// @(#)root/hist:$Id$ // Author: Federico Carminati 28/02/2000 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOT_TSpline #define ROOT_TSpline #ifndef ROOT_TGraph #include "TGraph.h" #endif class TH1; class TF1; class TSpline : public TNamed, public TAttLine, public TAttFill, public TAttMarker { protected: Double_t fDelta; // Distance between equidistant knots Double_t fXmin; // Minimum value of abscissa Double_t fXmax; // Maximum value of abscissa Int_t fNp; // Number of knots Bool_t fKstep; // True of equidistant knots TH1F *fHistogram; // Temporary histogram TGraph *fGraph; // Graph for drawing the knots Int_t fNpx; // Number of points used for graphical representation TSpline(const TSpline&); TSpline& operator=(const TSpline&); virtual void BuildCoeff()=0; public: TSpline() : fDelta(-1), fXmin(0), fXmax(0), fNp(0), fKstep(kFALSE), fHistogram(0), fGraph(0), fNpx(100) {} TSpline(const char *title, Double_t delta, Double_t xmin, Double_t xmax, Int_t np, Bool_t step) : TNamed("Spline",title), TAttFill(0,1), fDelta(delta), fXmin(xmin), fXmax(xmax), fNp(np), fKstep(step), fHistogram(0), fGraph(0), fNpx(100) {} virtual ~TSpline(); virtual void GetKnot(Int_t i, Double_t &x, Double_t &y) const =0; virtual Int_t DistancetoPrimitive(Int_t px, Int_t py); virtual void Draw(Option_t *option=""); virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py); virtual Double_t GetDelta() const {return fDelta;} TH1F *GetHistogram() const {return fHistogram;} virtual Int_t GetNp() const {return fNp;} virtual Int_t GetNpx() const {return fNpx;} virtual Double_t GetXmin() const {return fXmin;} virtual Double_t GetXmax() const {return fXmax;} virtual void Paint(Option_t *option=""); virtual Double_t Eval(Double_t x) const=0; virtual void SaveAs(const char * /*filename*/,Option_t * /*option*/) const {;} void SetNpx(Int_t n) {fNpx=n;} ClassDef (TSpline,2) // Spline base class }; //______________________________________________________________________________ class TSplinePoly : public TObject { protected: Double_t fX; // abscissa Double_t fY; // constant term public: TSplinePoly() : fX(0), fY(0) {} TSplinePoly(Double_t x, Double_t y) : fX(x), fY(y) {} TSplinePoly(TSplinePoly const &other); TSplinePoly &operator=(TSplinePoly const &other); Double_t &X() {return fX;} Double_t &Y() {return fY;} void GetKnot(Double_t &x, Double_t &y) const {x=fX; y=fY;} virtual Double_t Eval(Double_t) const {return fY;} private: void CopyPoly(TSplinePoly const &other); ClassDef(TSplinePoly,2) // Spline polynomial terms }; inline TSplinePoly::TSplinePoly(TSplinePoly const &other) : TObject(other), fX(0), fY(0) { CopyPoly(other); } //______________________________________________________________________________ class TSplinePoly3 : public TSplinePoly { private: Double_t fB; // first order expansion coefficient : fB*1! is the first derivative at x Double_t fC; // second order expansion coefficient : fC*2! is the second derivative at x Double_t fD; // third order expansion coefficient : fD*3! is the third derivative at x public: TSplinePoly3() : fB(0), fC(0), fD(0) {} TSplinePoly3(Double_t x, Double_t y, Double_t b, Double_t c, Double_t d) : TSplinePoly(x,y), fB(b), fC(c), fD(d) {} TSplinePoly3(TSplinePoly3 const &other); TSplinePoly3 &operator=(TSplinePoly3 const &other); Double_t &B() {return fB;} Double_t &C() {return fC;} Double_t &D() {return fD;} Double_t Eval(Double_t x) const { Double_t dx=x-fX; return (fY+dx*(fB+dx*(fC+dx*fD))); } Double_t Derivative(Double_t x) const { Double_t dx=x-fX; return (fB+2*fC*dx+3*fD*dx*dx); } private: void CopyPoly(TSplinePoly3 const &other); ClassDef(TSplinePoly3,1) // Third spline polynomial terms }; inline TSplinePoly3::TSplinePoly3(TSplinePoly3 const &other) : TSplinePoly(other), fB(0), fC(0), fD(0) { CopyPoly(other); } //______________________________________________________________________________ class TSplinePoly5 : public TSplinePoly { private: Double_t fB; // first order expansion coefficient : fB*1! is the first derivative at x Double_t fC; // second order expansion coefficient : fC*2! is the second derivative at x Double_t fD; // third order expansion coefficient : fD*3! is the third derivative at x Double_t fE; // fourth order expansion coefficient : fE*4! is the fourth derivative at x Double_t fF; // fifth order expansion coefficient : fF*5! is the fifth derivative at x public: TSplinePoly5() : fB(0), fC(0), fD(0), fE(0), fF(0) {} TSplinePoly5(Double_t x, Double_t y, Double_t b, Double_t c, Double_t d, Double_t e, Double_t f) : TSplinePoly(x,y), fB(b), fC(c), fD(d), fE(e), fF(f) {} TSplinePoly5(TSplinePoly5 const &other); TSplinePoly5 &operator=(TSplinePoly5 const &other); Double_t &B() {return fB;} Double_t &C() {return fC;} Double_t &D() {return fD;} Double_t &E() {return fE;} Double_t &F() {return fF;} Double_t Eval(Double_t x) const { Double_t dx=x-fX; return (fY+dx*(fB+dx*(fC+dx*(fD+dx*(fE+dx*fF))))); } Double_t Derivative(Double_t x) const{ Double_t dx=x-fX; return (fB+2*fC*dx+3*fD*dx*dx+4*fE*dx*dx*dx+5*fF*dx*dx*dx*dx); } private: void CopyPoly(TSplinePoly5 const &other); ClassDef(TSplinePoly5,1) // Quintic spline polynomial terms }; inline TSplinePoly5::TSplinePoly5(TSplinePoly5 const &other) : TSplinePoly(other), fB(0), fC(0), fD(0), fE(0), fF(0) { CopyPoly(other); } //______________________________________________________________________________ class TSpline3 : public TSpline { protected: TSplinePoly3 *fPoly; //[fNp] Array of polynomial terms Double_t fValBeg; // Initial value of first or second derivative Double_t fValEnd; // End value of first or second derivative Int_t fBegCond; // 0=no beg cond, 1=first derivative, 2=second derivative Int_t fEndCond; // 0=no end cond, 1=first derivative, 2=second derivative void BuildCoeff(); void SetCond(const char *opt); public: TSpline3() : TSpline() , fPoly(0), fValBeg(0), fValEnd(0), fBegCond(-1), fEndCond(-1) {} TSpline3(const char *title, Double_t x[], Double_t y[], Int_t n, const char *opt=0, Double_t valbeg=0, Double_t valend=0); TSpline3(const char *title, Double_t xmin, Double_t xmax, Double_t y[], Int_t n, const char *opt=0, Double_t valbeg=0, Double_t valend=0); TSpline3(const char *title, Double_t x[], const TF1 *func, Int_t n, const char *opt=0, Double_t valbeg=0, Double_t valend=0); TSpline3(const char *title, Double_t xmin, Double_t xmax, const TF1 *func, Int_t n, const char *opt=0, Double_t valbeg=0, Double_t valend=0); TSpline3(const char *title, const TGraph *g, const char *opt=0, Double_t valbeg=0, Double_t valend=0); TSpline3(const TH1 *h, const char *opt=0, Double_t valbeg=0, Double_t valend=0); TSpline3(const TSpline3&); TSpline3& operator=(const TSpline3&); Int_t FindX(Double_t x) const; Double_t Eval(Double_t x) const; Double_t Derivative(Double_t x) const; virtual ~TSpline3() {if (fPoly) delete [] fPoly;} void GetCoeff(Int_t i, Double_t &x, Double_t &y, Double_t &b, Double_t &c, Double_t &d) {x=fPoly[i].X();y=fPoly[i].Y(); b=fPoly[i].B();c=fPoly[i].C();d=fPoly[i].D();} void GetKnot(Int_t i, Double_t &x, Double_t &y) const {x=fPoly[i].X(); y=fPoly[i].Y();} virtual void SaveAs(const char *filename,Option_t *option="") const; virtual void SavePrimitive(ostream &out, Option_t *option = ""); virtual void SetPoint(Int_t i, Double_t x, Double_t y); virtual void SetPointCoeff(Int_t i, Double_t b, Double_t c, Double_t d); static void Test(); ClassDef (TSpline3,2) // Class to create third natural splines }; //______________________________________________________________________________ class TSpline5 : public TSpline { protected: TSplinePoly5 *fPoly; //[fNp] Array of polynomial terms void BuildCoeff(); void BoundaryConditions(const char *opt, Int_t &beg, Int_t &end, const char *&cb1, const char *&ce1, const char *&cb2, const char *&ce2); void SetBoundaries(Double_t b1, Double_t e1, Double_t b2, Double_t e2, const char *cb1, const char *ce1, const char *cb2, const char *ce2); public: TSpline5() : TSpline() , fPoly(0) {} TSpline5(const char *title, Double_t x[], Double_t y[], Int_t n, const char *opt=0, Double_t b1=0, Double_t e1=0, Double_t b2=0, Double_t e2=0); TSpline5(const char *title, Double_t xmin, Double_t xmax, Double_t y[], Int_t n, const char *opt=0, Double_t b1=0, Double_t e1=0, Double_t b2=0, Double_t e2=0); TSpline5(const char *title, Double_t x[], const TF1 *func, Int_t n, const char *opt=0, Double_t b1=0, Double_t e1=0, Double_t b2=0, Double_t e2=0); TSpline5(const char *title, Double_t xmin, Double_t xmax, const TF1 *func, Int_t n, const char *opt=0, Double_t b1=0, Double_t e1=0, Double_t b2=0, Double_t e2=0); TSpline5(const char *title, const TGraph *g, const char *opt=0, Double_t b1=0, Double_t e1=0, Double_t b2=0, Double_t e2=0); TSpline5(const TH1 *h, const char *opt=0, Double_t b1=0, Double_t e1=0, Double_t b2=0, Double_t e2=0); TSpline5(const TSpline5&); TSpline5& operator=(const TSpline5&); Int_t FindX(Double_t x) const; Double_t Eval(Double_t x) const; Double_t Derivative(Double_t x) const; virtual ~TSpline5() {if (fPoly) delete [] fPoly;} void GetCoeff(Int_t i, Double_t &x, Double_t &y, Double_t &b, Double_t &c, Double_t &d, Double_t &e, Double_t &f) {x=fPoly[i].X();y=fPoly[i].Y();b=fPoly[i].B(); c=fPoly[i].C();d=fPoly[i].D(); e=fPoly[i].E();f=fPoly[i].F();} void GetKnot(Int_t i, Double_t &x, Double_t &y) const {x=fPoly[i].X(); y=fPoly[i].Y();} virtual void SaveAs(const char *filename,Option_t *option="") const; virtual void SavePrimitive(ostream &out, Option_t *option = ""); virtual void SetPoint(Int_t i, Double_t x, Double_t y); virtual void SetPointCoeff(Int_t i, Double_t b, Double_t c, Double_t d, Double_t e, Double_t f); static void Test(); ClassDef (TSpline5,2) // Class to create quintic natural splines }; #endif