// @(#)root/roostats:$Id$ // Author: Sven Kreiss and Kyle Cranmer January 2012 // Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke /************************************************************************* * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOSTATS_ToyMCImportanceSampler #define ROOSTATS_ToyMCImportanceSampler //_________________________________________________ /* BEGIN_HTML

ToyMCImportanceSampler is an extension of the ToyMCSampler for Importance Sampling.

Implementation based on: Cranmer, Kreiss, Read (in Preparation)

END_HTML */ // #include "RooStats/ToyMCSampler.h" namespace RooStats { enum toysStrategies { EQUALTOYSPERDENSITY, EXPONENTIALTOYDISTRIBUTION }; class ToyMCImportanceSampler: public ToyMCSampler { public: ToyMCImportanceSampler() : ToyMCSampler() { // Proof constructor. Do not use. fIndexGenDensity = 0; fGenerateFromNull = true; fApplyVeto = true; fReuseNLL = true; fToysStrategy = EQUALTOYSPERDENSITY; } ToyMCImportanceSampler(TestStatistic &ts, Int_t ntoys) : ToyMCSampler(ts, ntoys) { fIndexGenDensity = 0; fGenerateFromNull = true; fApplyVeto = true; fReuseNLL = true; fToysStrategy = EQUALTOYSPERDENSITY; } virtual ~ToyMCImportanceSampler(); // overwrite GetSamplingDistributionsSingleWorker(paramPoint) with a version that loops // over nulls and importance densities, but calls the parent // ToyMCSampler::GetSamplingDistributionsSingleWorker(paramPoint). virtual RooDataSet* GetSamplingDistributionsSingleWorker(RooArgSet& paramPoint); using ToyMCSampler::GenerateToyData; virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint, double& weight) const; virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint, double& weight, std::vector& impNLLs, double& nullNLL) const; virtual RooAbsData* GenerateToyData(std::vector& weights) const; virtual RooAbsData* GenerateToyData(std::vector& weights, std::vector& nullNLLs, std::vector& impNLLs) const; /// specifies the pdf to sample from void SetDensityToGenerateFromByIndex(unsigned int i, bool fromNull = false) { if( (fromNull && i >= fNullDensities.size()) || (!fromNull && i >= fImportanceDensities.size()) ) { oocoutE((TObject*)0,InputArguments) << "Index out of range. Requested index: "<snapshot(); fImportanceDensities.push_back( p ); fImportanceSnapshots.push_back( s ); fImpNLLs.push_back( NULL ); } // The pdf can be NULL in which case the density from SetPdf() // is used. The snapshot and TestStatistic is also optional. void AddNullDensity(RooAbsPdf* p, const RooArgSet* s = NULL) { if( p == NULL && s == NULL ) { oocoutI((TObject*)0,InputArguments) << "Neither density nor snapshot nor test statistic given. Doing nothing." << std::endl; return; } if( p == NULL && fNullDensities.size() >= 1 ) p = fNullDensities[0]; if( s == NULL ) s = fParametersForTestStat; if( s ) s = (const RooArgSet*)s->snapshot(); fNullDensities.push_back( p ); fNullSnapshots.push_back( s ); fNullNLLs.push_back( NULL ); ClearCache(); } // overwrite from ToyMCSampler virtual void SetPdf(RooAbsPdf& pdf) { ToyMCSampler::SetPdf(pdf); if( fNullDensities.size() == 1 ) { fNullDensities[0] = &pdf; } else if( fNullDensities.size() == 0) AddNullDensity( &pdf ); else{ oocoutE((TObject*)0,InputArguments) << "Cannot use SetPdf() when already multiple null densities are specified. Please use AddNullDensity()." << std::endl; } } // overwrite from ToyMCSampler void SetParametersForTestStat(const RooArgSet& nullpoi) { ToyMCSampler::SetParametersForTestStat(nullpoi); if( fNullSnapshots.size() == 0 ) AddNullDensity( NULL, &nullpoi ); else if( fNullSnapshots.size() == 1 ) { oocoutI((TObject*)0,InputArguments) << "Overwriting snapshot for the only defined null density." << std::endl; if( fNullSnapshots[0] ) delete fNullSnapshots[0]; fNullSnapshots[0] = (const RooArgSet*)nullpoi.snapshot(); }else{ oocoutE((TObject*)0,InputArguments) << "Cannot use SetParametersForTestStat() when already multiple null densities are specified. Please use AddNullDensity()." << std::endl; } } // When set to true, this sets the weight of all toys to zero that // do not have the largest likelihood under the density it was generated // compared to the other densities. void SetApplyVeto(bool b = true) { fApplyVeto = b; } void SetReuseNLL(bool r = true) { fReuseNLL = r; } // set the conditional observables which will be used when creating the NLL // so the pdf's will not be normalized on the conditional observables when computing the NLL // Since the class use a NLL we need to set the ocnditional onservables if they exist in the model virtual void SetConditionalObservables(const RooArgSet& set) {fConditionalObs.removeAll(); fConditionalObs.add(set);} int CreateNImpDensitiesForOnePOI( RooAbsPdf& pdf, const RooArgSet& allPOI, RooRealVar& poi, int n, double poiValueForBackground = 0.0 ); int CreateImpDensitiesForOnePOIAdaptively( RooAbsPdf& pdf, const RooArgSet& allPOI, RooRealVar& poi, double nStdDevOverlap = 0.5, double poiValueForBackground = 0.0 ); void SetEqualNumToysPerDensity( void ) { fToysStrategy = EQUALTOYSPERDENSITY; } void SetExpIncreasingNumToysPerDensity( void ) { fToysStrategy = EXPONENTIALTOYDISTRIBUTION; } protected: // helper method for clearing the cache virtual void ClearCache(); unsigned int fIndexGenDensity; bool fGenerateFromNull; bool fApplyVeto; RooArgSet fConditionalObs; // set of conditional observables // support multiple null densities std::vector fNullDensities; mutable std::vector fNullSnapshots; // densities and snapshots to generate from std::vector fImportanceDensities; std::vector fImportanceSnapshots; bool fReuseNLL; toysStrategies fToysStrategy; mutable std::vector fNullNLLs; //! mutable std::vector fImpNLLs; //! protected: ClassDef(ToyMCImportanceSampler,2) // An implementation of importance sampling }; } #endif