from sympy.simplify import simplify as simp, trigsimp as tsimp from sympy.core.decorators import call_highest_priority, _sympifyit from sympy.core.assumptions import StdFactKB from sympy import factor as fctr, diff as df, Integral from sympy.core import S, Add, Mul, count_ops from sympy.core.expr import Expr class BasisDependent(Expr): """ Super class containing functionality common to vectors and dyadics. Named so because the representation of these quantities in sympy.vector is dependent on the basis they are expressed in. """ @call_highest_priority('__radd__') def __add__(self, other): return self._add_func(self, other) @call_highest_priority('__add__') def __radd__(self, other): return self._add_func(other, self) @call_highest_priority('__rsub__') def __sub__(self, other): return self._add_func(self, -other) @call_highest_priority('__sub__') def __rsub__(self, other): return self._add_func(other, -self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return self._mul_func(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return self._mul_func(other, self) def __neg__(self): return self._mul_func(S(-1), self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdiv__') def __div__(self, other): return self._div_helper(other) @call_highest_priority('__div__') def __rdiv__(self, other): return TypeError("Invalid divisor for division") __truediv__ = __div__ __rtruediv__ = __rdiv__ def evalf(self, prec=None, **options): """ Implements the SymPy evalf routine for this quantity. evalf's documentation ===================== """ vec = self.zero for k, v in self.components.items(): vec += v.evalf(prec, **options) * k return vec evalf.__doc__ += Expr.evalf.__doc__ n = evalf def simplify(self, ratio=1.7, measure=count_ops): """ Implements the SymPy simplify routine for this quantity. simplify's documentation ======================== """ simp_components = [simp(v, ratio, measure) * k for k, v in self.components.items()] return self._add_func(*simp_components) simplify.__doc__ += simp.__doc__ def trigsimp(self, **opts): """ Implements the SymPy trigsimp routine, for this quantity. trigsimp's documentation ======================== """ trig_components = [tsimp(v, **opts) * k for k, v in self.components.items()] return self._add_func(*trig_components) trigsimp.__doc__ += tsimp.__doc__ def _eval_simplify(self, ratio, measure): return self.simplify(ratio, measure) def _eval_trigsimp(self, **opts): return self.trigsimp(**opts) def _eval_derivative(self, wrt): return self.diff(wrt) def _eval_Integral(self, *symbols, **assumptions): integral_components = [Integral(v, *symbols, **assumptions) * k for k, v in self.components.items()] return self._add_func(*integral_components) def _eval_diff(self, *args, **kwargs): return self.diff(*args, **kwargs) def as_numer_denom(self): """ Returns the expression as a tuple wrt the following transformation - expression -> a/b -> a, b """ return (self, 1) def factor(self, *args, **kwargs): """ Implements the SymPy factor routine, on the scalar parts of a basis-dependent expression. factor's documentation ======================== """ fctr_components = [fctr(v, *args, **kwargs) * k for k, v in self.components.items()] return self._add_func(*fctr_components) factor.__doc__ += fctr.__doc__ def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return (S(1), self) def as_coeff_add(self, *deps): """Efficiently extract the coefficient of a summation. """ l = [x * self.components[x] for x in self.components] return (0, tuple(l)) def diff(self, *args, **kwargs): """ Implements the SymPy diff routine, for vectors. diff's documentation ======================== """ for x in args: if isinstance(x, BasisDependent): raise TypeError("Invalid arg for differentiation") diff_components = [df(v, *args, **kwargs) * k for k, v in self.components.items()] return self._add_func(*diff_components) diff.__doc__ += df.__doc__ def doit(self, **hints): """Calls .doit() on each term in the Dyadic""" doit_components = [self.components[x].doit(**hints) * x for x in self.components] return self._add_func(*doit_components) class BasisDependentAdd(BasisDependent, Add): """ Denotes sum of basis dependent quantities such that they cannot be expressed as base or Mul instances. """ def __new__(cls, *args, **options): components = {} #Check each arg and simultaneously learn the components for i, arg in enumerate(args): if not isinstance(arg, cls._expr_type): if isinstance(arg, Mul): arg = cls._mul_func(*(arg.args)) elif isinstance(arg, Add): arg = cls._add_func(*(arg.args)) else: raise TypeError(str(arg) + " cannot be interpreted correctly") #If argument is zero, ignore if arg == cls.zero: continue #Else, update components accordingly for x in arg.components: components[x] = components.get(x, 0) + arg.components[x] temp = list(components.keys()) for x in temp: if components[x] == 0: del components[x] #Handle case of zero vector if len(components) == 0: return cls.zero #Build object newargs = [x*components[x] for x in components] obj = super(BasisDependentAdd, cls).__new__(cls, *newargs, **options) if isinstance(obj, Mul): return cls._mul_func(*obj.args) assumptions = {} assumptions['commutative'] = True obj._assumptions = StdFactKB(assumptions) obj._components = components obj._sys = (list(components.keys()))[0]._sys return obj __init__ = Add.__init__ class BasisDependentMul(BasisDependent, Mul): """ Denotes product of base- basis dependent quantity with a scalar. """ def __new__(cls, *args, **options): count = 0 measure_number = S(1) zeroflag = False #Determine the component and check arguments #Also keep a count to ensure two vectors aren't #being multipled for arg in args: if isinstance(arg, cls._zero_func): count += 1 zeroflag = True elif arg == S(0): zeroflag = True elif isinstance(arg, (cls._base_func, cls._mul_func)): count += 1 expr = arg._base_instance measure_number *= arg._measure_number elif isinstance(arg, cls._add_func): count += 1 expr = arg else: measure_number *= arg #Make sure incompatible types weren't multipled if count > 1: raise ValueError("Invalid multiplication") elif count == 0: return Mul(*args, **options) #Handle zero vector case if zeroflag: return cls.zero #If one of the args was a VectorAdd, return an #appropriate VectorAdd instance if isinstance(expr, cls._add_func): newargs = [cls._mul_func(measure_number, x) for x in expr.args] return cls._add_func(*newargs) obj = super(BasisDependentMul, cls).__new__(cls, measure_number, expr._base_instance, **options) if isinstance(obj, Add): return cls._add_func(*obj.args) obj._base_instance = expr._base_instance obj._measure_number = measure_number assumptions = {} assumptions['commutative'] = True obj._assumptions = StdFactKB(assumptions) obj._components = {expr._base_instance : measure_number} obj._sys = expr._base_instance._sys return obj __init__ = Mul.__init__ def __str__(self, printer=None): measure_str = self._measure_number.__str__() if ('(' in measure_str or '-' in measure_str or '+' in measure_str): measure_str = '(' + measure_str + ')' return measure_str + '*' + self._base_instance.__str__(printer) __repr__ = __str__ _sympystr = __str__ class BasisDependentZero(BasisDependent): """ Class to denote a zero basis dependent instance. """ components = {} def __new__(cls): obj = super(BasisDependentZero, cls).__new__(cls) #Pre-compute a specific hash value for the zero vector #Use the same one always obj._hash = tuple([S(0), cls]).__hash__() return obj def __hash__(self): return self._hash @call_highest_priority('__req__') def __eq__(self, other): return isinstance(other, self._zero_func) __req__ = __eq__ @call_highest_priority('__radd__') def __add__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for addition") @call_highest_priority('__add__') def __radd__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for addition") @call_highest_priority('__rsub__') def __sub__(self, other): if isinstance(other, self._expr_type): return -other else: raise TypeError("Invalid argument types for subtraction") @call_highest_priority('__sub__') def __rsub__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for subtraction") def __neg__(self): return self def normalize(self): """ Returns the normalized version of this vector. """ return self def __str__(self, printer=None): return '0' __repr__ = __str__ _sympystr = __str__