
RTG Tools Operations Manual
Release 3.8

Real Time Genomics

May 15, 2017

CONTENTS

1 Overview 1
1.1 Introduction . 1
1.2 RTG software description . 1
1.3 Installation and deployment . 1

1.3.1 Quick start instructions . 2
1.3.2 License Management . 3

1.4 Technical assistance and support . 3

2 RTG Command Reference 5
2.1 Command line interface (CLI) . 5
2.2 RTG command syntax . 5
2.3 Data Formatting Commands . 9

2.3.1 format . 9
2.3.2 sdf2fasta . 12
2.3.3 sdf2fastq . 13
2.3.4 sdf2sam . 14
2.3.5 fastqtrim . 15

2.4 Simulation Commands . 17
2.4.1 genomesim . 17
2.4.2 cgsim . 18
2.4.3 denovosim . 19
2.4.4 readsim . 20
2.4.5 popsim . 22
2.4.6 samplesim . 23
2.4.7 childsim . 23
2.4.8 samplereplay . 24

2.5 Utility Commands . 25
2.5.1 bgzip . 25
2.5.2 index . 26
2.5.3 extract . 26
2.5.4 aview . 27
2.5.5 sdfstats . 28
2.5.6 sdfsubset . 29
2.5.7 sdfsubseq . 30
2.5.8 mendelian . 31
2.5.9 vcfstats . 32
2.5.10 vcfmerge . 33
2.5.11 vcffilter . 34
2.5.12 vcfannotate . 39
2.5.13 vcfsubset . 40
2.5.14 vcfeval . 41
2.5.15 pedfilter . 46
2.5.16 pedstats . 47
2.5.17 rocplot . 49

i

2.5.18 version . 50
2.5.19 license . 51
2.5.20 help . 51

3 Administration & Capacity Planning 53
3.1 Advanced installation configuration . 53
3.2 Run-time performance optimization . 53
3.3 Alternate configurations . 54
3.4 Exception management - TalkBack and log file . 54
3.5 Usage logging . 54

3.5.1 Single-user, single machine . 55
3.5.2 Multi-user or multiple machines . 55
3.5.3 Advanced configuration . 56

4 Appendix 57
4.1 RTG reference file format . 57
4.2 Pedigree PED input file format . 60
4.3 RTG commands using indexed input files . 61
4.4 RTG JavaScript filtering API . 61

4.4.1 VCF record field access . 61
4.4.2 VCF header modification . 62
4.4.3 Additional information and functions . 62

4.5 Distribution Contents . 63
4.6 README.txt . 63
4.7 Notice . 67

ii

CHAPTER

ONE

OVERVIEW

This chapter introduces the features, operational options, and installation requirements of the data analysis soft-
ware from Real Time Genomics.

1.1 Introduction

RTG software enables the development of fast, efficient software pipelines for deep genomic analysis. RTG is built
on innovative search technologies and new algorithms designed for processing high volumes of high-throughput
sequencing data from different sequencing technology platforms. The RTG sequence search and alignment func-
tions enable read mapping and protein searches with a unique combination of sensitivity and speed.

The RTG Tools platform provides a subset of the functionality available from the full suite of functions for ana-
lyzing and manipulating variant call results. These utilities can be used to perform a variety of tasks such as:

• Accuracy Evaluation – Compare called variants to a set of known variants to find specificity and sensitivity,
check mendelian consistency for the variants from a family, finding basic variant statistics for a set of calls.

• Result Filtering – Find a subset of variants that match a given set of filtering criteria, extracting only the
variant information required for a specific task.

• Variant Set Manipulation – Merging multiple sets of variant results together, adding additional annotation
information to existing variants.

1.2 RTG software description

RTG software is delivered as a single executable with multiple commands executed through a command line
interface (CLI). Commands are delivered in product packages, and for commercial users each command can be
independently enabled through a license key.

Usage:

rtg COMMAND [OPTIONS] <REQUIRED>

See also:

For detailed information about RTG command syntax and usage of individual commands, refer to RTG Command
Reference.

1.3 Installation and deployment

RTG is a self-contained tool that sets minimal expectations on the environment in which it is placed. It comes with
the application components it needs to execute completely, yet performance can be enhanced with some simple
modifications to the deployment configuration. This section provides guidelines for installing and creating an
optimal configuration, starting from a typical recommended system.

1

http://realtimegenomics.com

RTG Tools Operations Manual, Release 3.8

RTG software pipeline runs in a wide range of computing environments from dual-core processor laptops to
compute clusters with racks of dual processor quad core server nodes. However, internal human genome analysis
benchmarks suggest the use of six server nodes of the configuration shown in below.

Table : Recommended system requirements

Processor Intel Core i7-2600
Memory 48 GB RAM DDR3
Disk 5 TB, 7200 RPM (prefer SAS disk)

RTG Software can be run as a Java JAR file, but platform specific wrapper scripts are supplied to provide improved
pipeline ergonomics. Instructions for a quick start installation are provided here.

For further information about setting up per-machine configuration files, please see the README.txt contained
in the distribution zip file (a copy is also included in this manual’s appendix).

1.3.1 Quick start instructions

These instructions are intended for an individual to install and operate the RTG software without the need to
establish root / administrator privileges.

RTG software is delivered in a compressed zip file, such as: rtg-core-3.3.zip. Unzip this file to begin
installation.

Linux and Windows distributions include a Java Virtual Machine (JVM) version 1.8 that has undergone quality
assurance testing. RTG may be used on other operating systems for which a JVM version 1.8 or higher is available,
such as MacOS X or Solaris, by using the ‘no-jre’ distribution.

RTG for Java is delivered as a Java application accessed via executable wrapper script (rtg on UNIX systems,
rtg.bat on Windows) that allows a user to customize initial memory allocation and other configuration options.
It is recommended that these wrapper scripts be used rather than directly executing the Java JAR.

Here are platform-specific instructions for RTG deployment.

Linux/MacOS X:

• Unzip the RTG distribution to the desired location.

• If your installation requires a license file (rtg-license.txt), copy the license file provided by Real
Time Genomics into the RTG distribution directory.

• In a terminal, cd to the installation directory and test for success by entering ./rtg version

• On MacOS X, depending on your operating system version and configuration regarding unsigned applica-
tions, you may encounter the error message:

-bash: rtg: /usr/bin/env: bad interpreter: Operation not permitted

If this occurs, you must clear the OS X quarantine attribute with the command:

$ xattr -d com.apple.quarantine rtg

• The first time rtg is executed you will be prompted with some questions to customize your installation.
Follow the prompts.

• Enter ./rtg help for a list of rtg commands. Help for any individual command is available using the
--help flag, e.g.: ./rtg format --help

• By default, RTG software scripts establish a memory space of 90% of the available RAM - this is automati-
cally calculated. One may override this limit in the rtg.cfg settings file or on a per-run basis by supplying
RTG_MEM as an environment variable or as the first program argument, e.g.: ./rtg RTG_MEM=48g map

• [OPTIONAL] If you will be running RTG on multiple machines and would like to customize settings on
a per-machine basis, copy rtg.cfg to /etc/rtg.cfg, editing per-machine settings appropriately (re-
quires root privileges). An alternative that does not require root privileges is to copy rtg.cfg to rtg.

2 Chapter 1. Overview

RTG Tools Operations Manual, Release 3.8

HOSTNAME.cfg, editing per-machine settings appropriately, where HOSTNAME is the short host name
output by the command hostname -s

Windows:

• Unzip the RTG distribution to the desired location.

• If your installation requires a license, copy the license file provided by Real Time Genomics
(rtg-license.txt) into the RTG distribution directory.

• Test for success by entering rtg version at the command line. The first time RTG is executed you will
be prompted with some questions to customize your installation. Follow the prompts.

• Enter rtg help for a list of rtg commands. Help for any individual command is available using the
--help flag, e.g.: ./rtg format --help

• By default, RTG software scripts establish a memory space of 90% of the available RAM - this is automati-
cally calculated. One may override this limit by setting the RTG_MEM variable in the rtg.bat script or as
an environment variable.

1.3.2 License Management

Commercial distributions of RTG products require the presence of a valid license key file for operation.

The license key file must be located in the same directory as the RTG executable. The license enables the execution
of a particular command set for the purchased product(s) and features.

A license key allows flexible use of the RTG package on any node or CPU core.

To view the current license features at the command prompt, enter:

$ rtg license

See also:

For more data center deployment and instructions for editing scripts, see Administration & Capacity Planning.

1.4 Technical assistance and support

For assistance with any technical or conceptual issue that may arise during use of the RTG product, contact Real
Time Genomics Technical Support via email at support@realtimegenomics.com

In addition, a discussion group is available at: https://groups.google.com/a/realtimegenomics.com/forum/#!forum/
rtg-users

A low-traffic announcements-only group is available at: https://groups.google.com/a/realtimegenomics.com/
forum/#!forum/rtg-announce

1.4. Technical assistance and support 3

https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-users
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-users
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-announce
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-announce

RTG Tools Operations Manual, Release 3.8

4 Chapter 1. Overview

CHAPTER

TWO

RTG COMMAND REFERENCE

This chapter describes RTG commands with a generic description of parameter options and usage. This section
also includes expected operation and output results.

2.1 Command line interface (CLI)

RTG is installed as a single executable in any system subdirectory where permissions authorize a particu-
lar community of users to run the application. RTG commands are executed through the RTG command-
line interface (CLI). Each command has its own set of parameters and options described in this section.
The availability of each command may be determined by the RTG license that has been installed. Contact
support@realtimegenomics.com to discuss changing the set of commands that are enabled by your li-
cense.

Results are organized in results directories defined by command parameters and settings. The command line shell
environment should include a set of familiar text post-processing tools, such as grep, awk, or perl. Otherwise,
no additional applications such as databases or directory services are required.

2.2 RTG command syntax

Usage:

rtg COMMAND [OPTIONS] <REQUIRED>

To run an RTG command at the command prompt (either DOS window or Unix terminal), type the product name
followed by the command and all required and optional parameters. For example:

$ rtg format -o human_REF_SDF human_REF.fasta

Typically results are written to output files specified with the -o option. There is no default filename or filename
extension added to commands requiring specification of an output directory or format.

Many times, unfiltered output files are very large; the built-in compression option generates block compressed
output files with the .gz extension automatically unless the parameter -Z or --no-gzip is issued with the
command.

Many command parameters require user-supplied information of various types, as shown in the following:

Type Description
DIR, FILE File or directory name(s)
SDF Sequence data that has been formatted to SDF
INT Integer value
FLOAT Floating point decimal value
STRING A sequence of characters for comments, filenames, or labels

5

RTG Tools Operations Manual, Release 3.8

To display all parameters and syntax associated with an RTG command, enter the command and type --help. For
example: all parameters available for the RTG format command are displayed when rtg format --help
is executed, the output of which is shown below.

Usage: rtg format [OPTION]... -o SDF FILE+
[OPTION]... -o SDF -I FILE
[OPTION]... -o SDF -l FILE -r FILE

Converts the contents of sequence data files (FASTA/FASTQ/SAM/BAM) into the RTG
Sequence Data File (SDF) format.

File Input/Output
-f, --format=FORMAT format of input. Allowed values are [fasta,

fastq, sam-se, sam-pe, cg-fastq, cg-sam]
(Default is fasta)

-I, --input-list-file=FILE file containing a list of input read files (1
per line)

-l, --left=FILE left input file for FASTA/FASTQ paired end
data

-o, --output=SDF name of output SDF
-p, --protein input is protein. If this option is not

specified, then the input is assumed to
consist of nucleotides

-q, --quality-format=FORMAT format of quality data for fastq files (use
sanger for Illumina 1.8+). Allowed values are
[sanger, solexa, illumina]

-r, --right=FILE right input file for FASTA/FASTQ paired end
data

FILE+ input sequence files. May be specified 0 or
more times

Filtering
--duster treat lower case residues as unknowns
--exclude=STRING exclude input sequences based on their name.

If the input sequence contains the specified
string then that sequence is excluded from the
SDF. May be specified 0 or more times

--select-read-group=STRING when formatting from SAM/BAM input, only
include reads with this read group ID

--trim-threshold=INT trim read ends to maximise base quality above
the given threshold

Utility
--allow-duplicate-names disable checking for duplicate sequence names

-h, --help print help on command-line flag usage
--no-names do not include name data in the SDF output
--no-quality do not include quality data in the SDF output
--sam-rg=STRING|FILE file containing a single valid read group SAM

header line or a string in the form
"@RG\tID:READGROUP1\tSM:BACT_SAMPLE\tPL:ILLUMINA"

Required parameters are indicated in the usage display; optional parameters are listed immediately below the
usage information in organized categories.

Use the double-dash when typing the full-word command option, as in --output:

$ rtg format --output human_REF_SDF human_REF.fasta

Commonly used command options provide an abbreviated single-character version of a full command parameter,
indicated with only a single dash, (Thus --output is the same as specifying the command option with the
abbreviated character -o):

6 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

$ rtg format -o human_REF human_REF.fasta

A set of utility commands are provided through the CLI: version, license, and help. Start with these
commands to familiarize yourself with the software.

The rtg version command invokes the RTG software and triggers the launch of RTG product commands,
options, and utilities:

$ rtg version

It will display the version of the RTG software installed, RAM requirements, and license expiration, for example:

$rtg version
Product: RTG Core 3.5
Core Version: 6236f4e (2014-10-31)
RAM: 40.0GB of 47.0GB RAM can be used by rtg (84%)
License: Expires on 2015-09-30
License location: /home/rtgcustomer/rtg/rtg-license.txt
Contact: support@realtimegenomics.com

Patents / Patents pending:
US: 7,640,256, 13/129,329, 13/681,046, 13/681,215, 13/848,653,
13/925,704, 14/015,295, 13/971,654, 13/971,630, 14/564,810
UK: 1222923.3, 1222921.7, 1304502.6, 1311209.9, 1314888.7, 1314908.3
New Zealand: 626777, 626783, 615491, 614897, 614560
Australia: 2005255348, Singapore: 128254

Citation:
John G. Cleary, Ross Braithwaite, Kurt Gaastra, Brian S. Hilbush, Stuart
Inglis, Sean A. Irvine, Alan Jackson, Richard Littin, Sahar
Nohzadeh-Malakshah, Mehul Rathod, David Ware, Len Trigg, and Francisco
M. De La Vega. "Joint Variant and De Novo Mutation Identification on
Pedigrees from High-Throughput Sequencing Data." Journal of
Computational Biology. June 2014, 21(6): 405-419.
doi:10.1089/cmb.2014.0029.
(c) Real Time Genomics Inc, 2014

To see what commands you are licensed to use, type rtg license:

$rtg license
License: Expires on 2015-03-30
Licensed to: John Doe
License location: /home/rtgcustomer/rtg/rtg-license.txt

Command name Licensed? Release Level

Data formatting:
format Licensed GA
sdf2fasta Licensed GA
sdf2fastq Licensed GA

Utility:
bgzip Licensed GA
index Licensed GA
extract Licensed GA
sdfstats Licensed GA
sdfsubset Licensed GA
sdfsubseq Licensed GA
mendelian Licensed GA
vcfstats Licensed GA
vcfmerge Licensed GA
vcffilter Licensed GA
vcfannotate Licensed GA

2.2. RTG command syntax 7

RTG Tools Operations Manual, Release 3.8

vcfsubset Licensed GA
vcfeval Licensed GA
pedfilter Licensed GA
pedstats Licensed GA
rocplot Licensed GA
version Licensed GA
license Licensed GA
help Licensed GA

To display all commands and usage parameters available to use with your license, type rtg help:

$ rtg help
Usage: rtg COMMAND [OPTION]...

rtg RTG_MEM=16G COMMAND [OPTION]... (e.g. to set maximum memory use to 16
→˓GB)

Type ``rtg help COMMAND`` for help on a specific command. The
following commands are available:

Data formatting:
format convert a FASTA file to SDF
cg2sdf convert Complete Genomics reads to SDF
sdf2fasta convert SDF to FASTA
sdf2fastq convert SDF to FASTQ
sdf2sam convert SDF to SAM/BAM

Read mapping:
map read mapping
mapf read mapping for filtering purposes
cgmap read mapping for Complete Genomics data

Protein search:
mapx translated protein search

Assembly:
assemble assemble reads into long sequences
addpacbio add Pacific Biosciences reads to an assembly

Variant detection:
calibrate create calibration data from SAM/BAM files
svprep prepare SAM/BAM files for sv analysis
sv find structural variants
discord detect structural variant breakends using discordant

→˓reads
coverage calculate depth of coverage from SAM/BAM files
snp call variants from SAM/BAM files
family call variants for a family following Mendelian

→˓inheritance
somatic call variants for a tumor/normal pair
population call variants for multiple potentially-related

→˓individuals
lineage call de novo variants in a cell lineage
avrbuild AVR model builder
avrpredict run AVR on a VCF file
cnv call CNVs from paired SAM/BAM files

Metagenomics:
species estimate species frequency in metagenomic samples
similarity calculate similarity matrix and nearest neighbor tree

Simulation:
genomesim generate simulated genome sequence
cgsim generate simulated reads from a sequence
readsim generate simulated reads from a sequence
readsimeval evaluate accuracy of mapping simulated reads
popsim generate a VCF containing simulated population

→˓variants
samplesim generate a VCF containing a genotype simulated from a

→˓population

8 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

childsim generate a VCF containing a genotype simulated as a
→˓child of two parents

denovosim generate a VCF containing a derived genotype
→˓containing de novo variants

samplereplay generate the genome corresponding to a sample genotype
cnvsim generate a mutated genome by adding CNVs to a template

Utility:
bgzip compress a file using block gzip
index create a tabix index
extract extract data from a tabix indexed file
sdfstats print statistics about an SDF
sdfsplit split an SDF into multiple parts
sdfsubset extract a subset of an SDF into a new SDF
sdfsubseq extract a subsequence from an SDF as text
sam2bam convert SAM file to BAM file and create index
sammerge merge sorted SAM/BAM files
samstats print statistics about a SAM/BAM file
samrename rename read id to read name in SAM/BAM files
mapxrename rename read id to read name in mapx output files
mendelian check a multi-sample VCF for Mendelian consistency
vcfstats print statistics from about variants contained within

→˓a VCF file
vcfmerge merge single-sample VCF files into a single multi-

→˓sample VCF
vcffilter filter records within a VCF file
vcfannotate annotate variants within a VCF file
vcfsubset create a VCF file containing a subset of the original

→˓columns
vcfeval evaluate called variants for agreement with a

→˓baseline variant set
pedfilter filter and convert a pedigree file
pedstats print information about a pedigree file
avrstats print statistics about an AVR model
rocplot plot ROC curves from vcfeval ROC data files
usageserver run a local server for collecting RTG command usage

→˓information
version print version and license information
license print license information for all commands
help print this screen or help for specified command

The help command will only list the commands for which you have a license to use.

To display help and syntax information for a specific command from the command line, type the command and
then the –help option, as in:

$ rtg format --help

Note: The following commands are synonymous: rtg help format and rtg format --help

See also:

Refer to Installation and deployment for information about installing the RTG product executable.

2.3 Data Formatting Commands

2.3.1 format

Synopsis:

2.3. Data Formatting Commands 9

RTG Tools Operations Manual, Release 3.8

The format command converts the contents of sequence data files (FASTA/FASTQ/SAM/BAM) into the RTG
Sequence Data File (SDF) format. This step ensures efficient processing of very large data sets, by organizing the
data into multiple binary files within a named directory. The same SDF format is used for storing sequence data,
whether it be genomic reference, sequencing reads, protein sequences, etc.

Syntax:

Format one or more files specified from command line into a single SDF:

$ rtg format [OPTION] -o SDF FILE+

Format one or more files specified in a text file into a single SDF:

$ rtg format [OPTION] -o SDF -I FILE

Format mate pair reads into a single SDF:

$ rtg format [OPTION] -o SDF -l FILE -r FILE

Examples:

For FASTA (.fa) genome reference data:

$ rtg format -o maize_reference maize_chr*.fa

For FASTQ (.fq) sequence read data:

$ rtg format -f fastq -q sanger -o h1_reads -l h1_sample_left.fq -r h1_sample_
→˓right.fq

Parameters:
File Input/Output
-f --format=FORMAT The format of the input file(s). Allowed values are [fasta, fastq,

fastq-interleaved, sam-se, sam-pe] (Default is fasta).
-I --input-list-file=FILE Specifies a file containing a list of sequence data files (one per

line) to be converted into an SDF.
-l --left=FILE The left input file for FASTA/FASTQ paired end data.
-o --output=SDF The name of the output SDF.
-p --protein Set if the input consists of protein. If this option is not specified,

then the input is assumed to consist of nucleotides.
-q --quality-format=FORMAT The format of the quality data for fastq format files. (Use sanger

for Illumina1.8+). Allowed values are [sanger, solexa, illumina].
-r --right=FILE The right input file for FASTA/FASTQ paired end data.

FILE+ Specifies a sequence data file to be converted into an SDF. May
be specified 0 or more times.

Filtering
--duster Treat lower case residues as unknowns.
--exclude=STRING Exclude individual input sequences based on their name. If the

input sequence name contains the specified string then that
sequence is excluded from the SDF. May be specified 0 or more
times.

--select-read-group=STRING Set to only include only reads with this read group ID when
formatting from SAM/BAM files.

--trim-threshold=INT Set to trim the read ends to maximise the base quality above the
given threshold.

10 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Utility
--allow-duplicate-names Set to disable duplicate name detection.

-h --help Prints help on command-line flag usage.
--no-names Do not include sequence names in the resulting SDF.
--no-quality Do not include sequence quality data in the resulting SDF.
--sam-rg=STRING|FILE Specifies a file containing a single valid read group SAM header

line or a string in the form
@RG\tID:RG1\tSM:G1_SAMP\tPL:ILLUMINA.

Usage:

Formatting takes one or more input data files and creates a single SDF. Specify the type of file to be converted,
or allow default to FASTA format. To aggregate multiple input data files, such as when formatting a reference
genome consisting of multiple chromosomes, list all files on the command line or use the --input-list-file
flag to specify a file containing the list of files to process.

For input FASTA and FASTQ files which are compressed, they must have a filename extension of .gz (for gzip
compressed data) or .bz2 (for bzip2 compressed data).

When formatting human reference genome data, it is recommended that the resulting SDF be augmented with
chromosome reference metadata, in order to enable automatic sex-aware features during mapping and variant
calling. The format command will automatically recognize several common human reference genomes and
install a reference configuration file. If your reference genome is not recognized, a configuration can be manually
adapted from one of the examples provided in the RTG distribution and installed in the SDF directory. The
reference configuration is described in RTG reference file format.

When using FASTQ input files you must specify the quality format being used as one of sanger, solexa or
illumina. As of Illumina pipeline version 1.8 and higher, quality values are encoded in Sanger format and
so should be formatted using --quality-format=sanger. Output from earlier Illumina pipeline versions
should be formatted using --quality-format=illumina for Illumina pipeline versions starting with 1.3
and before 1.8, or --quality-format=solexa for Illumina pipeline versions less than 1.3.

For FASTQ files that represent paired-end read data, indicate each side respectively using the --left=FILE and
--right=FILE flags. Sometimes paired-end reads are represented in a single FASTQ file by interleaving each
side of the read. This type of input can be formatted by specifying fastq-interleaved as the format type.

The mapx command maps translated DNA sequence data against a protein reference. You must use the -p,
--protein flag to format the protein reference used by mapx.

Use the sam-se format for single end SAM/BAM input files and the sam-pe format for paired end SAM/BAM
input files. Note that if the input SAM/BAM files are sorted in coordinate order (for example if they have already
been aligned to a reference), it is recommended that they be shuffled before formatting, so that subsequent mapping
is not biased by processing reads in chromosome order. For example, a BAM file can be shuffled using samtools
collate as follows:

$ samtools collate -uOn 256 reads.bam tmp-prefix >reads_shuffled.bam

And this can be carried out on the fly during formatting using bash process redirection in order to reduce interme-
diate I/O, for example:

$ rtg format --format sam-pe <(samtools collate -uOn 256 reads.bam temp-prefix) ...

The SDF for a read set can contain a SAM read group which will be automatically picked up from the input
SAM/BAM files if they contain only one read group. If the input SAM/BAM files contain multiple read groups
you must select a single read group from the SAM/BAM file to format using the --select-read-group flag
or specify a custom read group with the --sam-rg flag. The --sam-rg flag can also be used to add read group
information to reads given in other input formats. The SAM read group stored in an SDF will be automatically
used during mapping the reads it contains to provide tracking information in the output BAM files.

The --trim-threshold flag can be used to trim poor quality read ends from the input reads by inspecting
base qualities from FASTQ input. If and only if the quality of the final base of the read is less than the threshold
given, a new read length is found which maximizes the overall quality of the retained bases using the following

2.3. Data Formatting Commands 11

RTG Tools Operations Manual, Release 3.8

formula.

argmax𝑥

(︃
𝑙∑︁

𝑖=𝑥+1

(𝑇 − 𝑞(𝑖))

)︃
if 𝑞(𝑙) < 𝑇

Where l is the original read length, x is the new read length, T is the given threshold quality and q(n) is the quality
of the base at the position n of the read.

Note: Sequencing system read files and reference genome files often have the same extension and it may not
always be obvious which file is a read set and which is a genome. Before formatting a sequencing system file,
open it to see which type of file it is. For example:

$ less pf3.fa

In general, a read file typically begins with an @ or + character; a genome reference file typically begins with the
characters chr.

Normally when the input data contains multiple sequences with the same name the format command will fail with
an error. The --allow-duplicate-names flag will disable this check conserving memory, but if the input
data has multiple sequences with the same name you will not be warned. Having duplicate sequence names can
cause problems with other commands, especially for reference data since the output many commands identifies
sequences by their names.

See also:

sdf2fasta, sdf2fastq, sdfstats

2.3.2 sdf2fasta

Synopsis:

Convert SDF data into a FASTA file.

Syntax:

$ rtg sdf2fasta [OPTION]... -i SDF -o FILE

Example:

$ rtg sdf2fasta -i humanSDF -o humanFASTA_return

Parameters:
File Input/Output
-i --input=SDF SDF containing sequences.
-o --output=FILE Output filename (extension added if not present). Use ‘-‘ to write to standard

output.

Filtering
--end-id=INT Only output sequences with sequence id less than the given number.

(Sequence ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
--taxons Interpret any specified sequence as taxon ids instead of numeric sequence ids.

This option only applies to a metagenomic reference species SDF.
STRING+ Specify one or more explicit sequences to extract, as sequence id, or sequence

name if –names flag is set.

12 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Utility
-h --help Prints help on command-line flag usage.

--interleave Interleave paired data into a single output file. Default is to split to
separate output files.

-l --line-length=INT Set the maximum number of nucleotides or amino acids to print on a line
of FASTA output. Should be nonnegative, with a value of 0 indicating that
the line length is not capped. (Default is 0).

-Z --no-gzip Set this flag to create the FASTA output file without compression. By
default the output file is compressed with blocked gzip.

Usage:

Use the sdf2fasta command to convert SDF data into FASTA format. By default, sdf2fasta creates a
separate line of FASTA output for each sequence. These lines will be as long as the sequences themselves. To
make them more readable, use the -l, --line-length flag and define a reasonable record length like 75.

By default all sequences will be extracted, but flags may be specified to extract reads within a range, or explicitly
specified reads (either by numeric sequence id or by sequence name if --names is set). Additionally, when the
input SDF is a metagenomic species reference SDF, the --taxons option, any supplied id is interpreted as a
taxon id and all sequences assigned directly to that taxon id will be output. This provides a convenient way to
extract all sequence data corresponding to a single (or multiple) species from a metagenomic species reference
SDF.

Sequence ids are numbered starting at 0, the --start-id flag is an inclusive lower bound on id and the
--end-id flag is an exclusive upper bound. For example if you have an SDF with five sequences (ids: 0, 1,
2, 3, 4) the following command:

$ rtg sdf2fasta --start-id=3 -i mySDF -o output

will extract sequences with id 3 and 4. The command:

$ rtg sdf2fasta --end-id=3 -i mySDF -o output

will extract sequences with id 0, 1, and 2. And the command:

$ rtg sdf2fasta --start-id=2 --end-id=4 -i mySDF -o output

will extract sequences with id 2 and 3.

See also:

format, sdf2fastq, sdfstats

2.3.3 sdf2fastq

Synopsis:

Convert SDF data into a FASTQ file.

Syntax:

$ rtg sdf2fastq [OPTION]... -i SDF -o FILE

Example:

$ rtg sdf2fastq -i humanSDF -o humanFASTQ_return

Parameters:
File Input/Output
-i --input=SDF Specifies the SDF data to be converted.
-o --output=FILE Specifies the file name used to write the resulting FASTQ output.

2.3. Data Formatting Commands 13

RTG Tools Operations Manual, Release 3.8

Filtering
--end-id=INT Only output sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
STRING+ Specify one or more explicit sequences to extract, as sequence id, or sequence

name if –names flag is set.

Utility
-h --help Prints help on command-line flag usage.
-q --default-qualty=INT Set the default quality to use if the SDF does not contain sequence

quality data (0-63).
--interleave Interleave paired data into a single output file. Default is to split to

separate output files.
-l --line-length=INT Set the maximum number of nucleotides or amino acids to print on a

line of FASTQ output. Should be nonnegative, with a value of 0
indicating that the line length is not capped. (Default is 0).

-Z --no-gzip Set this flag to create the FASTQ output file without compression. By
default the output file is compressed with blocked gzip.

Usage:

Use the sdf2fastq command to convert SDF data into FASTQ format. If no quality data is available in the
SDF, use the -q, --default-quality flag to set a quality score for the FASTQ output. The quality encoding
used during output is sanger quality encoding. By default, sdf2fastq creates a separate line of FASTQ output
for each sequence. As with sdf2fasta, there is an option to use the -l, --line-length flag to restrict the
line lengths to improve readability of long sequences.

By default all sequences will be extracted, but flags may be specified to extract reads within a range, or explicitly
specified reads (either by numeric sequence id or by sequence name if --names is set).

It may be preferable to extract data to unaligned SAM/BAM format using sdf2sam, as this preserves read-group
information stored in the SDF and may also be more convenient when dealing with paired-end data.

The --start-id and --end-id flags behave as in sdf2fasta.

See also:

format, sdf2fasta, sdf2sam, sdfstats

2.3.4 sdf2sam

Synopsis:

Convert SDF read data into unaligned SAM or BAM format file.

Syntax:

$ rtg sdf2sam [OPTION]... -i SDF -o FILE

Example:

$ rtg sdf2sam -i samplereadsSDF -o samplereads.bam

Parameters:
File Input/Output
-i --input=SDF Specifies the SDF data to be converted.
-o --output=FILE Specifies the file name used to write the resulting SAM/BAM to. The output

format is automatically determined based on the filename specified. If ‘-‘ is
given, the data is written as uncompressed SAM to standard output.

14 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Filtering
--end-id=INT Only output sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
STRING+ Specify one or more explicit sequences to extract, as sequence id, or sequence

name if –names flag is set.

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag when creating SAM format output to disable compression. By default

SAM is compressed with blocked gzip, and BAM is always compressed.

Usage:

Use the sdf2sam command to convert SDF data into unaligned SAM/BAM format. By default all sequences
will be extracted, but flags may be specified to extract reads within a range, or explicitly specified reads (either by
numeric sequence id or by sequence name if --names is set). This command is a useful way to export paired-end
data to a single output file while retaining any read group information that may be stored in the SDF.

The output format is either SAM/BAM depending on the specified output file name. e.g. output.sam or
output.sam.gz will output as SAM, whereas output.bam will output as BAM. If neither SAM or BAM
format is indicated by the file name then BAM will be used and the output file name adjusted accordingly. e.g
output will become output.bam. However if standard output is selected (-) then the output will always be
in uncompressed SAM format.

The --start-id and --end-if behave as in sdf2fasta.

See also:

format, sdf2fasta, sdf2fastq, sdfstats, cg2sdf , sdfsplit

2.3.5 fastqtrim

Synopsis:

Trim reads in FASTQ files.

Syntax:

$ rtg fastqtrim [OPTION]... -i FILE -o FILE

Example:

Apply hard base removal from the start of the read and quality-based trimming of terminal bases:

$ rtg fastqtrim -s 12 -E 18 -i S12_R1.fastq.gz -o S12_trimmed_R1.fastq.gz

Parameters:
File Input/Output
-i --input=FILE Input FASTQ file, Use ‘-‘ to read from standard input.
-o --output=FILE Output filename. Use ‘-‘ to write to standard output.
-q --quality-format=FORMAT Quality data encoding method used in FASTQ input files

(Illumina 1.8+ uses sanger). Allowed values are [sanger, solexa,
illumina] (Default is sanger)

2.3. Data Formatting Commands 15

RTG Tools Operations Manual, Release 3.8

Filtering
--discard-empty-reads Discard reads that have zero length after trimming.

Should not be used with paired-end data.
-E --end-quality-threshold=INT Trim read ends to maximise base quality above the

given threshold (Default is 0)
--min-read-length=INT If a read ends up shorter than this threshold it will be

trimmed to zero length (Default is 0)
-S --start-quality-threshold=INT Trim read starts to maximise base quality above the

given threshold (Default is 0)
-e --trim-end-bases=INT Always trim the specified number of bases from read

end (Default is 0)
-s --trim-start-bases=INT Always trim the specified number of bases from read

start (Default is 0)

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.
-r --reverse-complement If set, output in reverse complement.

--seed=INT Seed used during subsampling.
--subsample=FLOAT If set, subsample the input to retain this fraction of reads.

-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Use fastqtrim to apply custom trimming and preprocessing to raw FASTQ files prior to mapping and align-
ment. The format command contains some limited trimming options, which are applied to all input files,
however in some cases different or specific trimming operations need to be applied to the various input files. For
example, for paired-end data, different trimming may need to be applied for the left read files compared to the
right read files. In these cases, fastqtrim should be used to process the FASTQ files first.

The --end-trim-threshold flag can be used to trim poor quality bases from the ends of the input reads by
inspecting base qualities from FASTQ input. If and only if the quality of the final base of the read is less than the
threshold given, a new read length is found which maximizes the overall quality of the retained bases using the
following formula:

argmax𝑥

(︃
𝑙∑︁

𝑖=𝑥+1

(𝑇 − 𝑞(𝑖))

)︃
if 𝑞(𝑙) < 𝑇

where l is the original read length, x is the new read length, T is the given threshold quality and q(n) is the quality
of the base at the position n of the read. Similarly, --start-quality-threshold can be used to apply this
quality-based thresholding to the start of reads.

Some of the trimming options may result in reads that have no bases remaining. By default, these are output
as zero-length FASTQ reads, which RTG commands are able to handle normally. It is also possible to remove
zero-length reads altogether from the output with the --discard-empty-reads option, however this should
not be used when processing FASTQ files corresponding to paired-end data, otherwise the pairs in the two files
will no longer be matched.

Similarly, when using the --subsample option to down-sample a FASTQ file for paired-end data, you should
specify an explicit randomization seed via --seed and use the same seed value for the left and right files.

Formatting with filtering on the fly

Running custom filtering with fastqtrim need not mean that additional disk space is required or that formatting
be slowed down due to additional disk I/O. It is possible when using standard unix shells to perform the filtering
on the fly. The following example demonstrates how to apply different trimming options to left and right files
while formatting to SDF:

$ rtg format -f fastq -o S12_trimmed.sdf \
-l <(rtg fastqtrim -s 12 -E 18 -i S12_R1.fastq.gz -o -)
-r <(rtg fastqtrim -E 18 -i S12_R2.fastq.gz -o -)

16 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

See also:

format

2.4 Simulation Commands

RTG includes some simulation commands that may be useful for experimenting with effects of various RTG
command parameters or when getting familiar with RTG work flows. A simple simulation series might involve
the following commands:

$ rtg genomesim --output sim-ref-sdf --min-length 500000 --max-length 5000000 \
--num-contigs 5

$ rtg popsim --reference sim-ref-sdf --output population.vcf.gz
$ rtg samplesim --input population.vcf.gz --output sample1.vcf.gz \

--output-sdf sample1-sdf --reference sim-ref-sdf --sample sample1
$ rtg readsim --input sample1-sdf --output reads-sdf --machine illumina_pe \

-L 75 -R 75 --coverage 10
$ rtg map --template sim-ref-sdf --input reads-sdf --output sim-mapping \

--sam-rg "@RG\tID:sim-rg\tSM:sample1\tPL:ILLUMINA"
$ rtg snp --template sim-ref-sdf --output sim-name-snp sim-mapping/alignments.bam

2.4.1 genomesim

Synopsis:

Use the genomesim command to simulate a reference genome, or to create a baseline reference genome for a
research project when an actual genome reference sequence is unavailable.

Syntax:

Specify number of sequences, plus minimum and maximum lengths:

$ rtg genomesim [OPTION]... -o SDF --max-length INT --min-length INT -n INT

Specify explicit sequence lengths (one more sequences):

$ rtg genomesim [OPTION]... -o SDF -l INT

Example:

$ rtg genomesim -o genomeTest -l 500000

Parameters:
File Input/Output
-o --output=SDF The name of the output SDF.

2.4. Simulation Commands 17

RTG Tools Operations Manual, Release 3.8

Utility
--comment=STRING Specify a comment to include in the generated SDF.
--freq=STRING Set the relative frequencies of A,C,G,T in the generated sequence.

(Default is 1,1,1,1).
-h --help Prints help on command-line flag usage.
-l --length=INT Specify the length of generated sequence. May be specified 0 or more

times, or as a comma separated list.
--max-length=INT Specify the maximum sequence length.
--min-length=INT Specify the minimum sequence length.

-n --num-contigs=INT Specify the number of sequences to generate.
--prefix=STRING Specify a sequence name prefix to be used for the generated sequences.

The default is to name the output sequences ‘simulatedSequenceN’,
where N is increasing for each sequence.

-s --seed=INT Specify seed for the random number generator.

Usage:

The genomesim command allows one to create a simulated genome with one or more contiguous sequences -
exact lengths of each contig or number of contigs with minimum and maximum lengths provided. The contents
of an SDF directory created by genomesim can be exported to a FASTA file using the sdf2fasta command.

This command is primarily useful for providing a simple randomly generated base genome for use with subsequent
simulation commands.

Each generated contig is named by appending an increasing numeric index to the specified prefix. For example
--prefix=chr --num-contigs=10 would yield contigs named chr1 through chr10.

See also:

cgsim, readsim, popsim, samplesim

2.4.2 cgsim

Synopsis:

Simulate Complete Genomics Inc sequencing reads. Supports the original 35 bp read structure (5-10-10-10), and
the newer 29 bp read structure (10-9-10).

Syntax:

Generation by genomic coverage multiplier:

$ rtg cgsim [OPTION]... -V INT -t SDF -o SDF -c FLOAT

Generation by explicit number of reads:

$ rtg cgsim [OPTION]... -V INT -t SDF -o SDF -n INT

Example:

$ rtg cgsim -V 1 -t HUMAN_reference -o CG_3x_readst -c 3

Parameters:
File Input/Output
-t --input=SDF SDF containing input genome.
-o --output=SDF Name for reads output SDF.

18 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Fragment Generation
--abundance If set, the user-supplied distribution represents desired

abundance.
-N --allow-unknowns Allow reads to be drawn from template fragments

containing unknown nucleotides.
-c --coverage=FLOAT Coverage, must be positive.
-D --distribution=FILE File containing probability distribution for sequence

selection.
--dna-fraction If set, the user-supplied distribution represents desired

DNA fraction.
-M --max-fragment-size=INT Maximum fragment size (Default is 500)
-m --min-fragment-size=INT Minimum fragment size (Default is 350)

--n-rate=FLOAT Rate that the machine will generate new unknowns in the
read (Default is 0.0)

-n --num-reads=INT Number of reads to be generated.
--taxonomy-distribution=FILE File containing probability distribution for sequence

selection expressed by taxonomy id.

Complete Genomics
-V --cg-read-version=INT Select Complete Genomics read structure version, 1 (35 bp) or 2 (29

bp)

Utility
--comment=STRING Comment to include in the generated SDF.

-h --help Print help on command-line flag usage.
--no-names Do not create read names in the output SDF.
--no-qualities Do not create read qualities in the output SDF.

-q --qual-range=STRING Set the range of base quality values permitted e.g.: 3-40 (Default is
fixed qualities corresponding to overall machine base error rate)

--sam-rg=STRING|FILE File containing a single valid read group SAM header line or a string
in the form
@RG\tID:READGROUP1\tSM:BACT_SAMPLE\tPL:ILLUMINA

-s --seed=INT Seed for random number generator.

Usage:

Use the cgsim command to set either --coverage or --num-reads in simulated Complete Genomics reads.
For more information about Complete Genomics reads, refer to http://www.completegenomics.com

RTG simulation tools allows for deterministic experiment repetition. The --seed parameter, for example, allows
for regeneration of exact same reads by setting the random number generator to be repeatable (without supplying
this flag a different set of reads will be generated each time).

The --distribution parameter allows you to specify the probability that a read will come from a particular
named sequence for use with metagenomic databases. Probabilities are numbers between zero and one and must
sum to one in the file.

See also:

genomesim, readsim, popsim, samplesim

2.4.3 denovosim

Synopsis:

Use the denovosim command to generate a VCF containing a derived genotype containing de novo variants.

Syntax:

$ rtg denovosim [OPTION]... -i FILE --original STRING -o FILE -t SDF -s STRING

2.4. Simulation Commands 19

http://www.completegenomics.com

RTG Tools Operations Manual, Release 3.8

Example:

$ rtg denovosim -i sample.vcf --original personA -o 2samples.vcf \
-t HUMAN_reference -s personB

Parameters:
File Input/Output
-i --input=FILE The input VCF containing parent variants.

--original=STRING The name of the existing sample to use as the original genotype.
-o --output=FILE The output VCF file name.

--output-sdf=FILE Set to output an SDF of the genome generated.
-t --reference=SDF The SDF containing the reference genome.
-s --sample=STRING The name for the new derived sample.

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the VCF output file without compression.

--num-mutations=INT Set the expected number of mutations per genome. (Default is 70).
--ploidy=STRING The ploidy to use when the reference genome does not contain a

reference text file. Allowed values are [auto, diploid, haploid] (Default
is auto)

--seed=INT Set the seed for the random number generator.
--show-mutations Set this flag to display information regarding de novo mutation points.

Usage:

The denovosim command is used to simulate a derived genotype containing de novo variants from a VCF
containing an existing genotype. The new output VCF will contain all the existing variants and samples with a
new column for the new sample.

The --output-sdf flag can be used to optionally generate an SDF of the derived genome which can then be
used by the readsim command to simulate a read set for the new genome.

See also:

readsim, genomesim, popsim, samplesim, samplereplay

2.4.4 readsim

Synopsis:

Use the readsim command to generate single or paired end reads of fixed or variable length from a reference
genome, introducing machine errors.

Syntax:

Generation by genomic coverage multiplier:

$ rtg readsim [OPTION]... -t SDF --machine STRING -o SDF -c FLOAT

Generation by explicit number of reads:

$ rtg readsim [OPTION]... -t SDF --machine STRING -o SDF -n INT

Example:

$ rtg readsim -t genome_ref -o sim_reads -r 75 --machine illumina_se -c 30

Parameters:

20 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

File Input/Output
-t --input=SDF SDF containing input genome.

--machine=STRING Select the sequencing technology to model. Allowed values are
[illumina_se, illumina_pe, complete_genomics, complete_genomics_2,
454_pe, 454_se, iontorrent]

-o --output=SDF Name for reads output SDF.

Fragment Generation
--abundance If set, the user-supplied distribution represents desired

abundance.
-N --allow-unknowns Allow reads to be drawn from template fragments

containing unknown nucleotides.
-c --coverage=FLOAT Coverage, must be positive.
-D --distribution=FILE File containing probability distribution for sequence

selection.
--dna-fraction If set, the user-supplied distribution represents desired

DNA fraction.
-M --max-fragment-size=INT Maximum fragment size (Default is 250)
-m --min-fragment-size=INT Minimum fragment size (Default is 200)

--n-rate=FLOAT Rate that the machine will generate new unknowns in the
read (Default is 0.0)

-n --num-reads=INT Number of reads to be generated.
--taxonomy-distribution=FILE File containing probability distribution for sequence

selection expressed by taxonomy id.

Illumina PE
-L --left-read-length=INT Target read length on the left side.
-R --right-read-length=INT Target read length on the right side.

Illumina SE
-r --read-length=INT Target read length, must be positive.

454 SE/PE
--454-max-total-size=INT Maximum 454 read length (in paired end case the sum of the left

and the right read lengths)
--454-min-total-size=INT Minimum 454 read length (in paired end case the sum of the left

and the right read lengths)

IonTorrent SE
--ion-max-total-size=INT Maximum IonTorrent read length.
--ion-min-total-size=INT Minimum IonTorrent read length.

Utility
--comment=STRING Comment to include in the generated SDF.

-h --help Print help on command-line flag usage.
--no-names Do not create read names in the output SDF.
--no-qualities Do not create read qualities in the output SDF.

-q --qual-range=STRING Set the range of base quality values permitted e.g.: 3-40 (Default is
fixed qualities corresponding to overall machine base error rate)

--sam-rg=STRING|FILE File containing a single valid read group SAM header line or a string
in the form
@RG\tID:READGROUP1\tSM:BACT_SAMPLE\tPL:ILLUMINA

-s --seed=INT Seed for random number generator.

Usage:

Create simulated reads from a reference genome by either specifying coverage depth or a total number of reads.

A typical use case involves creating a mutated genome by introducing SNPs or CNVs with popsim and
samplesim generating reads from the mutated genome with readsim, and mapping them back to the orig-
inal reference to verify the parameters used for mapping or variant detection.

2.4. Simulation Commands 21

RTG Tools Operations Manual, Release 3.8

RTG simulation tools allows for deterministic experiment repetition. The --seed parameter, for example, allows
for regeneration of exact same reads by setting the random number generator to be repeatable (without supplying
this flag a different set of reads will be generated each time).

The --distribution parameter allows you to specify the sequence composition of the resulting read set,
primarily for use with metagenomic databases. The distribution file is a text file containing lines of the form:

<probability><space><sequence name>

Probabilities must be between zero and one and must sum to one in the file. For reference databases containing
taxonomy information, where each species may be comprised of more than one sequence, it is instead possible to
use the --taxonomy-distribution option to specify the probabilities at a per-species level. The format of
each line in this case is:

<probability><space><taxon id>

When using --distribution or --taxonomy-distribution, the interpretation must be specified one
of --abundance or --dna-fraction. When using --abundance each specified probability reflects the
chance of selecting the specified sequence (or taxon id) from the set of sequences, and thus for a given abundance
a large sequence will be represented by more reads in the resulting set than a short sequence. In contrast, with
--dna-fraction each specified probability reflects the chance of a read being derived from the designated
sequence, and thus for a given fraction, a large sequence will have a lower depth of coverage than a short sequence.

See also:

cgsim, genomesim, popsim, samplesim

2.4.5 popsim

Synopsis:

Use the popsim command to generate a VCF containing simulated population variants. Each variant allele
generated has an associated frequency INFO field describing how frequent in the population that allele is.

Syntax:

$ rtg popsim [OPTION]... -o FILE -t SDF

Example:

$ rtg popsim -o pop.vcf -t HUMAN_reference

Parameters:
File Input/Output
-o --output=FILE Output VCF file name.
-t --reference=SDF SDF containing the reference genome.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--seed=INT Seed for the random number generator.

Usage:

The popsim command is used to create a VCF containing variants with frequency in population information
that can be subsequently used to simulate individual samples using the samplesim command. The frequency in
population is contained in a VCF INFO field called AF. The types of variants and the allele-frequency distribution
has been drawn from observed variants and allele frequency distribution in human studies.

See also:

readsim, genomesim, samplesim, childsim, samplereplay

22 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

2.4.6 samplesim

Synopsis:

Use the samplesim command to generate a VCF containing a genotype simulated from population variants
according to allele frequency.

Syntax:

$ rtg samplesim [OPTION]... -i FILE -o FILE -t SDF -s STRING

Example:

From a population frequency VCF:

$ rtg samplesim -i pop.vcf -o 1samples.vcf -t HUMAN_reference -s person1 --sex male

From an existing simulated VCF:

$ rtg samplesim -i 1samples.vcf -o 2samples.vcf -t HUMAN_reference -s person2 \
--sex female

Parameters:
File Input/Output
-i --input=FILE Input VCF containing population variants.
-o --output=FILE Output VCF file name.

--output-sdf=SDF If set, output an SDF containing the sample genome.
-t --reference=SDF SDF containing the reference genome.
-s --sample=STRING Name for sample.

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the VCF output file without compression.

--ploidy=STRING The ploidy to use when the reference genome does not contain a reference
text file. Allowed values are [auto, diploid, haploid] (Default is auto)

--seed=INT Set the seed for the random number generator.
--sex=SEX Specifies the sex of the individual. Allowed values are [male, female, either]

(Default is either).

Usage:

The samplesim command is used to simulate an individuals genotype information from a population variant
frequency VCF generated by the popsim command or by previous samplesim or childsim commands. The
new output VCF will contain all the existing variants and samples with a new column for the new sample. The
genotype at each record of the VCF will be chosen randomly according to the allele frequency specified in the AF
field.

The ploidy for each genotype is generated according to the ploidy of that chromosome for the specified sex of the
individual, as defined in the reference genome reference.txt file. For more information see RTG reference
file format.

The --output-sdf flag can be used to optionally generate an SDF of the individuals genotype which can then
be used by the readsim command to simulate a read set for the individual.

See also:

readsim, genomesim, popsim, childsim, samplereplay

2.4.7 childsim

Synopsis:

Use the childsim command to generate a VCF containing a genotype simulated as a child of two parents.

2.4. Simulation Commands 23

RTG Tools Operations Manual, Release 3.8

Syntax:

$ rtg childsim [OPTION]... --father STRING -i FILE --mother STRING -o FILE -t SDF \
-s STRING

Example:

$ rtg childsim --father person1 --mother person2 -i 2samples.vcf -o 3samples.vcf \
-t HUMAN_reference -s person3

Parameters:
File Input/Output

--father=STRING Name of the existing sample to use as the father.
-i --input=FILE Input VCF containing parent variants.

--mother=STRING Name of the existing sample to use as the mother.
-o --output=FILE Output VCF file name.

--output-sdf=SDF If set, output an SDF containing the sample genome.
-t --reference=SDF SDF containing the reference genome.
-s --sample=STRING Name for new child sample.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--num-crossovers=FLOAT Likelihood of extra crossovers per chromosome (Default is 0.01)
--ploidy=STRING Ploidy to use. Allowed values are [auto, diploid, haploid] (Default

is auto)
--seed=INT Seed for the random number generator.
--sex=SEX Sex of individual. Allowed values are [male, female, either]

(Default is either)
--show-crossovers If set, display information regarding haplotype selection and

crossover points.

Usage:

The childsim command is used to simulate an individuals genotype information from a VCF containing the
two parent genotypes generated by previous samplesim or childsim commands. The new output VCF will
contain all the existing variants and samples with a new column for the new sample.

The ploidy for each genotype is generated according to the ploidy of that chromosome for the specified sex of the
individual, as defined in the reference genome reference.txt file. For more information see RTG reference
file format. The generated genotypes are all consistent with Mendelian inheritance (de novo variants can be
simulated with the denovosim command).

The --output-sdf flag can be used to optionally generate an SDF of the child’s genotype which can then be
used by the readsim command to simulate a read set for the child.

See also:

readsim, genomesim, popsim, samplesim, samplereplay

2.4.8 samplereplay

Synopsis:

Use the samplereplay command to generate the genome SDF corresponding to a sample genotype in a VCF
file.

Syntax:

$ rtg samplereplay [OPTION]... -i FILE -o SDF -t SDF -s STRING

Example:

24 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

$ rtg samplereplay -i 3samples.vcf -o child.sdf -t HUMAN_reference -s person3

Parameters:
File Input/Output
-i --input=FILE Input VCF containing the sample genotype.
-o --output=SDF Name for output SDF.
-t --reference=SDF SDF containing the reference genome.
-s --sample=STRING Name of the sample to select from the VCF.

Utility
-h --help Print help on command-line flag usage.

Usage:

The samplereplay command can be used to generate an SDF of a genotype for a given sample from an existing
VCF file. This can be used to generate a genome from the outputs of the samplesim and childsim commands.
The output genome can then be used in simulating a read set for the sample using the readsim command.

Every chromosome for which the individual is diploid will have two sequences in the resulting SDF.

See also:

readsim, genomesim, popsim, samplesim, childsim

2.5 Utility Commands

2.5.1 bgzip

Synopsis:

Block compress a file or decompress a block compressed file. Block compressed outputs from the mapping and
variant detection commands can be indexed with the index command. They can also be processed with standard
gzip tools such as gunzip and zcat.

Syntax:

$ rtg bgzip [OPTION]... FILE+

Example:

$ rtg bgzip alignments.sam

Parameters:
File Input/Output
-l --compression-level=INT The compression level to use, between 1 (least but fast) and 9

(highest but slow) (Default is 5)
-d --decompress Decompress.
-f --force Force overwrite of output file.

--no-terminate If set, do not add the block gzip termination block.
-c --stdout Write on standard output, keep original files unchanged. Implied

when using standard input.
FILE+ File to (de)compress, use ‘-‘ for standard input. Must be specified

1 or more times.

Utility
-h --help Print help on command-line flag usage.

Usage:

2.5. Utility Commands 25

RTG Tools Operations Manual, Release 3.8

Use the bgzip command to block compress files. Files such as VCF, BED, SAM, TSV must be block-compressed
before they can be indexed for fast retrieval of records corresponding to specific genomic regions.

See also:

index

2.5.2 index

Synopsis:

Create tabix index files for block compressed TAB-delimited genome position data files or BAM index files for
BAM files.

Syntax:

Multi-file input specified from command line:

$ rtg index [OPTION]... FILE+

Multi-file input specified in a text file:

$ rtg index [OPTION]... -I FILE

Example:

$ rtg index -f sam alignments.sam.gz

Parameters:
File Input/Output
-f --format=FORMAT Format of input to index. Allowed values are [sam, bam, cram, sv,

coveragetsv, bed, vcf, auto] (Default is auto)
-I --input-list-file=FILE File containing a list of block compressed files (1 per line)

containing genome position data.
FILE+ Block compressed files containing data to be indexed. May be

specified 0 or more times.

Utility
-h --help Print help on command-line flag usage.

Usage:

Use the index command to produce tabix indexes for block compressed genome position data files like SAM
files, VCF files, BED files, and the TSV output from RTG commands such as coverage. The index command
can also be used to produce BAM indexes for BAM files with no index.

See also:

map, coverage, snp, extract, bgzip

2.5.3 extract

Synopsis:

Extract specified parts of an indexed block compressed genome position data file.

Syntax:

Extract whole file:

$ rtg extract [OPTION]... FILE

Extract specific regions:

26 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

$ rtg extract [OPTION]... FILE STRING+

Example:

$ rtg extract alignments.bam 'chr1:10000+10'

Parameters:
File Input/Output

FILE The indexed block compressed genome position data file to extract.

Filtering
STRING+ Specifies the region to display. The format is one of <sequence_name>,

<sequence_name>:start-end or <sequence_name>:start+length. May be specified 0 or more
times.

Reporting
--header Set to also display the file header.
--header-only Set to only display the file header.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use the extract command to view specific parts of indexed block compressed genome position data files such
as those in SAM/BAM/BED/VCF format.

See also:

map, coverage, snp, index, bgzip

2.5.4 aview

Synopsis:

View read mapping and variants corresponding to a region of the genome, with output as ASCII to the terminal,
or HTML.

Syntax:

$ rtg aview [OPTION]... --region STRING -t SDF FILE+

Example:

$ rtg aview -t hg19 -b omni.vcf -c calls.vcf map/alignments.bam \
--region Chr10:100000+3 -padding 30

Parameters:
File Input/Output
-b --baseline=FILE VCF file containing baseline variants.
-B --bed=FILE BED file containing regions to overlay. May be specified 0 or more

times.
-c --calls=FILE VCF file containing called variants. May be specified 0 or more

times.
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)
-r --reads=SDF Read SDF (only needed to indicate correctness of simulated read

mappings). May be specified 0 or more times.
-t --template=SDF SDF containing the reference genome.

FILE+ Alignment SAM/BAM files. May be specified 0 or more times.

2.5. Utility Commands 27

RTG Tools Operations Manual, Release 3.8

Filtering
-p --padding=INT Padding around region of interest (Default is to automatically determine

padding to avoid read truncation)
--region=STRING The region of interest to display. The format is one of <sequence_name>,

<sequence_name>:start-end or <sequence_name>:start+length.
--sample=STRING Specify name of sample to select. May be specified 0 or more times, or as a

comma separated list.

Reporting
--html Output as HTML.
--no-base-colors Do not use base-colors.
--no-color Do not use colors.
--no-dots Display nucleotide instead of dots.
--print-cigars Print alignment cigars.
--print-mapq Print alignment MAPQ values.
--print-mate-position Print mate position.
--print-names Print read names.
--print-readgroup Print read group id for each alignment.
--print-reference-line=INT Print reference line every N lines (Default is 0)
--print-soft-clipped-bases Print soft clipped bases.
--project-track=INT If set, project highlighting for the specified track down through

reads (Default projects the union of tracks)
--sort-readgroup Sort reads first on read group and then on start position.
--sort-reads Sort reads on start position.
--unflatten Display unflattened CGI reads when present.

Utility
-h --help Print help on command-line flag usage.

Usage:

Use the aview command to display a textual view of mappings and variants corresponding to a small region of
the reference genome. This is useful when examining evidence for variant calls in a server environment where
a graphical display application such as IGV is not available. The aview command is easy to script in order to
output displays for multiple regions for later viewing (either as text or HTML).

See also:

map, snp

2.5.5 sdfstats

Synopsis:

Print statistics that describe a directory of SDF formatted data.

Syntax:

$ rtg sdfstats [OPTION]... SDF+

Example:

$ rtg sdfstats human_READS_SDF

Location : C:\human_READS_SDF
Parameters : format -f solexa -o human_READS_SDF

c:\users\Elle\human\SRR005490.fastq.gz
SDF Version : 6
Type : DNA
Source : SOLEXA
Paired arm : UNKNOWN

28 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Number of sequences: 4193903
Maximum length : 48
Minimum length : 48
N : 931268
A : 61100096
C : 41452181
G : 45262380
T : 52561419
Total residues : 201307344
Quality scores available on this SDF

Parameters:
File Input/Output

SDF+ Specifies an SDF on which statistics are to be reported. May be specified 1 or more times.

Reporting
--lengths Set to print out the name and length of each sequence. (Not recommended for read

sets).
-p --position Set to include information about unknown bases (Ns) by read position.
-q --quality Set to display mean of quality.

--sex=SEX Set to display the reference sequence list for the given sex. Allowed values are [male,
female, either]. May be specified 0 or more times, or as a comma separated list.

--taxonomy Set to display information about the taxonomy.
-n --unknowns Set to include information about unknown bases (Ns).

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use the sdfstats command to get information about the contents of SDFs.

See also:

format, sdf2fasta, sdf2fastq, sdfstats

2.5.6 sdfsubset

Synopsis:

Extracts a specified subset of sequences from one SDF and outputs them to another SDF.

Syntax:

Individual specification of sequence ids:

$ rtg sdfsubset [OPTION]... -i SDF -o SDF STRING+

File list specification of sequence ids:

$ rtg sdfsubset [OPTION]... -i SDF -o SDF -I FILE

Example:

$ rtg sdfsubset -i reads -o subset_reads 10 20 30 40 50

Parameters:
File Input/Output
-i --input=SDF Specifies the input SDF.
-o --output=SDF The name of the output SDF.

2.5. Utility Commands 29

RTG Tools Operations Manual, Release 3.8

Filtering
--end-id=INT Only output sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
STRING+ Specifies the sequence id, or sequence name if the names flag is set to extract

from the input SDF. May be specified 0 or more times.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use this command to obtain a subset of sequences from an SDF. Either specify the subset on the command line
as a list of space-separated sequence ids or using the --id-file parameter to specify a file containing a list of
sequence ids, one per line. Sequence ids start from zero and are the same as the ids that map uses by default in the
QNAME field of its BAM files.

For example:

$ rtg sdfsubset -i reads -o subset_reads 10 20 30 40 50

This will produce an SDF called subset_reads with sequences 10, 20, 30, 40 and 50 from the original SDF con-
tained in it.

See also:

sdfsubseq, sdfstats

2.5.7 sdfsubseq

Synopsis:

Prints a subsequence of a given sequence in an SDF.

Syntax:

Print sequences from sequence names:

$ rtg sdfsubseq [OPTION]... -i FILE STRING+

Print sequences from sequence ids:

$ rtg sdfsubseq [OPTION]... -i FILE -I STRING+

Example:

$ rtg sdfsubseq -i reads -I 0:1+100

Parameters:
File Input/Output
-i --input=FILE Specifies the input SDF.

Filtering
-I --sequence-id Set to use sequence id instead of sequence name in region flag (0-based).

STRING+ Specifies the region to display. The format is one of <sequence_name>,
<sequence_name>:start-end or <sequence_name>:start+length. Must be
specified 1 or more times

30 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Utility
-f --fasta Set to output in FASTA format.
-q --fastq Set to output in FASTQ format.
-h --help Prints help on command-line flag usage.
-r --reverse-complement Set to output in reverse complement.

Usage:

Prints out the nucleotides or amino acids of specified regions in a set of sequences.

For example:

$ rtg sdfsubseq --input reads --sequence-id 0:1+20
AGGCGTCTGCAGCCGACGCG

See also:

sdfsubset, sdfstats

2.5.8 mendelian

Synopsis:

The mendelian command checks a multi-sample VCF file for variant calls which do not follow Mendelian
inheritance, and compute aggregate sample concordance.

Syntax:

$ rtg mendelian [OPTION]... -i FILE -t SDF

Example:

$ rtg mendelian -i family.vcf.gz -t genome_ref

Parameters:
File Input/Output
-i --input=FILE VCF file containing multi-sample variant calls or ‘-‘ to read

from standard input.
--output=FILE If set, output annotated calls to this VCF file.
--output-consistent=FILE If set, output only consistent calls to this VCF file.
--output-inconsistent=FILE If set, output only non-Mendelian calls to this VCF file.

-t --template=SDF SDF containing the reference genome.

Sensitivity Tuning
--all-records Use all records, regardless of filters (Default is to only process

records where FILTER is . or PASS)
-l --lenient Allow homozygous diploid calls in place of haploid calls and

assume missing values are equal to the reference.
--min-concordance=FLOAT Percentage concordance required for consistent parentage

(Default is 99.0)
--pedigree=FILE Genome relationships PED file (Default is to extract pedigree

information from VCF header fields)

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-index Do not produce indexes for output files.

Usage:

Given a multi-sample VCF file for a nuclear family with a defined pedigree, the mendelian com-
mand examines the variant calls and outputs the number of violations of Mendelian inheritance. If the

2.5. Utility Commands 31

RTG Tools Operations Manual, Release 3.8

--output-inconsistent parameter is set, all detected violations are written into an output VCF file. As
such, this command may be regarded as a VCF filter, outputting those variant calls needing a non-Mendelian
explanation. Such calls may be the consequence of sequencing error, calling on low-coverage, or genuine novel
variants in one or more individuals.

Pedigree information regarding the relationships between samples and the sex of each sample is extracted from
the VCF headers automatically created by the RTG pedigree-aware variant calling commands. If this pedigree
information is absent from the VCF header or is incorrect, a pedigree file can be explicitly supplied with the
--pedigree flag.

To ensure correct behavior when dealing with sex chromosomes it is necessary to specify a sex-aware reference
and ensure the sex of each sample is supplied as part of the pedigree information. While it is best to give the
reference SDF used in the creation of the VCF, for checking third-party outputs any reference SDF containing the
same chromosome names and an appropriate reference.txt file will work. For more information, see RTG
reference file format.

Particularly when evaluating VCF files that have been produced by third party tools or when the VCF is the result
of combining independent per-sample calling, you can end up with situations where calls are not available for every
member of the family. Under normal circumstances these will be reported as an allele count constraint violation. It
is possible to treat missing values as equal to the reference by using the --lenient parameter. Note that while
this approach will be correct in most cases, it will give inaccurate results where the calling between different
samples has reported the variant in an equivalent but slightly different position or representation (e.g. positioning
of indels within homopolymer regions, differences of representation such as splitting MNPs into multiple SNPs
etc).

The mendelian command computes overall concordance between related samples to assist detecting cases
where pedigree has been incorrectly recorded or samples have been mislabelled. For each child in the pedigree,
pairwise concordance is computed with respect to each parent by identifying diploid calls where the parent does
not contain either allele called in the child. Low pairwise concordance with a single parent may indicate that the
parent is the source of the problem, whereas low pairwise concordance with both parents may indicate that the
child is the source of the problem. A stricter three-way concordance is also recorded.

By default, only VCF records with the FILTER field set to PASS or missing are processed. All variant records can
be examined by specifying the --all-records parameter.

See also:

family, population, vcfstats

2.5.9 vcfstats

Synopsis:

Display simple statistics about the contents of a set of VCF files.

Syntax:

$ rtg vcfstats [OPTION]... FILE+

Example:

$ rtg vcfstats /data/human/wgs/NA19240/snp_chr5.vcf.gz

Location : /data/human/wgs/NA19240/snp_chr5.vcf.gz
Passed Filters : 283144
Failed Filters : 83568
SNPs : 241595
MNPs : 5654
Insertions : 15424
Deletions : 14667
Indels : 1477
Unchanged : 4327
SNP Transitions/Transversions : 1.93 (210572/108835)

32 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Total Het/Hom ratio : 2.13 (189645/89172)
SNP Het/Hom ratio : 2.12 (164111/77484)
MNP Het/Hom ratio : 3.72 (4457/1197)
Insertion Het/Hom ratio : 1.69 (9695/5729)
Deletion Het/Hom ratio : 2.33 (10263/4404)
Indel Het/Hom ratio : 3.13 (1119/358)
Insertion/Deletion ratio : 1.05 (15424/14667)
Indel/SNP+MNP ratio : 0.13 (31568/247249)

Parameters:
File Input/Output

--known Set to only calculate statistics for known variants.
--novel Set to only calculate statistics for novel variants.
--sample=FILE Set to only calculate statistics for the specified sample. (Default is to include all

samples). May be specified 0 or more times.
FILE+ VCF file from which to derive statistics. Use ‘-‘ to read from standard input. Must

be specified 1 or more times.

Reporting
--allele-lengths Set to output variant length histogram.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use the vcfstats command to display summary statistics for a set of VCF files. If a VCF file contains multiple
sample columns, the statistics for each sample are shown individually.

See also:

snp, family, somatic, vcffilter, vcfmerge, vcfsubset

2.5.10 vcfmerge

Synopsis:

Combines the contents of two or more VCF files. The vcfmerge command can concatenate the outputs of
per-chromosome variant detection runs to create a complete genome VCF file, and also merge VCF outputs from
multiple samples to form a multi-sample VCF file.

Syntax:

$ rtg vcfmerge [OPTION]... -o FILE FILE+

Example:

$ rtg vcfmerge -o merged.vcf.gz snp1.vcf.gz snp2.vcf.gz

Parameters:
File Input/Output
-a --add-header=STRING Add the supplied text to the output VCF header. May be specified 0 or

more times.
-o --output=FILE Output VCF file. Use ‘-‘ to write to standard output.

FILE+ Input VCF files to merge. Must be specified 1 or more times.

2.5. Utility Commands 33

RTG Tools Operations Manual, Release 3.8

Utility
-f --force-merge=STRING Allow merging of specified header ID even when descriptions do not

match. May be specified 0 or more times.
-F --force-merge-all Attempt merging of all non-matching header declarations.
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-index Do not produce indexes for output files.
--preserve-formats If set, variants with different ALTs and unmergeable FORMAT fields

will be kept unmerged (Default is to remove those FORMAT fields so
the variants can be combined)

--stats Output statistics for the merged VCF file.

Usage:

The vcfmerge command takes a list of VCF files and outputs to a single VCF file. The input files must have
consistent header lines, although similar header lines can be forced to merge using the --force-merge param-
eter. Each VCF file must be block compressed and have a corresponding tabix index file, which is the default
for outputs from RTG variant detection tools, but may also be created from an existing VCF file using the RTG
bgzip and index commands.

There are two primary usage scenarios for the vcfmerge command. The first is to combine input VCFs cor-
responding to different genomic regions (for example, if variant calling was carried out for each chromosome
independently on different nodes of a compute cluster). The second scenario is when combining VCFs containing
variant calls for different samples (e.g. combining calls made for separate cohorts into a single VCF). If the input
VCFs contain multiple calls at the same position for the same sample, a warning is issued and only the first is kept.

When multiple records occur at the same position and the length on the reference is the same, the records will be
merged into a single record. If the merge results in a change in the set of ALT alleles, any VCF FORMAT fields
declared to be of type A, G, or R will be set to the missing value (.), as they cannot be meaningfully updated.
The --preserve-formats flag prevents this loss of information by refusing to merge the records (separate
records will be output).

See also:

snp, family, population, somatic, vcffilter, vcfsubset, bgzip, index

2.5.11 vcffilter

Synopsis:

Filters VCF records based on various criteria. When filtering on multiple samples, if any of the specified samples
fail the criteria, the record will be filtered.

Syntax:

$ rtg vcffilter [OPTION]... -i FILE -o FILE

Example:

$ rtg vcffilter -i snps.vcf.gz -o snps_cov5.vcf.gz -d 5

Parameters:

34 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

File Input/Output
--all-samples Apply sample-specific criteria to all samples contained in the input VCF.
--bed-regions=FILE If set, only read VCF records that overlap the ranges contained in the

specified BED file.
-i --input=FILE VCF file containing variants to be filtered. Use ‘-‘ to read from standard

input.
-o --output=FILE Output VCF file. Use ‘-‘ to write to standard output. This option is

required, unless --javascript is being used.
--region=STRING If set, only read VCF records within the specified range. The format is

one of <sequence_name>, <sequence_name>:start-end or
<sequence_name>:start+length.

--sample=STRING Apply sample-specific criteria to the named sample contained in the
input VCF. May be specified 0 or more times.

Filtering (Record based)
-w --density-window=INT Set a window length in which multiple called variants

are discarded.
--exclude-bed=FILE Set to discard all variants within the regions contained

in the BED file.
--exclude-vcf=FILE Set to discard all variants that overlap with the ones in

this VCF file.
--include-bed=FILE Set to only keep variants within the regions contained in

the BED file.
--include-vcf=FILE Set to only keep variants that overlap with the ones in

this VCF file.
-j --javascript=STRING Specify filtering functions in javascript. May be either

an expression or a file name. May be specified 0 or
more times. See Examples

-e --keep-expr=STRING Set to only keep variants for which this expression
evaluates to true. See Examples

-k --keep-filter=STRING Set to only keep variants with this FILTER tag. May be
specified 0 or more times, or as a comma separated list.

-K --keep-info=STRING Set to only keep variants with this INFO tag. May be
specified 0 or more times, or as a comma separated list.

-C --max-combined-read-depth=INT Set the maximum allowed combined read depth.
-Q --max-quality=FLOAT Set the maximum allowed quality.
-c --min-combined-read-depth=INT Set the minimum allowed combined read depth.
-q --min-quality=FLOAT Set the minimum allowed quality.

--non-snps-only Set to output MNPs and INDELs only.
-r --remove-filter=STRING Set to remove variants with this FILTER tag. May be

specified 0 or more times, or as a comma separated list.
-R --remove-info=STRING Set to remove variants with this INFO tag. May be

specified 0 or more times, or as a comma separated list.
--remove-overlapping Set to remove records that overlap with previous

records.
--snps-only Set to output simple SNPs only.

2.5. Utility Commands 35

RTG Tools Operations Manual, Release 3.8

Filtering (Sample based)
-A --max-ambiguity-ratio=FLOAT Set the maximum allowed ambiguity ratio.

--max-avr-score=FLOAT Set the maximum allowed AVR score.
--max-denovo-score=FLOAT Set the maximum allowed de novo score.

-G --max-genotype-quality=FLOAT Set the maximum allowed genotype quality.
-D --max-read-depth=INT Set the maximum allowed sample read depth.

--min-avr-score=FLOAT Set the minimum allowed AVR score.
--min-denovo-score=FLOAT Set the minimum allowed de novo score.

-g --min-genotype-quality=FLOAT Set the minimum allowed genotype quality.
-d --min-read-depth=INT Set the minimum allowed sample read depth.

--remove-all-same-as-ref Set to remove records where all the samples are same as
the reference.

--remove-hom Remove where sample is homozygous.
--remove-same-as-ref Set to remove variants where the sample is the same as

reference.

Reporting
--clear-failed-samples Instead of removing failed records set the sample GT fields to missing.
--fail=STRING Instead of removing failed records set their filter field to the provided

value.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.
--no-index Do not produce indexes for output files.

Usage:

Use vcffilter to get a subset of the results from variant calling based on the filtering criteria supplied by the
filter flags. When filtering on multiple samples, if any of the specified samples fail the criteria, the record will be
filtered. The default behavior is for filtered records to be excluded from output altogether, but alternatively the
records can be retained but with an additional user-specified VCF FILTER status set via --fail option, or if
sample-specific filtering criteria is being applied, only those samples can be filtered by setting their GT field to
missing by using the --clear-failed-samples option.

The --bed-regions option makes use of tabix indexes to avoid loading VCF records outside the supplied
regions, which can give faster filtering performance. If the input VCF is not indexed or being read from standard
input, or if records failing filters are to be annotated via the --fail option, use the --include-bed option
instead.

The flags --min-denovo-score and --max-denovo-score can only be used on a single sample. Records
will only be kept if the specified sample is flagged as a de novo variant and the score is within the range specified
by the flags. It will also only be kept if none of the other samples for the record are also flagged as a de novo
variant within the specified score range.

A powerful general-purpose filtering capability has been included that permits the specification of filter crite-
ria as simple JavaScript expressions (--keep-expr) or more comprehensive JavaScript processing functions
(--javascript). Both --keep-expr and --javascript can take JavaScript on the command line or
if a filename is supplied then the script/expression will be read from that file. --keep-expr will be applied
before --javascript, so the --javascript record function will not be called for records filtered out by
--keep-expr.

See also:

For full details of functions available in --keep-expr and --javascript see RTG JavaScript filtering API

Simple filtering by JavaScript expression with --keep-expr

The --keep-expr flag aims to provide a convenient way to apply some simple (typically one line) filtering
expressions which are evaluated in the context of each record. The final expression of the fragment must evaluate

36 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

to a boolean value. Records which evaluate to true will be retained, while false will be removed. The value
must be of type boolean, simply being truthy/falsy (in the JavaScript sense) will raise an error.

--keep-expr examples:

The following expression keeps records where the NA12878 sample has GQ > 30 and the total depth is > 20.
JavaScript will auto convert numerical strings when comparing a string with a number, so calls to parseInt can
be omitted.

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "'NA12878'.GQ > 30 && INFO.DP > 20"

If the field of interest may contain the missing value (‘.’) or may be entirely missing on a per-record basis, the
has() function can be used to control whether such records are kept vs filtered. For example, to keep records
with depth greater than 20, and remove any without a DP annotation:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "has(INFO.DP) && INFO.DP > 20"

Alternatively, to keep records with depth greater than 20, as well as those without a DP annotation:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "!has(INFO.DP) || INFO.DP > 20"

The next example keeps records where all samples have a depth > 10. The standard JavaScript array methods
every and some can be used to apply a condition on every sample column.

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "SAMPLES.every(function(s) {return s.DP > 10})"

Advanced JavaScript filtering with --javascript

The --javascript option aims to support more complicated processing than --keep-expr. permitting
modification of the output VCF, or supporting use cases where the script is tasked to compute and output alternative
information in addition to (or instead of) the output VCF. The scripts specified by the user are evaluated once at
the start of processing. Two special functions may be defined in a --javascript script, which will then be
executed in different contexts:

• A function with the name record will be executed once for each VCF record. If the record function has
a return value it must have type boolean. Records which evaluate to true will be retained, while false
will be removed. If the record function has no return value then the record will be retained. The record
function is applied after any --keep-expr expression.

• A function with the name end will be called once at the end of processing. This allows reporting of
summary statistics collected during the filter process.

This --javascript flag may be specified multiple times, they will be evaluated in order, in a shared JavaScript
namespace, before VCF processing commences. This permits a use case where an initial JavaScript expression
supplies parameter values which will be required by a subsequent JavaScript file.

Example --javascript scripts:

To find indels with length greater than 5, save the following to a file named find-indels.js:

// Finds indels with length > 5
function record() {
var deltas = ALT.map(function (alt) {
return Math.abs(alt.length - REF.length);

2.5. Utility Commands 37

RTG Tools Operations Manual, Release 3.8

});
return deltas.some(function (delta) {return delta > 5});

}

Then perform the filtering via:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz --javascript find-indels.js

The following example derives a new FORMAT column containing variant allelic fraction based on the values in
the AD and DP FORMAT annotations, for every sample contained in the VCF. Save the following to a file named
add-vaf.js:

// Derive new VAF FORMAT field for each sample
ensureFormatHeader('##FORMAT=<ID=VAF,Number=1,Type=Float,' +

'Description="Variant Allelic Fraction">');

function record() {
SAMPLES.forEach(function(sample) {
// Take all but the first AD value as numerics
var altDepths = sample.AD.split(",").slice(1);
// Find the max
var maxAltDepth = Math.max.apply(null, altDepths);
if (maxAltDepth > 0) {

sample.VAF = sample.DP / maxAltDepth;
}

});
}

Then run the filtering via:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz --javascript add-vaf.js

The next example produces a table of binned indel lengths, save the following to a file named indel-lengths.
js:

// bin breakpoints can be customised by defining your own bins[] in a
// previous -j flag
if (typeof bins == "undefined") {
var bins = [-10, -5, -3, 0, 4, 6, 11];

}

var counts = [0];
bins.forEach(function () {counts.push(0)});
function record() {
if (ALT.length == 0) {
return false;

}
var deltas = ALT.map(function (alt) { return alt.length - REF.length; });
var maxDel = Math.min.apply(null, deltas);
var maxIns = Math.max.apply(null, deltas);
var delta = Math.abs(maxDel) > maxIns ? maxDel : maxIns;

if (delta == 0) {
return false;

}
for (var i = 0; i < bins.length; i++) {
if (delta < bins[i]) {

counts[i]++;
break;

}
}
if (delta > bins[bins.length - 1]) {

38 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

counts[counts.length - 1]++;
}
return false;

}

function end() {
print("Delta\\tCount");
for (var i = 0; i < bins.length; i++) {
print("<" + bins[i] + "\\t" + counts[i]);

}
print(">" + bins[bins.length - 1] + "\\t" + counts[counts.length - 1]);

}

Then run the filtering via:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz --javascript indel-lengths.js

We could use this same script with adjusted bins and omitting the output of the VCF via:

$ rtg vcffilter -i in.vcf.gz -j "var bins = [-20, -10, 0, 20, 20];" \
-j indel-lengths.js

See also:

snp, family, somatic, population, vcfannotate, vcfsubset

2.5.12 vcfannotate

Synopsis:

Used to add annotations to a VCF file, either to the VCF ID field, or as a VCF INFO sub-field.

Syntax:

$ rtg vcfannotate [OPTION]... -b FILE -i FILE -o FILE

Example:

$ rtg vcfannotate -b dbsnp.bed -i snps.vcf.gz -o snps-dbsnp.vcf.gz

Parameters:
File Input/Output
-i --input=FILE VCF file containing variants to annotate. Use ‘-‘ to read from standard input.
-o --output=FILE Output VCF file name. Use ‘-‘ to write to standard output.

2.5. Utility Commands 39

RTG Tools Operations Manual, Release 3.8

Reporting
--bed-ids=FILE Specifies a file in BED format containing variant ids in the name

column to be added to the VCF id field. May be specified 0 or
more times.

--bed-info=FILE Specifies a file in BED format containing annotations in the name
column to be added to the VCF info field. May be specified 0 or
more times.

--fill-an-ac Set to add or update the AN and AC info fields to the VCF.
--info-description=STRING If the BED INFO field is not already declared, use this description

in the header. (Default is ‘Annotation’).
--info-id=STRING The INFO ID for BED INFO annotations. (Default is ‘ANN’)
--relabel Relabel samples according to old-name new-name pairs in

specified file. If only a single sample needs to be relabelled then a
construct like <(echo old-name new-name) can be used.

--vcf-ids=FILE Specifies a file in VCF format containing variant ids to be added
to the VCF id field. May be specified 0 or more times.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.
--no-index Do not produce indexes for output files.

Usage:

Use vcfannotate to add text annotations to variants that fall within ranges specified in a BED or VCF file. The
annotations from the BED file are added as an INFO field in the output VCF file.

If the --bed-ids flag is used, instead of adding the annotation to the INFO fields, it is added to the ID column
of the VCF file instead. If the --vcf-ids flag is used, the ID column of the input VCF file is used to update the
ID column of the output VCF file instead.

If the --fill-an-ac flag is set, the output VCF will have the AN and AC info fields (as defined in the VCF 4.1
specification) created or updated.

See also:

snp, family, somatic, population, vcffilter, vcfsubset

2.5.13 vcfsubset

Synopsis:

Create a VCF file containing a subset of the original columns.

Syntax:

$ rtg vcfsubset [OPTION]... -i FILE -o FILE

Example:

$ rtg vcfsubset -i snps.vcf.gz -o frequency.vcf.gz --keep-info AF --remove-samples

Parameters:
File Input/Output
-i --input=FILE VCF file containing variants to manipulate. Use ‘-‘ to read from standard input.
-o --output=FILE Output VCF file. Use ‘-‘ to write to standard output.

40 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Filtering
--keep-filter=STRING Keep the specified FILTER tag. May be specified 0 or more times, or

as a comma separated list.
--keep-format=STRING Keep the specified FORMAT field. May be specified 0 or more times,

or as a comma separated list.
--keep-info=STRING Keep the specified INFO tag. May be specified 0 or more times, or as

a comma separated list.
--keep-sample=STRING Keep the specified sample. May be specified 0 or more times, or as a

comma separated list.
--remove-filter=STRING Remove the specified FILTER tag. May be specified 0 or more times,

or as a comma separated list.
--remove-filters Remove all FILTER tags.
--remove-format=STRING Remove the specified FORMAT field. May be specified 0 or more

times, or as a comma separated list.
--remove-ids Remove the contents of the ID field.
--remove-info=STRING Remove the specified INFO tag. May be specified 0 or more times, or

as a comma separated list.
--remove-infos Remove all INFO tags.
--remove-qual Remove the QUAL field.
--remove-sample=STRING Remove the specified sample. May be specified 0 or more times, or as

a comma separated list.
--remove-samples Remove all samples.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.
--no-index Do not produce indexes for output files.

Usage:

Use the vcfsubset command to produce a smaller copy of an original VCF file containing only the columns
and information desired. For example, to produce a VCF containing only the information for one sample from
a multiple sample VCF file use the --keep-sample flag to specify the sample to keep. The various --keep
and --remove options can either be specified multiple times or with comma separated lists, for example,
--keep-format GT --keep-format DP is equivalent to -keep-format GT,DP.

See also:

snp, family, somatic, population, vcffilter, vcfannotate

2.5.14 vcfeval

Synopsis:

Use the vcfeval command to evaluate called variants for agreement with a known baseline variant set.

Syntax:

$ rtg vcfeval [OPTION]... -b FILE -c FILE -o DIR -t SDF

Example:

$ rtg vcfeval -b goldstandard.vcf.gz -c snps.vcf.gz -t HUMAN_reference \
--sample daughter -f AVR -o eval

Parameters:

2.5. Utility Commands 41

RTG Tools Operations Manual, Release 3.8

File Input/Output
-b --baseline=FILE The VCF file containing baseline variants. For example, these

may be the variants that were used to generate a synthetic
sample, a gold-standard VCF corresponding to a reference
sample such as NA12878, or simply an alternative call-set
being used as a basis for comparison.

--bed-regions=FILE If set, only read VCF records that overlap the ranges
contained in the specified BED file.

--evaluation-regions=FILE If set, evaluate within regions contained in the supplied BED
file, allowing transborder matches. To be used for truth-set
high-confidence regions or other regions of interest where
region boundary effects should be minimized.

-c --calls=FILE The VCF file containing called variants.
-o --output=DIR The name of the output directory.

--region=STRING If set, only read VCF records that overlap the specified
region. The format is one of <template_name>,
<template_name>:start-end or <template_name>:start+length

-t --template=SDF The reference SDF on which the variants were called.

Filtering
--all-records Set to use all records regardless of filters. Default is to only process records

where FILTER is . or PASS.
--ref-overlap Allow alleles to overlap where bases of either allele are same-as-ref. (Default is

to only allow VCF anchor base overlap).
--sample=STRING Set the name of the sample to select. Use the form

<baseline_sample>,<calls_sample> to select different sample names for baseline
and calls. (Required when using multi-sample VCF files).

--squash-ploidy Treat heterozygous variants as homozygous ALT in both baseline and calls.

Reporting
--output-mode Output reporting mode (Must be one of [split, annotate,

combine, ga4gh, roc-only]). (Default is split).
-O --sort-order=STRING Set the order in which to sort the ROC scores so that “good”

scores come before “bad” scores. (Must be one of [ascending,
descending]). (Default is descending).

-f --vcf-score-field=STRING Set the VCF format field to sort the ROC using. Also valid are
“QUAL” or “INFO.<name>” to select the named VCF INFO
field. (Default is GQ).

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the output files without compression.
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default is all

available cores).

Usage:

The vcfeval command can be used to generate VCF files containing called variants that were in the baseline
VCF, called variants that were not in the baseline VCF and baseline variants that were not in the called variants.
It also produces ROC curve data files based on a score contained in a VCF field which show the predictive power
of that field for the quality of the variant calls.

When developing and validating sequencing pipelines and variant calling algorithms, the comparison of variant
call sets is a common problem. The naïve way of computing these numbers is to look at the same reference
locations in the baseline (ground truth) and called variant set, and see if genotype calls match at the same posi-
tion. However, a complication arises due to possible differences in representation for indels between the baseline
and the call sets within repeats or homopolymers, and in multiple-nucleotide polymorphisms (MNPs), which en-
compass several nearby nucleotides and are locally phased. The vcfeval command includes a novel dynamic-
programming algorithm for comparing variant call sets that deals with complex call representation discrepancies,
and minimizes false positives and negatives across the entire call sets for accurate performance evaluation. A

42 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

primary advantage of vcfeval (compared to other tools) is that the evaluation does not depend on normalization
or decomposition, and so the results of analysis can easily be used to relate to the original variant calls and their
annotations.

Note that vcfeval operates at the level of local haplotypes for a sample, so for a diploid genotype, both alleles
must match in order to be considered correct. Some of the vcfeval output modes (described below) automatically
perform an additional haploid analysis phase to identify variants which may not have a diploid match but which
share a common allele (for example, zygosity errors made during calling). If desired, this more lenient haploid
comparison can be used at the outset by setting the --squash-ploidy flag (see below).

Note that variants selected for inclusion in a haplotype cannot be permitted to overlap each other (otherwise
the question arises of which variant should have priority when determining the resulting haplotype), and any
well-formed call-set should not contain these situations in order to avoid such ambiguity. When such cases are
encountered by vcfeval, the best non-overlapping result is determined. A special case of overlapping variants
is where calls are denoted as partially the same as the reference (for example, a typical heterozygous call). Strictly
speaking such variants are an assertion that the relevant haplotype bases must not be altered from the reference
and overlap should not be permitted (this is the interpretation that vcfeval employs by default). However,
sometimes as a result of using non-haplotype-aware variant calling tools or when using naïve merging of multiple
call sets, a more lenient comparison is desired. The --ref-overlap flag will permit such overlapping variants
to both match, as long as any overlap only occurs where one variant or other has asserted haplotype bases as being
the same as reference.

Common allele matching with --squash-ploidy

When --squash-ploidy is specified, a haploid match is attempted using each of the non-reference alleles
used in the sample genotype. For example if the baseline and call VCFs each had a record with the same REF and
ALT alleles declared, the following GT fields would be considered a match:

0/1, 1/1, 1/2 (genotypes match due to the 1 allele)
0/2, 1/2, 2/2 (genotypes match due to the 2 allele)

Thus --squash-ploidy matches any case where the baseline and calls share a common allele. This is most
often used to run matching that does not penalize for genotyping errors.

Comparing with a VCF that has no sample column

A common scenario is to match a call set against a baseline which contains no sample column, where the objective
is to identify which baseline alleles which have been called. One example of this is to identify whether calls match
a database of known high-priority somatic variants such as COSMIC, or to find calls which have been previously
seen in a population allele database such as ExAC. Ordinarily vcfeval requires the input VCFs to contain a
sample column containing a genotype in the GT field, however, it is possible to specify a special sample name of
‘ALT’ in order to indicate that the the genotypes for comparison should be derived from the ALT alleles of the
record. This can be specified independently for baseline and calls, for example:

$ rtg vcfeval -t build37.sdf -b cosmic.vcf.gz -c tumor-calls.vcf.gz \
--squash-ploidy --sample ALT,tumor -o tumor-vs-cosmic

Which would perform a haploid matching of the GT of the called sample ‘tumor’ against all possible haploid
genotypes in the COSMIC VCF. The resulting true positives file contains all the calls containing an allele present
in the COSMIC VCF.

Note: It is also possible to run a diploid comparison by omitting --squash-ploidy, but this is not usually
required, and is computationally more intensive since there may be many more possible diploid genotypes to
explore, particularly if the ALT VCF contains many multiallelic records.)

2.5. Utility Commands 43

RTG Tools Operations Manual, Release 3.8

Evaluation with respect to regions

When evaluating exome variant calls, it may be useful to restrict analysis only to exome target regions. In this
case, supply a BED file containing the list of regions to restrict analysis to via the --bed-regions flag. For
a quick way to restrict analysis only to a single region, the --region flag is also accepted. Note that when
restricting analysis to regions, there may be variants which can not be correctly evaluated near the borders of each
analysis region, if determination of equivalence would require inclusion of variants outside of the region. For this
reason, it is recommended that such regions be relatively inclusive.

When matching against gold standard truth sets which have an accompanying high-confidence regions BED file,
the flag --evaluation-regions should be used instead of --bed-regions, as it has special matching
semantics that aims to reduce comparison region boundary effects. When this comparison method is used, call
variants which match a baseline variant are only considered a true positive if the baseline variant is inside the
high confidence regions, and call variants are only considered false positive if they fall inside the high confidence
regions.

vcfeval outputs

The primary outputs of vcfeval are VCF files indicating which variants matched between the baseline and the
calls VCF, and data files containing information used to generate ROC curves with the rocplot command (or via
spreadsheet). vcfeval supports different VCF output modes which can be selected with the --output-mode
flag according to the type of analysis workflow desired. The following modes are available:

Split (--output-mode=split)

This output mode is the default, and produces separate VCF files for each of the match categories. The individual
VCF records in these files are not altered in any way, preserving all annotations present in the input files.

• tp.vcf – contains those variants from the calls VCF which agree with variants in the baseline VCF

• tp-baseline.vcf – contains those variants from the baseline VCF which agree with variants in the
calls VCF. Thus, the variants in tp.vcf and tp-baseline.vcf are equivalent. This file can be used to
successively refine a highly sensitive baseline variant set to produce a consensus from several call sets.

• fp.vcf – contains variants from the calls VCF which do not agree with baseline variants.

• fn.vcf – contains variants from the baseline VCF which were not correctly called.

This mode performs a single pass comparison, either in diploid mode (the default), or haploid mode (if
--squash-ploidy has been set). The separate output files produced by this mode allow the use of vcfeval
as an advanced haplotype-aware VCF intersection tool.

Annotate (--output-mode=annotate)

This output mode does not split the input VCFs by match status, but instead adds INFO annotations containing
the match status of each record:

• calls.vcf – contains variants from the calls VCF, augmented with match status annotations.

• baseline.vcf – contains variants from the baseline VCF, augmented with match status annotations.

This output mode automatically performs two comparison passes, the first finds diploid matches (assigned a match
status of TP), and a second pass that applies a haploid mode to the false positives and false negatives in order to
find calls (such as zygosity errors) that contain a common allele. This second category of match are annotated with
status FN_CA or FP_CA in the output VCFs, and those calls which do not have any match are assigned status FN
or FP. A status value of IGN indicates a VCF record which was ignored (for example, due to having a non-PASS
filter status, representing a structural variant, or otherwise containing a non-variant genotype). A status of OUT
indicates a VCF record which does not contain a match status due to falling outside the evaluation regions when
--evaluation-regions is being used.

44 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

Combine (–output-mode=combine)

This output mode provides an easy way to view the baseline and call variants in a single two-sample VCF.

• output.vcf – contains variants from both the baseline and calls VCFs, augmented with match status
annotations. The sample under comparison from each of the input VCFs is extracted as a column in the
output. As the VCF records from the baseline and calls typically have very different input annotations
which can be difficult to merge, and to keep the output format simple, there is no attempt to preserve any of
the original variant annotations.

As with the annotation output mode, this output mode automatically performs two comparison passes to find both
diploid matches and haploid (lenient) matches.

ROC-only (–output-mode=roc-only)

This output mode provides a lightweight way to run performance benchmarking, as VCF file output is omitted,
and only ROC data files are produced.

All of the output modes produce the following ROC data files:

• weighted_roc.tsv – contains ROC data derived from all analyzed call variants, regardless of their
representation. Columns include the score field, and standard accuracy metrics such as true positives, false
positives, false negatives, precision, sensitivity, and f-measure corresponding to each score threshold.

• snp_roc.tsv – contains ROC data derived from only those call variants which were represented as SNPs.
This file includes a subset of accuracy metrics, as the computation of some metrics is not meaningful on a
subset of the data where representation may differ between the baseline and the call.

• non_snp_roc.tsv – contains ROC data derived from only those call variants which were not repre-
sented as SNPs. As above, not all metrics are computed for this file.

A common desire is to perform analysis separately for SNPs vs indels. However, it is important to note that due the
representation ambiguity problem, it is not always trivial to decide in a global sense whether a variant is a SNP or
an indel or other complex variant. A group of variants that may be represented as single SNPs in one call-set may
be represented as a single complex variant in another call-set. In the snp_roc.tsv and non_snp_roc.tsv
files above, the representation used by the called variants is used to classify the variant type, as it is the called
variants which contain the scores which are used to determine the ranking for ROC curves. Thus the type-specific
ROC data files should not be considered portable from one caller to another.

Note: In addition, vcfeval has an output mode (--output-mode=ga4gh) which produces the intermediate
evaluation format defined by the GA4GH Benchmarking Team, without additional statistics files. This mode is not
generally intended for end users, rather it is used when vcfeval is selected as the comparison engine inside the
hap.py benchmarking tool see: https://github.com/ga4gh/benchmarking-tools and https://github.com/Illumina/
hap.py

Multiple ROC data files (from a single or several vcfeval runs) can be plotted with the rocplot command,
which allows output to a PNG or SVG image or analysis in an interactive GUI that provides zooming and visual-
ization of the effects of threshold adjustment. As these files are simple tab-separated-value format, they can also
be loaded into a spreadsheet tool or processed with shell scripts.

While ROC curve analysis provides a much more thorough method for examining the performance of a call
set with respect to a baseline truth set, for convenience, vcfeval also produces a summary.txt file which
indicates match summary statistics that correspond to two key points on the ROC curve. The first point is where
all called variants are included (i.e. no thresholding on a score value); and second point corresponding to a score
threshold that maximises the F-measure of the curve. While this latter point is somewhat arbitrary, it represents a
balanced tradeoff between precision and sensitivity which is likely to provide a fairer comparison when comparing
call sets from different callers.

Note that vcfeval reports true positives both counted using the baseline variant representation as well as counted
using the call variant representation. When these numbers differ greatly, it indicates a general difference in repre-

2.5. Utility Commands 45

https://github.com/ga4gh/benchmarking-tools
https://github.com/Illumina/hap.py
https://github.com/Illumina/hap.py

RTG Tools Operations Manual, Release 3.8

sentational conventions used between the two call sets. Since false negatives can only be measured in terms of the
baseline representation, sensitivity is defined as:

Sensitivity = TPbaseline/(TPbaseline + FN)

Conversely since false positives can only be measured in terms of the call representation, precision is defined as:

Precision = TPcall/(TPcall + FP)

Note: For definitions of the terminology used when evaluating caller accuracy, see: https://en.wikipedia.org/wiki/
Receiver_operating_characteristic and https://en.wikipedia.org/wiki/Sensitivity_and_specificity

See also:

snp, popsim, samplesim, childsim, rocplot

2.5.15 pedfilter

Synopsis:

Filter and convert a pedigree file.

Syntax:

$ rtg pedfilter [OPTION]... FILE

Example:

$ rtg pedfilter --remove-parentage mypedigree.ped

Parameters:
File Input/Output

FILE The pedigree file to process, may be PED or VCF, use ‘-‘ to read from stdin.

Filtering
--keep-primary Keep only primary individuals (those with a PED individual line / VCF

sample column)
--remove-parentage Remove all parent-child relationship information.

Reporting
--vcf Output pedigree in in the form of a VCF header rather than PED.

Utility
-h --help Print help on command-line flag usage.

Usage:

The pedfilter command can be used to perform manipulations on pedigree information and convert pedigree
information between PED and VCF header format. For more information about the PED file format see Pedigree
PED input file format.

The VCF files output by the family and population commands contain full pedigree information represented
as VCF header lines, and the pedfilter command allows this information to be extracted in PED format.

This command produces the pedigree output on standard output, which can be redirected to a file or another
pipeline command as required.

See also:

family, population, mendelian, pedstats

46 Chapter 2. RTG Command Reference

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

RTG Tools Operations Manual, Release 3.8

2.5.16 pedstats

Synopsis:

Output information from pedigree files of various formats.

Syntax:

$ rtg pedstats [OPTION]... FILE

Example:

For a summary of pedigree information:

$ rtg pedstats ceph_pedigree.ped

Pedigree file: /data/ceph/ceph_pedigree.ped

Total samples: 17
Primary samples: 17
Male samples: 9
Female samples: 8
Afflicted samples: 0
Founder samples: 4
Parent-child relationships: 26
Other relationships: 0
Families: 3

To output a list of all founders:

$ rtg pedstats --founder-ids ceph_pedigree.ped
NA12889
NA12890
NA12891
NA12892

For quick pedigree visualization using GraphViz and ImageMagick, use a command-line such as:

$ dot -Tpng <(rtg pedstats --dot "A Title" mypedigree.ped) | display -

Parameters:
File Input/Output

FILE The pedigree file to process, may be PED or VCF, use ‘-‘ to read from stdin.

Reporting
--dot=STRING Output pedigree in GraphViz format, using the supplied text as a title.
--families Output information about family structures.
--female-ids Output ids of all females.
--founder-ids Output ids of all founders.
--male-ids Output ids of all males.
--maternal-ids Output ids of maternal individuals.
--paternal-ids Output ids of paternal individuals.
--primary-ids Output ids of all primary individuals.
--simple-dot When outputting GraphViz format, use a layout that looks less like a traditional

pedigree diagram but works better with large complex pedigrees.

Utility
-h --help Print help on command-line flag usage.

Usage:

This command is used to show pedigree summary statistics or select groups of individual Ids. In addition, it is
possible to generate a simple pedigree visualization, using GraphViz, which can be saved to PNG or PDF. For

2.5. Utility Commands 47

RTG Tools Operations Manual, Release 3.8

example, with the following chinese-trio.ped:

#PED format pedigree
#
#fam-id/ind-id/pat-id/mat-id: 0=unknown
#sex: 1=male; 2=female; 0=unknown
#phenotype: -9=missing, 0=missing; 1=unaffected; 2=affected
#
#fam-id ind-id pat-id mat-id sex phen
0 NA24631 NA24694 NA24695 1 0
0 NA24694 0 0 1 0
0 NA24695 0 0 2 0

We can visualize the pedigree with:

$ dot -Tpng <(rtg pedstats --dot "Chinese Trio" chinese-trio.ped) -o chinese-trio.
→˓png

This will create a PNG image that can be displayed in any image viewing tool and contains the pedigree structure
as shown below.

For more information about the PED file format see Pedigree PED input file format.

The VCF files output by the RTG pedigree-aware variant calling commands contain full pedigree information
represented as VCF header lines, and the pedstats command can also take these VCFs as input. For example,
given a VCF produced by the population command after calling the CEPH-1463 pedigree:

$ dot -Tpng <(rtg pedstats --dot "CEPH 1463" population-ceph-calls.vcf.gz) -o ceph-
→˓1463.png

Would produce the following pedigree directly from the VCF:

48 Chapter 2. RTG Command Reference

RTG Tools Operations Manual, Release 3.8

See also:

family, population, pedfilter

2.5.17 rocplot

Synopsis:

Plot ROC curves from readsimeval and vcfeval ROC data files, either to an image, or using an interactive
GUI.

Syntax:

$ rtg rocplot [OPTION]... FILE+

$ rtg rocplot [OPTION]... --curve STRING

Example:

$ rtg rocplot eval/weighted_roc.tsv.gz

Parameters:
File Input/Output

--curve=STRING ROC data file with title optionally specified (path[=title]). May be specified 0 or
more times.

--png=FILE If set, output a PNG image to the given file.
--svg=FILE If set, output a SVG image to the given file.
--zoom=STRING Show a zoomed view with the given coordinates, supplied in the form

<xmax>,<ymax> or <xmin>,<ymin>,<xmax>,<ymax>
FILE+ ROC data file. May be specified 0 or more times.

Reporting
--hide-sidepane If set, hide the side pane from the GUI on startup.
--line-width=INT Sets the plot line width (Default is 2)

-P --precision-sensitivity If set, plot precision vs sensitivity rather than ROC.
--scores If set, show scores on the plot.

-t --title=STRING Title for the plot.

Utility
-h --help Print help on command-line flag usage.

Usage:

Used to produce ROC plots from the ROC files produced by readsimeval and vcfeval. By default this
opens the ROC plots in an interactive viewer. On a system with only console access the plot can be saved directly
to an image file using the either the --png or --svg parameter.

Strictly speaking, a true ROC curve should use rates rather than absolute numbers on the X and Y axes (e.g.
True Positive / Total Positives rather than True Positives on the Y, and False Positive / Total Negatives on the X
axis). However, there are a couple of difficulties involved with computing these rates with variant calling datasets.

2.5. Utility Commands 49

RTG Tools Operations Manual, Release 3.8

Firstly, the truth sets do not include any indication of the set of negatives (the closest we may get is in the cases
of truth sets which contain a set of confidence regions, where it can be assumed that no other variants may be
present inside the specified regions); secondly even with knowledge of negative regions, how do you count the set
of possible negative calls, when a call could occupy multiple reference bases, or even (in the case of insertions)
zero reference bases. It is conceptually even possible to have a call-set contain more false positives than there are
reference bases. For this reason the ROC curves are plotted using the absolute counts.

Some quick tips for the interactive GUI:

• Select regions within the graph to zoom in. Right click to bring up a context menu that allows resetting the
zoom.

• Click on a spot in the graph to show the equivalent accuracy metrics for that location in the status bar.
Clicking to the left or below the axes will clear the cross-hair. Note that sensitivity depends on the baseline
total number of variants being correct. If for example the ROC curve corresponds to evaluating an exome
call-set against a whole-genome baseline, this number will be inaccurate.

• Additional ROC data files can be loaded by clicking on the “Open...” button, and multiple ROC data files
within a directory can be loaded at once using multi-select.

• Each ROC curve can be shown/hidden, renamed, and reordered in it’s widget area on the right hand side of
the UI.

• Right-clicking within the ROC widget area allows permanently removing that ROC curve.

• Each ROC curve has a slider to simulate the effect of applying a threshold on the scoring attribute. If the
“show scores” option is set, this provides an easy way to select appropriate filter threshold values, which
you might apply to variant sets using rtg vcffilter or similar VCF filtering tools.

• The ‘Cmd’ button will open a message window that contains a command-line equivalent to the currently
displayed set of ROC curves. This command-line may be copy-pasted, providing an easy way to replicate
the current set of curves in another session, generate a curve in a script, or share with a colleague.

• There is a drop down that allows for switching between ROC and precision/sensitivity graph types.

Note: For definitions of the terminology used when evaluating caller accuracy, see: https://en.wikipedia.org/wiki/
Receiver_operating_characteristic and https://en.wikipedia.org/wiki/Sensitivity_and_specificity

See also:

readsimeval, vcfeval

2.5.18 version

Synopsis:

The RTG version display utility.

Syntax:

$ rtg version

Example:

$ rtg version

Product: RTG Core 3.5
Core Version: 4586490 2015-12-04
RAM: 3.5GB of 3.8GB RAM can be used by RTG (91%)
CPU: Defaulting to 4 of 4 available processors (100%)
License: Expires on 2016-03-30
Contact: support@realtimegenomics.com

50 Chapter 2. RTG Command Reference

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

RTG Tools Operations Manual, Release 3.8

Patents / Patents pending:
US: 7,640,256, 13/129,329, 13/681,046, 13/681,215, 13/848,653,
13/925,704, 14/015,295, 13/971,654, 13/971,630, 14/564,810
UK: 1222923.3, 1222921.7, 1304502.6, 1311209.9, 1314888.7, 1314908.3
New Zealand: 626777, 626783, 615491, 614897, 614560
Australia: 2005255348, Singapore: 128254

Citation:

John G. Cleary, Ross Braithwaite, Kurt Gaastra, Brian S. Hilbush, Stuart Inglis,
→˓Sean A. Irvine, Alan Jackson, Richard Littin, Sahar Nohzadeh-Malakshah, Mehul
→˓Rathod, David Ware, Len Trigg, and Francisco M. De La Vega. "Joint Variant and
→˓De Novo Mutation Identification on Pedigrees from High-Throughput Sequencing
→˓Data." Journal of Computational Biology. June 2014, 21(6): 405-419. doi:10.1089/
→˓cmb.2014.0029.

(c) Real Time Genomics, 2014

Parameters:

There are no options associated with the version command.

Usage:

Use the version command to display release and version information.

See also:

help, license

2.5.19 license

Synopsis:

The RTG license display utility.

Syntax:

$ rtg license

Example:

$ rtg license

Parameters:

There are no options associated with the license command.

Usage:

Use the license command to display license information and expiration date. Output at the command line
(standard output) shows command name, licensed status, and command release level.

See also:

help, version

2.5.20 help

Synopsis:

The RTG help command provides online help for all RTG commands.

Syntax:

2.5. Utility Commands 51

RTG Tools Operations Manual, Release 3.8

List all commands:

$ rtg help

Show usage syntax and flags for one command:

$ rtg help COMMAND

Example:

$ rtg help format

Parameters:

There are no options associated with the help command.

Usage:

Use the help command to view syntax and usage information for the main rtg command as well as individual
RTG commands.

See also:

license, version

52 Chapter 2. RTG Command Reference

CHAPTER

THREE

ADMINISTRATION & CAPACITY PLANNING

3.1 Advanced installation configuration

RTG software can be shared by a group of users by installing on a centrally available file directory or shared drive.
Assignment of execution privileges can be determined by the administrator, independent of the software license
file. For commercial users, the software license prepared by Real Time Genomics (rtg-license.txt) need
only be included in the same directory as the executable (RTG.jar) and the run-time scripts (rtg or rtg.bat).

During installation on Unix systems, a configuration file named rtg.cfg is created in the installation directory.
By editing this configuration file, one may alter further configuration variables appropriate to the specific deploy-
ment requirements of the organization. On Windows systems, these variables are set in the rtg.bat file in the
installation directory. These configuration variables include:

Variable Description
RTG_MEM Specify the maximum memory for Java run-time execution. Use a G suffix for

gigabytes, e.g.: RTG_MEM=48G. The default memory allocation is 90% of
system memory.

RTG_JAVA Specify the path to Java (default assumes current path).
RTG_JAR Indicate the path to the RTG.jar executable (default assumes current path).
RTG_JAVA_OPTS Provide any additional Java JVM options.
RTG_DEFAULT_THREADS By default any RTG module with a --threads parameter will automatically

use the number of cores as the number of threads. This setting makes the
specified number the default for the --threads parameter instead.

RTG_PROXY Specify the http proxy server for TalkBack exception management (default is
no http proxy).

RTG_TALKBACK Send log files for crash-severity exception conditions (default is true, set to
false to disable).

RTG_USAGE If set to true, enable simple usage logging.
RTG_USAGE_DIR Destination directory when performing single-user file-based usage logging.
RTG_USAGE_HOST Server URL when performing server-based logging.
RTG_USAGE_OPTIONAL May contain a comma-separated list of the names of optional fields to include

in usage logging (when enabled). Any of username, hostname and
commandline may be set here.

RTG_REFERENCES_DIR Specifies an alternate directory containing metagenomic pipeline reference
datasets.

RTG_MODELS_DIR Specifies an alternate directory containing AVR models.

3.2 Run-time performance optimization

CPU — Multi-core operation finishes jobs faster by processing multiple application threads in parallel. By default
RTG uses all available cores of a multi-processor server node. With a command line parameter setting, RTG
operation can be limited to a specified number of cores if desired.

Memory — Adding more memory can improve performance where very high read coverage is desired. RTG
creates and uses indexes to speed up genomic data processing. The more RAM you have, the more reads you can

53

RTG Tools Operations Manual, Release 3.8

process in memory in a run. We use 48 GB as a rule of thumb for processing human data. However, a smaller
number of reads can be processed in as little as 2 GB.

Disk Capacity — Disk requirements are highly dependent on the size of the underlying data sets, the amount of
information needed to hold quality scores, and the number of runs needed to investigate the impact of varying
levels of sensitivity. Though all data is handled and stored in compressed form by default, a realistic minimum
disk size for handling human data is 1 TB. As a rule of thumb, for every 2 GB of input read data expect to add 1
GB of index data and 1 GB of output files per run. Additionally, leave another 2 GB free for temporary storage
during processing.

3.3 Alternate configurations

Demonstration system — For training, testing, demonstrating, processing and otherwise working with smaller
genomes, RTG works just fine on a newer laptop system with an Intel processor. For example, product testing in
support of this documentation was executed on a MacBook PC (Intel Core 2 Duo processor, 2.1 GHz clock speed,
1 processor, 2 cores, 3 MB L2 Cache, 4 GB RAM, 290 GB 5400 RPM Serial-ATA disk)

Clustered system — The comparison of genomic variation on a large scale demands extensive processing capa-
bility. Assuming standard CPU hardware as described above, scale up to meet your institutional or major product
needs by adding more rack-mounted boards and blades into rack servers in your data center. To estimate the num-
ber of cores required, first estimate the number of jobs to be run, noting size and sensitivity requirements. Then
apply the appropriate benchmark figures for different size jobs run with varying sensitivity, dividing the number
of reads to be processed by the reads/second/core.

3.4 Exception management - TalkBack and log file

Many RTG commands generate a log file with each run that is saved to the results output directory. The contents
of the file contain lists of job parameters, system configuration, and run-time information.

In the case of internal exceptions, additional information is recorded in the log file specific to the problem encoun-
tered. Fatal exceptions are trapped and notification is sent to Real Time Genomics with a copy of the log file. This
mechanism is called TalkBack and uses an embedded URL to which RTG sends the report.

The following sample log displays the software version information, parameter list, and run-time progress.

2009-09-05 21:38:10 RTG version = v2.0b build 20013 (2009-10-03)
2009-09-05 21:38:10 java.runtime.name = Java(TM) SE Runtime Environment
2009-09-05 21:38:10 java.runtime.version = 1.6.0_07-b06-153
2009-09-05 21:38:10 os.arch = x86_64
2009-09-05 21:38:10 os.freememory = 1792544768
2009-09-05 21:38:10 os.name = Mac OS X
2009-09-05 21:38:10 os.totalmemory = 4294967296
2009-09-05 21:38:10 os.version = 10.5.8
2009-09-05 21:38:10 Command line arguments: [-a, 1, -b, 0, -w, 16, -f, topn, -n, 5,
→˓ -P, -o, pflow, -i, pfreads, -t, pftemplate]
2009-09-05 21:38:10 NgsParams threshold=20 threads=2
2009-09-05 21:39:59 Index[0] memory performance

TalkBack may be disabled by adding RTG_TALK_BACK=false to the rtg.cfg configuration file (Unix) or
the rtg.bat file (Window) as described in Advanced installation configuration.

3.5 Usage logging

RTG has the ability to record simple command usage information for submission to Real Time Genomics. The
first time RTG is run (typically during installation), the user will be asked whether to enable usage logging. This
information may be required for customers with a pay-per-use license. Other customers may choose to send this

54 Chapter 3. Administration & Capacity Planning

RTG Tools Operations Manual, Release 3.8

information to give Real Time Genomics feedback on which commands and features are commonly used or to
locally log RTG command use for their own analysis.

A usage record contains the following fields:

• Time and date

• License serial number

• Unique ID for the run

• Version of RTG software

• RTG command name, without parameters (e.g. map)

• Status (Started / Failed / Succeeded)

• A command-specific field (e.g. number of reads)

For example:

2013-02-11 11:38:38007 4f6c2eca-0bfc-4267-be70-b7baa85ebf66 RTG Core v2.7
→˓build d74f45d (2013-02-04) format Start N/A

No confidential information is included in these records. It is possible to add extra fields, such as the user name
running the command, host name of the machine running the command, and full command-line parameters, how-
ever as these fields may contain confidential information, they must be explicitly enabled as described in Advanced
installation configuration.

When RTG is first installed, you will be asked whether to enable user logging. Usage logging can also be manually
enabled by editing the rtg.cfg file (or rtg.bat file on Windows) and setting RTG_USAGE=true. If the
RTG_USAGE_DIR and RTG_USAGE_HOST settings are empty, the default behavior is to directly submit usage
records to an RTG hosted server via HTTPS. This feature requires the machine running RTG to have access to the
Internet.

For cases where the machines running RTG do not have access to the Internet, there are two alternatives for
collecting usage information.

3.5.1 Single-user, single machine

Usage information can be recorded directly to a text file. To enable this option, edit the rtg.cfg file (or rtg.
bat file on Windows), and set the RTG_USAGE_DIR to the name of a directory where the user has write permis-
sions. For example:

RTG_USAGE=true
RTG_USAGE_DIR=/opt/rtg-usage

Within this directory, the RTG usage information will be written to a text file named after the date of the current
month, in the form YYYY-MM.txt. A new file will be created each month. This text file can be manually sent to
Real Time Genomics when requested.

3.5.2 Multi-user or multiple machines

In this case, a local server can be started to collect usage information from compute nodes and recorded to local
files for later manual submission. To configure this method of collecting usage information, edit the rtg.cfg
file (or rtg.bat file on Windows), and set the RTG_USAGE_DIR to the name of a directory where the local
server will store usage logs, and RTG_USAGE_HOST to a URL consisting of the name of the local machine that
will run the server and the network port on which the server will listen. For example if the server will be run on a
machine named gridhost.mylan.net, listening on port 9090, writing usage information into the directory
/opt/rtg-usage/, set:

3.5. Usage logging 55

RTG Tools Operations Manual, Release 3.8

RTG_USAGE=true
RTG_USAGE_DIR=/opt/rtg-usage
RTG_USAGE_HOST=http://gridhost.mylan.net:9090/

On the machine gridhost, run the command:

$ rtg usageserver

Which will start the local usage server listening. Now when RTG commands are run on other nodes or as other
users, they will submit usage records to this sever for collation.

Within the usage directory, the RTG usage information will be written to a text file named after the date of the
current month, in the form YYYY-MM.txt. A new file will be created each month. This text file can be manually
sent to Real Time Genomics when requested.

3.5.3 Advanced configuration

If you wish to augment usage information with any of the optional fields, edit the rtg.cfg file (or rtg.bat file
on Windows) and set the RTG_USAGE_OPTIONAL to a comma separated list containing any of the following:

• username - adds the username of the user running the RTG command.

• hostname - adds the machine name running the RTG command.

• commandline - adds the command line, including parameters, of the RTG command (this field will be
truncated if the length exceeds 1000 characters).

For example:

RTG_USAGE_OPTIONAL=username,hostname,commandline

56 Chapter 3. Administration & Capacity Planning

CHAPTER

FOUR

APPENDIX

4.1 RTG reference file format

Many RTG commands can make use of additional information about the structure of a reference genome, such
as expected ploidy, sex chromosomes, location of PAR regions, etc. When appropriate, this information may be
stored inside a reference genome’s SDF directory in a file called reference.txt.

The format command will automatically identify several common reference genomes during formatting and
will create a reference.txt in the resulting SDF. However, for non-human reference genomes, or less com-
mon human reference genomes, a pre-built reference configuration file may not be available, and will need to be
manually provided in order to make use of RTG sex-aware pipeline features.

Several example reference.txt files for different human reference versions are included as part of the RTG
distribution in the scripts subdirectory, so for common reference versions it will suffice to copy the appropriate
example file into the formatted reference SDF with the name reference.txt, or use one of these example files
as the basis for your specific reference genome.

To see how a reference text file will be interpreted by the chromosomes in an SDF for a given sex you can use the
sdfstats command with the --sex flag. For example:

$ rtg sdfstats --sex male /data/human/ref/hg19

Location : /data/human/ref/hg19
Parameters : format -o /data/human/ref/hg19 -I chromosomes.txt
SDF Version : 11
Type : DNA
Source : UNKNOWN
Paired arm : UNKNOWN
SDF-ID : b6318de1-8107-4b11-bdd9-fb8b6b34c5d0
Number of sequences : 25
Maximum length : 249250621
Minimum length : 16571
Sequence names : yes
N : 234350281
A : 844868045
C : 585017944
G : 585360436
T : 846097277
Total residues : 3095693983
Residue qualities : no

Sequences for sex=MALE:
chrM POLYPLOID circular 16571
chr1 DIPLOID linear 249250621
chr2 DIPLOID linear 243199373
chr3 DIPLOID linear 198022430
chr4 DIPLOID linear 191154276
chr5 DIPLOID linear 180915260
chr6 DIPLOID linear 171115067

57

RTG Tools Operations Manual, Release 3.8

chr7 DIPLOID linear 159138663
chr8 DIPLOID linear 146364022
chr9 DIPLOID linear 141213431
chr10 DIPLOID linear 135534747
chr11 DIPLOID linear 135006516
chr12 DIPLOID linear 133851895
chr13 DIPLOID linear 115169878
chr14 DIPLOID linear 107349540
chr15 DIPLOID linear 102531392
chr16 DIPLOID linear 90354753
chr17 DIPLOID linear 81195210
chr18 DIPLOID linear 78077248
chr19 DIPLOID linear 59128983
chr20 DIPLOID linear 63025520
chr21 DIPLOID linear 48129895
chr22 DIPLOID linear 51304566
chrX HAPLOID linear 155270560 ~=chrY

chrX:60001-2699520 chrY:10001-2649520
chrX:154931044-155260560 chrY:59034050-59363566

chrY HAPLOID linear 59373566 ~=chrX
chrX:60001-2699520 chrY:10001-2649520
chrX:154931044-155260560 chrY:59034050-59363566

The reference file is primarily intended for XY sex determination but should be able to handle ZW and X0 sex
determination also.

The following describes the reference file text format in more detail. The file contains lines with TAB separated
fields describing the properties of the chromosomes. Comments within the reference.txt file are preceded
by the character #. The first line of the file that is not a comment or blank must be the version line.

version1

The remaining lines have the following common structure:

<sex> <line-type> <line-setting>...

The sex field is one of male, female or either. The line-type field is one of def for default sequence settings,
seq for specific chromosomal sequence settings and dup for defining pseudo-autosomal regions. The line-setting
fields are a variable number of fields based on the line type given.

The default sequence settings line can only be specified with either for the sex field, can only be specified once
and must be specified if there are not individual chromosome settings for all chromosomes and other contigs. It is
specified with the following structure:

either def <ploidy> <shape>

The ploidy field is one of diploid, haploid, polyploid or none. The shape field is one of circular or
linear.

The specific chromosome settings lines are similar to the default chromosome settings lines. All the sex field
options can be used, however for any one chromosome you can only specify a single line for either or two lines
for male and female. They are specified with the following structure:

<sex> seq <chromosome-name> <ploidy> <shape> [allosome]

The ploidy and shape fields are the same as for the default chromosome settings line. The chromosome-name field
is the name of the chromosome to which the line applies. The allosome field is optional and is used to specify the
allosome pair of a haploid chromosome.

The pseudo-autosomal region settings line can be set with any of the sex field options and any number of the lines
can be defined as necessary. It has the following format:

58 Chapter 4. Appendix

RTG Tools Operations Manual, Release 3.8

<sex> dup <region> <region>

The regions must be taken from two haploid chromosomes for a given sex, have the same length and not go past
the end of the chromosome. The regions are given in the format <chromosome-name>:<start>-<end>
where start and end are positions counting from one and the end is non-inclusive.

An example for the HG19 human reference:

Reference specification for hg19, see
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=184117983&chromInfoPage=
version 1
Unless otherwise specified, assume diploid linear. Well-formed
chromosomes should be explicitly listed separately so this
applies primarily to unplaced contigs and decoy sequences
either def diploid linear
List the autosomal chromosomes explicitly. These are used to help
determine "normal" coverage levels during mapping and variant calling
either seq chr1 diploid linear
either seq chr2 diploid linear
either seq chr3 diploid linear
either seq chr4 diploid linear
either seq chr5 diploid linear
either seq chr6 diploid linear
either seq chr7 diploid linear
either seq chr8 diploid linear
either seq chr9 diploid linear
either seq chr10 diploid linear
either seq chr11 diploid linear
either seq chr12 diploid linear
either seq chr13 diploid linear
either seq chr14 diploid linear
either seq chr15 diploid linear
either seq chr16 diploid linear
either seq chr17 diploid linear
either seq chr18 diploid linear
either seq chr19 diploid linear
either seq chr20 diploid linear
either seq chr21 diploid linear
either seq chr22 diploid linear
Define how the male and female get the X and Y chromosomes
male seq chrX haploid linear chrY
male seq chrY haploid linear chrX
female seq chrX diploid linear
female seq chrY none linear
#PAR1 pseudoautosomal region
male dup chrX:60001-2699520 chrY:10001-2649520
#PAR2 pseudoautosomal region
male dup chrX:154931044-155260560 chrY:59034050-59363566
And the mitochondria
either seq chrM polyploid circular

As of the current version of the RTG software the following are the effects of various settings in the reference.
txt file when processing a sample with the matching sex.

A ploidy setting of none will prevent reads from mapping to that chromosome and any variant calling from being
done in that chromosome.

A ploidy setting of diploid, haploid or polyploid does not currently affect the output of mapping.

A ploidy setting of diploid will treat the chromosome as having two distinct copies during variant calling,
meaning that both homozygous and heterozygous diploid genotypes may be called for the chromosome.

A ploidy setting of haploid will treat the chromosome as having one copy during variant calling, meaning that
only haploid genotypes will be called for the chromosome.

4.1. RTG reference file format 59

RTG Tools Operations Manual, Release 3.8

A ploidy setting of polyploid will treat the chromosome as having one copy during variant calling, meaning
that only haploid genotypes will be called for the chromosome. For variant calling with a pedigree, maternal
inheritance is assumed for polyploid sequences.

The shape of the chromosome does not currently affect the output of mapping or variant calling.

The allosome pairs do not currently affect the output of mapping or variant calling (but are used by simulated data
generation commands).

The pseudo-autosomal regions will cause the second half of the region pair to be skipped during mapping. During
variant calling the first half of the region pair will be called as diploid and the second half will not have calls
made for it. For the example reference.txt provided earlier this means that when mapping a male the X
chromosome sections of the pseudo-autosomal regions will be mapped to exclusively and for variant calling the
X chromosome sections will be called as diploid while the Y chromosome sections will be skipped. There may be
some edge effects up to a read length either side of a pseudo-autosomal region boundary.

4.2 Pedigree PED input file format

The PED file format is a white space (tab or space) delimited ASCII file. Lines starting with # are ignored. It has
exactly six required columns in the following order.

Column Definition
Family
ID

Alphanumeric ID of a family group. This field is ignored by RTG commands.

Individ-
ual
ID

Alphanumeric ID of an individual. This corresponds to the Sample ID specified in the read group
of the individual (SM field).

Paternal
ID

Alphanumeric ID of the paternal parent for the individual. This corresponds to the Sample ID
specified in the read group of the paternal parent (SM field).

Mater-
nal
ID

Alphanumeric ID of the maternal parent for the individual. This corresponds to the Sample ID
specified in the read group of the maternal parent (SM field).

Sex The sex of the individual specified as using 1 for male, 2 for female and any other number as
unknown.

Pheno-
type

The phenotype of the individual specified using -9 or 0 for unknown, 1 for unaffected and 2 for
affected.

Note: The PED format is based on the PED format defined by the PLINK project: http://pngu.mgh.harvard.edu/
~purcell/plink/data.shtml#ped

The value ‘0’ can be used as a missing value for Family ID, Paternal ID and Maternal ID.

The following is an example of what a PED file may look like.

PED format pedigree
fam-id ind-id pat-id mat-id sex phen
FAM01 NA19238 0 0 2 0
FAM01 NA19239 0 0 1 0
FAM01 NA19240 NA19239 NA19238 2 0
0 NA12878 0 0 2 0

When specifying a pedigree for the lineage command, use either the pat-id or mat-id as appropriate to the
gender of the sample cell lineage. The following is an example of what a cell lineage PED file may look like.

PED format pedigree
fam-id ind-id pat-id mat-id sex phen
LIN BASE 0 0 2 0
LIN GENA 0 BASE 2 0
LIN GENB 0 BASE 2 0
LIN GENA-A 0 GENA 2 0

60 Chapter 4. Appendix

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped

RTG Tools Operations Manual, Release 3.8

RTG includes commands such as pedfilter and pedstats for simple viewing, filtering and conversion of
pedigree files.

4.3 RTG commands using indexed input files

Several RTG commands require coordinate indexed input files to operate and several more require them when the
--region or --bed-regions parameter is used. The index files used are standard tabix or BAM index files.

The RTG commands which produce the inputs used by these commands will by default produce them with ap-
propriate index files. To produce indexes for files from third party sources or RTG command output where the
--no-index or --no-gzip parameters were set, use the RTG bgzip and index commands.

4.4 RTG JavaScript filtering API

The vcffilter command permits filtering VCF records via user-supplied JavaScript expressions or scripts
containing JavaScript functions that operate on VCF records. The JavaScript environment has an API provided
that enables convenient access to components of a VCF record in order to satisfy common use cases.

4.4.1 VCF record field access

This section describes the supported methods to access components of an individual VCF record. In the following
descriptions, assume the input VCF contains the following excerpt (the full header has been omitted):

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA12877 NA12878
1 11259340 . G C,T . PASS DP=795;DPR=0.581;ABC=4.5 GT:DP 1/2:65 1/0:15

CHROM, POS, ID, REF, QUAL

Within the context of a --keep-expr or record function these variables will provide access to the String
representation of the VCF column of the same name.

CHROM; // "1"
POS; // "11259340"
REF; // "G"

ALT, FILTER

Will retrieve an array of the values in the column.

ALT; // ["C", "T"]
FILTER; // ["PASS"]

INFO.{INFO_FIELD}

The values in the INFO field are accessible through properties on the INFO object indexed by INFO ID. These
properties will be the string representation of info values with multiple values delimited with “,”. Missing fields
will be represented by “.”. Assigning to these properties will update the VCF record. This will be undefined for
fields not declared in the header.

4.3. RTG commands using indexed input files 61

RTG Tools Operations Manual, Release 3.8

INFO.DP; // "795"
INFO.ABC; // "4,5"

INFO.DPR = "0.01"; // Will change the value of the DPR info field

{SAMPLE_NAME}.{FORMAT_FIELD}

The JavaScript String prototype has been extended to allow access to the format fields for each sample. The string
representation of values in the sample column are accessible as properties on the string matching the sample name
named after the FORMAT field ID These properties can be assigned in order to make modifications. This will be
undefined for fields not declared in the header.

'NA12877'.GT; // "1/2"
'NA12878'.GT; // "1/0"
'NA12877'.DP = "10"; // Will change the DP field of the NA12877 sample

4.4.2 VCF header modification

Functions are provided that allow the addition of new INFO or FORMAT fields to the header and records. It is
recommended that the following functions only be used within the run-once portion of --javascript. They
may be called on every record, but this will be slow.

ensureFormatHeader(FORMAT_HEADER_STRING)

Add a new FORMAT field to the VCF if it is not already present. This will add a FORMAT declaration line to the
header and define the corresponding accessor methods for use in record processing.

ensureFormatHeader('##FORMAT=<ID=GL,Number=G,Type=Float,' +
'Description="Log_10 scaled genotype likelihoods.">');

ensureInfoHeader(INFO_HEADER_STRING)

Add a new INFO field to the VCF if it is not already present. This will add an INFO declaration line to the header
and define the corresponding accessor methods for use in record processing.

ensureInfoHeader('##INFO=<ID=CT,Number=1,Type=Integer,' +
'Description="Coverage threshold that was applied">');

4.4.3 Additional information and functions

SAMPLES

This variable contains an array of the sample names in the VCF header.

SAMPLES; // ['NA12877', 'NA12878']

print({STRING})

Writes the provided string to standard output.

print('The samples are: ' + SAMPLES);

62 Chapter 4. Appendix

RTG Tools Operations Manual, Release 3.8

See also:

For javascript filtering usage and examples see vcffilter

4.5 Distribution Contents

The contents of the RTG distribution zip file should include:

• The RTG executable JAR file.

• RTG executable wrapper script.

• Example scripts and files.

• This operations manual.

• A release notes file and a readme file.

Some distributions also include an appropriate java runtime environment (JRE) for your operating system.

4.6 README.txt

For reference purposes, a copy of the distribution README.txt file follows:

=== RTG.VERSION ===

RTG software from Real Time Genomics includes tools for the processing
and analysis of plant, animal and human sequence data from high
throughput sequencing systems. Product usage and administration is
described in the accompanying RTG Operations Manual.

Quick Start Instructions
========================

RTG software is delivered as a command-line Java application accessed
via a wrapper script that allows a user to customize initial memory
allocation and other configuration options. It is recommended that
these wrapper scripts be used rather than directly accessing the Java
JAR.

For individual use, follow these quick start instructions.

No-JRE:

The no-JRE distribution does not include a Java Runtime Environment
and instead uses the system-installed Java. Ensure that at the
command line you can enter "java -version" and that this command
reports a java version of 1.7 or higher before proceeding with the
steps below. This may require setting your PATH environment variable
to include the location of an appropriate version of java.

Linux/MacOS X:

Unzip the RTG distribution to the desired location.

If your RTG distribution requires a license file (rtg-license.txt),
copy the license file from Real Time Genomics into the RTG
distribution directory.

In a terminal, cd to the installation directory and test for success

4.5. Distribution Contents 63

RTG Tools Operations Manual, Release 3.8

by entering "./rtg version"

On MacOS X, depending on your operating system version and
configuration regarding unsigned applications, you may encounter the
error message:

-bash: rtg: /usr/bin/env: bad interpreter: Operation not permitted

If this occurs, you must clear the OS X quarantine attribute with
the command:

xattr -d com.apple.quarantine rtg

The first time rtg is executed you will be prompted with some
questions to customize your installation. Follow the prompts.

Enter "./rtg help" for a list of rtg commands. Help for any individual
command is available using the --help flag, e.g.: "./rtg format --help"

By default, RTG software scripts establish a memory space of 90% of
the available RAM - this is automatically calculated. One may
override this limit in the rtg.cfg settings file or on a per-run
basis by supplying RTG_MEM as an environment variable or as the
first program argument, e.g.: "./rtg RTG_MEM=48g map"

[OPTIONAL] If you will be running rtg on multiple machines and would
like to customize settings on a per-machine basis, copy
rtg.cfg to /etc/rtg.cfg, editing per-machine settings
appropriately (requires root privileges). An alternative that does
not require root privileges is to copy rtg.example.cfg to
rtg.HOSTNAME.cfg, editing per-machine settings appropriately, where
HOSTNAME is the short host name output by the command "hostname -s"

Windows:

Unzip the RTG distribution to the desired location.

If your RTG distribution requires a license file (rtg-license.txt),
copy the license file from Real Time Genomics into the RTG
distribution directory.

Test for success by entering "rtg version" at the command line. The
first time rtg is executed you will be prompted with some
questions to customize your installation. Follow the prompts.

Enter "rtg help" for a list of rtg commands. Help for any individual
command is available using the --help flag, e.g.: "rtg format --help"

By default, RTG software scripts establish a memory space of 90% of
the available RAM - this is automatically calculated. One may
override this limit by setting the RTG_MEM variable in the rtg.bat
script or as an environment variable.

The scripts subdirectory contains demos, helper scripts, and example
configuration files, and comprehensive documentation is contained in
the RTG Operations Manual.

Using the above quick start installation steps, an individual can
execute RTG software in a remote computing environment without the
need to establish root privileges. Include the necessary data files
in directories within the workspace and upload the entire workspace to
the remote system (either stand-alone or cluster).

64 Chapter 4. Appendix

RTG Tools Operations Manual, Release 3.8

For data center deployment and instructions for editing scripts,
please consult the Administration chapter of the RTG Operations Manual.

A discussion group is now available for general questions, tips, and other
discussions. It may be viewed or joined at:
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-users

To be informed of new software releases, subscribe to the low-traffic
rtg-announce group at:
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-announce

Citing RTG
==========

John G. Cleary, Ross Braithwaite, Kurt Gaastra, Brian S. Hilbush,
Stuart Inglis, Sean A. Irvine, Alan Jackson, Richard Littin, Sahar
Nohzadeh-Malakshah, Mehul Rathod, David Ware, Len Trigg, and Francisco
M. De La Vega. "Joint Variant and De Novo Mutation Identification on
Pedigrees from High-Throughput Sequencing Data." Journal of
Computational Biology. June 2014, 21(6):
405-419. doi:10.1089/cmb.2014.0029.

Terms of Use
============

This proprietary software program is the property of Real Time
Genomics. All use of this software program is subject to the
terms of an applicable end user license agreement.

Patents
=======

US: 7,640,256, 13/129,329, 13/681,046, 13/681,215, 13/848,653,
13/925,704, 14/015,295, 13/971,654, 13/971,630, 14/564,810
UK: 1222923.3, 1222921.7, 1304502.6, 1311209.9, 1314888.7, 1314908.3
New Zealand: 626777, 626783, 615491, 614897, 614560
Australia: 2005255348, Singapore: 128254
Other patents pending

Third Party Software Used
=========================

RTG software uses the open source htsjdk library
(https://github.com/samtools/htsjdk) for reading and writing SAM
files, under the terms of following license:

The MIT License

Copyright (c) 2009 The Broad Institute

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

4.6. README.txt 65

RTG Tools Operations Manual, Release 3.8

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

RTG software uses the bzip2 library included in the open source Ant project
(http://ant.apache.org/) for decompressing bzip2 format files, under the
following license:

Copyright 1999-2010 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

RTG Software uses a modified version of
java/util/zip/GZIPInputStream.java (available in the accompanying
gzipfix.jar) from OpenJDK 7 under the terms of the following license:

This code is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 only, as
published by the Free Software Foundation. Oracle designates this
particular file as subject to the "Classpath" exception as provided
by Oracle in the LICENSE file that accompanied this code.

This code is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
version 2 for more details (a copy is included in the LICENSE file that
accompanied this code).

You should have received a copy of the GNU General Public License version
2 along with this work; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
or visit http://www.oracle.com if you need additional information or have
any questions.

RTG Software uses hierarchical data visualization software from
http://sourceforge.net/projects/krona/ under the terms of the
following license:

Copyright (c) 2011, Battelle National Biodefense Institute (BNBI);
all rights reserved. Authored by: Brian Ondov, Nicholas Bergman, and
Adam Phillippy

This Software was prepared for the Department of Homeland Security

66 Chapter 4. Appendix

RTG Tools Operations Manual, Release 3.8

(DHS) by the Battelle National Biodefense Institute, LLC (BNBI) as
part of contract HSHQDC-07-C-00020 to manage and operate the National
Biodefense Analysis and Countermeasures Center (NBACC), a Federally
Funded Research and Development Center.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the Battelle National Biodefense Institute nor
the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4.7 Notice

Real Time Genomics does not assume any liability arising out of the application or use of any software described
herein. Further, Real Time Genomics does not convey any license under its patent, trademark, copyright, or
common-law rights nor the similar rights of others.

Real Time Genomics reserves the right to make any changes in any processes, products, or parts thereof, described
herein, without notice. While every effort has been made to make this guide as complete and accurate as possible
as of the publication date, no warranty of fitness is implied.

© 2017 Real Time Genomics All rights reserved.

Illumina, Solexa, Complete Genomics, Ion Torrent, Roche, ABI, Life Technologies, and PacBio are registered
trademarks and all other brands referenced in this document are the property of their respective owners.

4.7. Notice 67

	Overview
	Introduction
	RTG software description
	Installation and deployment
	Quick start instructions
	License Management

	Technical assistance and support

	RTG Command Reference
	Command line interface (CLI)
	RTG command syntax
	Data Formatting Commands
	format
	sdf2fasta
	sdf2fastq
	sdf2sam
	fastqtrim

	Simulation Commands
	genomesim
	cgsim
	denovosim
	readsim
	popsim
	samplesim
	childsim
	samplereplay

	Utility Commands
	bgzip
	index
	extract
	aview
	sdfstats
	sdfsubset
	sdfsubseq
	mendelian
	vcfstats
	vcfmerge
	vcffilter
	vcfannotate
	vcfsubset
	vcfeval
	pedfilter
	pedstats
	rocplot
	version
	license
	help

	Administration & Capacity Planning
	Advanced installation configuration
	Run-time performance optimization
	Alternate configurations
	Exception management - TalkBack and log file
	Usage logging
	Single-user, single machine
	Multi-user or multiple machines
	Advanced configuration

	Appendix
	RTG reference file format
	Pedigree PED input file format
	RTG commands using indexed input files
	RTG JavaScript filtering API
	VCF record field access
	VCF header modification
	Additional information and functions

	Distribution Contents
	README.txt
	Notice

