####################################################################### # Note that this note can directly be run in R. # Version: GeneCycle 1.0.3 (February 2008) ####################################################################### # # EXAMPLE SESSION FOR CELL CYCLE ANALYSIS # # for details see: # # Wichert, S., K. Fokianos, and K. Strimmer. 2004. # Identifying periodically expressed transcripts in microarray # time series data. Bioinformatics 20:4-20 # load GeneCycle library library("GeneCycle") ####################################################################### # THE DATA: # the normalized data need to be ready in time series format, i.e. in # a matrix where each *column* corresponds to a gene, and where the # *rows* correspond to the individual measurements (time points). # Example: the Caulobacter data set data(caulobacter) # how many samples (11) and how many genes (1444)? dim(caulobacter) summary(caulobacter) get.time.repeats(caulobacter) # plot first nine time series plot(caulobacter, 1:9) ####################################################################### # IDENTIFYING PERIODICALLY EXPRESSED GENES: # A statistical test developed by Fisher is used to detect # periodically expressed genes, and the average periodogram # is used to visualize the dominant frequencies # compute and plot average periodogram avgp.caulobacter <- avgp(caulobacter, "Caulobacter") avgp.caulobacter # p-values from Fisher's g test pval.caulobacter <- fisher.g.test(caulobacter) pval.caulobacter ####################################################################### # multiple testing # proportion of null p-values for different methods pval.estimate.eta0(pval.caulobacter, method="conservative") pval.estimate.eta0(pval.caulobacter, method="adaptive") pval.estimate.eta0(pval.caulobacter, method="bootstrap") pval.estimate.eta0(pval.caulobacter, method="smoother") # (local) false discovery rates (using bootstrap) fdr.out <- fdrtool(pval.caulobacter, statistic="pvalue") sum(fdr.out$qval < 0.05) # 52 sum(fdr.out$lfdr < 0.2) # 94