// @(#)root/mathcore:$Id$ // Authors: Rene Brun, Anna Kreshuk, Eddy Offermann, Fons Rademakers 29/07/95 /************************************************************************* * Copyright (C) 1995-2004, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOT_TMath #define ROOT_TMath ////////////////////////////////////////////////////////////////////////// // // // TMath // // // // Encapsulate most frequently used Math functions. // // NB. The basic functions Min, Max, Abs and Sign are defined // // in TMathBase. // // // ////////////////////////////////////////////////////////////////////////// #ifndef ROOT_Rtypes #include "Rtypes.h" #endif #ifndef ROOT_TMathBase #include "TMathBase.h" #endif #include "TError.h" #include #include #include namespace TMath { /* ************************* */ /* * Fundamental constants * */ /* ************************* */ inline Double_t Pi() { return 3.14159265358979323846; } inline Double_t TwoPi() { return 2.0 * Pi(); } inline Double_t PiOver2() { return Pi() / 2.0; } inline Double_t PiOver4() { return Pi() / 4.0; } inline Double_t InvPi() { return 1.0 / Pi(); } inline Double_t RadToDeg() { return 180.0 / Pi(); } inline Double_t DegToRad() { return Pi() / 180.0; } inline Double_t Sqrt2() { return 1.4142135623730950488016887242097; } // e (base of natural log) inline Double_t E() { return 2.71828182845904523536; } // natural log of 10 (to convert log to ln) inline Double_t Ln10() { return 2.30258509299404568402; } // base-10 log of e (to convert ln to log) inline Double_t LogE() { return 0.43429448190325182765; } // velocity of light inline Double_t C() { return 2.99792458e8; } // m s^-1 inline Double_t Ccgs() { return 100.0 * C(); } // cm s^-1 inline Double_t CUncertainty() { return 0.0; } // exact // gravitational constant inline Double_t G() { return 6.673e-11; } // m^3 kg^-1 s^-2 inline Double_t Gcgs() { return G() / 1000.0; } // cm^3 g^-1 s^-2 inline Double_t GUncertainty() { return 0.010e-11; } // G over h-bar C inline Double_t GhbarC() { return 6.707e-39; } // (GeV/c^2)^-2 inline Double_t GhbarCUncertainty() { return 0.010e-39; } // standard acceleration of gravity inline Double_t Gn() { return 9.80665; } // m s^-2 inline Double_t GnUncertainty() { return 0.0; } // exact // Planck's constant inline Double_t H() { return 6.62606876e-34; } // J s inline Double_t Hcgs() { return 1.0e7 * H(); } // erg s inline Double_t HUncertainty() { return 0.00000052e-34; } // h-bar (h over 2 pi) inline Double_t Hbar() { return 1.054571596e-34; } // J s inline Double_t Hbarcgs() { return 1.0e7 * Hbar(); } // erg s inline Double_t HbarUncertainty() { return 0.000000082e-34; } // hc (h * c) inline Double_t HC() { return H() * C(); } // J m inline Double_t HCcgs() { return Hcgs() * Ccgs(); } // erg cm // Boltzmann's constant inline Double_t K() { return 1.3806503e-23; } // J K^-1 inline Double_t Kcgs() { return 1.0e7 * K(); } // erg K^-1 inline Double_t KUncertainty() { return 0.0000024e-23; } // Stefan-Boltzmann constant inline Double_t Sigma() { return 5.6704e-8; } // W m^-2 K^-4 inline Double_t SigmaUncertainty() { return 0.000040e-8; } // Avogadro constant (Avogadro's Number) inline Double_t Na() { return 6.02214199e+23; } // mol^-1 inline Double_t NaUncertainty() { return 0.00000047e+23; } // universal gas constant (Na * K) // http://scienceworld.wolfram.com/physics/UniversalGasConstant.html inline Double_t R() { return K() * Na(); } // J K^-1 mol^-1 inline Double_t RUncertainty() { return R()*((KUncertainty()/K()) + (NaUncertainty()/Na())); } // Molecular weight of dry air // 1976 US Standard Atmosphere, // also see http://atmos.nmsu.edu/jsdap/encyclopediawork.html inline Double_t MWair() { return 28.9644; } // kg kmol^-1 (or gm mol^-1) // Dry Air Gas Constant (R / MWair) // http://atmos.nmsu.edu/education_and_outreach/encyclopedia/gas_constant.htm inline Double_t Rgair() { return (1000.0 * R()) / MWair(); } // J kg^-1 K^-1 // Euler-Mascheroni Constant inline Double_t EulerGamma() { return 0.577215664901532860606512090082402431042; } // Elementary charge inline Double_t Qe() { return 1.602176462e-19; } // C inline Double_t QeUncertainty() { return 0.000000063e-19; } /* ************************** */ /* * Mathematical Functions * */ /* ************************** */ /* ***************************** */ /* * Trigonometrical Functions * */ /* ***************************** */ inline Double_t Sin(Double_t); inline Double_t Cos(Double_t); inline Double_t Tan(Double_t); inline Double_t SinH(Double_t); inline Double_t CosH(Double_t); inline Double_t TanH(Double_t); inline Double_t ASin(Double_t); inline Double_t ACos(Double_t); inline Double_t ATan(Double_t); inline Double_t ATan2(Double_t, Double_t); Double_t ASinH(Double_t); Double_t ACosH(Double_t); Double_t ATanH(Double_t); Double_t Hypot(Double_t x, Double_t y); /* ************************ */ /* * Elementary Functions * */ /* ************************ */ inline Double_t Ceil(Double_t x); inline Int_t CeilNint(Double_t x); inline Double_t Floor(Double_t x); inline Int_t FloorNint(Double_t x); template inline Int_t Nint(T x); inline Double_t Sqrt(Double_t x); inline Double_t Exp(Double_t x); inline Double_t Ldexp(Double_t x, Int_t exp); Double_t Factorial(Int_t i); inline LongDouble_t Power(LongDouble_t x, LongDouble_t y); inline LongDouble_t Power(LongDouble_t x, Long64_t y); inline LongDouble_t Power(Long64_t x, Long64_t y); inline Double_t Power(Double_t x, Double_t y); inline Double_t Power(Double_t x, Int_t y); inline Double_t Log(Double_t x); Double_t Log2(Double_t x); inline Double_t Log10(Double_t x); inline Int_t Finite(Double_t x); inline Int_t IsNaN(Double_t x); inline Double_t QuietNaN(); inline Double_t SignalingNaN(); inline Double_t Infinity(); template struct Limits { inline static T Min(); inline static T Max(); inline static T Epsilon(); }; // Some integer math Long_t Hypot(Long_t x, Long_t y); // sqrt(px*px + py*py) // Comparing floating points inline Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon) { //return kTRUE if absolute difference between af and bf is less than epsilon return TMath::Abs(af-bf) < epsilon; } inline Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec) { //return kTRUE if relative difference between af and bf is less than relPrec return TMath::Abs(af-bf) <= 0.5*relPrec*(TMath::Abs(af)+TMath::Abs(bf)); } /* ******************** */ /* * Array Algorithms * */ /* ******************** */ // Min, Max of an array template T MinElement(Long64_t n, const T *a); template T MaxElement(Long64_t n, const T *a); // Locate Min, Max element number in an array template Long64_t LocMin(Long64_t n, const T *a); template Iterator LocMin(Iterator first, Iterator last); template Long64_t LocMax(Long64_t n, const T *a); template Iterator LocMax(Iterator first, Iterator last); // Binary search template Long64_t BinarySearch(Long64_t n, const T *array, T value); template Long64_t BinarySearch(Long64_t n, const T **array, T value); template Iterator BinarySearch(Iterator first, Iterator last, Element value); // Hashing ULong_t Hash(const void *txt, Int_t ntxt); ULong_t Hash(const char *str); // Sorting template void Sort(Index n, const Element* a, Index* index, Bool_t down=kTRUE); template void SortItr(Iterator first, Iterator last, IndexIterator index, Bool_t down=kTRUE); void BubbleHigh(Int_t Narr, Double_t *arr1, Int_t *arr2); void BubbleLow (Int_t Narr, Double_t *arr1, Int_t *arr2); Bool_t Permute(Int_t n, Int_t *a); // Find permutations /* ************************* */ /* * Geometrical Functions * */ /* ************************* */ //Sample quantiles void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index = 0, Int_t type=7); // IsInside template Bool_t IsInside(T xp, T yp, Int_t np, T *x, T *y); // Calculate the Cross Product of two vectors template T *Cross(const T v1[3],const T v2[3], T out[3]); Float_t Normalize(Float_t v[3]); // Normalize a vector Double_t Normalize(Double_t v[3]); // Normalize a vector //Calculate the Normalized Cross Product of two vectors template inline T NormCross(const T v1[3],const T v2[3],T out[3]); // Calculate a normal vector of a plane template T *Normal2Plane(const T v1[3],const T v2[3],const T v3[3], T normal[3]); /* ************************ */ /* * Polynomial Functions * */ /* ************************ */ Bool_t RootsCubic(const Double_t coef[4],Double_t &a, Double_t &b, Double_t &c); /* *********************** */ /* * Statistic Functions * */ /* *********************** */ Double_t Binomial(Int_t n,Int_t k); // Calculate the binomial coefficient n over k Double_t BinomialI(Double_t p, Int_t n, Int_t k); Double_t BreitWigner(Double_t x, Double_t mean=0, Double_t gamma=1); Double_t CauchyDist(Double_t x, Double_t t=0, Double_t s=1); Double_t ChisquareQuantile(Double_t p, Double_t ndf); Double_t FDist(Double_t F, Double_t N, Double_t M); Double_t FDistI(Double_t F, Double_t N, Double_t M); Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE); Double_t KolmogorovProb(Double_t z); Double_t KolmogorovTest(Int_t na, const Double_t *a, Int_t nb, const Double_t *b, Option_t *option); Double_t Landau(Double_t x, Double_t mpv=0, Double_t sigma=1, Bool_t norm=kFALSE); Double_t LandauI(Double_t x); Double_t LaplaceDist(Double_t x, Double_t alpha=0, Double_t beta=1); Double_t LaplaceDistI(Double_t x, Double_t alpha=0, Double_t beta=1); Double_t LogNormal(Double_t x, Double_t sigma, Double_t theta=0, Double_t m=1); Double_t NormQuantile(Double_t p); Double_t Poisson(Double_t x, Double_t par); Double_t PoissonI(Double_t x, Double_t par); Double_t Prob(Double_t chi2,Int_t ndf); Double_t Student(Double_t T, Double_t ndf); Double_t StudentI(Double_t T, Double_t ndf); Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE); Double_t Vavilov(Double_t x, Double_t kappa, Double_t beta2); Double_t VavilovI(Double_t x, Double_t kappa, Double_t beta2); Double_t Voigt(Double_t x, Double_t sigma, Double_t lg, Int_t r = 4); /* ************************** */ /* * Statistics over arrays * */ /* ************************** */ //Mean, Geometric Mean, Median, RMS(sigma) template Double_t Mean(Long64_t n, const T *a, const Double_t *w=0); template Double_t Mean(Iterator first, Iterator last); template Double_t Mean(Iterator first, Iterator last, WeightIterator w); template Double_t GeomMean(Long64_t n, const T *a); template Double_t GeomMean(Iterator first, Iterator last); template Double_t RMS(Long64_t n, const T *a); template Double_t RMS(Iterator first, Iterator last); template Double_t StdDev(Long64_t n, const T *a) { return RMS(n,a); } template Double_t StdDev(Iterator first, Iterator last) { return RMS(first,last); } template Double_t Median(Long64_t n, const T *a, const Double_t *w=0, Long64_t *work=0); //k-th order statistic template Element KOrdStat(Size n, const Element *a, Size k, Size *work = 0); /* ******************* */ /* * Special Functions */ /* ******************* */ Double_t Beta(Double_t p, Double_t q); Double_t BetaCf(Double_t x, Double_t a, Double_t b); Double_t BetaDist(Double_t x, Double_t p, Double_t q); Double_t BetaDistI(Double_t x, Double_t p, Double_t q); Double_t BetaIncomplete(Double_t x, Double_t a, Double_t b); // Bessel functions Double_t BesselI(Int_t n,Double_t x); // integer order modified Bessel function I_n(x) Double_t BesselK(Int_t n,Double_t x); // integer order modified Bessel function K_n(x) Double_t BesselI0(Double_t x); // modified Bessel function I_0(x) Double_t BesselK0(Double_t x); // modified Bessel function K_0(x) Double_t BesselI1(Double_t x); // modified Bessel function I_1(x) Double_t BesselK1(Double_t x); // modified Bessel function K_1(x) Double_t BesselJ0(Double_t x); // Bessel function J0(x) for any real x Double_t BesselJ1(Double_t x); // Bessel function J1(x) for any real x Double_t BesselY0(Double_t x); // Bessel function Y0(x) for positive x Double_t BesselY1(Double_t x); // Bessel function Y1(x) for positive x Double_t StruveH0(Double_t x); // Struve functions of order 0 Double_t StruveH1(Double_t x); // Struve functions of order 1 Double_t StruveL0(Double_t x); // Modified Struve functions of order 0 Double_t StruveL1(Double_t x); // Modified Struve functions of order 1 Double_t DiLog(Double_t x); Double_t Erf(Double_t x); Double_t ErfInverse(Double_t x); Double_t Erfc(Double_t x); Double_t ErfcInverse(Double_t x); Double_t Freq(Double_t x); Double_t Gamma(Double_t z); Double_t Gamma(Double_t a,Double_t x); Double_t GammaDist(Double_t x, Double_t gamma, Double_t mu=0, Double_t beta=1); Double_t LnGamma(Double_t z); } //---- Trig and other functions ------------------------------------------------ #include #if defined(R__WIN32) && !defined(__CINT__) # ifndef finite # define finite _finite # define isnan _isnan # endif #endif #if defined(R__AIX) || defined(R__SOLARIS_CC50) || \ defined(R__HPUX11) || defined(R__GLIBC) || \ (defined(R__MACOSX) && (defined(__INTEL_COMPILER) || defined(__arm__))) // math functions are defined inline so we have to include them here # include # ifdef R__SOLARIS_CC50 extern "C" { int finite(double); } # endif // # if defined(R__GLIBC) && defined(__STRICT_ANSI__) // # ifndef finite // # define finite __finite // # endif // # ifndef isnan // # define isnan __isnan // # endif // # endif #else // don't want to include complete extern "C" { extern double sin(double); extern double cos(double); extern double tan(double); extern double sinh(double); extern double cosh(double); extern double tanh(double); extern double asin(double); extern double acos(double); extern double atan(double); extern double atan2(double, double); extern double sqrt(double); extern double exp(double); extern double pow(double, double); extern double log(double); extern double log10(double); #ifndef R__WIN32 # if !defined(finite) extern int finite(double); # endif # if !defined(isnan) extern int isnan(double); # endif extern double ldexp(double, int); extern double ceil(double); extern double floor(double); #else _CRTIMP double ldexp(double, int); _CRTIMP double ceil(double); _CRTIMP double floor(double); #endif } #endif inline Double_t TMath::Sin(Double_t x) { return sin(x); } inline Double_t TMath::Cos(Double_t x) { return cos(x); } inline Double_t TMath::Tan(Double_t x) { return tan(x); } inline Double_t TMath::SinH(Double_t x) { return sinh(x); } inline Double_t TMath::CosH(Double_t x) { return cosh(x); } inline Double_t TMath::TanH(Double_t x) { return tanh(x); } inline Double_t TMath::ASin(Double_t x) { if (x < -1.) return -TMath::Pi()/2; if (x > 1.) return TMath::Pi()/2; return asin(x); } inline Double_t TMath::ACos(Double_t x) { if (x < -1.) return TMath::Pi(); if (x > 1.) return 0; return acos(x); } inline Double_t TMath::ATan(Double_t x) { return atan(x); } inline Double_t TMath::ATan2(Double_t y, Double_t x) { if (x != 0) return atan2(y, x); if (y == 0) return 0; if (y > 0) return Pi()/2; else return -Pi()/2; } inline Double_t TMath::Sqrt(Double_t x) { return sqrt(x); } inline Double_t TMath::Ceil(Double_t x) { return ceil(x); } inline Int_t TMath::CeilNint(Double_t x) { return TMath::Nint(ceil(x)); } inline Double_t TMath::Floor(Double_t x) { return floor(x); } inline Int_t TMath::FloorNint(Double_t x) { return TMath::Nint(floor(x)); } template inline Int_t TMath::Nint(T x) { // Round to nearest integer. Rounds half integers to the nearest // even integer. int i; if (x >= 0) { i = int(x + 0.5); if ( i & 1 && x + 0.5 == T(i) ) i--; } else { i = int(x - 0.5); if ( i & 1 && x - 0.5 == T(i) ) i++; } return i; } inline Double_t TMath::Exp(Double_t x) { return exp(x); } inline Double_t TMath::Ldexp(Double_t x, Int_t exp) { return ldexp(x, exp); } inline LongDouble_t TMath::Power(LongDouble_t x, LongDouble_t y) { return std::pow(x,y); } inline LongDouble_t TMath::Power(LongDouble_t x, Long64_t y) { return std::pow(x,(LongDouble_t)y); } inline LongDouble_t TMath::Power(Long64_t x, Long64_t y) #if __cplusplus >= 201103 /*C++11*/ { return std::pow(x,y); } #else { return std::pow((LongDouble_t)x,(LongDouble_t)y); } #endif inline Double_t TMath::Power(Double_t x, Double_t y) { return pow(x, y); } inline Double_t TMath::Power(Double_t x, Int_t y) { #ifdef R__ANSISTREAM return std::pow(x, y); #else return pow(x, (Double_t) y); #endif } inline Double_t TMath::Log(Double_t x) { return log(x); } inline Double_t TMath::Log10(Double_t x) { return log10(x); } inline Int_t TMath::Finite(Double_t x) #if defined(R__HPUX11) { return isfinite(x); } #elif defined(R__MACOSX) #ifdef isfinite // from math.h { return isfinite(x); } #else // from cmath { return std::isfinite(x); } #endif #else { return finite(x); } #endif inline Int_t TMath::IsNaN(Double_t x) #if (defined(R__ANSISTREAM) || (defined(R__MACOSX) && defined(__arm__))) && !defined(_AIX) && !defined(__CUDACC__) #if defined(isnan) || defined(R__SOLARIS_CC50) || defined(__INTEL_COMPILER) // from math.h { return ::isnan(x); } #else // from cmath { return std::isnan(x); } #endif #else { return isnan(x); } #endif //--------wrapper to numeric_limits //____________________________________________________________________________ inline Double_t TMath::QuietNaN() { // returns a quiet NaN as defined by IEEE 754 // see http://en.wikipedia.org/wiki/NaN#Quiet_NaN return std::numeric_limits::quiet_NaN(); } //____________________________________________________________________________ inline Double_t TMath::SignalingNaN() { // returns a signaling NaN as defined by IEEE 754 // see http://en.wikipedia.org/wiki/NaN#Signaling_NaN return std::numeric_limits::signaling_NaN(); } inline Double_t TMath::Infinity() { // returns an infinity as defined by the IEEE standard return std::numeric_limits::infinity(); } template inline T TMath::Limits::Min() { // returns maximum representation for type T return (std::numeric_limits::min)(); //N.B. use this signature to avoid class with macro min() on Windows } template inline T TMath::Limits::Max() { // returns minimum double representation return (std::numeric_limits::max)(); //N.B. use this signature to avoid class with macro max() on Windows } template inline T TMath::Limits::Epsilon() { // returns minimum double representation return std::numeric_limits::epsilon(); } //-------- Advanced ------------- template inline T TMath::NormCross(const T v1[3],const T v2[3],T out[3]) { // Calculate the Normalized Cross Product of two vectors return Normalize(Cross(v1,v2,out)); } template T TMath::MinElement(Long64_t n, const T *a) { // Return minimum of array a of length n. return *std::min_element(a,a+n); } template T TMath::MaxElement(Long64_t n, const T *a) { // Return maximum of array a of length n. return *std::max_element(a,a+n); } template Long64_t TMath::LocMin(Long64_t n, const T *a) { // Return index of array with the minimum element. // If more than one element is minimum returns first found. // Implement here since this one is found to be faster (mainly on 64 bit machines) // than stl generic implementation. // When performing the comparison, the STL implementation needs to de-reference both the array iterator // and the iterator pointing to the resulting minimum location if (n <= 0 || !a) return -1; T xmin = a[0]; Long64_t loc = 0; for (Long64_t i = 1; i < n; i++) { if (xmin > a[i]) { xmin = a[i]; loc = i; } } return loc; } template Iterator TMath::LocMin(Iterator first, Iterator last) { // Return index of array with the minimum element. // If more than one element is minimum returns first found. return std::min_element(first, last); } template Long64_t TMath::LocMax(Long64_t n, const T *a) { // Return index of array with the maximum element. // If more than one element is maximum returns first found. // Implement here since it is faster (see comment in LocMin function) if (n <= 0 || !a) return -1; T xmax = a[0]; Long64_t loc = 0; for (Long64_t i = 1; i < n; i++) { if (xmax < a[i]) { xmax = a[i]; loc = i; } } return loc; } template Iterator TMath::LocMax(Iterator first, Iterator last) { // Return index of array with the maximum element. // If more than one element is maximum returns first found. return std::max_element(first, last); } template struct CompareDesc { CompareDesc(T d) : fData(d) {} template bool operator()(Index i1, Index i2) { return *(fData + i1) > *(fData + i2); } T fData; }; template struct CompareAsc { CompareAsc(T d) : fData(d) {} template bool operator()(Index i1, Index i2) { return *(fData + i1) < *(fData + i2); } T fData; }; template Double_t TMath::Mean(Iterator first, Iterator last) { // Return the weighted mean of an array defined by the iterators. Double_t sum = 0; Double_t sumw = 0; while ( first != last ) { sum += *first; sumw += 1; first++; } return sum/sumw; } template Double_t TMath::Mean(Iterator first, Iterator last, WeightIterator w) { // Return the weighted mean of an array defined by the first and // last iterators. The w iterator should point to the first element // of a vector of weights of the same size as the main array. Double_t sum = 0; Double_t sumw = 0; int i = 0; while ( first != last ) { if ( *w < 0) { ::Error("TMath::Mean","w[%d] = %.4e < 0 ?!",i,*w); return 0; } sum += (*w) * (*first); sumw += (*w) ; ++w; ++first; ++i; } if (sumw <= 0) { ::Error("TMath::Mean","sum of weights == 0 ?!"); return 0; } return sum/sumw; } template Double_t TMath::Mean(Long64_t n, const T *a, const Double_t *w) { // Return the weighted mean of an array a with length n. if (w) { return TMath::Mean(a, a+n, w); } else { return TMath::Mean(a, a+n); } } template Double_t TMath::GeomMean(Iterator first, Iterator last) { // Return the geometric mean of an array defined by the iterators. // geometric_mean = (Prod_i=0,n-1 |a[i]|)^1/n Double_t logsum = 0.; Long64_t n = 0; while ( first != last ) { if (*first == 0) return 0.; Double_t absa = (Double_t) TMath::Abs(*first); logsum += TMath::Log(absa); ++first; ++n; } return TMath::Exp(logsum/n); } template Double_t TMath::GeomMean(Long64_t n, const T *a) { // Return the geometric mean of an array a of size n. // geometric_mean = (Prod_i=0,n-1 |a[i]|)^1/n return TMath::GeomMean(a, a+n); } template Double_t TMath::RMS(Iterator first, Iterator last) { // Return the Standard Deviation of an array defined by the iterators. // Note that this function returns the sigma(standard deviation) and // not the root mean square of the array. Double_t n = 0; Double_t tot = 0, tot2 =0, adouble; while ( first != last ) { adouble=Double_t(*first); tot += adouble; tot2 += adouble*adouble; ++first; ++n; } Double_t n1 = 1./n; Double_t mean = tot*n1; Double_t rms = TMath::Sqrt(TMath::Abs(tot2*n1 -mean*mean)); return rms; } template Double_t TMath::RMS(Long64_t n, const T *a) { // Return the Standard Deviation of an array a with length n. // Note that this function returns the sigma(standard deviation) and // not the root mean square of the array. return TMath::RMS(a, a+n); } template Iterator TMath::BinarySearch(Iterator first, Iterator last, Element value) { // Binary search in an array defined by its iterators. // // The values in the iterators range are supposed to be sorted // prior to this call. If match is found, function returns // position of element. If no match found, function gives nearest // element smaller than value. Iterator pind; pind = std::lower_bound(first, last, value); if ( (pind != last) && (*pind == value) ) return pind; else return ( pind - 1); } template Long64_t TMath::BinarySearch(Long64_t n, const T *array, T value) { // Binary search in an array of n values to locate value. // // Array is supposed to be sorted prior to this call. // If match is found, function returns position of element. // If no match found, function gives nearest element smaller than value. const T* pind; pind = std::lower_bound(array, array + n, value); if ( (pind != array + n) && (*pind == value) ) return (pind - array); else return ( pind - array - 1); } template Long64_t TMath::BinarySearch(Long64_t n, const T **array, T value) { // Binary search in an array of n values to locate value. // // Array is supposed to be sorted prior to this call. // If match is found, function returns position of element. // If no match found, function gives nearest element smaller than value. const T* pind; pind = std::lower_bound(*array, *array + n, value); if ( (pind != *array + n) && (*pind == value) ) return (pind - *array); else return ( pind - *array - 1); } template void TMath::SortItr(Iterator first, Iterator last, IndexIterator index, Bool_t down) { // Sort the n1 elements of the Short_t array defined by its // iterators. In output the array index contains the indices of // the sorted array. If down is false sort in increasing order // (default is decreasing order). // NOTE that the array index must be created with a length bigger // or equal than the main array before calling this function. int i = 0; IndexIterator cindex = index; for ( Iterator cfirst = first; cfirst != last; ++cfirst ) { *cindex = i++; ++cindex; } if ( down ) std::sort(index, cindex, CompareDesc(first) ); else std::sort(index, cindex, CompareAsc(first) ); } template void TMath::Sort(Index n, const Element* a, Index* index, Bool_t down) { // Sort the n elements of the array a of generic templated type Element. // In output the array index of type Index contains the indices of the sorted array. // If down is false sort in increasing order (default is decreasing order). // NOTE that the array index must be created with a length >= n // before calling this function. // NOTE also that the size type for n must be the same type used for the index array // (templated type Index) for(Index i = 0; i < n; i++) { index[i] = i; } if ( down ) std::sort(index, index + n, CompareDesc(a) ); else std::sort(index, index + n, CompareAsc(a) ); } template T *TMath::Cross(const T v1[3],const T v2[3], T out[3]) { // Calculate the Cross Product of two vectors: // out = [v1 x v2] out[0] = v1[1] * v2[2] - v1[2] * v2[1]; out[1] = v1[2] * v2[0] - v1[0] * v2[2]; out[2] = v1[0] * v2[1] - v1[1] * v2[0]; return out; } template T * TMath::Normal2Plane(const T p1[3],const T p2[3],const T p3[3], T normal[3]) { // Calculate a normal vector of a plane. // // Input: // Float_t *p1,*p2,*p3 - 3 3D points belonged the plane to define it. // // Return: // Pointer to 3D normal vector (normalized) T v1[3], v2[3]; v1[0] = p2[0] - p1[0]; v1[1] = p2[1] - p1[1]; v1[2] = p2[2] - p1[2]; v2[0] = p3[0] - p1[0]; v2[1] = p3[1] - p1[1]; v2[2] = p3[2] - p1[2]; NormCross(v1,v2,normal); return normal; } template Bool_t TMath::IsInside(T xp, T yp, Int_t np, T *x, T *y) { // Function which returns kTRUE if point xp,yp lies inside the // polygon defined by the np points in arrays x and y, kFALSE otherwise. // Note that the polygon may be open or closed. Int_t i, j = np-1 ; Bool_t oddNodes = kFALSE; for (i=0; i=yp) || (y[j]=yp)) { if (x[i]+(yp-y[i])/(y[j]-y[i])*(x[j]-x[i]) Double_t TMath::Median(Long64_t n, const T *a, const Double_t *w, Long64_t *work) { // Return the median of the array a where each entry i has weight w[i] . // Both arrays have a length of at least n . The median is a number obtained // from the sorted array a through // // median = (a[jl]+a[jh])/2. where (using also the sorted index on the array w) // // sum_i=0,jl w[i] <= sumTot/2 // sum_i=0,jh w[i] >= sumTot/2 // sumTot = sum_i=0,n w[i] // // If w=0, the algorithm defaults to the median definition where it is // a number that divides the sorted sequence into 2 halves. // When n is odd or n > 1000, the median is kth element k = (n + 1) / 2. // when n is even and n < 1000the median is a mean of the elements k = n/2 and k = n/2 + 1. // // If the weights are supplied (w not 0) all weights must be >= 0 // // If work is supplied, it is used to store the sorting index and assumed to be // >= n . If work=0, local storage is used, either on the stack if n < kWorkMax // or on the heap for n >= kWorkMax . const Int_t kWorkMax = 100; if (n <= 0 || !a) return 0; Bool_t isAllocated = kFALSE; Double_t median; Long64_t *ind; Long64_t workLocal[kWorkMax]; if (work) { ind = work; } else { ind = workLocal; if (n > kWorkMax) { isAllocated = kTRUE; ind = new Long64_t[n]; } } if (w) { Double_t sumTot2 = 0; for (Int_t j = 0; j < n; j++) { if (w[j] < 0) { ::Error("TMath::Median","w[%d] = %.4e < 0 ?!",j,w[j]); if (isAllocated) delete [] ind; return 0; } sumTot2 += w[j]; } sumTot2 /= 2.; Sort(n, a, ind, kFALSE); Double_t sum = 0.; Int_t jl; for (jl = 0; jl < n; jl++) { sum += w[ind[jl]]; if (sum >= sumTot2) break; } Int_t jh; sum = 2.*sumTot2; for (jh = n-1; jh >= 0; jh--) { sum -= w[ind[jh]]; if (sum <= sumTot2) break; } median = 0.5*(a[ind[jl]]+a[ind[jh]]); } else { if (n%2 == 1) median = KOrdStat(n, a,n/2, ind); else { median = 0.5*(KOrdStat(n, a, n/2 -1, ind)+KOrdStat(n, a, n/2, ind)); } } if (isAllocated) delete [] ind; return median; } template Element TMath::KOrdStat(Size n, const Element *a, Size k, Size *work) { // Returns k_th order statistic of the array a of size n // (k_th smallest element out of n elements). // // C-convention is used for array indexing, so if you want // the second smallest element, call KOrdStat(n, a, 1). // // If work is supplied, it is used to store the sorting index and // assumed to be >= n. If work=0, local storage is used, either on // the stack if n < kWorkMax or on the heap for n >= kWorkMax. // Note that the work index array will not contain the sorted indices but // all indeces of the smaller element in arbitrary order in work[0,...,k-1] and // all indeces of the larger element in arbitrary order in work[k+1,..,n-1] // work[k] will contain instead the index of the returned element. // // Taken from "Numerical Recipes in C++" without the index array // implemented by Anna Khreshuk. // // See also the declarations at the top of this file const Int_t kWorkMax = 100; typedef Size Index; Bool_t isAllocated = kFALSE; Size i, ir, j, l, mid; Index arr; Index *ind; Index workLocal[kWorkMax]; Index temp; if (work) { ind = work; } else { ind = workLocal; if (n > kWorkMax) { isAllocated = kTRUE; ind = new Index[n]; } } for (Size ii=0; ii> 1; //choose median of left, center and right {temp = ind[mid]; ind[mid]=ind[l+1]; ind[l+1]=temp;}//elements as partitioning element arr. if (a[ind[l]]>a[ind[ir]]) //also rearrange so that a[l]<=a[l+1] {temp = ind[l]; ind[l]=ind[ir]; ind[ir]=temp;} if (a[ind[l+1]]>a[ind[ir]]) {temp=ind[l+1]; ind[l+1]=ind[ir]; ind[ir]=temp;} if (a[ind[l]]>a[ind[l+1]]) {temp = ind[l]; ind[l]=ind[l+1]; ind[l+1]=temp;} i=l+1; //initialize pointers for partitioning j=ir; arr = ind[l+1]; for (;;){ do i++; while (a[ind[i]]a[arr]); if (j=rk) ir = j-1; //keep active the partition that if (j<=rk) l=i; //contains the k_th element } } } #endif