## regression.R --- ## Author : Claus Dethlefsen ## Created On : Fri Mar 15 10:39:45 2002 ## Last Modified By: Claus Dethlefsen ## Last Modified On: Wed Jan 07 08:57:33 2004 ## Update Count : 16 ## Status : Unknown, Use with caution! ############################################################################### ## ## Copyright (C) 2002 Susanne Gammelgaard Bottcher, Claus Dethlefsen ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ###################################################################### n <- 1000 set.seed(109) x <- seq(-2,2,length=n/2) x2<- x^2 y1 <- rnorm(n/2,-5-x-x^2,.5) y2 <- rnorm(n/2,+5+x+x^2,.5) y <- c(y1,y2) A <- factor(rep(c("A1","A2"),c(n/2,n/2))) mypoly <- data.frame(x,x2,y,A) names(mypoly)[2] <- "x^2" fit <- network(mypoly) fit.prior <- jointprior(fit) res <- nwfsort( getnetwork(networkfamily(mypoly,fit,fit.prior)) )