""" Algorithms for solving Parametric Risch Differential Equations. The methods used for solving Parametric Risch Differential Equations parallel those for solving Risch Differential Equations. See the outline in the docstring of rde.py for more information. The Parametric Risch Differential Equation problem is, given f, g1, ..., gm in K(t), to determine if there exist y in K(t) and c1, ..., cm in Const(K) such that Dy + f*y == Sum(ci*gi, (i, 1, m)), and to find such y and ci if they exist. For the algorithms here G is a list of tuples of factions of the terms on the right hand side of the equation (i.e., gi in k(t)), and Q is a list of terms on the right hand side of the equation (i.e., qi in k[t]). See the docstring of each function for more information. """ from __future__ import print_function, division from sympy.core import Dummy, ilcm, Add, Mul, Pow, S from sympy.matrices import Matrix, zeros, eye from sympy.solvers import solve from sympy.polys import Poly, lcm, cancel, sqf_list from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation, NonElementaryIntegralException, residue_reduce, splitfactor, residue_reduce_derivation, DecrementLevel, recognize_log_derivative) from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer, bound_degree, spde, solve_poly_rde) from sympy.core.compatibility import reduce, range from sympy.utilities.misc import debug def prde_normal_denom(fa, fd, G, DE): """ Parametric Risch Differential Equation - Normal part of the denominator. Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly normalized with respect to t, return the tuple (a, b, G, h) such that a, h in k[t], b in k, G = [g1, ..., gm] in k(t)^m, and for any solution c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)), q == y*h in k satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)). """ dn, ds = splitfactor(fd, DE) Gas, Gds = list(zip(*G)) gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t)) en, es = splitfactor(gd, DE) p = dn.gcd(en) h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t))) a = dn*h c = a*h ba = a*fa - dn*derivation(h, DE)*fd ba, bd = ba.cancel(fd, include=True) G = [(c*A).cancel(D, include=True) for A, D in G] return (a, (ba, bd), G, h) def real_imag(ba, bd, gen): """ Helper function, to get the real and imaginary part of a rational function evaluated at sqrt(-1) without actually evaluating it at sqrt(-1) Separates the even and odd power terms by checking the degree of terms wrt mod 4. Returns a tuple (ba[0], ba[1], bd) where ba[0] is real part of the numerator ba[1] is the imaginary part and bd is the denominator of the rational function. """ bd = bd.as_poly(gen).as_dict() ba = ba.as_poly(gen).as_dict() denom_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in bd.items()] denom_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in bd.items()] bd_real = sum(r for r in denom_real) bd_imag = sum(r for r in denom_imag) num_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in ba.items()] num_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in ba.items()] ba_real = sum(r for r in num_real) ba_imag = sum(r for r in num_imag) ba = ((ba_real*bd_real + ba_imag*bd_imag).as_poly(gen), (ba_imag*bd_real - ba_real*bd_imag).as_poly(gen)) bd = (bd_real*bd_real + bd_imag*bd_imag).as_poly(gen) return (ba[0], ba[1], bd) def prde_special_denom(a, ba, bd, G, DE, case='auto'): """ Parametric Risch Differential Equation - Special part of the denominator. case is on of {'exp', 'tan', 'primitive'} for the hyperexponential, hypertangent, and primitive cases, respectively. For the hyperexponential (resp. hypertangent) case, given a derivation D on k[t] and a in k[t], b in k, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp. gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in Const(k) and q in k of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)). For case == 'primitive', k == k[t], so it returns (a, b, G, 1) in this case. """ # TODO: Merge this with the very similar special_denom() in rde.py if case == 'auto': case = DE.case if case == 'exp': p = Poly(DE.t, DE.t) elif case == 'tan': p = Poly(DE.t**2 + 1, DE.t) elif case in ['primitive', 'base']: B = ba.quo(bd) return (a, B, G, Poly(1, DE.t)) else: raise ValueError("case must be one of {'exp', 'tan', 'primitive', " "'base'}, not %s." % case) nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t) nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G]) n = min(0, nc - min(0, nb)) if not nb: # Possible cancellation. if case == 'exp': dcoeff = DE.d.quo(Poly(DE.t, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t) etaa, etad = frac_in(dcoeff, DE.t) A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) if A is not None: a, m, z = A if a == 1: n = min(n, m) elif case == 'tan': dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. betaa, alphaa, alphad = real_imag(ba, bd*a, DE.t) betad = alphad etaa, etad = frac_in(dcoeff, DE.t) if recognize_log_derivative(2*betaa, betad, DE): A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) B = parametric_log_deriv(betaa, betad, etaa, etad, DE) if A is not None and B is not None: a, s, z = A if a == 1: n = min(n, s/2) N = max(0, -nb) pN = p**N pn = p**-n # This is 1/h A = a*pN B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G] h = pn # (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n) return (A, B, G, h) def prde_linear_constraints(a, b, G, DE): """ Parametric Risch Differential Equation - Generate linear constraints on the constants. Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k(t) such that for any solution c1, ..., cm in Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)), (c1, ..., cm) is a solution of Mx == 0, and p and the ci satisfy a*Dp + b*p == Sum(ci*qi, (i, 1, m)). Because M has entries in k(t), and because Matrix doesn't play well with Poly, M will be a Matrix of Basic expressions. """ m = len(G) Gns, Gds = list(zip(*G)) d = reduce(lambda i, j: i.lcm(j), Gds) d = Poly(d, field=True) Q = [(ga*(d).quo(gd)).div(d) for ga, gd in G] if not all([ri.is_zero for _, ri in Q]): N = max([ri.degree(DE.t) for _, ri in Q]) M = Matrix(N + 1, m, lambda i, j: Q[j][1].nth(i)) else: M = Matrix() # No constraints, return the empty matrix. qs, _ = list(zip(*Q)) return (qs, M) def constant_system(A, u, DE): """ Generate a system for the constant solutions. Given a differential field (K, D) with constant field C = Const(K), a Matrix A, and a vector (Matrix) u with coefficients in K, returns the tuple (B, v, s), where B is a Matrix with coefficients in C and v is a vector (Matrix) such that either v has coefficients in C, in which case s is True and the solutions in C of Ax == u are exactly all the solutions of Bx == v, or v has a non-constant coefficient, in which case s is False Ax == u has no constant solution. This algorithm is used both in solving parametric problems and in determining if an element a of K is a derivative of an element of K or the logarithmic derivative of a K-radical using the structure theorem approach. Because Poly does not play well with Matrix yet, this algorithm assumes that all matrix entries are Basic expressions. """ if not A: return A, u Au = A.row_join(u) Au = Au.rref(simplify=cancel)[0] # Warning: This will NOT return correct results if cancel() cannot reduce # an identically zero expression to 0. The danger is that we might # incorrectly prove that an integral is nonelementary (such as # risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x). # But this is a limitation in computer algebra in general, and implicit # in the correctness of the Risch Algorithm is the computability of the # constant field (actually, this same correctness problem exists in any # algorithm that uses rref()). # # We therefore limit ourselves to constant fields that are computable # via the cancel() function, in order to prevent a speed bottleneck from # calling some more complex simplification function (rational function # coefficients will fall into this class). Furthermore, (I believe) this # problem will only crop up if the integral explicitly contains an # expression in the constant field that is identically zero, but cannot # be reduced to such by cancel(). Therefore, a careful user can avoid this # problem entirely by being careful with the sorts of expressions that # appear in his integrand in the variables other than the integration # variable (the structure theorems should be able to completely decide these # problems in the integration variable). Au = Au.applyfunc(cancel) A, u = Au[:, :-1], Au[:, -1] for j in range(A.cols): for i in range(A.rows): if A[i, j].has(*DE.T): # This assumes that const(F(t0, ..., tn) == const(K) == F Ri = A[i, :] # Rm+1; m = A.rows Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True)/ derivation(A[i, j], DE, basic=True)) Rm1 = Rm1.applyfunc(cancel) um1 = cancel(derivation(u[i], DE, basic=True)/ derivation(A[i, j], DE, basic=True)) for s in range(A.rows): # A[s, :] = A[s, :] - A[s, i]*A[:, m+1] Asj = A[s, j] A.row_op(s, lambda r, jj: cancel(r - Asj*Rm1[jj])) # u[s] = u[s] - A[s, j]*u[m+1 u.row_op(s, lambda r, jj: cancel(r - Asj*um1)) A = A.col_join(Rm1) u = u.col_join(Matrix([um1])) return (A, u) def prde_spde(a, b, Q, n, DE): """ Special Polynomial Differential Equation algorithm: Parametric Version. Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t] with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution c1, ..., cm in Const(k) and q in k[t] of degree at most n of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m)) """ R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q])) A = a B = b + derivation(a, DE) Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)] R = list(R) n1 = n - a.degree(DE.t) return (A, B, Qq, R, n1) def prde_no_cancel_b_large(b, Q, n, DE): """ Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough. Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns h1, ..., hr in k[r] and a matrix A with coefficients in Const(k) such that if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and Dq + b*Q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0. """ db = b.degree(DE.t) m = len(Q) H = [Poly(0, DE.t)]*m for N in range(n, -1, -1): # [n, ..., 0] for i in range(m): si = Q[i].nth(N + db)/b.LC() sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if all(qi.is_zero for qi in Q): dc = -1 M = zeros(0, 2) else: dc = max([qi.degree(t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i)) A, u = constant_system(M, zeros(dc + 1, 1), DE) c = eye(m) A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c)) return (H, A) def prde_no_cancel_b_small(b, Q, n, DE): """ Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough. Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0. """ m = len(Q) H = [Poly(0, DE.t)]*m for N in range(n, 0, -1): # [n, ..., 1] for i in range(m): si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC()) sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if b.degree(DE.t) > 0: for i in range(m): si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t) H[i] = H[i] + si Q[i] = Q[i] - derivation(si, DE) - b*si if all(qi.is_zero for qi in Q): dc = -1 M = Matrix() else: dc = max([qi.degree(DE.t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i)) A, u = constant_system(M, zeros(dc + 1, 1), DE) c = eye(m) A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c)) return (H, A) else: # TODO: implement this (requires recursive param_rischDE() call) raise NotImplementedError def param_rischDE(fa, fd, G, DE): """ Solve a Parametric Risch Differential Equation: Dy + f*y == Sum(ci*Gi, (i, 1, m)). """ _, (fa, fd) = weak_normalizer(fa, fd, DE) a, (ba, bd), G, hn = prde_normal_denom(ga, gd, G, DE) A, B, G, hs = prde_special_denom(a, ba, bd, G, DE) g = gcd(A, B) A, B, G = A.quo(g), B.quo(g), [gia.cancel(gid*g, include=True) for gia, gid in G] Q, M = prde_linear_constraints(A, B, G, DE) M, _ = constant_system(M, zeros(M.rows, 1), DE) # Reduce number of constants at this point try: # Similar to rischDE(), we try oo, even though it might lead to # non-termination when there is no solution. At least for prde_spde, # it will always terminate no matter what n is. n = bound_degree(A, B, G, DE, parametric=True) except NotImplementedError: debug("param_rischDE: Proceeding with n = oo; may cause " "non-termination.") n = oo A, B, Q, R, n1 = prde_spde(A, B, Q, n, DE) def limited_integrate_reduce(fa, fd, G, DE): """ Simpler version of step 1 & 2 for the limited integration problem. Given a derivation D on k(t) and f, g1, ..., gn in k(t), return (a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer, g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t), c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k, and p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)). Furthermore, if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian over k, then deg(p) <= N. So that the special part is always computed, this function calls the more general prde_special_denom() automatically if it cannot determine that S1irr == Sirr. Furthermore, it will automatically call bound_degree() when t is linear and non-Liouvillian, which for the transcendental case, implies that Dt == a*t + b with for some a, b in k*. """ dn, ds = splitfactor(fd, DE) E = [splitfactor(gd, DE) for _, gd in G] En, Es = list(zip(*E)) c = reduce(lambda i, j: i.lcm(j), (dn,) + En) # lcm(dn, en1, ..., enm) hn = c.gcd(c.diff(DE.t)) a = hn b = -derivation(hn, DE) N = 0 # These are the cases where we know that S1irr = Sirr, but there could be # others, and this algorithm will need to be extended to handle them. if DE.case in ['base', 'primitive', 'exp', 'tan']: hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es) # lcm(ds, es1, ..., esm) a = hn*hs b = -derivation(hn, DE) - (hn*derivation(hs, DE)).quo(hs) mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for ga, gd in G])) # So far, all the above are also nonlinear or Liouvillian, but if this # changes, then this will need to be updated to call bound_degree() # as per the docstring of this function (DE.case == 'other_linear'). N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu) else: # TODO: implement this raise NotImplementedError V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G] return (a, b, a, N, (a*hn*fa).cancel(fd, include=True), V) def limited_integrate(fa, fd, G, DE): """ Solves the limited integration problem: f = Dv + Sum(ci*wi, (i, 1, n)) """ fa, fd = fa*Poly(1/fd.LC(), DE.t), fd.monic() A, B, h, N, g, V = limited_integrate_reduce(fa, fd, G, DE) V = [g] + V g = A.gcd(B) A, B, V = A.quo(g), B.quo(g), [via.cancel(vid*g, include=True) for via, vid in V] Q, M = prde_linear_constraints(A, B, V, DE) M, _ = constant_system(M, zeros(M.rows, 1), DE) l = M.nullspace() if M == Matrix() or len(l) > 1: # Continue with param_rischDE() raise NotImplementedError("param_rischDE() is required to solve this " "integral.") elif len(l) == 0: raise NonElementaryIntegralException elif len(l) == 1: # The c1 == 1. In this case, we can assume a normal Risch DE if l[0][0].is_zero: raise NonElementaryIntegralException else: l[0] *= 1/l[0][0] C = sum([Poly(i, DE.t)*q for (i, q) in zip(l[0], Q)]) # Custom version of rischDE() that uses the already computed # denominator and degree bound from above. B, C, m, alpha, beta = spde(A, B, C, N, DE) y = solve_poly_rde(B, C, m, DE) return ((alpha*y + beta, h), list(l[0][1:])) else: raise NotImplementedError def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None): """ Parametric logarithmic derivative heuristic. Given a derivation D on k[t], f in k(t), and a hyperexponential monomial theta over k(t), raises either NotImplementedError, in which case the heuristic failed, or returns None, in which case it has proven that no solution exists, or returns a solution (n, m, v) of the equation n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0. If this heuristic fails, the structure theorem approach will need to be used. The argument w == Dtheta/theta """ # TODO: finish writing this and write tests c1 = c1 or Dummy('c1') p, a = fa.div(fd) q, b = wa.div(wd) B = max(0, derivation(DE.t, DE).degree(DE.t) - 1) C = max(p.degree(DE.t), q.degree(DE.t)) if q.degree(DE.t) > B: eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)] s = solve(eqs, c1) if not s or not s[c1].is_Rational: # deg(q) > B, no solution for c. return None N, M = s[c1].as_numer_denom() # N and M are integers N, M = Poly(N, DE.t), Poly(M, DE.t) nfmwa = N*fa*wd - M*wa*fd nfmwd = fd*wd Qv = is_log_deriv_k_t_radical_in_field(N*fa*wd - M*wa*fd, fd*wd, DE, 'auto') if Qv is None: # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical. return None Q, e, v = Qv if e != 1: return None if Q.is_zero or v.is_zero: return None return (Q*N, Q*M, v) if p.degree(DE.t) > B: return None c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC()) l = fd.monic().lcm(wd.monic())*Poly(c, DE.t) ln, ls = splitfactor(l, DE) z = ls*ln.gcd(ln.diff(DE.t)) if not z.has(DE.t): raise NotImplementedError("parametric_log_deriv_heu() " "heuristic failed: z in k.") u1, r1 = (fa*l.quo(fd)).div(z) # (l*f).div(z) u2, r2 = (wa*l.quo(wd)).div(z) # (l*w).div(z) eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))] s = solve(eqs, c1) if not s or not s[c1].is_Rational: # deg(q) <= B, no solution for c. return None M, N = s[c1].as_numer_denom() nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd nfmwd = fd*wd Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE) if Qv is None: # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical. return None Q, v = Qv if Q.is_zero or v.is_zero: return None return (Q*N, Q*M, v) def parametric_log_deriv(fa, fd, wa, wd, DE): # TODO: Write the full algorithm using the structure theorems. # try: A = parametric_log_deriv_heu(fa, fd, wa, wd, DE) # except NotImplementedError: # Heuristic failed, we have to use the full method. # TODO: This could be implemented more efficiently. # It isn't too worrisome, because the heuristic handles most difficult # cases. return A def is_deriv_k(fa, fd, DE): """ Checks if Df/f is the derivative of an element of k(t). a in k(t) is the derivative of an element of k(t) if there exists b in k(t) such that a = Db. Either returns (ans, u), such that Df/f == Du, or None, which means that Df/f is not the derivative of an element of k(t). ans is a list of tuples such that Add(*[i*j for i, j in ans]) == u. This is useful for seeing exactly which elements of k(t) produce u. This function uses the structure theorem approach, which says that for any f in K, Df/f is the derivative of a element of K if and only if there are ri in QQ such that:: --- --- Dt \ r * Dt + \ r * i Df / i i / i --- = --. --- --- t f i in L i in E i K/C(x) K/C(x) Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of hyperexponential monomials of K over C(x)). If K is an elementary extension over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the transcendence degree of K over C(x). Furthermore, because Const_D(K) == Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x) and L_K/C(x) are disjoint. The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed recursively using this same function. Therefore, it is required to pass them as indices to D (or T). E_args are the arguments of the hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] == exp(E_args[i])). This is needed to compute the final answer u such that Df/f == Du. log(f) will be the same as u up to a additive constant. This is because they will both behave the same as monomials. For example, both log(x) and log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant. Therefore, the term const is returned. const is such that log(const) + f == u. This is calculated by dividing the arguments of one logarithm from the other. Therefore, it is necessary to pass the arguments of the logarithmic terms in L_args. To handle the case where we are given Df/f, not f, use is_deriv_k_in_field(). """ # Compute Df/f dfa, dfd = fd*(fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd**2*fa dfa, dfd = dfa.cancel(dfd, include=True) # Our assumption here is that each monomial is recursively transcendental if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1: if [i for i in DE.cases if i == 'tan'] or \ set([i for i in DE.cases if i == 'primitive']) - set(DE.L_K): raise NotImplementedError("Real version of the structure " "theorems with hypertangent support is not yet implemented.") # TODO: What should really be done in this case? raise NotImplementedError("Nonelementary extensions not supported " "in the structure theorems.") E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K] L_part = [DE.D[i].as_expr() for i in DE.L_K] lhs = Matrix([E_part + L_part]) rhs = Matrix([dfa.as_expr()/dfd.as_expr()]) A, u = constant_system(lhs, rhs, DE) if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A: # If the elements of u are not all constant # Note: See comment in constant_system # Also note: derivation(basic=True) calls cancel() return None else: if not all(i.is_Rational for i in u): raise NotImplementedError("Cannot work with non-rational " "coefficients in this case.") else: terms = DE.E_args + [DE.T[i] for i in DE.L_K] ans = list(zip(terms, u)) result = Add(*[Mul(i, j) for i, j in ans]) argterms = [DE.T[i] for i in DE.E_K] + DE.L_args l = [] for i, j in zip(argterms, u): # We need to get around things like sqrt(x**2) != x # and also sqrt(x**2 + 2*x + 1) != x + 1 icoeff, iterms = sqf_list(i) l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms]))) const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l)) return (ans, result, const) def is_log_deriv_k_t_radical(fa, fd, DE, Df=True): """ Checks if Df is the logarithmic derivative of a k(t)-radical. b in k(t) can be written as the logarithmic derivative of a k(t) radical if there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u. Either returns (ans, u, n, const) or None, which means that Df cannot be written as the logarithmic derivative of a k(t)-radical. ans is a list of tuples such that Mul(*[i**j for i, j in ans]) == u. This is useful for seeing exactly what elements of k(t) produce u. This function uses the structure theorem approach, which says that for any f in K, Df is the logarithmic derivative of a K-radical if and only if there are ri in QQ such that:: --- --- Dt \ r * Dt + \ r * i / i i / i --- = Df. --- --- t i in L i in E i K/C(x) K/C(x) Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of hyperexponential monomials of K over C(x)). If K is an elementary extension over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the transcendence degree of K over C(x). Furthermore, because Const_D(K) == Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x) and L_K/C(x) are disjoint. The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed recursively using this same function. Therefore, it is required to pass them as indices to D (or T). L_args are the arguments of the logarithms indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])). This is needed to compute the final answer u such that n*f == Du/u. exp(f) will be the same as u up to a multiplicative constant. This is because they will both behave the same as monomials. For example, both exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const is returned. const is such that exp(const)*f == u. This is calculated by subtracting the arguments of one exponential from the other. Therefore, it is necessary to pass the arguments of the exponential terms in E_args. To handle the case where we are given Df, not f, use is_log_deriv_k_t_radical_in_field(). """ H = [] if Df: dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2, include=True) else: dfa, dfd = fa, fd # Our assumption here is that each monomial is recursively transcendental if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1: if [i for i in DE.cases if i == 'tan'] or \ set([i for i in DE.cases if i == 'primitive']) - set(DE.L_K): raise NotImplementedError("Real version of the structure " "theorems with hypertangent support is not yet implemented.") # TODO: What should really be done in this case? raise NotImplementedError("Nonelementary extensions not supported " "in the structure theorems.") E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K] L_part = [DE.D[i].as_expr() for i in DE.L_K] lhs = Matrix([E_part + L_part]) rhs = Matrix([dfa.as_expr()/dfd.as_expr()]) A, u = constant_system(lhs, rhs, DE) if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A: # If the elements of u are not all constant # Note: See comment in constant_system # Also note: derivation(basic=True) calls cancel() return None else: if not all(i.is_Rational for i in u): # TODO: But maybe we can tell if they're not rational, like # log(2)/log(3). Also, there should be an option to continue # anyway, even if the result might potentially be wrong. raise NotImplementedError("Cannot work with non-rational " "coefficients in this case.") else: n = reduce(ilcm, [i.as_numer_denom()[1] for i in u]) u *= n terms = [DE.T[i] for i in DE.E_K] + DE.L_args ans = list(zip(terms, u)) result = Mul(*[Pow(i, j) for i, j in ans]) # exp(f) will be the same as result up to a multiplicative # constant. We now find the log of that constant. argterms = DE.E_args + [DE.T[i] for i in DE.L_K] const = cancel(fa.as_expr()/fd.as_expr() - Add(*[Mul(i, j/n) for i, j in zip(argterms, u)])) return (ans, result, n, const) def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None): """ Checks if f can be written as the logarithmic derivative of a k(t)-radical. f in k(t) can be written as the logarithmic derivative of a k(t) radical if there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u. Either returns (n, u) or None, which means that f cannot be written as the logarithmic derivative of a k(t)-radical. case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive, hyperexponential, and hypertangent cases, respectively. If case is 'auto', it will attempt to determine the type of the derivation automatically. """ fa, fd = fa.cancel(fd, include=True) # f must be simple n, s = splitfactor(fd, DE) if not s.is_one: pass z = z or Dummy('z') H, b = residue_reduce(fa, fd, DE, z=z) if not b: # I will have to verify, but I believe that the answer should be # None in this case. This should never happen for the # functions given when solving the parametric logarithmic # derivative problem when integration elementary functions (see # Bronstein's book, page 255), so most likely this indicates a bug. return None roots = [(i, i.real_roots()) for i, _ in H] if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for i, j in roots): # If f is the logarithmic derivative of a k(t)-radical, then all the # roots of the resultant must be rational numbers. return None # [(a, i), ...], where i*log(a) is a term in the log-part of the integral # of f respolys, residues = list(zip(*roots)) or [[], []] # Note: this might be empty, but everything below should work find in that # case (it should be the same as if it were [[1, 1]]) residueterms = [(H[j][1].subs(z, i), i) for j in range(len(H)) for i in residues[j]] # TODO: finish writing this and write tests p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z)) p = p.as_poly(DE.t) if p is None: # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical return None if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)): return None if case == 'auto': case = DE.case if case == 'exp': wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True) with DecrementLevel(DE): pa, pd = frac_in(p, DE.t, cancel=True) wa, wd = frac_in((wa, wd), DE.t) A = parametric_log_deriv(pa, pd, wa, wd, DE) if A is None: return None n, e, u = A u *= DE.t**e elif case == 'primitive': with DecrementLevel(DE): pa, pd = frac_in(p, DE.t) A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto') if A is None: return None n, u = A elif case == 'base': # TODO: we can use more efficient residue reduction from ratint() if not fd.is_sqf or fa.degree() >= fd.degree(): # f is the logarithmic derivative in the base case if and only if # f = fa/fd, fd is square-free, deg(fa) < deg(fd), and # gcd(fa, fd) == 1. The last condition is handled by cancel() above. return None # Note: if residueterms = [], returns (1, 1) # f had better be 0 in that case. n = reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], S(1)) u = Mul(*[Pow(i, j*n) for i, j in residueterms]) return (n, u) elif case == 'tan': raise NotImplementedError("The hypertangent case is " "not yet implemented for is_log_deriv_k_t_radical_in_field()") elif case in ['other_linear', 'other_nonlinear']: # XXX: If these are supported by the structure theorems, change to NotImplementedError. raise ValueError("The %s case is not supported in this function." % case) else: raise ValueError("case must be one of {'primitive', 'exp', 'tan', " "'base', 'auto'}, not %s" % case) common_denom = reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in residueterms]] + [n], S(1)) residueterms = [(i, j*common_denom) for i, j in residueterms] m = common_denom//n if common_denom != n*m: # Verify exact division raise ValueError("Inexact division") u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms])) return (common_denom, u)