/* vcfroh.c -- HMM model for detecting runs of autozygosity. Copyright (C) 2013-2014 Genome Research Ltd. Author: Petr Danecek Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "bcftools.h" #include "HMM.h" #define STATE_HW 0 // normal state, follows Hardy-Weinberg allele frequencies #define STATE_AZ 1 // autozygous state /** Genetic map */ typedef struct { int pos; double rate; } genmap_t; typedef struct _args_t { bcf_srs_t *files; bcf_hdr_t *hdr; double t2AZ, t2HW; // P(AZ|HW) and P(HW|AZ) parameters double unseen_PL; char *genmap_fname; genmap_t *genmap; int ngenmap, mgenmap, igenmap; double rec_rate; // constant recombination rate if > 0 hmm_t *hmm; double *eprob; // emission probs [2*nsites,msites] uint32_t *sites; // positions [nsites,msites] int nsites, msites; int nrids, *rids, *rid_offs; // multiple chroms with vi_training int32_t *itmp; int nitmp, mitmp; float *AFs; int mAFs; double pl2p[256], *pdg; int32_t skip_rid, prev_rid, prev_pos; int ntot, nused; // some stats to detect if things didn't go awfully wrong int ismpl, nsmpl; // index of query sample char *estimate_AF, *sample; // list of samples for AF estimate and query sample char **argv, *targets_list, *regions_list, *af_fname, *af_tag; int argc, fake_PLs, snps_only, vi_training; } args_t; void set_tprob_genmap(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data); void set_tprob_recrate(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data); void *smalloc(size_t size) { void *mem = malloc(size); if ( !mem ) error("malloc: Could not allocate %d bytes\n", (int)size); return mem; } static void init_data(args_t *args) { args->prev_rid = args->skip_rid = -1; args->hdr = args->files->readers[0].header; if ( !args->sample ) { if ( bcf_hdr_nsamples(args->hdr)>1 ) error("Missing the option -s, --sample\n"); args->sample = strdup(args->hdr->samples[0]); } if ( !bcf_hdr_nsamples(args->hdr) ) error("No samples in the VCF?\n"); // Set samples kstring_t str = {0,0,0}; if ( args->estimate_AF && strcmp("-",args->estimate_AF) ) { int i, n; char **smpls = hts_readlist(args->estimate_AF, 1, &n); // Make sure the query sample is included for (i=0; isample,smpls[i]) ) break; // Add the query sample if not present if ( i!=n ) kputs(args->sample, &str); for (i=0; isample, &str); int ret = bcf_hdr_set_samples(args->hdr, str.s, 0); if ( ret<0 ) error("Error parsing the list of samples: %s\n", str.s); else if ( ret>0 ) error("The %d-th sample not found in the VCF\n", ret); if ( args->af_tag ) if ( !bcf_hdr_idinfo_exists(args->hdr,BCF_HL_INFO,bcf_hdr_id2int(args->hdr,BCF_DT_ID,args->af_tag)) ) error("No such INFO tag in the VCF: %s\n", args->af_tag); if ( !bcf_sr_set_samples(args->files, str.s, 0) ) error("Error: could not set the samples %s\n", str.s); args->nsmpl = args->files->n_smpl; args->ismpl = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, args->sample); free(str.s); int i; for (i=0; i<256; i++) args->pl2p[i] = pow(10., -i/10.); // Init transition matrix and HMM double tprob[4]; MAT(tprob,2,STATE_HW,STATE_HW) = 1 - args->t2AZ; MAT(tprob,2,STATE_HW,STATE_AZ) = args->t2HW; MAT(tprob,2,STATE_AZ,STATE_HW) = args->t2AZ; MAT(tprob,2,STATE_AZ,STATE_AZ) = 1 - args->t2HW; if ( args->genmap_fname ) { args->hmm = hmm_init(2, tprob, 0); hmm_set_tprob_func(args->hmm, set_tprob_genmap, args); } else if ( args->rec_rate > 0 ) { args->hmm = hmm_init(2, tprob, 0); hmm_set_tprob_func(args->hmm, set_tprob_recrate, args); } else args->hmm = hmm_init(2, tprob, 10000); // print header printf("# This file was produced by: bcftools roh(%s+htslib-%s)\n", bcftools_version(),hts_version()); printf("# The command line was:\tbcftools %s", args->argv[0]); for (i=1; iargc; i++) printf(" %s",args->argv[i]); printf("\n#\n"); printf("# [1]Chromosome\t[2]Position\t[3]State (0:HW, 1:AZ)\t[4]Quality\n"); } static void destroy_data(args_t *args) { free(args->sites); free(args->eprob); free(args->sample); free(args->rids); free(args->rid_offs); hmm_destroy(args->hmm); bcf_sr_destroy(args->files); free(args->itmp); free(args->AFs); free(args->pdg); free(args->genmap); } static int load_genmap(args_t *args, bcf1_t *line) { if ( !args->genmap_fname ) { args->ngenmap = 0; return 0; } kstring_t str = {0,0,0}; char *fname = strstr(args->genmap_fname,"{CHROM}"); if ( fname ) { kputsn(args->genmap_fname, fname - args->genmap_fname, &str); kputs(bcf_seqname(args->hdr,line), &str); kputs(fname+7,&str); fname = str.s; } else fname = args->genmap_fname; htsFile *fp = hts_open(fname, "rb"); if ( !fp ) { args->ngenmap = 0; return -1; } hts_getline(fp, KS_SEP_LINE, &str); if ( strcmp(str.s,"position COMBINED_rate(cM/Mb) Genetic_Map(cM)") ) error("Unexpected header, found:\n\t[%s], but expected:\n\t[position COMBINED_rate(cM/Mb) Genetic_Map(cM)]\n", fname, str.s); args->ngenmap = args->igenmap = 0; while ( hts_getline(fp, KS_SEP_LINE, &str) > 0 ) { args->ngenmap++; hts_expand(genmap_t,args->ngenmap,args->mgenmap,args->genmap); genmap_t *gm = &args->genmap[args->ngenmap-1]; char *tmp, *end; gm->pos = strtol(str.s, &tmp, 10); if ( str.s==tmp ) error("Could not parse %s: %s\n", fname, str.s); // skip second column tmp++; while ( *tmp && !isspace(*tmp) ) tmp++; // read the genetic map in cM gm->rate = strtod(tmp+1, &end); if ( tmp+1==end ) error("Could not parse %s: %s\n", fname, str.s); } if ( !args->ngenmap ) error("Genetic map empty?\n"); int i; for (i=0; ingenmap; i++) args->genmap[i].rate /= args->genmap[args->ngenmap-1].rate; // scale to 1 if ( hts_close(fp) ) error("Close failed\n"); free(str.s); return 0; } static double get_genmap_rate(args_t *args, int start, int end) { // position i to be equal to or smaller than start int i = args->igenmap; if ( args->genmap[i].pos > start ) { while ( i>0 && args->genmap[i].pos > start ) i--; } else { while ( i+1ngenmap && args->genmap[i+1].pos < start ) i++; } // position j to be equal or larger than end int j = i; while ( j+1ngenmap && args->genmap[j].pos < end ) j++; if ( i==j ) { args->igenmap = i; return 0; } if ( start < args->genmap[i].pos ) start = args->genmap[i].pos; if ( end > args->genmap[j].pos ) end = args->genmap[j].pos; double rate = (args->genmap[j].rate - args->genmap[i].rate)/(args->genmap[j].pos - args->genmap[i].pos) * (end-start); args->igenmap = j; return rate; } void set_tprob_genmap(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data) { args_t *args = (args_t*) data; double ci = get_genmap_rate(args, pos - prev_pos, pos); MAT(hmm->curr_tprob,2,STATE_HW,STATE_HW) *= 1-ci; MAT(hmm->curr_tprob,2,STATE_HW,STATE_AZ) *= ci; MAT(hmm->curr_tprob,2,STATE_AZ,STATE_HW) *= ci; MAT(hmm->curr_tprob,2,STATE_AZ,STATE_AZ) *= 1-ci; } void set_tprob_recrate(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data) { args_t *args = (args_t*) data; double ci = (pos - prev_pos) * args->rec_rate; MAT(hmm->curr_tprob,2,STATE_HW,STATE_HW) *= 1-ci; MAT(hmm->curr_tprob,2,STATE_HW,STATE_AZ) *= ci; MAT(hmm->curr_tprob,2,STATE_AZ,STATE_HW) *= ci; MAT(hmm->curr_tprob,2,STATE_AZ,STATE_AZ) *= 1-ci; } /** * This function implements the HMM model: * D = Data, AZ = autozygosity, HW = Hardy-Weinberg (non-autozygosity), * f = non-ref allele frequency * * Emission probabilities: * oAZ = P_i(D|AZ) = (1-f)*P(D|RR) + f*P(D|AA) * oHW = P_i(D|HW) = (1-f)^2 * P(D|RR) + f^2 * P(D|AA) + 2*f*(1-f)*P(D|RA) * * Transition probabilities: * tAZ = P(AZ|HW) .. parameter * tHW = P(HW|AZ) .. parameter * P(AZ|AZ) = 1 - P(HW|AZ) = 1 - tHW * P(HW|HW) = 1 - P(AZ|HW) = 1 - tAZ * * ci = P_i(C) .. probability of cross-over at site i, from genetic map * * AZi = P_i(AZ) .. probability of site i being AZ/non-AZ, scaled so that AZi+HWi = 1 * HWi = P_i(HW) * * P_i(AZ|AZ) = P(AZ|AZ) * (1-ci) * AZ{i-1} = (1-tHW) * (1-ci) * AZ{i-1} * P_i(AZ|HW) = P(AZ|HW) * ci * HW{i-1} = tAZ * ci * (1 - AZ{i-1}) * * P_i(HW|HW) = P(HW|HW) * (1-ci) * HW{i-1} = (1-tAZ) * (1-ci) * (1 - AZ{i-1}) * P_i(HW|AZ) = P(HW|AZ) * ci * AZ{i-1} = tHW * ci * AZ{i-1} */ static void flush_viterbi(args_t *args) { int i,j; if ( !args->nsites ) return; if ( !args->vi_training ) { // single viterbi pass, one chromsome hmm_run_viterbi(args->hmm, args->nsites, args->eprob, args->sites); const char *chr = bcf_hdr_id2name(args->hdr,args->prev_rid); for (i=0; insites; i++) { printf("%s\t%d\t%d\t..\n", chr,args->sites[i]+1,args->hmm->vpath[i*2]==STATE_AZ ? 1 : 0); } return; } // viterbi training, multiple chromosomes double t2az_prev, t2hw_prev; double deltaz, delthw; int niter = 0; do { t2az_prev = MAT(args->hmm->tprob_arr,2,1,0); //args->t2AZ; t2hw_prev = MAT(args->hmm->tprob_arr,2,0,1); //args->t2HW; double tcounts[] = { 0,0,0,0 }; for (i=0; inrids; i++) { // run viterbi for each chromosomes. eprob and sites contain // multiple chromosomes, rid_offs mark the boundaries int ioff = args->rid_offs[i]; int nsites = (i+1==args->nrids ? args->nsites : args->rid_offs[i+1]) - ioff; hmm_run_viterbi(args->hmm, nsites, args->eprob+ioff*2, args->sites+ioff); // what transitions were observed: add to the total counts for (j=1; jhmm->vpath[2*(j-1)]; int curr_state = args->hmm->vpath[2*j]; MAT(tcounts,2,curr_state,prev_state) += 1; } } // update the transition matrix tprob for (i=0; i<2; i++) { int n = 0; for (j=0; j<2; j++) n += MAT(tcounts,2,i,j); error("fixme: state %d not observed\n", i+1); for (j=0; j<2; j++) MAT(tcounts,2,i,j) /= n; } if ( args->genmap_fname || args->rec_rate > 0 ) hmm_set_tprob(args->hmm, tcounts, 0); else hmm_set_tprob(args->hmm, tcounts, 10000); deltaz = fabs(MAT(args->hmm->tprob_arr,2,1,0)-t2az_prev); delthw = fabs(MAT(args->hmm->tprob_arr,2,0,1)-t2hw_prev); niter++; fprintf(stderr,"%d: %f %f\n", niter,deltaz,delthw); } while ( deltaz > 0.0 || delthw > 0.0 ); fprintf(stderr, "Viterbi training converged in %d iterations to", niter); for (i=0; i<2; i++) for (j=0; j<2; j++) fprintf(stderr, " %f", MAT(args->hmm->tprob_arr,2,i,j)); fprintf(stderr, "\n"); // output the results for (i=0; inrids; i++) { int ioff = args->rid_offs[i]; int nsites = (i+1==args->nrids ? args->nsites : args->rid_offs[i+1]) - ioff; hmm_run_viterbi(args->hmm, nsites, args->eprob+ioff*2, args->sites+ioff); const char *chr = bcf_hdr_id2name(args->hdr,args->rids[i]); for (j=0; jsites[ioff+j]+1,args->hmm->vpath[j*2]==STATE_AZ ? 1 : 0); } } } static void push_rid(args_t *args, int rid) { args->nrids++; args->rids = (int*) realloc(args->rids, args->nrids*sizeof(int)); args->rid_offs = (int*) realloc(args->rid_offs, args->nrids*sizeof(int)); args->rids[ args->nrids-1 ] = rid; args->rid_offs[ args->nrids-1 ] = args->nsites; } int read_AF(bcf_sr_regions_t *tgt, bcf1_t *line, double *alt_freq) { if ( tgt->nals != line->n_allele ) return -1; // number of alleles does not match int i; for (i=0; inals; i++) if ( strcmp(line->d.allele[i],tgt->als[i]) ) break; // we could be smarter, see vcmp if ( inals ) return -1; char *tmp, *str = tgt->line.s; i = 0; while ( *str && i<3 ) { if ( *str=='\t' ) i++; str++; } *alt_freq = strtod(str, &tmp); if ( *tmp && !isspace(*tmp) ) { if ( str[0]=='.' && (!str[1] || isspace(str[1])) ) return -1; // missing value error("Could not parse: [%s]\n", tgt->line.s); } if ( *alt_freq<0 || *alt_freq>1 ) error("Could not parse AF: [%s]\n", tgt->line.s); return 0; } int estimate_AF(args_t *args, bcf1_t *line, double *alt_freq) { if ( !args->nitmp ) { args->nitmp = bcf_get_genotypes(args->hdr, line, &args->itmp, &args->mitmp); if ( args->nitmp != 2*args->nsmpl ) return -1; // not diploid? args->nitmp /= args->nsmpl; } int i, nalt = 0, nref = 0; for (i=0; insmpl; i++) { int32_t *gt = &args->itmp[i*args->nitmp]; if ( bcf_gt_is_missing(gt[0]) || bcf_gt_is_missing(gt[1]) ) continue; if ( bcf_gt_allele(gt[0]) ) nalt++; else nref++; if ( bcf_gt_allele(gt[1]) ) nalt++; else nref++; } if ( !nalt && !nref ) return -1; *alt_freq = (double)nalt / (nalt + nref); return 0; } int parse_line(args_t *args, bcf1_t *line, double *alt_freq, double *pdg) { args->nitmp = 0; // Set allele frequency int ret; if ( args->af_tag ) { // Use an INFO tag provided by the user ret = bcf_get_info_float(args->hdr, line, args->af_tag, &args->AFs, &args->mAFs); if ( ret==1 ) *alt_freq = args->AFs[0]; if ( ret==-2 ) error("Type mismatch for INFO/%s tag at %s:%d\n", args->af_tag, bcf_seqname(args->hdr,line), line->pos+1); } else if ( args->af_fname ) { // Read AF from a file ret = read_AF(args->files->targets, line, alt_freq); } else { // Use GTs or AC/AN: GTs when AC/AN not present or when GTs explicitly requested by --estimate-AF ret = -1; if ( !args->estimate_AF ) { int AC = -1, AN = 0; ret = bcf_get_info_int32(args->hdr, line, "AN", &args->itmp, &args->mitmp); if ( ret==1 ) { AN = args->itmp[0]; ret = bcf_get_info_int32(args->hdr, line, "AC", &args->itmp, &args->mitmp); if ( ret>0 ) AC = args->itmp[0]; } if ( AN<=0 || AC<0 ) ret = -1; else *alt_freq = (double) AC/AN; } if ( ret==-1 ) ret = estimate_AF(args, line, alt_freq); // reads GTs into args->itmp } if ( ret<0 ) return ret; // Set P(D|G) if ( args->fake_PLs ) { if ( !args->nitmp ) { args->nitmp = bcf_get_genotypes(args->hdr, line, &args->itmp, &args->mitmp); if ( args->nitmp != 2*args->nsmpl ) return -1; // not diploid? args->nitmp /= args->nsmpl; } int32_t *gt = &args->itmp[args->ismpl*args->nitmp]; if ( bcf_gt_is_missing(gt[0]) || bcf_gt_is_missing(gt[1]) ) return -1; int a = bcf_gt_allele(gt[0]); int b = bcf_gt_allele(gt[1]); if ( a!=b ) { pdg[0] = pdg[2] = args->unseen_PL; pdg[1] = 1 - 2*args->unseen_PL; } else if ( a==0 ) { pdg[0] = 1 - 2*args->unseen_PL; pdg[1] = pdg[2] = args->unseen_PL; } else { pdg[0] = pdg[1] = args->unseen_PL; pdg[2] = 1 - 2*args->unseen_PL; } } else { args->nitmp = bcf_get_format_int32(args->hdr, line, "PL", &args->itmp, &args->mitmp); if ( args->nitmp != args->nsmpl*line->n_allele*(line->n_allele+1)/2. ) return -1; // not diploid? args->nitmp /= args->nsmpl; int32_t *pl = &args->itmp[args->ismpl*args->nitmp]; pdg[0] = pl[0] < 256 ? args->pl2p[ pl[0] ] : 1.0; pdg[1] = pl[1] < 256 ? args->pl2p[ pl[1] ] : 1.0; pdg[2] = pl[2] < 256 ? args->pl2p[ pl[2] ] : 1.0; double sum = pdg[0] + pdg[1] + pdg[2]; if ( !sum ) return -1; pdg[0] /= sum; pdg[1] /= sum; pdg[2] /= sum; } return 0; } static void vcfroh(args_t *args, bcf1_t *line) { // Are we done? if ( !line ) { flush_viterbi(args); return; } args->ntot++; // Skip unwanted lines if ( line->rid == args->skip_rid ) return; if ( line->n_allele==1 ) return; // no ALT allele if ( line->n_allele!=2 ) return; // only biallelic sites if ( args->snps_only && !bcf_is_snp(line) ) return; // Initialize genetic map int skip_rid = 0; if ( args->prev_rid<0 ) { args->prev_rid = line->rid; args->prev_pos = line->pos; skip_rid = load_genmap(args, line); if ( !skip_rid && args->vi_training ) push_rid(args, line->rid); } // New chromosome? if ( args->prev_rid!=line->rid ) { skip_rid = load_genmap(args, line); if ( args->vi_training ) { if ( !skip_rid ) push_rid(args, line->rid); } else { flush_viterbi(args); args->nsites = 0; } args->prev_rid = line->rid; args->prev_pos = line->pos; } if ( skip_rid ) { fprintf(stderr,"Skipping the sequence, no genmap for %s\n", bcf_seqname(args->hdr,line)); args->skip_rid = line->rid; return; } if ( args->prev_pos > line->pos ) error("The file is not sorted?!\n"); args->prev_rid = line->rid; args->prev_pos = line->pos; // Ready for the new site int m = args->msites; hts_expand(uint32_t,args->nsites+1,args->msites,args->sites); if ( args->msites!=m ) args->eprob = (double*) realloc(args->eprob,sizeof(double)*args->msites*2); // Set likelihoods and alternate allele frequencies double alt_freq, pdg[3]; if ( parse_line(args, line, &alt_freq, pdg)<0 ) return; // something went wrong args->nused++; // Calculate emission probabilities P(D|AZ) and P(D|HW) double *eprob = &args->eprob[2*args->nsites]; eprob[STATE_AZ] = pdg[0]*(1-alt_freq) + pdg[2]*alt_freq; eprob[STATE_HW] = pdg[0]*(1-alt_freq)*(1-alt_freq) + 2*pdg[1]*(1-alt_freq)*alt_freq + pdg[2]*alt_freq*alt_freq; args->sites[args->nsites] = line->pos; args->nsites++; } static void usage(args_t *args) { fprintf(stderr, "\n"); fprintf(stderr, "About: HMM model for detecting runs of autozygosity.\n"); fprintf(stderr, "Usage: bcftools roh [options] \n"); fprintf(stderr, "\n"); fprintf(stderr, "General Options:\n"); fprintf(stderr, " --AF-tag use TAG for allele frequency\n"); fprintf(stderr, " --AF-file read allele frequencies from file (CHR\\tPOS\\tREF,ALT\\tAF)\n"); fprintf(stderr, " -e, --estimate-AF calculate AC,AN counts on the fly, using either all samples (\"-\") or samples listed in \n"); fprintf(stderr, " -G, --GTs-only use GTs, ignore PLs, use for PL of unseen genotypes. Safe value to use is 30 to account for GT errors.\n"); fprintf(stderr, " -I, --skip-indels skip indels as their genotypes are enriched for errors\n"); fprintf(stderr, " -m, --genetic-map genetic map in IMPUTE2 format, single file or mask, where string \"{CHROM}\" is replaced with chromosome name\n"); fprintf(stderr, " -M, --rec-rate constant recombination rate per bp\n"); fprintf(stderr, " -r, --regions restrict to comma-separated list of regions\n"); fprintf(stderr, " -R, --regions-file restrict to regions listed in a file\n"); fprintf(stderr, " -s, --sample sample to analyze\n"); fprintf(stderr, " -t, --targets similar to -r but streams rather than index-jumps\n"); fprintf(stderr, " -T, --targets-file similar to -R but streams rather than index-jumps\n"); fprintf(stderr, "\n"); fprintf(stderr, "HMM Options:\n"); fprintf(stderr, " -a, --hw-to-az P(AZ|HW) transition probability from AZ (autozygous) to HW (Hardy-Weinberg) state [1e-8]\n"); fprintf(stderr, " -H, --az-to-hw P(HW|AZ) transition probability from HW to AZ state [1e-7]\n"); fprintf(stderr, " -V, --viterbi-training perform Viterbi training to estimate transition probabilities\n"); fprintf(stderr, "\n"); exit(1); } int main_vcfroh(int argc, char *argv[]) { int c; args_t *args = (args_t*) calloc(1,sizeof(args_t)); args->argc = argc; args->argv = argv; args->files = bcf_sr_init(); args->t2AZ = 1e-1; args->t2HW = 1e-1; args->rec_rate = 0; int regions_is_file = 0, targets_is_file = 0; static struct option loptions[] = { {"AF-tag",1,0,0}, {"AF-file",1,0,1}, {"estimate-AF",1,0,'e'}, {"GTs-only",1,0,'G'}, {"sample",1,0,'s'}, {"hw-to-az",1,0,'a'}, {"az-to-hw",1,0,'H'}, {"viterbi-training",0,0,'V'}, {"targets",1,0,'t'}, {"targets-file",1,0,'T'}, {"regions",1,0,'r'}, {"regions-file",1,0,'R'}, {"genetic-map",1,0,'m'}, {"rec-rate",1,0,'M'}, {"skip-indels",0,0,'I'}, {0,0,0,0} }; int naf_opts = 0; char *tmp; while ((c = getopt_long(argc, argv, "h?r:R:t:T:H:a:s:m:M:G:Ia:e:V",loptions,NULL)) >= 0) { switch (c) { case 0: args->af_tag = optarg; naf_opts++; break; case 1: args->af_fname = optarg; naf_opts++; break; case 'e': args->estimate_AF = optarg; naf_opts++; break; case 'I': args->snps_only = 1; break; case 'G': args->fake_PLs = 1; args->unseen_PL = strtod(optarg,&tmp); if ( *tmp ) error("Could not parse: -G %s\n", optarg); args->unseen_PL = pow(10,-args->unseen_PL/10.); break; case 'm': args->genmap_fname = optarg; break; case 'M': args->rec_rate = strtod(optarg,&tmp); if ( *tmp ) error("Could not parse: -M %s\n", optarg); break; case 's': args->sample = strdup(optarg); break; case 'a': args->t2AZ = strtod(optarg,&tmp); if ( *tmp ) error("Could not parse: -a %s\n", optarg); break; case 'H': args->t2HW = strtod(optarg,&tmp); if ( *tmp ) error("Could not parse: -H %s\n", optarg); break; case 't': args->targets_list = optarg; break; case 'T': args->targets_list = optarg; targets_is_file = 1; break; case 'r': args->regions_list = optarg; break; case 'R': args->regions_list = optarg; regions_is_file = 1; break; case 'V': args->vi_training = 1; break; case 'h': case '?': usage(args); break; default: error("Unknown argument: %s\n", optarg); } } if ( argct2AZ<0 || args->t2AZ>1 ) error("Error: The parameter --hw-to-az is not in [0,1]\n", args->t2AZ); if ( args->t2HW<0 || args->t2HW>1 ) error("Error: The parameter --az-to-hw is not in [0,1]\n", args->t2HW); if ( naf_opts>1 ) error("Error: The options --AF-tag, --AF-file and -e are mutually exclusive\n"); if ( args->af_fname && args->targets_list ) error("Error: The options --AF-file and -t are mutually exclusive\n"); if ( args->regions_list ) { if ( bcf_sr_set_regions(args->files, args->regions_list, regions_is_file)<0 ) error("Failed to read the regions: %s\n", args->regions_list); } if ( args->targets_list ) { if ( bcf_sr_set_targets(args->files, args->targets_list, targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n", args->targets_list); } if ( args->af_fname ) { if ( bcf_sr_set_targets(args->files, args->af_fname, 1, 3)<0 ) error("Failed to read the targets: %s\n", args->af_fname); } if ( !bcf_sr_add_reader(args->files, argv[optind]) ) error("Failed to open %s: %s\n", argv[optind],bcf_sr_strerror(args->files->errnum)); init_data(args); while ( bcf_sr_next_line(args->files) ) { vcfroh(args, args->files->readers[0].buffer[0]); } vcfroh(args, NULL); fprintf(stderr,"Number of lines: total/processed: %d/%d\n", args->ntot,args->nused); destroy_data(args); free(args); return 0; }