"""Utilities to manipulate JSON objects.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import math import re import types from datetime import datetime import numbers try: # base64.encodestring is deprecated in Python 3.x from base64 import encodebytes except ImportError: # Python 2.x from base64 import encodestring as encodebytes from ipython_genutils import py3compat from ipython_genutils.py3compat import unicode_type, iteritems from ipython_genutils.encoding import DEFAULT_ENCODING next_attr_name = '__next__' if py3compat.PY3 else 'next' #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- # timestamp formats ISO8601 = "%Y-%m-%dT%H:%M:%S.%f" ISO8601_PAT=re.compile(r"^(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})(\.\d{1,6})?Z?([\+\-]\d{2}:?\d{2})?$") # holy crap, strptime is not threadsafe. # Calling it once at import seems to help. datetime.strptime("1", "%d") #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- # constants for identifying png/jpeg data PNG = b'\x89PNG\r\n\x1a\n' # front of PNG base64-encoded PNG64 = b'iVBORw0KG' JPEG = b'\xff\xd8' # front of JPEG base64-encoded JPEG64 = b'/9' # front of PDF base64-encoded PDF64 = b'JVBER' def encode_images(format_dict): """b64-encodes images in a displaypub format dict Perhaps this should be handled in json_clean itself? Parameters ---------- format_dict : dict A dictionary of display data keyed by mime-type Returns ------- format_dict : dict A copy of the same dictionary, but binary image data ('image/png', 'image/jpeg' or 'application/pdf') is base64-encoded. """ encoded = format_dict.copy() pngdata = format_dict.get('image/png') if isinstance(pngdata, bytes): # make sure we don't double-encode if not pngdata.startswith(PNG64): pngdata = encodebytes(pngdata) encoded['image/png'] = pngdata.decode('ascii') jpegdata = format_dict.get('image/jpeg') if isinstance(jpegdata, bytes): # make sure we don't double-encode if not jpegdata.startswith(JPEG64): jpegdata = encodebytes(jpegdata) encoded['image/jpeg'] = jpegdata.decode('ascii') pdfdata = format_dict.get('application/pdf') if isinstance(pdfdata, bytes): # make sure we don't double-encode if not pdfdata.startswith(PDF64): pdfdata = encodebytes(pdfdata) encoded['application/pdf'] = pdfdata.decode('ascii') return encoded def json_clean(obj): """Clean an object to ensure it's safe to encode in JSON. Atomic, immutable objects are returned unmodified. Sets and tuples are converted to lists, lists are copied and dicts are also copied. Note: dicts whose keys could cause collisions upon encoding (such as a dict with both the number 1 and the string '1' as keys) will cause a ValueError to be raised. Parameters ---------- obj : any python object Returns ------- out : object A version of the input which will not cause an encoding error when encoded as JSON. Note that this function does not *encode* its inputs, it simply sanitizes it so that there will be no encoding errors later. """ # types that are 'atomic' and ok in json as-is. atomic_ok = (unicode_type, type(None)) # containers that we need to convert into lists container_to_list = (tuple, set, types.GeneratorType) # Since bools are a subtype of Integrals, which are a subtype of Reals, # we have to check them in that order. if isinstance(obj, bool): return obj if isinstance(obj, numbers.Integral): # cast int to int, in case subclasses override __str__ (e.g. boost enum, #4598) return int(obj) if isinstance(obj, numbers.Real): # cast out-of-range floats to their reprs if math.isnan(obj) or math.isinf(obj): return repr(obj) return float(obj) if isinstance(obj, atomic_ok): return obj if isinstance(obj, bytes): return obj.decode(DEFAULT_ENCODING, 'replace') if isinstance(obj, container_to_list) or ( hasattr(obj, '__iter__') and hasattr(obj, next_attr_name)): obj = list(obj) if isinstance(obj, list): return [json_clean(x) for x in obj] if isinstance(obj, dict): # First, validate that the dict won't lose data in conversion due to # key collisions after stringification. This can happen with keys like # True and 'true' or 1 and '1', which collide in JSON. nkeys = len(obj) nkeys_collapsed = len(set(map(unicode_type, obj))) if nkeys != nkeys_collapsed: raise ValueError('dict cannot be safely converted to JSON: ' 'key collision would lead to dropped values') # If all OK, proceed by making the new dict that will be json-safe out = {} for k,v in iteritems(obj): out[unicode_type(k)] = json_clean(v) return out if isinstance(obj, datetime): return obj.strftime(ISO8601) # we don't understand it, it's probably an unserializable object raise ValueError("Can't clean for JSON: %r" % obj)