// @(#)root/mathcore:$Id: 9ef2a4a7bd1b62c1293920c2af2f64791c75bdd8 $ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team * * * * * **********************************************************************/ // Header file for Vector Utility functions // // Created by: moneta at Tue May 31 21:10:29 2005 // // Last update: Tue May 31 21:10:29 2005 // #ifndef ROOT_Math_GenVector_VectorUtil #define ROOT_Math_GenVector_VectorUtil 1 #ifndef ROOT_Math_Math #include "Math/Math.h" #endif #include "Math/GenVector/Boost.h" namespace ROOT { namespace Math { // utility functions for vector classes /** Global Helper functions for generic Vector classes. Any Vector classes implementing some defined member functions, like Phi() or Eta() or mag() can use these functions. The functions returning a scalar value, returns always double precision number even if the vector are based on another precision type @ingroup GenVector */ namespace VectorUtil { // methods for 3D vectors /** Find aximutal Angle difference between two generic vectors ( v2.Phi() - v1.Phi() ) The only requirements on the Vector classes is that they implement the Phi() method \param v1 Vector of any type implementing the Phi() operator \param v2 Vector of any type implementing the Phi() operator \return Phi difference \f[ \Delta \phi = \phi_2 - \phi_1 \f] */ template inline typename Vector1::Scalar DeltaPhi( const Vector1 & v1, const Vector2 & v2) { typename Vector1::Scalar dphi = v2.Phi() - v1.Phi(); if ( dphi > M_PI ) { dphi -= 2.0*M_PI; } else if ( dphi <= -M_PI ) { dphi += 2.0*M_PI; } return dphi; } /** Find square of the difference in pseudorapidity (Eta) and Phi betwen two generic vectors The only requirements on the Vector classes is that they implement the Phi() and Eta() method \param v1 Vector 1 \param v2 Vector 2 \return Angle between the two vectors \f[ \Delta R2 = ( \Delta \phi )^2 + ( \Delta \eta )^2 \f] */ template inline typename Vector1::Scalar DeltaR2( const Vector1 & v1, const Vector2 & v2) { typename Vector1::Scalar dphi = DeltaPhi(v1,v2); typename Vector1::Scalar deta = v2.Eta() - v1.Eta(); return dphi*dphi + deta*deta; } /** Find difference in pseudorapidity (Eta) and Phi betwen two generic vectors The only requirements on the Vector classes is that they implement the Phi() and Eta() method \param v1 Vector 1 \param v2 Vector 2 \return Angle between the two vectors \f[ \Delta R = \sqrt{ ( \Delta \phi )^2 + ( \Delta \eta )^2 } \f] */ template inline typename Vector1::Scalar DeltaR( const Vector1 & v1, const Vector2 & v2) { return std::sqrt( DeltaR2(v1,v2) ); } /** Find CosTheta Angle between two generic 3D vectors pre-requisite: vectors implement the X(), Y() and Z() \param v1 Vector v1 \param v2 Vector v2 \return cosine of Angle between the two vectors \f[ \cos \theta = \frac { \vec{v1} \cdot \vec{v2} }{ | \vec{v1} | | \vec{v2} | } \f] */ // this cannot be made all generic since Mag2() for 2, 3 or 4 D is different // need to have a specialization for polar Coordinates ?? template double CosTheta( const Vector1 & v1, const Vector2 & v2) { double arg; double v1_r2 = v1.X()*v1.X() + v1.Y()*v1.Y() + v1.Z()*v1.Z(); double v2_r2 = v2.X()*v2.X() + v2.Y()*v2.Y() + v2.Z()*v2.Z(); double ptot2 = v1_r2*v2_r2; if(ptot2 <= 0) { arg = 0.0; }else{ double pdot = v1.X()*v2.X() + v1.Y()*v2.Y() + v1.Z()*v2.Z(); arg = pdot/std::sqrt(ptot2); if(arg > 1.0) arg = 1.0; if(arg < -1.0) arg = -1.0; } return arg; } /** Find Angle between two vectors. Use the CosTheta() function \param v1 Vector v1 \param v2 Vector v2 \return Angle between the two vectors \f[ \theta = \cos ^{-1} \frac { \vec{v1} \cdot \vec{v2} }{ | \vec{v1} | | \vec{v2} | } \f] */ template inline double Angle( const Vector1 & v1, const Vector2 & v2) { return std::acos( CosTheta(v1, v2) ); } /** Find the projection of v along the given direction u. \param v Vector v for which the propjection is to be found \param u Vector specifying the direction \return Vector projection (same type of v) \f[ \vec{proj} = \frac{ \vec{v} \cdot \vec{u} }{|\vec{u}|}\vec{u} \f] Precondition is that Vector1 implements Dot function and Vector2 implements X(),Y() and Z() */ template Vector1 ProjVector( const Vector1 & v, const Vector2 & u) { double magU2 = u.X()*u.X() + u.Y()*u.Y() + u.Z()*u.Z(); if (magU2 == 0) return Vector1(0,0,0); double d = v.Dot(u)/magU2; return Vector1( u.X() * d, u.Y() * d, u.Z() * d); } /** Find the vector component of v perpendicular to the given direction of u \param v Vector v for which the perpendicular component is to be found \param u Vector specifying the direction \return Vector component of v which is perpendicular to u \f[ \vec{perp} = \vec{v} - \frac{ \vec{v} \cdot \vec{u} }{|\vec{u}|}\vec{u} \f] Precondition is that Vector1 implements Dot function and Vector2 implements X(),Y() and Z() */ template inline Vector1 PerpVector( const Vector1 & v, const Vector2 & u) { return v - ProjVector(v,u); } /** Find the magnitude square of the vector component of v perpendicular to the given direction of u \param v Vector v for which the perpendicular component is to be found \param u Vector specifying the direction \return square value of the component of v which is perpendicular to u \f[ perp = | \vec{v} - \frac{ \vec{v} \cdot \vec{u} }{|\vec{u}|}\vec{u} |^2 \f] Precondition is that Vector1 implements Dot function and Vector2 implements X(),Y() and Z() */ template inline double Perp2( const Vector1 & v, const Vector2 & u) { double magU2 = u.X()*u.X() + u.Y()*u.Y() + u.Z()*u.Z(); double prjvu = v.Dot(u); double magV2 = v.Dot(v); return magU2 > 0.0 ? magV2-prjvu*prjvu/magU2 : magV2; } /** Find the magnitude of the vector component of v perpendicular to the given direction of u \param v Vector v for which the perpendicular component is to be found \param u Vector specifying the direction \return value of the component of v which is perpendicular to u \f[ perp = | \vec{v} - \frac{ \vec{v} \cdot \vec{u} }{|\vec{u}|}\vec{u} | \f] Precondition is that Vector1 implements Dot function and Vector2 implements X(),Y() and Z() */ template inline double Perp( const Vector1 & v, const Vector2 & u) { return std::sqrt(Perp2(v,u) ); } // Lorentz Vector functions /** return the invariant mass of two LorentzVector The only requirement on the LorentzVector is that they need to implement the X() , Y(), Z() and E() methods. \param v1 LorenzVector 1 \param v2 LorenzVector 2 \return invariant mass M \f[ M_{12} = \sqrt{ (\vec{v1} + \vec{v2} ) \cdot (\vec{v1} + \vec{v2} ) } \f] */ template inline typename Vector1::Scalar InvariantMass( const Vector1 & v1, const Vector2 & v2) { typedef typename Vector1::Scalar Scalar; Scalar ee = (v1.E() + v2.E() ); Scalar xx = (v1.X() + v2.X() ); Scalar yy = (v1.Y() + v2.Y() ); Scalar zz = (v1.Z() + v2.Z() ); Scalar mm2 = ee*ee - xx*xx - yy*yy - zz*zz; return mm2 < 0.0 ? -std::sqrt(-mm2) : std::sqrt(mm2); // PxPyPzE4D q(xx,yy,zz,ee); // return q.M(); //return ( v1 + v2).mag(); } template inline typename Vector1::Scalar InvariantMass2( const Vector1 & v1, const Vector2 & v2) { typedef typename Vector1::Scalar Scalar; Scalar ee = (v1.E() + v2.E() ); Scalar xx = (v1.X() + v2.X() ); Scalar yy = (v1.Y() + v2.Y() ); Scalar zz = (v1.Z() + v2.Z() ); Scalar mm2 = ee*ee - xx*xx - yy*yy - zz*zz; return mm2 ; // < 0.0 ? -std::sqrt(-mm2) : std::sqrt(mm2); // PxPyPzE4D q(xx,yy,zz,ee); // return q.M(); //return ( v1 + v2).mag(); } // rotation and transformations #ifndef __CINT__ /** rotation along X axis for a generic vector by an Angle alpha returning a new vector. The only pre requisite on the Vector is that it has to implement the X() , Y() and Z() and SetXYZ methods. */ template Vector RotateX(const Vector & v, double alpha) { double sina = sin(alpha); double cosa = cos(alpha); double y2 = v.Y() * cosa - v.Z()*sina; double z2 = v.Z() * cosa + v.Y() * sina; Vector vrot; vrot.SetXYZ(v.X(), y2, z2); return vrot; } /** rotation along Y axis for a generic vector by an Angle alpha returning a new vector. The only pre requisite on the Vector is that it has to implement the X() , Y() and Z() and SetXYZ methods. */ template Vector RotateY(const Vector & v, double alpha) { double sina = sin(alpha); double cosa = cos(alpha); double x2 = v.X() * cosa + v.Z() * sina; double z2 = v.Z() * cosa - v.X() * sina; Vector vrot; vrot.SetXYZ(x2, v.Y(), z2); return vrot; } /** rotation along Z axis for a generic vector by an Angle alpha returning a new vector. The only pre requisite on the Vector is that it has to implement the X() , Y() and Z() and SetXYZ methods. */ template Vector RotateZ(const Vector & v, double alpha) { double sina = sin(alpha); double cosa = cos(alpha); double x2 = v.X() * cosa - v.Y() * sina; double y2 = v.Y() * cosa - v.X() * sina; Vector vrot; vrot.SetXYZ(x2, y2, v.Z()); return vrot; } /** rotation on a generic vector using a generic rotation class. The only requirement on the vector is that implements the X(), Y(), Z() and SetXYZ methods. The requirement on the rotation matrix is that need to implement the (i,j) operator returning the matrix element with R(0,0) = xx element */ template Vector Rotate(const Vector &v, const RotationMatrix & rot) { double xX = v.X(); double yY = v.Y(); double zZ = v.Z(); double x2 = rot(0,0)*xX + rot(0,1)*yY + rot(0,2)*zZ; double y2 = rot(1,0)*xX + rot(1,1)*yY + rot(1,2)*zZ; double z2 = rot(2,0)*xX + rot(2,1)*yY + rot(2,2)*zZ; Vector vrot; vrot.SetXYZ(x2,y2,z2); return vrot; } /** Boost a generic Lorentz Vector class using a generic 3D Vector class describing the boost The only requirement on the vector is that implements the X(), Y(), Z(), T() and SetXYZT methods. The requirement on the boost vector is that needs to implement the X(), Y() , Z() retorning the vector elements describing the boost The beta of the boost must be <= 1 or a nul Lorentz Vector will be returned */ template LVector boost(const LVector & v, const BoostVector & b) { double bx = b.X(); double by = b.Y(); double bz = b.Z(); double b2 = bx*bx + by*by + bz*bz; if (b2 >= 1) { GenVector::Throw ( "Beta Vector supplied to set Boost represents speed >= c"); return LVector(); } double gamma = 1.0 / std::sqrt(1.0 - b2); double bp = bx*v.X() + by*v.Y() + bz*v.Z(); double gamma2 = b2 > 0 ? (gamma - 1.0)/b2 : 0.0; double x2 = v.X() + gamma2*bp*bx + gamma*bx*v.T(); double y2 = v.Y() + gamma2*bp*by + gamma*by*v.T(); double z2 = v.Z() + gamma2*bp*bz + gamma*bz*v.T(); double t2 = gamma*(v.T() + bp); LVector lv; lv.SetXYZT(x2,y2,z2,t2); return lv; } /** Boost a generic Lorentz Vector class along the X direction with a factor beta The only requirement on the vector is that implements the X(), Y(), Z(), T() and SetXYZT methods. The beta of the boost must be <= 1 or a nul Lorentz Vector will be returned */ template LVector boostX(const LVector & v, T beta) { if (beta >= 1) { GenVector::Throw ("Beta Vector supplied to set Boost represents speed >= c"); return LVector(); } T gamma = 1.0/ std::sqrt(1.0 - beta*beta); typename LVector::Scalar x2 = gamma * v.X() + gamma * beta * v.T(); typename LVector::Scalar t2 = gamma * beta * v.X() + gamma * v.T(); LVector lv; lv.SetXYZT(x2,v.Y(),v.Z(),t2); return lv; } /** Boost a generic Lorentz Vector class along the Y direction with a factor beta The only requirement on the vector is that implements the X(), Y(), Z(), T() methods and be constructed from x,y,z,t values The beta of the boost must be <= 1 or a nul Lorentz Vector will be returned */ template LVector boostY(const LVector & v, double beta) { if (beta >= 1) { GenVector::Throw ("Beta Vector supplied to set Boost represents speed >= c"); return LVector(); } double gamma = 1.0/ std::sqrt(1.0 - beta*beta); double y2 = gamma * v.Y() + gamma * beta * v.T(); double t2 = gamma * beta * v.Y() + gamma * v.T(); LVector lv; lv.SetXYZT(v.X(),y2,v.Z(),t2); return lv; } /** Boost a generic Lorentz Vector class along the Z direction with a factor beta The only requirement on the vector is that implements the X(), Y(), Z(), T() methods and be constructed from x,y,z,t values The beta of the boost must be <= 1 or a nul Lorentz Vector will be returned */ template LVector boostZ(const LVector & v, double beta) { if (beta >= 1) { GenVector::Throw ( "Beta Vector supplied to set Boost represents speed >= c"); return LVector(); } double gamma = 1.0/ std::sqrt(1.0 - beta*beta); double z2 = gamma * v.Z() + gamma * beta * v.T(); double t2 = gamma * beta * v.Z() + gamma * v.T(); LVector lv; lv.SetXYZT(v.X(),v.Y(),z2,t2); return lv; } #endif // MATRIX VECTOR MULTIPLICATION // cannot define an operator * otherwise conflicts with rotations // operations like Rotation3D * vector use Mult /** Multiplications of a generic matrices with a DisplacementVector3D of any coordinate system. Assume that the matrix implements the operator( i,j) and that it has at least 3 columns and 3 rows. There is no check on the matrix size !! */ template inline DisplacementVector3D Mult (const Matrix & m, const DisplacementVector3D & v) { DisplacementVector3D vret; vret.SetXYZ( m(0,0) * v.x() + m(0,1) * v.y() + m(0,2) * v.z() , m(1,0) * v.x() + m(1,1) * v.y() + m(1,2) * v.z() , m(2,0) * v.x() + m(2,1) * v.y() + m(2,2) * v.z() ); return vret; } /** Multiplications of a generic matrices with a generic PositionVector Assume that the matrix implements the operator( i,j) and that it has at least 3 columns and 3 rows. There is no check on the matrix size !! */ template inline PositionVector3D Mult (const Matrix & m, const PositionVector3D & p) { DisplacementVector3D pret; pret.SetXYZ( m(0,0) * p.x() + m(0,1) * p.y() + m(0,2) * p.z() , m(1,0) * p.x() + m(1,1) * p.y() + m(1,2) * p.z() , m(2,0) * p.x() + m(2,1) * p.y() + m(2,2) * p.z() ); return pret; } /** Multiplications of a generic matrices with a LorentzVector described in any coordinate system. Assume that the matrix implements the operator( i,j) and that it has at least 4 columns and 4 rows. There is no check on the matrix size !! */ // this will not be ambigous with operator*(Scalar, LorentzVector) since that one // Scalar is passed by value template inline LorentzVector Mult (const Matrix & m, const LorentzVector & v) { LorentzVector vret; vret.SetXYZT( m(0,0)*v.x() + m(0,1)*v.y() + m(0,2)*v.z() + m(0,3)* v.t() , m(1,0)*v.x() + m(1,1)*v.y() + m(1,2)*v.z() + m(1,3)* v.t() , m(2,0)*v.x() + m(2,1)*v.y() + m(2,2)*v.z() + m(2,3)* v.t() , m(3,0)*v.x() + m(3,1)*v.y() + m(3,2)*v.z() + m(3,3)* v.t() ); return vret; } // non-template utility functions for all objects /** Return a phi angle in the interval (0,2*PI] */ double Phi_0_2pi(double phi); /** Returns phi angle in the interval (-PI,PI] */ double Phi_mpi_pi(double phi); } // end namespace Vector Util } // end namespace Math } // end namespace ROOT #endif /* ROOT_Math_GenVector_VectorUtil */