/* vcfgtcheck.c -- Check sample identity. Copyright (C) 2013-2014 Genome Research Ltd. Author: Petr Danecek Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcftools.h" typedef struct { bcf_srs_t *files; // first reader is the query VCF - single sample normally or multi-sample for cross-check bcf_hdr_t *gt_hdr, *sm_hdr; // VCF with genotypes to compare against and the query VCF int ntmp_arr, npl_arr; int32_t *tmp_arr, *pl_arr; double *lks, *sites; int *cnts, *dps, hom_only, cross_check, all_sites; char *cwd, **argv, *gt_fname, *plot, *query_sample, *target_sample; int argc, no_PLs; } args_t; FILE *open_file(char **fname, const char *mode, const char *fmt, ...); char *msprintf(const char *fmt, ...); void mkdir_p(const char *fmt, ...); void py_plot(char *script) { mkdir_p(script); int len = strlen(script); char *cmd = !strcmp(".py",script+len-3) ? msprintf("python %s", script) : msprintf("python %s.py", script); int ret = system(cmd); if ( ret ) fprintf(stderr, "The command returned non-zero status %d: %s\n", ret, cmd); free(cmd); } static void plot_check(args_t *args, char *target_sample, char *query_sample) { char *fname; FILE *fp = open_file(&fname, "w", "%s.py", args->plot); fprintf(fp, "import matplotlib as mpl\n" "mpl.use('Agg')\n" "import matplotlib.pyplot as plt\n" "import matplotlib.gridspec as gridspec\n" "import csv\n" "csv.register_dialect('tab', delimiter='\\t', quoting=csv.QUOTE_NONE)\n" "\n" "sample_ids = False\n" "\n" "dat = []\n" "with open('%s.tab', 'rb') as f:\n" " reader = csv.reader(f, 'tab')\n" " for row in reader:\n" " if row[0][0]=='#': continue\n" " if row[0]!='CN': continue\n" " tgt = 0\n" " if row[4]=='%s': tgt = 1\n" " dat.append([float(row[1]), float(row[2]), float(row[3]), tgt, row[4]])\n" "\n" "dat = sorted(dat, reverse=True)\n" "\n" "iq = -1; dp = 0\n" "for i in range(len(dat)):\n" " if iq==-1 and dat[i][3]==1: iq = i\n" " dp += dat[i][2]\n" "dp /= len(dat)\n" "\n" "fig,ax1 = plt.subplots(figsize=(8,5))\n" "ax2 = ax1.twinx()\n" "plots = ax1.plot([x[0] for x in dat],'o-', ms=3, color='g', mec='g', label='Discordance (total)')\n" "plots += ax1.plot([x[1] for x in dat], '^', ms=3, color='r', mec='r', label='Discordance (per site)')\n" "plots += ax2.plot([x[2] for x in dat],'v', ms=3, color='k', label='Number of sites')\n" "if iq!=-1:\n" " ax1.plot([iq],[dat[iq][0]],'o',color='orange', ms=9)\n" " ax1.annotate('%s',xy=(iq,dat[iq][0]), xytext=(5,5), textcoords='offset points',fontsize='xx-small',rotation=45,va='bottom',ha='left')\n" " ax1.plot([iq],[dat[iq][1]],'^',color='red', ms=5)\n" "for tl in ax1.get_yticklabels(): tl.set_color('g')\n" "for tl in ax2.get_yticklabels(): tl.set_color('k'); tl.set_fontsize(9)\n" "ax1.set_title('Discordance with %s')\n" "ax1.set_xlim(-0.05*len(dat),1.05*(len(dat)-1))\n" "ax1.set_xlabel('Sample ID')\n" "plt.subplots_adjust(left=0.1,right=0.9,bottom=0.1,top=0.9)\n" "if sample_ids:\n" " ax1.set_xticks(range(len(dat)))\n" " ax1.set_xticklabels([x[4] for x in dat],**{'rotation':45, 'ha':'right', 'fontsize':8})\n" " plt.subplots_adjust(bottom=0.2)\n" "ax1.set_ylabel('Discordance',color='g')\n" "ax2.set_ylabel('Number of sites',color='k')\n" "ax2.ticklabel_format(style='sci', scilimits=(-3,2), axis='y')\n" "ax1.ticklabel_format(style='sci', scilimits=(-3,2), axis='y')\n" "labels = [l.get_label() for l in plots]\n" "plt.legend(plots,labels,numpoints=1,markerscale=1,loc='best',prop={'size':10},frameon=False)\n" "plt.savefig('%s.png')\n" "plt.close()\n" "\n", args->plot, target_sample, target_sample, query_sample, args->plot ); fclose(fp); py_plot(fname); free(fname); } static void plot_cross_check(args_t *args) { char *fname; FILE *fp = open_file(&fname, "w", "%s.py", args->plot); fprintf(fp, "import matplotlib as mpl\n" "mpl.use('Agg')\n" "import matplotlib.pyplot as plt\n" "import matplotlib.gridspec as gridspec\n" "import csv\n" "csv.register_dialect('tab', delimiter='\\t', quoting=csv.QUOTE_NONE)\n" "avg = []\n" "dp = []\n" "sm2id = {}\n" "dat = None\n" "min = None\n" "max = None\n" "with open('%s.tab', 'rb') as f:\n" " reader = csv.reader(f, 'tab')\n" " i = 0\n" " for row in reader:\n" " if row[0]=='SM':\n" " sm2id[row[4]] = i\n" " avg.append([i,float(row[1])])\n" " dp.append([i,float(row[2])])\n" " i += 1\n" " elif row[0]=='CN':\n" " val = 0\n" " if int(row[2])!=0: val = float(row[1])/int(row[2])\n" " if not dat:\n" " dat = [[0]*len(sm2id) for x in xrange(len(sm2id))]\n" " min = val\n" " max = val\n" " id_i = sm2id[row[4]]\n" " id_j = sm2id[row[5]]\n" " dat[id_i][id_j] = val\n" " dat[id_j][id_i] = val\n" " if min > val: min = val\n" " if max < val: max = val\n" "\n" "if len(sm2id)<=1: exit(1)\n" "if min==max: exit(1)\n" "\n" "fig = plt.figure(figsize=(6,7))\n" "gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1.5])\n" "ax1 = plt.subplot(gs[0])\n" "ax2 = plt.subplot(gs[1])\n" "\n" "ax1.plot([x[0] for x in avg],[x[1] for x in avg],'^-', ms=3, color='k')\n" "ax3 = ax1.twinx()\n" "ax3.plot([x[0] for x in dp],[x[1] for x in dp],'^-', ms=3, color='r',mec='r')\n" "for tl in ax3.get_yticklabels():\n" " tl.set_color('r')\n" " tl.set_fontsize(9)\n" "\n" "im = ax2.imshow(dat,clim=(min),interpolation='nearest',origin='lower')\n" "cb1 = plt.colorbar(im,ax=ax2)\n" "cb1.set_label('Pairwise discordance')\n" "for t in cb1.ax.get_yticklabels(): t.set_fontsize(9)\n" "\n" "ax1.tick_params(axis='both', which='major', labelsize=9)\n" "ax1.tick_params(axis='both', which='minor', labelsize=9)\n" "ax2.tick_params(axis='both', which='major', labelsize=9)\n" "ax2.tick_params(axis='both', which='minor', labelsize=9)\n" "\n" "ax1.set_title('Sample Discordance Score')\n" "ax2.set_ylabel('Sample ID')\n" "ax2.set_xlabel('Sample ID')\n" "ax3.set_ylabel('Average Depth',color='r')\n" "ax1.set_xlabel('Sample ID')\n" "ax1.set_ylabel('Average discordance')\n" "\n" "plt.subplots_adjust(left=0.15,right=0.87,bottom=0.08,top=0.93,hspace=0.25)\n" "plt.savefig('%s.png')\n" "plt.close()\n" "\n", args->plot,args->plot ); fclose(fp); py_plot(fname); free(fname); } static void init_data(args_t *args) { args->sm_hdr = args->files->readers[0].header; if ( !bcf_hdr_nsamples(args->sm_hdr) ) error("No samples in %s?\n", args->files->readers[0].fname); if ( !args->cross_check ) { args->gt_hdr = args->files->readers[1].header; int nsamples = bcf_hdr_nsamples(args->gt_hdr); if ( !nsamples ) error("No samples in %s?\n", args->files->readers[1].fname); args->lks = (double*) calloc(nsamples,sizeof(double)); args->cnts = (int*) calloc(nsamples,sizeof(int)); args->sites = (double*) calloc(nsamples,sizeof(double)); args->dps = (int*) calloc(nsamples,sizeof(int)); } else { int nsamples = bcf_hdr_nsamples(args->sm_hdr); int narr = (nsamples-1)*nsamples/2; args->lks = (double*) calloc(narr,sizeof(double)); args->cnts = (int*) calloc(narr,sizeof(int)); args->dps = (int*) calloc(narr,sizeof(int)); } } static void destroy_data(args_t *args) { free(args->lks); free(args->cnts); free(args->dps); free(args->cwd); free(args->sites); } static int allele_to_int(bcf1_t *line, char *allele) { int i; for (i=0; in_allele; i++) if ( !strcmp(allele,line->d.allele[i]) ) return i; if ( strcmp(line->d.allele[i-1],"X") ) return -1; return i-1; } static int init_gt2ipl(args_t *args, bcf1_t *gt_line, bcf1_t *sm_line, int *gt2ipl, int n_gt2ipl) { int i, j; for (i=0; in_allele; i++) { // find which of the sm_alleles (k) corresponds to the gt_allele (i) int k = allele_to_int(sm_line, gt_line->d.allele[i]); if ( k<0 ) return 0; for (j=0; j<=i; j++) { int l = allele_to_int(sm_line, gt_line->d.allele[j]); if ( l<0 ) return 0; gt2ipl[ bcf_ij2G(j,i) ] = k<=l ? bcf_ij2G(k,l) : bcf_ij2G(l,k); } } //for (i=0; icwd = (char*) malloc(sizeof(char)*nbuf); for (i=0; i<5; i++) { if ( (buf = getcwd(args->cwd, nbuf)) ) break; nbuf *= 2; args->cwd = (char*) realloc(args->cwd, sizeof(char)*nbuf); } assert(buf); } static void print_header(args_t *args, FILE *fp) { fprintf(fp, "# This file was produced by bcftools (%s+htslib-%s), the command line was:\n", bcftools_version(), hts_version()); fprintf(fp, "# \t bcftools %s ", args->argv[0]); int i; for (i=1; iargc; i++) fprintf(fp, " %s",args->argv[i]); fprintf(fp, "\n# and the working directory was:\n"); fprintf(fp, "# \t %s\n#\n", args->cwd); } static int fake_PLs(args_t *args, bcf_hdr_t *hdr, bcf1_t *line) { // PLs not present, use GTs instead. int fake_PL = args->no_PLs ? args->no_PLs : 99; // with 1, discordance is the number of non-matching GTs int nsm_gt, i; if ( (nsm_gt=bcf_get_genotypes(hdr, line, &args->tmp_arr, &args->ntmp_arr)) <= 0 ) error("GT not present at %s:%d?\n", hdr->id[BCF_DT_CTG][line->rid].key, line->pos+1); nsm_gt /= bcf_hdr_nsamples(hdr); int npl = line->n_allele*(line->n_allele+1)/2; hts_expand(int,npl*bcf_hdr_nsamples(hdr),args->npl_arr,args->pl_arr); for (i=0; itmp_arr + i*nsm_gt; int j, *pl_ptr = args->pl_arr + i*npl; if ( bcf_gt_is_missing(gt_ptr[0]) || bcf_gt_is_missing(gt_ptr[1]) ) // missing genotype { for (j=0; jno_PLs; // Initialize things: check which tags are defined in the header, sample names etc. if ( bcf_hdr_id2int(args->gt_hdr, BCF_DT_ID, "GT")<0 ) error("[E::%s] GT not present in the header of %s?\n", __func__, args->files->readers[1].fname); if ( bcf_hdr_id2int(args->sm_hdr, BCF_DT_ID, "PL")<0 ) { if ( bcf_hdr_id2int(args->sm_hdr, BCF_DT_ID, "GT")<0 ) error("[E::%s] Neither PL nor GT present in the header of %s\n", __func__, args->files->readers[0].fname); if ( !args->no_PLs ) fprintf(stderr,"Warning: PL not present in the header of %s, using GT instead\n", args->files->readers[0].fname); fake_pls = 1; } FILE *fp = args->plot ? open_file(NULL, "w", "%s.tab", args->plot) : stdout; print_header(args, fp); int tgt_isample = -1, query_isample = 0; if ( args->target_sample ) { tgt_isample = bcf_hdr_id2int(args->gt_hdr, BCF_DT_SAMPLE, args->target_sample); if ( tgt_isample<0 ) error("No such sample in %s: [%s]\n", args->files->readers[1].fname, args->target_sample); } if ( args->all_sites ) { if ( tgt_isample==-1 ) { fprintf(stderr,"No target sample selected for comparison, using the first sample in %s: %s\n", args->gt_fname,args->gt_hdr->samples[0]); tgt_isample = 0; } } if ( args->query_sample ) { query_isample = bcf_hdr_id2int(args->sm_hdr, BCF_DT_SAMPLE, args->query_sample); if ( query_isample<0 ) error("No such sample in %s: [%s]\n", args->files->readers[0].fname, args->query_sample); } if ( args->all_sites ) fprintf(fp, "# [1]SC, Site by Site Comparison\t[2]Chromosome\t[3]Position\t[4]-g alleles\t[5]-g GT (%s)\t[6]match log LK\t[7]Query alleles\t[8-]Query PLs (%s)\n", args->gt_hdr->samples[tgt_isample],args->sm_hdr->samples[query_isample]); // Main loop float prev_lk = 0; while ( (ret=bcf_sr_next_line(args->files)) ) { if ( ret!=2 ) continue; bcf1_t *sm_line = args->files->readers[0].buffer[0]; // the query file bcf1_t *gt_line = args->files->readers[1].buffer[0]; // the -g target file bcf_unpack(sm_line, BCF_UN_FMT); bcf_unpack(gt_line, BCF_UN_FMT); // Init mapping from target genotype index to the sample's PL fields int n_gt2ipl = gt_line->n_allele*(gt_line->n_allele + 1)/2; if ( n_gt2ipl > m_gt2ipl ) { m_gt2ipl = n_gt2ipl; gt2ipl = (int*) realloc(gt2ipl, sizeof(int)*m_gt2ipl); } if ( !init_gt2ipl(args, gt_line, sm_line, gt2ipl, n_gt2ipl) ) continue; // Target genotypes int ngt, npl; if ( (ngt=bcf_get_genotypes(args->gt_hdr, gt_line, >_arr, &ngt_arr)) <= 0 ) error("GT not present at %s:%d?", args->gt_hdr->id[BCF_DT_CTG][gt_line->rid].key, gt_line->pos+1); ngt /= bcf_hdr_nsamples(args->gt_hdr); if ( ngt!=2 ) continue; // checking only diploid genotypes // Sample PLs if ( !fake_pls ) { if ( (npl=bcf_get_format_int32(args->sm_hdr, sm_line, "PL", &args->pl_arr, &args->npl_arr)) <= 0 ) error("PL not present at %s:%d?", args->sm_hdr->id[BCF_DT_CTG][sm_line->rid].key, sm_line->pos+1); npl /= bcf_hdr_nsamples(args->sm_hdr); } else npl = fake_PLs(args, args->sm_hdr, sm_line); // Calculate likelihoods for all samples, assuming diploid genotypes // For faster access to genotype likelihoods (PLs) of the query sample int max_ipl, *pl_ptr = args->pl_arr + query_isample*npl; double sum_pl = 0; // for converting PLs to probs for (max_ipl=0; max_iplno_PLs==1 ) sum_pl = -1; // The main stats: concordance of the query sample with the target -g samples for (i=0; igt_hdr); i++) { int *gt_ptr = gt_arr + i*ngt; if ( gt_ptr[1]==bcf_int32_vector_end ) continue; // skip haploid genotypes if ( bcf_gt_is_missing(gt_ptr[0]) || bcf_gt_is_missing(gt_ptr[1]) ) continue; int a = bcf_gt_allele(gt_ptr[0]); int b = bcf_gt_allele(gt_ptr[1]); if ( args->hom_only && a!=b ) continue; // heterozygous genotype int igt_tgt = igt_tgt = bcf_alleles2gt(a,b); // genotype index in the target file int igt_qry = gt2ipl[igt_tgt]; // corresponding genotype in query file if ( igt_qry>=max_ipl || pl_ptr[igt_qry]<0 ) continue; // genotype not present in query sample: haploid or missing args->lks[i] += sum_pl<0 ? -pl_ptr[igt_qry] : log(pow(10, -0.1*pl_ptr[igt_qry])/sum_pl); args->sites[i]++; } if ( args->all_sites ) { // Print LKs at all sites for debugging int *gt_ptr = gt_arr + tgt_isample*ngt; if ( gt_ptr[1]==bcf_int32_vector_end ) continue; // skip haploid genotypes int a = bcf_gt_allele(gt_ptr[0]); int b = bcf_gt_allele(gt_ptr[1]); if ( args->hom_only && a!=b ) continue; // heterozygous genotype fprintf(fp, "SC\t%s\t%d", args->gt_hdr->id[BCF_DT_CTG][gt_line->rid].key, gt_line->pos+1); for (i=0; in_allele; i++) fprintf(fp, "%c%s", i==0?'\t':',', gt_line->d.allele[i]); fprintf(fp, "\t%s/%s", a>=0 ? gt_line->d.allele[a] : ".", b>=0 ? gt_line->d.allele[b] : "."); fprintf(fp, "\t%f", args->lks[query_isample]-prev_lk); prev_lk = args->lks[query_isample]; int igt, *pl_ptr = args->pl_arr + query_isample*npl; // PLs of the query sample for (i=0; in_allele; i++) fprintf(fp, "%c%s", i==0?'\t':',', sm_line->d.allele[i]); for (igt=0; igtpl_arr); free(args->tmp_arr); // To be able to plot total discordance (=number of mismatching GTs with -G1) in the same // plot as discordance per site, the latter must be scaled to the same range int nsamples = bcf_hdr_nsamples(args->gt_hdr); double extreme_lk = 0, extreme_lk_per_site = 0; for (i=0; ilks[i] < extreme_lk ) extreme_lk = args->lks[i]; if ( args->sites[i] && args->lks[i]/args->sites[i] < extreme_lk_per_site ) extreme_lk_per_site = args->lks[i]/args->sites[i]; } // Sorted output double **p = (double**) malloc(sizeof(double*)*nsamples); for (i=0; ilks[i]; qsort(p, nsamples, sizeof(int*), cmp_doubleptr); fprintf(fp, "# [1]CN\t[2]Discordance with %s (total)\t[3]Discordance (score per site)\t[4]Number of sites compared\t[5]Sample\t[6]Sample ID\n", args->sm_hdr->samples[query_isample]); for (i=0; ilks; double per_site = 0; if ( args->sites[idx] ) { if ( args->sites[idx] && extreme_lk_per_site ) { per_site = args->lks[idx]/args->sites[idx]; per_site *= extreme_lk / extreme_lk_per_site; } else per_site = 0; } fprintf(fp, "CN\t%e\t%e\t%.0f\t%s\t%d\n", fabs(args->lks[idx]), fabs(per_site), args->sites[idx], args->gt_hdr->samples[idx], i); } if ( args->plot ) { fclose(fp); plot_check(args, args->target_sample ? args->target_sample : "", args->sm_hdr->samples[query_isample]); } } static inline int is_hom_most_likely(int nals, int *pls) { int ia, ib, idx = 1, min_is_hom = 1, min_pl = pls[0]; for (ia=1; iasm_hdr), ndp_arr = 0; unsigned int *dp = (unsigned int*) calloc(nsamples,sizeof(unsigned int)), *ndp = (unsigned int*) calloc(nsamples,sizeof(unsigned int)); // this will overflow one day... int fake_pls = args->no_PLs, ignore_dp = 0; int i,j,k,idx, pl_warned = 0, dp_warned = 0; int32_t *dp_arr = NULL; int *is_hom = args->hom_only ? (int*) malloc(sizeof(int)*nsamples) : NULL; if ( bcf_hdr_id2int(args->sm_hdr, BCF_DT_ID, "PL")<0 ) { if ( bcf_hdr_id2int(args->sm_hdr, BCF_DT_ID, "GT")<0 ) error("[E::%s] Neither PL nor GT present in the header of %s\n", __func__, args->files->readers[0].fname); if ( !args->no_PLs ) fprintf(stderr,"Warning: PL not present in the header of %s, using GT instead\n", args->files->readers[0].fname); fake_pls = 1; } if ( bcf_hdr_id2int(args->sm_hdr, BCF_DT_ID, "DP")<0 ) ignore_dp = 1; FILE *fp = args->plot ? open_file(NULL, "w", "%s.tab", args->plot) : stdout; print_header(args, fp); if ( args->all_sites ) fprintf(fp,"# [1]SD, Average Site Discordance\t[2]Chromosome\t[3]Position\t[4]Number of available pairs\t[5]Average discordance\n"); while ( bcf_sr_next_line(args->files) ) { bcf1_t *line = args->files->readers[0].buffer[0]; bcf_unpack(line, BCF_UN_FMT); int npl; if ( !fake_pls ) { npl = bcf_get_format_int32(args->sm_hdr, line, "PL", &args->pl_arr, &args->npl_arr); if ( npl<=0 ) { pl_warned++; continue; } npl /= nsamples; } else npl = fake_PLs(args, args->sm_hdr, line); if ( !ignore_dp && bcf_get_format_int32(args->sm_hdr, line, "DP", &dp_arr, &ndp_arr) <= 0 ) { dp_warned++; continue; } if ( args->hom_only ) { for (i=0; in_allele, args->pl_arr+i*npl); } double sum = 0; int nsum = 0; idx = 0; for (i=0; ipl_arr[i*npl]; if ( *ipl==-1 ) { idx += i; continue; } // missing genotype if ( !ignore_dp && (dp_arr[i]==bcf_int32_missing || !dp_arr[i]) ) { idx += i; continue; } if ( args->hom_only && !is_hom[i] ) { idx += i; continue; } for (j=0; jpl_arr[j*npl]; if ( *jpl==-1 ) { idx++; continue; } // missing genotype if ( !ignore_dp && (dp_arr[j]==bcf_int32_missing || !dp_arr[j]) ) { idx++; continue; } if ( args->hom_only && !is_hom[j] ) { idx++; continue; } int min_pl = INT_MAX; for (k=0; k ipl[k]+jpl[k] ) min_pl = ipl[k]+jpl[k]; } if ( k!=npl ) { idx++; continue; } if ( args->all_sites ) { sum += min_pl; nsum++; } args->lks[idx] += min_pl; args->cnts[idx]++; if ( !ignore_dp ) { args->dps[idx] += dp_arr[i] < dp_arr[j] ? dp_arr[i] : dp_arr[j]; dp[i] += dp_arr[i]; ndp[i]++; dp[j] += dp_arr[j]; ndp[j]++; } else { args->dps[idx]++; dp[i]++; ndp[i]++; dp[j]++; ndp[j]++; } idx++; } } if ( args->all_sites ) fprintf(fp,"SD\t%s\t%d\t%d\t%.0f\n", args->sm_hdr->id[BCF_DT_CTG][line->rid].key, line->pos+1, nsum, nsum?sum/nsum:0); } if ( dp_arr ) free(dp_arr); if ( args->pl_arr ) free(args->pl_arr); if ( args->tmp_arr ) free(args->tmp_arr); if ( is_hom ) free(is_hom); if ( pl_warned ) fprintf(stderr, "[W::%s] PL was not found at %d site(s)\n", __func__, pl_warned); if ( dp_warned ) fprintf(stderr, "[W::%s] DP was not found at %d site(s)\n", __func__, dp_warned); // Output samples sorted by average discordance double *score = (double*) calloc(nsamples,sizeof(double)); args->sites = (double*) calloc(nsamples,sizeof(double)); idx = 0; for (i=0; ilks[idx]; score[j] += args->lks[idx]; args->sites[i] += args->cnts[idx]; args->sites[j] += args->cnts[idx]; idx++; } } for (i=0; isites[i] ) score[i] /= args->sites[i]; double **p = (double**) malloc(sizeof(double*)*nsamples), avg_score = 0; for (i=0; isites[idx]/(nsamples-1); avg_score += score[idx]; fprintf(fp, "SM\t%f\t%.2lf\t%.0lf\t%s\t%d\n", score[idx]*100., adp, nsites, args->sm_hdr->samples[idx],i); } // // Overall score: maximum absolute deviation from the average score // fprintf(fp, "# [1] MD\t[2]Maximum deviation\t[3]The culprit\n"); // fprintf(fp, "MD\t%f\t%s\n", (score[idx] - avg_score/nsamples)*100., args->sm_hdr->samples[idx]); // idx still set free(p); free(score); free(dp); free(ndp); // Pairwise discordances fprintf(fp, "# [1]CN\t[2]Discordance\t[3]Number of sites\t[4]Average minimum depth\t[5]Sample i\t[6]Sample j\n"); idx = 0; for (i=0; ilks[idx], args->cnts[idx], args->cnts[idx]?(double)args->dps[idx]/args->cnts[idx]:0.0, args->sm_hdr->samples[i],args->sm_hdr->samples[j]); idx++; } } fclose(fp); if ( args->plot ) plot_cross_check(args); } static char *init_prefix(char *prefix) { int len = strlen(prefix); if ( prefix[len-1] == '/' || prefix[len-1] == '\\' ) return msprintf("%sgtcheck", prefix); return strdup(prefix); } static void usage(void) { fprintf(stderr, "\n"); fprintf(stderr, "About: Check sample identity. With no -g BCF given, multi-sample cross-check is performed.\n"); fprintf(stderr, "Usage: bcftools gtcheck [options] [-g ] \n"); fprintf(stderr, "\n"); fprintf(stderr, "Options:\n"); fprintf(stderr, " -a, --all-sites output comparison for all sites\n"); fprintf(stderr, " -g, --genotypes genotypes to compare against\n"); fprintf(stderr, " -G, --GTs-only use GTs, ignore PLs, using for unseen genotypes [99]\n"); fprintf(stderr, " -H, --homs-only homozygous genotypes only (useful for low coverage data)\n"); fprintf(stderr, " -p, --plot plot\n"); fprintf(stderr, " -r, --regions restrict to comma-separated list of regions\n"); fprintf(stderr, " -R, --regions-file restrict to regions listed in a file\n"); fprintf(stderr, " -s, --query-sample query sample (by default the first sample is checked)\n"); fprintf(stderr, " -S, --target-sample target sample in the -g file (used only for plotting)\n"); fprintf(stderr, " -t, --targets similar to -r but streams rather than index-jumps\n"); fprintf(stderr, " -T, --targets-file similar to -R but streams rather than index-jumps\n"); fprintf(stderr, "\n"); exit(1); } int main_vcfgtcheck(int argc, char *argv[]) { int c; args_t *args = (args_t*) calloc(1,sizeof(args_t)); args->files = bcf_sr_init(); args->argc = argc; args->argv = argv; set_cwd(args); char *regions = NULL, *targets = NULL; int regions_is_file = 0, targets_is_file = 0; static struct option loptions[] = { {"GTs-only",1,0,'G'}, {"all-sites",0,0,'a'}, {"homs-only",0,0,'H'}, {"help",0,0,'h'}, {"genotypes",1,0,'g'}, {"plot",1,0,'p'}, {"target-sample",1,0,'S'}, {"query-sample",1,0,'s'}, {"regions",1,0,'r'}, {"regions-file",1,0,'R'}, {"targets",1,0,'t'}, {"targets-file",1,0,'T'}, {0,0,0,0} }; char *tmp; while ((c = getopt_long(argc, argv, "hg:p:s:S:Hr:R:at:T:G:",loptions,NULL)) >= 0) { switch (c) { case 'G': args->no_PLs = strtol(optarg,&tmp,10); if ( *tmp ) error("Could not parse argument: --GTs-only %s\n", optarg); break; case 'a': args->all_sites = 1; break; case 'H': args->hom_only = 1; break; case 'g': args->gt_fname = optarg; break; case 'p': args->plot = optarg; break; case 'S': args->target_sample = optarg; break; case 's': args->query_sample = optarg; break; case 'r': regions = optarg; break; case 'R': regions = optarg; regions_is_file = 1; break; case 't': targets = optarg; break; case 'T': targets = optarg; targets_is_file = 1; break; case 'h': case '?': usage(); default: error("Unknown argument: %s\n", optarg); } } char *fname = NULL; if ( optind==argc ) { if ( !isatty(fileno((FILE *)stdin)) ) fname = "-"; // reading from stdin else usage(); // no files given } else fname = argv[optind]; if ( argc>optind+1 ) usage(); // too many files given if ( !args->gt_fname ) args->cross_check = 1; // no genotype file, run in cross-check mode else args->files->require_index = 1; if ( regions && bcf_sr_set_regions(args->files, regions, regions_is_file)<0 ) error("Failed to read the regions: %s\n", regions); if ( targets && bcf_sr_set_targets(args->files, targets, targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n", targets); if ( !bcf_sr_add_reader(args->files, fname) ) error("Failed to open %s: %s\n", fname,bcf_sr_strerror(args->files->errnum)); if ( args->gt_fname && !bcf_sr_add_reader(args->files, args->gt_fname) ) error("Failed to open %s: %s\n", args->gt_fname,bcf_sr_strerror(args->files->errnum)); args->files->collapse = COLLAPSE_SNPS|COLLAPSE_INDELS; if ( args->plot ) args->plot = init_prefix(args->plot); init_data(args); if ( args->cross_check ) cross_check_gts(args); else check_gt(args); destroy_data(args); bcf_sr_destroy(args->files); if (args->plot) free(args->plot); free(args); return 0; }