"""Stack loss data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is public domain. """ TITLE = __doc__ SOURCE = """ Brownlee, K. A. (1965), "Statistical Theory and Methodology in Science and Engineering", 2nd edition, New York:Wiley. """ DESCRSHORT = """Stack loss plant data of Brownlee (1965)""" DESCRLONG = """The stack loss plant data of Brownlee (1965) contains 21 days of measurements from a plant's oxidation of ammonia to nitric acid. The nitric oxide pollutants are captured in an absorption tower.""" NOTE = """:: Number of Observations - 21 Number of Variables - 4 Variable name definitions:: STACKLOSS - 10 times the percentage of ammonia going into the plant that escapes from the absoroption column AIRFLOW - Rate of operation of the plant WATERTEMP - Cooling water temperature in the absorption tower ACIDCONC - Acid concentration of circulating acid minus 50 times 10. """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the stack loss data and returns a Dataset class instance. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): """ Load the stack loss data and returns a Dataset class instance. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/stackloss.csv',"rb"), delimiter=",", names=True, dtype=float) return data