threading.Thread(target=recompute) thread.daemon = True thread.start() return result pair = timer(*args, **kwargs) cache.set(key, pair, expire=expire, tag=tag, retry=True) return pair[0] def __cache_key__(*args, **kwargs): "Make key for cache given function arguments." return args_to_key(base, args, kwargs, typed) wrapper.__cache_key__ = __cache_key__ return wrapper return decorator