# # Author: Pearu Peterson, March 2002 # # w/ additions by Travis Oliphant, March 2002 # and Jake Vanderplas, August 2012 from __future__ import division, print_function, absolute_import __all__ = ['solve', 'solve_triangular', 'solveh_banded', 'solve_banded', 'inv', 'det', 'lstsq', 'pinv', 'pinv2', 'pinvh'] import numpy as np from .flinalg import get_flinalg_funcs from .lapack import get_lapack_funcs from .misc import LinAlgError, _datacopied from scipy.linalg import calc_lwork from . import decomp, decomp_svd # Linear equations def solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, debug=False, check_finite=True): """ Solve the equation ``a x = b`` for ``x``. Parameters ---------- a : (M, M) array_like A square matrix. b : (M,) or (M, N) array_like Right-hand side matrix in ``a x = b``. sym_pos : bool Assume `a` is symmetric and positive definite. lower : boolean Use only data contained in the lower triangle of `a`, if `sym_pos` is true. Default is to use upper triangle. overwrite_a : bool Allow overwriting data in `a` (may enhance performance). Default is False. overwrite_b : bool Allow overwriting data in `b` (may enhance performance). Default is False. check_finite : boolean, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, N) ndarray Solution to the system ``a x = b``. Shape of the return matches the shape of `b`. Raises ------ LinAlgError If `a` is singular. Examples -------- Given `a` and `b`, solve for `x`: >>> a = np.array([[3,2,0],[1,-1,0],[0,5,1]]) >>> b = np.array([2,4,-1]) >>> x = linalg.solve(a,b) >>> x array([ 2., -2., 9.]) >>> np.dot(a, x) == b array([ True, True, True], dtype=bool) """ if check_finite: a1, b1 = map(np.asarray_chkfinite,(a,b)) else: a1, b1 = map(np.asarray, (a,b)) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') if a1.shape[0] != b1.shape[0]: raise ValueError('incompatible dimensions') overwrite_a = overwrite_a or _datacopied(a1, a) overwrite_b = overwrite_b or _datacopied(b1, b) if debug: print('solve:overwrite_a=',overwrite_a) print('solve:overwrite_b=',overwrite_b) if sym_pos: posv, = get_lapack_funcs(('posv',), (a1,b1)) c, x, info = posv(a1, b1, lower=lower, overwrite_a=overwrite_a, overwrite_b=overwrite_b) else: gesv, = get_lapack_funcs(('gesv',), (a1,b1)) lu, piv, x, info = gesv(a1, b1, overwrite_a=overwrite_a, overwrite_b=overwrite_b) if info == 0: return x if info > 0: raise LinAlgError("singular matrix") raise ValueError('illegal value in %d-th argument of internal gesv|posv' % -info) def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, debug=False, check_finite=True): """ Solve the equation `a x = b` for `x`, assuming a is a triangular matrix. Parameters ---------- a : (M, M) array_like A triangular matrix b : (M,) or (M, N) array_like Right-hand side matrix in `a x = b` lower : boolean Use only data contained in the lower triangle of `a`. Default is to use upper triangle. trans : {0, 1, 2, 'N', 'T', 'C'}, optional Type of system to solve: ======== ========= trans system ======== ========= 0 or 'N' a x = b 1 or 'T' a^T x = b 2 or 'C' a^H x = b ======== ========= unit_diagonal : bool, optional If True, diagonal elements of `a` are assumed to be 1 and will not be referenced. overwrite_b : bool, optional Allow overwriting data in `b` (may enhance performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, N) ndarray Solution to the system `a x = b`. Shape of return matches `b`. Raises ------ LinAlgError If `a` is singular Notes ----- .. versionadded:: 0.9.0 """ if check_finite: a1, b1 = map(np.asarray_chkfinite,(a,b)) else: a1, b1 = map(np.asarray, (a,b)) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') if a1.shape[0] != b1.shape[0]: raise ValueError('incompatible dimensions') overwrite_b = overwrite_b or _datacopied(b1, b) if debug: print('solve:overwrite_b=',overwrite_b) trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans) trtrs, = get_lapack_funcs(('trtrs',), (a1,b1)) x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower, trans=trans, unitdiag=unit_diagonal) if info == 0: return x if info > 0: raise LinAlgError("singular matrix: resolution failed at diagonal %s" % (info-1)) raise ValueError('illegal value in %d-th argument of internal trtrs' % -info) def solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, debug=False, check_finite=True): """ Solve the equation a x = b for x, assuming a is banded matrix. The matrix a is stored in `ab` using the matrix diagonal ordered form:: ab[u + i - j, j] == a[i,j] Example of `ab` (shape of a is (6,6), `u` =1, `l` =2):: * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * * Parameters ---------- (l, u) : (integer, integer) Number of non-zero lower and upper diagonals ab : (`l` + `u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : boolean, optional Discard data in `ab` (may enhance performance) overwrite_b : boolean, optional Discard data in `b` (may enhance performance) check_finite : boolean, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Returned shape depends on the shape of `b`. """ (l, u) = l_and_u if check_finite: a1, b1 = map(np.asarray_chkfinite, (ab, b)) else: a1, b1 = map(np.asarray, (ab,b)) # Validate shapes. if a1.shape[-1] != b1.shape[0]: raise ValueError("shapes of ab and b are not compatible.") if l + u + 1 != a1.shape[0]: raise ValueError("invalid values for the number of lower and upper diagonals:" " l+u+1 (%d) does not equal ab.shape[0] (%d)" % (l+u+1, ab.shape[0])) overwrite_b = overwrite_b or _datacopied(b1, b) gbsv, = get_lapack_funcs(('gbsv',), (a1, b1)) a2 = np.zeros((2*l+u+1, a1.shape[1]), dtype=gbsv.dtype) a2[l:,:] = a1 lu, piv, x, info = gbsv(l, u, a2, b1, overwrite_ab=True, overwrite_b=overwrite_b) if info == 0: return x if info > 0: raise LinAlgError("singular matrix") raise ValueError('illegal value in %d-th argument of internal gbsv' % -info) def solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, check_finite=True): """ Solve equation a x = b. a is Hermitian positive-definite banded matrix. The matrix a is stored in `ab` either in lower diagonal or upper diagonal ordered form: ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[ i - j, j] == a[i,j] (if lower form; i >= j) Example of `ab` (shape of a is (6,6), `u` =2):: upper form: * * a02 a13 a24 a35 * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 lower form: a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * * Cells marked with * are not used. Parameters ---------- ab : (`u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in `ab` (may enhance performance) overwrite_b : bool, optional Discard data in `b` (may enhance performance) lower : bool, optional Is the matrix in the lower form. (Default is upper form) check_finite : boolean, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Shape of return matches shape of `b`. """ if check_finite: ab, b = map(np.asarray_chkfinite, (ab, b)) else: ab, b = map(np.asarray, (ab,b)) # Validate shapes. if ab.shape[-1] != b.shape[0]: raise ValueError("shapes of ab and b are not compatible.") pbsv, = get_lapack_funcs(('pbsv',), (ab, b)) c, x, info = pbsv(ab, b, lower=lower, overwrite_ab=overwrite_ab, overwrite_b=overwrite_b) if info > 0: raise LinAlgError("%d-th leading minor not positive definite" % info) if info < 0: raise ValueError('illegal value in %d-th argument of internal pbsv' % -info) return x # matrix inversion def inv(a, overwrite_a=False, check_finite=True): """ Compute the inverse of a matrix. Parameters ---------- a : array_like Square matrix to be inverted. overwrite_a : bool, optional Discard data in `a` (may improve performance). Default is False. check_finite : boolean, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- ainv : ndarray Inverse of the matrix `a`. Raises ------ LinAlgError : If `a` is singular. ValueError : If `a` is not square, or not 2-dimensional. Examples -------- >>> a = np.array([[1., 2.], [3., 4.]]) >>> sp.linalg.inv(a) array([[-2. , 1. ], [ 1.5, -0.5]]) >>> np.dot(a, sp.linalg.inv(a)) array([[ 1., 0.], [ 0., 1.]]) """ if check_finite: a1 = np.asarray_chkfinite(a) else: a1 = np.asarray(a) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') overwrite_a = overwrite_a or _datacopied(a1, a) #XXX: I found no advantage or disadvantage of using finv. ## finv, = get_flinalg_funcs(('inv',),(a1,)) ## if finv is not None: ## a_inv,info = finv(a1,overwrite_a=overwrite_a) ## if info==0: ## return a_inv ## if info>0: raise LinAlgError, "singular matrix" ## if info<0: raise ValueError,\ ## 'illegal value in %d-th argument of internal inv.getrf|getri'%(-info) getrf, getri = get_lapack_funcs(('getrf','getri'), (a1,)) lu, piv, info = getrf(a1, overwrite_a=overwrite_a) if info == 0: lwork = calc_lwork.getri(getri.typecode, a1.shape[0]) lwork = lwork[1] # XXX: the following line fixes curious SEGFAULT when # benchmarking 500x500 matrix inverse. This seems to # be a bug in LAPACK ?getri routine because if lwork is # minimal (when using lwork[0] instead of lwork[1]) then # all tests pass. Further investigation is required if # more such SEGFAULTs occur. lwork = int(1.01 * lwork) inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1) if info > 0: raise LinAlgError("singular matrix") if info < 0: raise ValueError('illegal value in %d-th argument of internal ' 'getrf|getri' % -info) return inv_a ### Determinant def det(a, overwrite_a=False, check_finite=True): """ Compute the determinant of a matrix The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix. The determinant for a 3x3 matrix, for example, is computed as follows:: a b c d e f = A g h i det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h Parameters ---------- a : (M, M) array_like A square matrix. overwrite_a : bool Allow overwriting data in a (may enhance performance). check_finite : boolean, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- det : float or complex Determinant of `a`. Notes ----- The determinant is computed via LU factorization, LAPACK routine z/dgetrf. Examples -------- >>> a = np.array([[1,2,3],[4,5,6],[7,8,9]]) >>> linalg.det(a) 0.0 >>> a = np.array([[0,2,3],[4,5,6],[7,8,9]]) >>> linalg.det(a) 3.0 """ if check_finite: a1 = np.asarray_chkfinite(a) else: a1 = np.asarray(a) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') overwrite_a = overwrite_a or _datacopied(a1, a) fdet, = get_flinalg_funcs(('det',), (a1,)) a_det, info = fdet(a1, overwrite_a=overwrite_a) if info < 0: raise ValueError('illegal value in %d-th argument of internal ' 'det.getrf' % -info) return a_det ### Linear Least Squares def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True): """ Compute least-squares solution to equation Ax = b. Compute a vector x such that the 2-norm ``|b - A x|`` is minimized. Parameters ---------- a : (M, N) array_like Left hand side matrix (2-D array). b : (M,) or (M, K) array_like Right hand side matrix or vector (1-D or 2-D array). cond : float, optional Cutoff for 'small' singular values; used to determine effective rank of a. Singular values smaller than ``rcond * largest_singular_value`` are considered zero. overwrite_a : bool, optional Discard data in `a` (may enhance performance). Default is False. overwrite_b : bool, optional Discard data in `b` (may enhance performance). Default is False. check_finite : boolean, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (N,) or (N, K) ndarray Least-squares solution. Return shape matches shape of `b`. residues : () or (1,) or (K,) ndarray Sums of residues, squared 2-norm for each column in ``b - a x``. If rank of matrix a is < N or > M this is an empty array. If b was 1-D, this is an (1,) shape array, otherwise the shape is (K,). rank : int Effective rank of matrix `a`. s : (min(M,N),) ndarray Singular values of `a`. The condition number of a is ``abs(s[0]/s[-1])``. Raises ------ LinAlgError : If computation does not converge. See Also -------- optimize.nnls : linear least squares with non-negativity constraint """ if check_finite: a1,b1 = map(np.asarray_chkfinite, (a,b)) else: a1,b1 = map(np.asarray, (a,b)) if len(a1.shape) != 2: raise ValueError('expected matrix') m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 if m != b1.shape[0]: raise ValueError('incompatible dimensions') gelss, = get_lapack_funcs(('gelss',), (a1, b1)) if n > m: # need to extend b matrix as it will be filled with # a larger solution matrix if len(b1.shape) == 2: b2 = np.zeros((n, nrhs), dtype=gelss.dtype) b2[:m,:] = b1 else: b2 = np.zeros(n, dtype=gelss.dtype) b2[:m] = b1 b1 = b2 overwrite_a = overwrite_a or _datacopied(a1, a) overwrite_b = overwrite_b or _datacopied(b1, b) # get optimal work array work = gelss(a1, b1, lwork=-1)[4] lwork = work[0].real.astype(np.int) v, x, s, rank, work, info = gelss( a1, b1, cond=cond, lwork=lwork, overwrite_a=overwrite_a, overwrite_b=overwrite_b) if info > 0: raise LinAlgError("SVD did not converge in Linear Least Squares") if info < 0: raise ValueError('illegal value in %d-th argument of internal gelss' % -info) resids = np.asarray([], dtype=x.dtype) if n < m: x1 = x[:n] if rank == n: resids = np.sum(np.abs(x[n:])**2, axis=0) x = x1 return x, resids, rank, s def pinv(a, cond=None, rcond=None, return_rank=False, check_finite=True): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate a generalized inverse of a matrix using a least-squares solver. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. cond, rcond : float, optional Cutoff for 'small' singular values in the least-squares solver. Singular values smaller than ``rcond * largest_singular_value`` are considered zero. return_rank : bool, optional if True, return the effective rank of the matrix check_finite : boolean, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if return_rank == True Raises ------ LinAlgError If computation does not converge. Examples -------- >>> a = np.random.randn(9, 6) >>> B = linalg.pinv(a) >>> np.allclose(a, dot(a, dot(B, a))) True >>> np.allclose(B, dot(B, dot(a, B))) True """ if check_finite: a = np.asarray_chkfinite(a) else: a = np.asarray(a) b = np.identity(a.shape[0], dtype=a.dtype) if rcond is not None: cond = rcond x, resids, rank, s = lstsq(a, b, cond=cond, check_finite=False) if return_rank: return x, rank else: return x def pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate a generalized inverse of a matrix using its singular-value decomposition and including all 'large' singular values. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. cond, rcond : float or None Cutoff for 'small' singular values. Singular values smaller than ``rcond*largest_singular_value`` are considered zero. If None or -1, suitable machine precision is used. return_rank : bool, optional if True, return the effective rank of the matrix check_finite : boolean, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if return_rank == True Raises ------ LinAlgError If SVD computation does not converge. Examples -------- >>> a = np.random.randn(9, 6) >>> B = linalg.pinv2(a) >>> np.allclose(a, dot(a, dot(B, a))) True >>> np.allclose(B, dot(B, dot(a, B))) True """ if check_finite: a = np.asarray_chkfinite(a) else: a = np.asarray(a) u, s, vh = decomp_svd.svd(a, full_matrices=False, check_finite=False) if rcond is not None: cond = rcond if cond in [None,-1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps rank = np.sum(s > cond * np.max(s)) psigma_diag = 1.0 / s[: rank] B = np.transpose(np.conjugate(np.dot(u[:, : rank] * psigma_diag, vh[: rank]))) if return_rank: return B, rank else: return B def pinvh(a, cond=None, rcond=None, lower=True, return_rank=False, check_finite=True): """ Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix. Calculate a generalized inverse of a Hermitian or real symmetric matrix using its eigenvalue decomposition and including all eigenvalues with 'large' absolute value. Parameters ---------- a : (N, N) array_like Real symmetric or complex hermetian matrix to be pseudo-inverted cond, rcond : float or None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : bool Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) return_rank : bool, optional if True, return the effective rank of the matrix check_finite : boolean, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- B : (N, N) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if return_rank == True Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> from numpy import * >>> a = random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> allclose(a, dot(a, dot(B, a))) True >>> allclose(B, dot(B, dot(a, B))) True """ if check_finite: a = np.asarray_chkfinite(a) else: a = np.asarray(a) s, u = decomp.eigh(a, lower=lower, check_finite=False) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # For Hermitian matrices, singular values equal abs(eigenvalues) above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = 1.0 / s[above_cutoff] u = u[:, above_cutoff] B = np.dot(u * psigma_diag, np.conjugate(u).T) if return_rank: return B, len(psigma_diag) else: return B