#ifndef ROOT_TEfficiency #define ROOT_TEfficiency //standard header #include #include //ROOT header #ifndef ROOT_TNamed #include "TNamed.h" #endif #ifndef ROOT_TAttLine #include "TAttLine.h" #endif #ifndef ROOT_TAttFill #include "TAttFill.h" #endif #ifndef ROOT_TAttMarker #include "TAttMarker.h" #endif class TCollection; class TF1; class TGraphAsymmErrors; class TH1; class TH2; class TList; //|TEfficiency //------------------------ class TEfficiency: public TNamed, public TAttLine, public TAttFill, public TAttMarker { public: //enumaration type for different statistic options for calculating confidence intervals //kF* ... frequentist methods; kB* ... bayesian methods enum EStatOption { kFCP = 0, //Clopper-Pearson interval (recommended by PDG) kFNormal, //normal approximation kFWilson, //Wilson interval kFAC, //Agresti-Coull interval kFFC, //Feldman-Cousins interval kBJeffrey, //Jeffrey interval (Prior ~ Beta(0.5,0.5) kBUniform, //Prior ~ Uniform = Beta(1,1) kBBayesian //user specified Prior ~ Beta(fBeta_alpha,fBeta_beta) }; protected: Double_t fBeta_alpha; //global parameter for prior beta distribution (default = 1) Double_t fBeta_beta; //global parameter for prior beta distribution (default = 1) std::vector > fBeta_bin_params; // parameter for prior beta distribution different bin by bin // (default vector is empty) Double_t (*fBoundary)(Int_t,Int_t,Double_t,Bool_t); //!pointer to a method calculating the boundaries of confidence intervals Double_t fConfLevel; //confidence level (default = 0.95) TDirectory* fDirectory; //!pointer to directory holding this TEfficiency object TList* fFunctions; //->pointer to list of functions TGraphAsymmErrors* fPaintGraph; //!temporary graph for painting TH2* fPaintHisto; //!temporary histogram for painting TH1* fPassedHistogram; //histogram for events which passed certain criteria EStatOption fStatisticOption; //defines how the confidence intervals are determined TH1* fTotalHistogram; //histogram for total number of events Double_t fWeight; //weight for all events (default = 1) enum{ kIsBayesian = BIT(14), //bayesian statistics are used kPosteriorMode = BIT(15), //use posterior mean for best estimate (Bayesian statistics) kShortestInterval = BIT(16), // use shortest interval kUseBinPrior = BIT(17), // use a different prior for each bin kUseWeights = BIT(18) // use weights }; void Build(const char* name,const char* title); public: TEfficiency(); TEfficiency(const TH1& passed,const TH1& total); TEfficiency(const char* name,const char* title,Int_t nbins, const Double_t* xbins); TEfficiency(const char* name,const char* title,Int_t nbins,Double_t xlow, Double_t xup); TEfficiency(const char* name,const char* title,Int_t nbinsx, Double_t xlow,Double_t xup,Int_t nbinsy,Double_t ylow, Double_t yup); TEfficiency(const char* name,const char* title,Int_t nbinsx, const Double_t* xbins,Int_t nbinsy,const Double_t* ybins); TEfficiency(const char* name,const char* title,Int_t nbinsx, Double_t xlow,Double_t xup,Int_t nbinsy,Double_t ylow, Double_t yup,Int_t nbinsz,Double_t zlow,Double_t zup); TEfficiency(const char* name,const char* title,Int_t nbinsx, const Double_t* xbins,Int_t nbinsy,const Double_t* ybins, Int_t nbinsz,const Double_t* zbins); TEfficiency(const TEfficiency& heff); ~TEfficiency(); void Add(const TEfficiency& rEff) {*this += rEff;} virtual Int_t DistancetoPrimitive(Int_t px, Int_t py); void Draw(Option_t* opt = ""); virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py); void Fill(Bool_t bPassed,Double_t x,Double_t y=0,Double_t z=0); void FillWeighted(Bool_t bPassed,Double_t weight,Double_t x,Double_t y=0,Double_t z=0); Int_t FindFixBin(Double_t x,Double_t y=0,Double_t z=0) const; Int_t Fit(TF1* f1,Option_t* opt=""); // use trick of -1 to return global parameters Double_t GetBetaAlpha(Int_t bin = -1) const {return (fBeta_bin_params.size() > (UInt_t)bin) ? fBeta_bin_params[bin].first : fBeta_alpha;} Double_t GetBetaBeta(Int_t bin = -1) const {return (fBeta_bin_params.size() > (UInt_t)bin) ? fBeta_bin_params[bin].second : fBeta_beta;} Double_t GetConfidenceLevel() const {return fConfLevel;} TH1* GetCopyPassedHisto() const; TH1* GetCopyTotalHisto() const; Int_t GetDimension() const; TDirectory* GetDirectory() const {return fDirectory;} Double_t GetEfficiency(Int_t bin) const; Double_t GetEfficiencyErrorLow(Int_t bin) const; Double_t GetEfficiencyErrorUp(Int_t bin) const; Int_t GetGlobalBin(Int_t binx,Int_t biny=0,Int_t binz=0) const; TGraphAsymmErrors* GetPaintedGraph() const { return fPaintGraph; } TH2* GetPaintedHistogram() const { return fPaintHisto; } TList* GetListOfFunctions(); const TH1* GetPassedHistogram() const {return fPassedHistogram;} EStatOption GetStatisticOption() const {return fStatisticOption;} const TH1* GetTotalHistogram() const {return fTotalHistogram;} Double_t GetWeight() const {return fWeight;} Long64_t Merge(TCollection* list); TEfficiency& operator+=(const TEfficiency& rhs); TEfficiency& operator=(const TEfficiency& rhs); void Paint(Option_t* opt); void SavePrimitive(ostream& out,Option_t* opt=""); void SetBetaAlpha(Double_t alpha); void SetBetaBeta(Double_t beta); void SetBetaBinParameters(Int_t bin, Double_t alpha, Double_t beta); void SetConfidenceLevel(Double_t level); void SetDirectory(TDirectory* dir); void SetName(const char* name); Bool_t SetPassedEvents(Int_t bin,Int_t events); Bool_t SetPassedHistogram(const TH1& rPassed,Option_t* opt); void SetPosteriorMode(Bool_t on = true) { SetBit(kPosteriorMode,on); SetShortestInterval(on); } void SetPosteriorAverage(Bool_t on = true) { SetBit(kPosteriorMode,!on); } void SetShortestInterval(Bool_t on = true) { SetBit(kShortestInterval,on); } void SetCentralInterval(Bool_t on = true) { SetBit(kShortestInterval,!on); } void SetStatisticOption(EStatOption option); void SetTitle(const char* title); Bool_t SetTotalEvents(Int_t bin,Int_t events); Bool_t SetTotalHistogram(const TH1& rTotal,Option_t* opt); void SetUseWeightedEvents(); void SetWeight(Double_t weight); Bool_t UsesBayesianStat() const {return TestBit(kIsBayesian);} Bool_t UsesPosteriorMode() const {return TestBit(kPosteriorMode) && TestBit(kIsBayesian);} Bool_t UsesShortestInterval() const {return TestBit(kShortestInterval) && TestBit(kIsBayesian);} Bool_t UsesPosteriorAverage() const {return !UsesPosteriorMode();} Bool_t UsesCentralInterval() const {return !UsesShortestInterval();} Bool_t UsesWeights() const {return TestBit(kUseWeights);} static Bool_t CheckBinning(const TH1& pass,const TH1& total); static Bool_t CheckConsistency(const TH1& pass,const TH1& total,Option_t* opt=""); static Bool_t CheckEntries(const TH1& pass,const TH1& total,Option_t* opt=""); static Double_t Combine(Double_t& up,Double_t& low,Int_t n,const Int_t* pass,const Int_t* total, Double_t alpha,Double_t beta,Double_t level=0.683, const Double_t* w=0,Option_t* opt=""); static TGraphAsymmErrors* Combine(TCollection* pList,Option_t* opt="",Int_t n=0,const Double_t* w=0); //calculating boundaries of confidence intervals static Double_t AgrestiCoull(Int_t total,Int_t passed,Double_t level,Bool_t bUpper); static Double_t ClopperPearson(Int_t total,Int_t passed,Double_t level,Bool_t bUpper); static Double_t Normal(Int_t total,Int_t passed,Double_t level,Bool_t bUpper); static Double_t Wilson(Int_t total,Int_t passed,Double_t level,Bool_t bUpper); static Double_t FeldmanCousins(Int_t total,Int_t passed,Double_t level,Bool_t bUpper); static Bool_t FeldmanCousinsInterval(Int_t total,Int_t passed,Double_t level,Double_t & lower, Double_t & upper); // Bayesian functions static Double_t Bayesian(Int_t total,Int_t passed,Double_t level,Double_t alpha,Double_t beta,Bool_t bUpper, Bool_t bShortest = false); // helper functions for Bayesian statistics static Double_t BetaCentralInterval(Double_t level,Double_t alpha,Double_t beta,Bool_t bUpper); static Bool_t BetaShortestInterval(Double_t level,Double_t alpha,Double_t beta,Double_t & lower, Double_t & upper); static Double_t BetaMean(Double_t alpha,Double_t beta); static Double_t BetaMode(Double_t alpha,Double_t beta); ClassDef(TEfficiency,2) //calculating efficiencies }; const TEfficiency operator+(const TEfficiency& lhs,const TEfficiency& rhs); #endif