15051 MI0000001 cel-let-7 Caenorhabditis elegans let-7 stem-loop UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA let-7 is found on chromosome X in Caenorhabditis elegans [1] and pairs to sites within the 3' untranslated region (UTR) of target mRNAs, specifying the translational repression of these mRNAs and triggering the transition to late-larval and adult stages [2]. 3 15052 MI0000002 cel-lin-4 Caenorhabditis elegans lin-4 stem-loop AUGCUUCCGGCCUGUUCCCUGAGACCUCAAGUGUGAGUGUACUAUUGAUGCUUCACACCUGGGCUCUCCGGGUACCAGGACGGUUUGAGCAGAU lin-4 is found on chromosome II in Caenorhabditis elegans [1] and is complementary to sequences in the 3' untranslated region (UTR) of lin-14 mRNA. lin-4 acts to developmentally repress the accumulation of lin-14 protein. This repression is essential for the proper timing of numerous events of Caenorhabditis elegans larval development [2]. 3 15053 MI0000003 cel-mir-1 Caenorhabditis elegans miR-1 stem-loop AAAGUGACCGUACCGAGCUGCAUACUUCCUUACAUGCCCAUACUAUAUCAUAAAUGGAUAUGGAAUGUAAAGAAGUAUGUAGAACGGGGUGGUAGU miR-1 was independently identified in C. elegans [1,2] and Drosophila melanogaster (MIR:MI0000116) [3]. The sequence is also conserved in C. briggsae (MIR:MI0000493). 3 15054 MI0000004 cel-mir-2 Caenorhabditis elegans miR-2 stem-loop UAAACAGUAUACAGAAAGCCAUCAAAGCGGUGGUUGAUGUGUUGCAAAUUAUGACUUUCAUAUCACAGCCAGCUUUGAUGUGCUGCCUGUUGCACUGU 3 15055 MI0000005 cel-mir-34 Caenorhabditis elegans miR-34 stem-loop CGGACAAUGCUCGAGAGGCAGUGUGGUUAGCUGGUUGCAUAUUUCCUUGACAACGGCUACCUUCACUGCCACCCCGAACAUGUCGUCCAUCUUUGAA 3 15056 MI0000006 cel-mir-35 Caenorhabditis elegans miR-35 stem-loop UCUCGGAUCAGAUCGAGCCAUUGCUGGUUUCUUCCACAGUGGUACUUUCCAUUAGAACUAUCACCGGGUGGAAACUAGCAGUGGCUCGAUCUUUUCC 3 15057 MI0000007 cel-mir-36 Caenorhabditis elegans miR-36 stem-loop CACCGCUGUCGGGGAACCGCGCCAAUUUUCGCUUCAGUGCUAGACCAUCCAAAGUGUCUAUCACCGGGUGAAAAUUCGCAUGGGUCCCCGACGCGGA 3 15058 MI0000008 cel-mir-37 Caenorhabditis elegans miR-37 stem-loop UUCUAGAAACCCUUGGACCAGUGUGGGUGUCCGUUGCGGUGCUACAUUCUCUAAUCUGUAUCACCGGGUGAACACUUGCAGUGGUCCUCGUGGUUUCU 3 15059 MI0000009 cel-mir-38 Caenorhabditis elegans miR-38 stem-loop UCUGUGAGCCAGGUCCUGUUCCGGUUUUUUCCGUGGUGAUAACGCAUCCAAAAGUCUCUAUCACCGGGAGAAAAACUGGAGUAGGACCUGUGACUCAU 3 15060 MI0000010 cel-mir-39 Caenorhabditis elegans miR-39 stem-loop UAUACCGAGAGCCCAGCUGAUUUCGUCUUGGUAAUAAGCUCGUCAUUGAGAUUAUCACCGGGUGUAAAUCAGCUUGGCUCUGGUGUC The excised miRNA sequence was initially predicted [1], and confirmed later by sequencing [3]. 3 15061 MI0000011 cel-mir-40 Caenorhabditis elegans miR-40 stem-loop UCCUGUCCGCACCUCAGUGGAUGUAUGCCAUGAUGAUAAGAUAUCAGAAAUCCUAUCACCGGGUGUACAUCAGCUAAGGUGCGGGUACAGGU 3 15062 MI0000012 cel-mir-41 Caenorhabditis elegans miR-41 stem-loop GGGUCCCAGAGACCUUGGUGGUUUUUCUCUGCAGUGAUAGAUACUUCUAACAACUCGCUAUCACCGGGUGAAAAAUCACCUAGGUCUGGAGCCUCCU 3 15063 MI0000013 cel-mir-42 Caenorhabditis elegans miR-42 stem-loop UUCGCGGACCUUUGUGGGUGUUUGCUUUUUCGGUGAAGUUGUCUUCCGUAGCUUCUUCUUCACCGGGUUAACAUCUACAGAGGUCCAAAAAGGGG The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [5]. 3 15064 MI0000014 cel-mir-43 Caenorhabditis elegans miR-43 stem-loop UAUUGGCACUAGUCGCCCGUGACAUCAAGAAACUAGUGAUUAUGCCAAACCACAGGGACAUAUCACAGUUUACUUGCUGUCGCGGGCGGUGCUGAGUU 3 15065 MI0000015 cel-mir-44 Caenorhabditis elegans miR-44 stem-loop GAGAAAAUGGCCAAUCUGGAUGUGCUCGUUGGUCAUAGACGUCAACACGAACUGUUCAUAUGACUAGAGACACAUUCAGCUUGGCCUGCUUCUCUA 3 15066 MI0000016 cel-mir-45 Caenorhabditis elegans miR-45 stem-loop CACCAUGUGCCACGCUGGAUGUGCUCGUUAGUCAUAAUAUCCUCCACAAAGCAAGGACUAUGACUAGAGACACAUUCAGCUUGGCGCCGAAUGCAU 3 15067 MI0000017 cel-mir-46 Caenorhabditis elegans miR-46 stem-loop CUGAGGUGAAGCUGAAGAGAGCCGUCUAUUGACAGUUCAAGACCACGAGUCGUUGUGUGCUGUCAUGGAGUCGCUCUCUUCAGAUGAUCCGGUCAAU 3 15068 MI0000018 cel-mir-47 Caenorhabditis elegans miR-47 stem-loop GAGAGCCGACUGAAACUGAAGAGAGCAGUCUAUUGACAGUCGGUUACUCGAAAUCUUUACUGUCAUGGAGGCGCUCUCUUCAGAUGAUGUCUGGCCC 3 15069 MI0000019 cel-mir-48 Caenorhabditis elegans miR-48 stem-loop AAACUCCCGGGAACUUGAGGUAGGCUCAGUAGAUGCGAAUUGAACGGUAUCUCACAUCCACCAGCCUAGCUCGCAUUCCCAGAGUUUACGGUAUUGUU 3 15070 MI0000020 cel-mir-49 Caenorhabditis elegans miR-49 stem-loop UUUUGAAAAAGACCACCGUCCGCAGUUUGUUGUGAUGUGCUCCAAGCAAUCAUGAGUCUGAAGCACCACGAGAAGCUGCAGAUGGAGGUUCUGAUUU 3 15071 MI0000021 cel-mir-50 Caenorhabditis elegans miR-50 stem-loop CUGCCCGCCGGCCGCUGAUAUGUCUGGUAUUCUUGGGUUUGAACUUCCAGCGUUGAACCCGCAUAUUAGACGUAUCGACGGCCGGCGGGGCAGGUAAUG The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [3]. 3 15072 MI0000022 cel-mir-51 Caenorhabditis elegans miR-51 stem-loop GUCCGAAAAGUCCGUCUACCCGUAGCUCCUAUCCAUGUUACUGGUCAAAAAGUGAACAUGGAAGCAGGUACAGGUGCACGGCGAGUAGGGUCAUGAAGCU 3 15073 MI0000023 cel-mir-52 Caenorhabditis elegans miR-52 stem-loop UCCAACUCUAACAGUCCACCCGUACAUAUGUUUCCGUGCUUGACAGCGAAGCUCAAUCACGUUACAAUGAAAGGGUAGCCGGUUAUUGAAGUUGGGUCUU 3 15074 MI0000024 cel-mir-53 Caenorhabditis elegans miR-53 stem-loop CCGAUUCUGACAGUCCACCCGUACAUUUGUUUCCGUGCUUGACUUCAAAGCUCAAUCACGGCACAAUAUAUGGGUCGCCAGUCAUUGUAGUCGGAAUUU 3 15075 MI0000025 cel-mir-54 Caenorhabditis elegans miR-54 stem-loop GUGAGUCGCGCUCUGACUAGGAUAUGAGACGACGAGAACAUUGCUUUUUUAAAAGACUUGUACCCGUAAUCUUCAUAAUCCGAGUCAGGGCUAGCUGAC 3 15076 MI0000026 cel-mir-55 Caenorhabditis elegans miR-55 stem-loop AGAUUUGGAACUUAAUGGGACUCGGCAGAAACCUAUCGGUUAUACUUUUUGGAUAUGCUAUACCCGUAUAAGUUUCUGCUGAGCCCCUUAUUCCUGUU 3 15077 MI0000027 cel-mir-56 Caenorhabditis elegans miR-56 stem-loop GAGCCAGUGUCUGUUCUUGGCGGAUCCAUUUUGGGUUGUACCUCAUCCUAAAUUUGACGGUACCCGUAAUGUUUCCGCUGAGAACCGACUGUGCACC 3 15078 MI0000028 cel-mir-57 Caenorhabditis elegans miR-57 stem-loop AUCGACAUGCUCGUCUACCCUGUAGAUCGAGCUGUGUGUUUGAAACAAUCAUACACGAGCUAGACUACAAGGUGCACGAACAAACCGAAGAUUUAUGAA 3 15079 MI0000029 cel-mir-58 Caenorhabditis elegans miR-58 stem-loop GCUCGUCAUAUCCAUUGCCCUACUCUUCGCAUCUCAUCACUUCGUCCAAUACCAUAGGGAUGAGAUCGUUCAGUACGGCAAUGGACUGAGCUAGAGU 3 15080 MI0000030 cel-mir-59 Caenorhabditis elegans miR-59 stem-loop AGUUGAUCUAGAUAUGACAUCGUCCUGAAAACGAAACGGAACAAAAGUUCAAGAUAUUGAUUUCGAAUCGUUUAUCAGGAUGAUGUGAUUAAAAUCAACU 3 15081 MI0000031 cel-mir-60 Caenorhabditis elegans miR-60 stem-loop CUCGAAAACCGCUUGUUCUUGAACUGGAAGAGUGCCAUAAAAUCAUGACAAAGUACGUGAUAUUAUGCACAUUUUCUAGUUCAAGACUUGAGAAAUCG 3 15082 MI0000032 cel-mir-61 Caenorhabditis elegans miR-61 stem-loop UUCCAUUAUCGCUGAACCUCGAGAUGGGUUACGGGGCUUAGUCCUUCCUCCGUAUGGCAAUGACUAGAACCGUUACUCAUCUCGAGGUUUCGGUGAU The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [4]. 3 15083 MI0000033 cel-mir-62 Caenorhabditis elegans miR-62 stem-loop GUGAGUUAGAUCUCAUAUCCUUCCGCAAAAUGGAAAUGAUAUGUAAUCUAGCUUACAG 3 15084 MI0000034 cel-mir-63 Caenorhabditis elegans miR-63 stem-loop UCAACAAGCAGACACAAUUUCUAACUCGUCGGUAGUCAUCGUUCUAGCUGAAAAGGACACUAUGACACUGAAGCGAGUUGGAAAUAGUGGUUCUACUUGAGCAA 3 15085 MI0000035 cel-mir-64 Caenorhabditis elegans miR-64 stem-loop CUCCCCGCUGACCUCGCCGAAUAUGACACUGAAGCGUUACCGAACCGUUUUCCCACACCUGGAUUCGGUGCAACGAUCAGUGGCAUGCUCGGCUAGCGCCAGUUAAGUAU 3 15086 MI0000036 cel-mir-65 Caenorhabditis elegans miR-65 stem-loop AUGGAGCCUUCGCCGAUUAUGACACUGAAGCGUAACCGAACACCAUAUUUUGAGAUUCUGCUACGCGCAGUGCCAUGCUCGGCGCGUUGGCUCCAUUAAA 3 15087 MI0000037 cel-mir-66 Caenorhabditis elegans miR-66 stem-loop CCACAAAAAUGCCAUACAUGACACUGAUUAGGGAUGUGAUGAAUGUUAAGAUCCCGAUCAAAUUCCUAACGGUGUCAAACAUGGCGUAUGUGGUUGUAG 3 15088 MI0000038 cel-mir-67 Caenorhabditis elegans miR-67 stem-loop GAUCAAAGAUUCGUCGAUCCGCUCAUUCUGCCGGUUGUUAUGCUAUUAUCAGAUUAAGCAUCACAACCUCCUAGAAAGAGUAGAUCGAUUUUAAAACUU 3 15089 MI0000041 cel-mir-70 Caenorhabditis elegans miR-70 stem-loop UCAAAAUAAAACGAUGAAAACUAUCGAAAUACUAUCGACGAAUAACACUUAUGAAGAAAUGUAAUACGUCGUUGGUGUUUCCAUAGUUUGAAUUGUUUAU 3 15090 MI0000042 cel-mir-71 Caenorhabditis elegans miR-71 stem-loop GUCUGCUCUGAACGAUGAAAGACAUGGGUAGUGAGACGUCGGAGCCUCGUCGUAUCACUAUUCUGUUUUUCGCCGUCGGGAUCGUGACCUGGAA 3 15091 MI0000043 cel-mir-72 Caenorhabditis elegans miR-72 stem-loop AGGUCCCGUCAGAGCUAGGCAAGAUGUUGGCAUAGCUGAAUGAUCGCUAUAACAACUAUCAGCUUCGCCACAUUCUGCCACGCACUGAUGUGAGGACCU The expression of C. elegans miR-72 was confirmed by PCR amplification, cloning and sequencing. The predicted hairpin precursor sequence presented here is supported by conservation in C. elegans and C. briggsae (MIR:MI0000751), and differs from that shown in [1] (Uwe Ohler, pers. comm.). The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [5]. 3 15092 MI0000044 cel-mir-73 Caenorhabditis elegans miR-73 stem-loop CAGUGAGAGUCCCACACACGACUGGACUUCCAUAUCGAGCCACAGCUAUCAACGAAUUUGCUGGCAAGAUGUAGGCAGUUCAGUUGUGCGUUUAUGGAG 3 15093 MI0000045 cel-mir-74 Caenorhabditis elegans miR-74 stem-loop AAAUGGUUCAAAAAACGUUCGGGCUUCCAUCUCUUUCCCAGCCUACAUCUCAACCUGGGCUGGCAAGAAAUGGCAGUCUACACGUUUUUCAACCAAA 3 15094 MI0000046 cel-mir-75 Caenorhabditis elegans miR-75 stem-loop UUCUUGUUGCUUUGAAGAAUUGCAGUCGGUUGCAAGCUUAAAUACAAAUCCGAAUUGUUAUUAAAGCUACCAACCGGCUUCAAGUCUGAAAGAGCAG 3 15095 MI0000047 cel-mir-76 Caenorhabditis elegans miR-76 stem-loop AUUUCAGCUCCUGUCUGGGCUUCACAAUAGUCGAAUACCUUAAAUUUCAAAAUUUGGAUAUUCGUUGUUGAUGAAGCCUUGAUGGGGGUGAGAAAGA 3 15096 MI0000048 cel-mir-77 Caenorhabditis elegans miR-77 stem-loop GCAUCUGCCAAACCGCCCGUUUGGAUGGUUGUGCUCUGAGGAAAUACGCACAGAAUGUCAUUUCAUCAGGCCAUAGCUGUCCAAAUUGGUAUAGAGUUUG 3 15097 MI0000049 cel-mir-78 Caenorhabditis elegans miR-78 stem-loop AAUAAAAUAUAUUGUUUCAUAGUGUCCGUAAAAUAACUAGAUUUAUUUUGUAAAAACUAUUGGAGGCCUGGUUGUUUGUGCUGGAAUGUUUCGAGA 3 15098 MI0000050 cel-mir-79 Caenorhabditis elegans miR-79 stem-loop UAGUAGACAUUCUCCGAUCUUUGGUGAUUCAGCUUCAAUGAUUGGCUACAGGUUUCUUUCAUAAAGCUAGGUUACCAAAGCUCGGCGUCUUGAUCUAC 3 15099 MI0000051 cel-mir-80 Caenorhabditis elegans miR-80/miR-227 stem-loop AUGGACACUCGUUCGCUCAGCUUUCGACAUGAUUCUGAACAAUCCGCAAGCCCAUGUUGUUGAGAUCAUUAGUUGAAAGCCGAAUGAUCAGAGAUAUC mir-80 is conserved in C.briggsae (MIR:MI0000518) [1]. Reference [3] reports the identification of miR-227, which appears to be expressed from the 5' arm of the same precursor. 3 15100 MI0000052 cel-mir-81 Caenorhabditis elegans miR-81 stem-loop AUCAGUGCCAUCGUGCCCAACAGUCGGUUUUCACCGUGAUCUGAGAGCAAUCCAAAAAUGCUUUUCUGAGAUCAUCGUGAAAGCUAGUUGUUGGUCUACGGGCUUUUG 3 15101 MI0000053 cel-mir-82 Caenorhabditis elegans miR-82 stem-loop GAAAUAGGUUCUUUUAGCAACCGGUUUUCUCUGUGAUCUACAGAAUGACAGCUAAUCGUCUGAGAUCAUCGUGAAAGCCAGUUGUUUUUAUGAACUC 3 15102 MI0000054 cel-mir-83 Caenorhabditis elegans miR-83 stem-loop AGCACCACUCGGAACCACUGAAUUUAUGUGUGUACUUGACGGCCAACAAGAGCAUCGAUCUAGCACCAUAUAAAUUCAGUAAUUUCGCGUCGAGAGCU 3 15103 MI0000055 cel-mir-84 Caenorhabditis elegans miR-84 stem-loop GUGGCAUCUGAGGUAGUAUGUAAUAUUGUAGACUGUCUAUAAUGUCCACAAUGUUUCAACUAACUCGGCUGUUCU 3 15104 MI0000056 cel-mir-85 Caenorhabditis elegans miR-85 stem-loop UAUAGAAUUUUGGCGUCGGAGCCCGAUUUUUCAAUAGUUUGAAACCAGUGUACACAUAAAUGGUUACAAAGUAUUUGAAAAGUCGUGCUCUGAAAAUGAAUUCUUA 3 15105 MI0000057 cel-mir-86 Caenorhabditis elegans miR-86 stem-loop CGUGUCCACGCCGUCUAAGUGAAUGCUUUGCCACAGUCUUCGAUGUUCUGAAAUGAAGCCUGGGCUCAGAUUCGCUUAGGCCGGAGUUUGACACGGCA 3 15106 MI0000058 cel-mir-87 Caenorhabditis elegans miR-87 stem-loop GGUUGUGCCAUCCGGCCGCCUGAUACUUUCGUCUCAACCUCGCUGUCAGAUUGGUCGUAGGUGAGCAAAGUUUCAGGUGUGCCGGAACACACCC mir-87 is has found to be most abundant in the L1 stage of larval development in Caenorhabditis elegans. mir-87 orthologues have been found in C. briggsae, Drosophila melanogaster and humans [1]. The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [4]. 3 15107 MI0000059 cel-mir-90 Caenorhabditis elegans miR-90 stem-loop GGGCGCCAUUUCGAGCGGCUUUCAACGACGAUAUCAACCGACAACUCACACUUUUGCGUGUUGAUAUGUUGUUUGAAUGCCCCUUGAAUUGGAUGCCA mir-90 is has found to be most abundant in the L1 stage of larval development in Caenorhabditis elegans [1]. The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [4]. 3 15108 MI0000060 hsa-let-7a-1 Homo sapiens let-7a-1 stem-loop UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCUA let-7a* cloned in [6] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 15109 MI0000061 hsa-let-7a-2 Homo sapiens let-7a-2 stem-loop AGGUUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACAUCAAGGGAGAUAACUGUACAGCCUCCUAGCUUUCCU 5 15110 MI0000062 hsa-let-7a-3 Homo sapiens let-7a-3 stem-loop GGGUGAGGUAGUAGGUUGUAUAGUUUGGGGCUCUGCCCUGCUAUGGGAUAACUAUACAAUCUACUGUCUUUCCU let-7a* cloned in [6] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 15111 MI0000063 hsa-let-7b Homo sapiens let-7b stem-loop CGGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGCAGUGAUGUUGCCCCUCGGAAGAUAACUAUACAACCUACUGCCUUCCCUG 5 15112 MI0000064 hsa-let-7c Homo sapiens let-7c stem-loop GCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGC 5 15113 MI0000065 hsa-let-7d Homo sapiens let-7d stem-loop CCUAGGAAGAGGUAGUAGGUUGCAUAGUUUUAGGGCAGGGAUUUUGCCCACAAGGAGGUAACUAUACGACCUGCUGCCUUUCUUAGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15114 MI0000066 hsa-let-7e Homo sapiens let-7e stem-loop CCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGAGGACACCCAAGGAGAUCACUAUACGGCCUCCUAGCUUUCCCCAGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15115 MI0000067 hsa-let-7f-1 Homo sapiens let-7f-1 stem-loop UCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUUCCCUGA 5 15116 MI0000068 hsa-let-7f-2 Homo sapiens let-7f-2 stem-loop UGUGGGAUGAGGUAGUAGAUUGUAUAGUUUUAGGGUCAUACCCCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCCCACG 5 15117 MI0000069 hsa-mir-15a Homo sapiens miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Reference [1] named this sequence miR-15. This is renamed miR-15a here to avoid confusion with miR-15b (MIR:MI0000438) identified later by others. This gene and miR-16 are clustered within 0.5 kb at 13q14. This region has been shown to be deleted in more than half of B cell chronic lymphocytic leukemias (CLL). Both miR-15a and miR-16 are deleted or down-regulated in more than two thirds of CLL cases [2]. 5 15118 MI0000070 hsa-mir-16-1 Homo sapiens miR-16-1 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Human miR-16 has been cloned by independent groups [1,2]. This precursor sequence maps to chromosome 13, and was named mir-16 in [1] and mir-16-precursor-13 in [2]. Lim et al. reported 2 identical chromosome 13 loci, which appear to map to the same locus in subsequent genome assemblies. This gene and miR-15a are clustered within 0.5 kb at 13q14. This region has been shown to be deleted in more than half of B cell chronic lymphocytic leukemias (CLL). Both miR-15a and miR-16 are deleted or down-regulated in more than two thirds of CLL cases [3]. A second putative mir-16 hairpin precursor is located on chromosome 3 (MIR:MI0000738). 5 15119 MI0000071 hsa-mir-17 Homo sapiens miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Two groups independently reported miRs derived from the same precursor. Lagos-Quintana et al. [1] reported miR-17 expressed from the 3' arm of the hairpin precursor in HeLa cells. Mourelatos et al. [2] reported the cloning of miR-91 from the 5' arm of the same precursor. The sequences were previously known as miR-17-5p and miR-17-3p here. Landgraf et al. [7] showed that the 5' product is the predominant one -- the 3' sequence is therefore renamed miR-17*. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [7]. 5 15120 MI0000072 hsa-mir-18a Homo sapiens miR-18a stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA This sequence maps to chromosome 13 and is named miR-18 precursor-13 in reference [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 5 15121 MI0000073 hsa-mir-19a Homo sapiens miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC This sequence maps to chromosome 13 and is named miR-19a precursor-13 in reference [2]. 5 15122 MI0000074 hsa-mir-19b-1 Homo sapiens miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG 5 15123 MI0000075 hsa-mir-19b-2 Homo sapiens miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU 5 15124 MI0000076 hsa-mir-20a Homo sapiens miR-20a stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC 5 15125 MI0000077 hsa-mir-21 Homo sapiens miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Mourelatos et al. named this sequence miR-21 precursor-17 and also reported the exact reverse complement of this predicted stem-loop sequence and erroneously assigned the name miR-104 [2]. 5 15126 MI0000078 hsa-mir-22 Homo sapiens miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC 5 15127 MI0000079 hsa-mir-23a Homo sapiens miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC This miRNA was previously named miR-23 [1,2] but is renamed here to avoid confusion with the more recently described miR-23b (MIR:MI0000439). Kawasaki and Taira reported that miR-23 regulates the transcriptional repressor Hairy enhancer of split (HES1) [3]. This finding was later retracted after the discovery that the regulated gene was human homolog of ES1 (HES1), whose function is unknown. 5 15128 MI0000080 hsa-mir-24-1 Homo sapiens miR-24 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACACACUGGCUCAGUUCAGCAGGAACAGGAG miR-24 was identified independently in references [1] and [2], and is predicted to be excised from the 3' arm of a hairpin originating from chromosome 9. The human homologue of mouse miR-189 (MIR:MI0000231) [3] appears to originate from the 5' arm of the same precursor. Landgraf et al. show that the 3' product is the predominant one [7]. miR-189 is therefore renamed miR-24* here. 5 15129 MI0000081 hsa-mir-24-2 Homo sapiens miR-24-2 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGGUUUGUGUACACUGGCUCAGUUCAGCAGGAACAGGG mir-24-2 was identified independently by two groups. This sequence was named miR-24 precursor-19 in reference [2]. 5 15130 MI0000082 hsa-mir-25 Homo sapiens miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC 5 15131 MI0000083 hsa-mir-26a-1 Homo sapiens miR-26a-1 stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [6]. 5 15132 MI0000084 hsa-mir-26b Homo sapiens miR-26b stem-loop CCGGGACCCAGUUCAAGUAAUUCAGGAUAGGUUGUGUGCUGUCCAGCCUGUUCUCCAUUACUUGGCUCGGGGACCGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15133 MI0000085 hsa-mir-27a Homo sapiens miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCCAG This miRNA was previously named miR-27 [1,2] but is renamed here to avoid confusion with the more recently described miR-27b (MIR:MI0000440). 5 15134 MI0000086 hsa-mir-28 Homo sapiens miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUACCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU 5 15135 MI0000087 hsa-mir-29a Homo sapiens miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU miR-29a was previously know as miR-29 here and in [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [6]. 5 15136 MI0000088 hsa-mir-30a Homo sapiens miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC The mature sequences miR-30 [1] and miR-97 [2] appear to originate from the same precursor. Subsequent data confirm that both arms of the precursor appear to give rise to mature miRNA sequences (Pfeffer S, pers. comm.). Landgraf et al. later showed that the 5' product is the predominant one [5]. Related miRNAs are processed from the 5' arms of other precursor loci (mir-30b, MIR:MI0000441; mir-30c-1, MIR:MI0000736; mir-30c-2, MIR:MI0000254; mir-30d, MIR:MI0000255; mir-30e, MI0000749). 5 15137 MI0000089 hsa-mir-31 Homo sapiens miR-31 stem-loop GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15138 MI0000090 hsa-mir-32 Homo sapiens miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15139 MI0000091 hsa-mir-33a Homo sapiens miR-33a stem-loop CUGUGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGUGGUACCCAUGCAAUGUUUCCACAGUGCAUCACAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15140 MI0000093 hsa-mir-92a-1 Homo sapiens miR-92a-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Human miR-92a (previously named miR-92 here) has two predicted hairpin precursor sequences: mir-92a-1 (MIR:MI0000093) on chromosome 13 (named mir-92-13 in [1]) and mir-92a-2 (MIR:MI0000094) on chromosome X (named mir-92-X in [1]). miR-92a has also been cloned from mouse embryonic stem cells [2] and is predicted to be expressed from two closely related precursor hairpins (MIR:MI0000719 and MIR:MI0000580). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [7]. 5 15141 MI0000094 hsa-mir-92a-2 Homo sapiens miR-92a-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Human miR-92a (previously named miR-92 here) has two predicted hairpin precursor sequences: mir-92a-1 (MIR:MI0000093) on chromosome 13 (named mir-92-13 in [1]) and mir-92a-2 (MIR:MI0000094) on chromosome X (named mir-92-X in [1]). miR-92a has also been cloned from mouse embryonic stem cells [2] and is predicted to be expressed from two closely related precursor hairpins (MIR:MI0000719 and MIR:MI0000580). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [7]. 5 15142 MI0000095 hsa-mir-93 Homo sapiens miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCCAACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Mourelatos et al. identified two copies of this sequence mapping to chromosome 7, and assigned the names mir-93-7.1 and mir-93-7.2 [1]. Subsequent genome assemblies suggest the presence of only one miR-93 locus on chromosome 7. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15143 MI0000097 hsa-mir-95 Homo sapiens miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG This sequence is localised to chromosome 4 and was named mir-95-4 in reference [1]. 5 15144 MI0000098 hsa-mir-96 Homo sapiens miR-96 stem-loop UGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA This sequence is localised to chromosome 7 and was named mir-96-7 in reference [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15145 MI0000100 hsa-mir-98 Homo sapiens miR-98 stem-loop AGGAUUCUGCUCAUGCCAGGGUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCCCUGGUGUGUGGCAUAUUCA This sequence is localised to chromosome X and was named mir-98-X reference [1]. The predicted stem-loop precursor sequence is clearly related to let-7. 5 15146 MI0000101 hsa-mir-99a Homo sapiens miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG This sequence is localised to chromosome 21 and was named mir-99-21 in reference [1]. 5 15147 MI0000102 hsa-mir-100 Homo sapiens miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACAAGCUUGUAUCUAUAGGUAUGUGUCUGUUAGG This sequence is localised to chromosome 11 and was named mir-100-11 in reference [1]. 5 15148 MI0000103 hsa-mir-101-1 Homo sapiens miR-101-1 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCUAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Reference [1] reports two miR-101 precursor hairpin structures in human, on chromosome 1 (MIR:MI0000103) and 9 (MIR:MI0000739, named mir-101-precursor-9 in [1]). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15149 MI0000105 hsa-mir-29b-1 Homo sapiens miR-29b-1 stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG Mourelatos et al. identified two copies of this sequence mapping to chromosome 7, and assigned the names mir-102-7.1 and mir-102-7.2 [1]. Subsequent genome assemblies suggest the presence of only one miR-102 locus on chromosome 7. Human miR-102 is a homologue of mouse miR-29b (MIR:MI0000143) and so has been renamed here for consistency. 5 15150 MI0000107 hsa-mir-29b-2 Homo sapiens miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG This sequence was named mir-102-1 in reference [1]. Human miR-102 is a homologue of mouse miR-29b (MIR:MI0000143) and so has been renamed here for consistency. 5 15151 MI0000108 hsa-mir-103-2 Homo sapiens miR-103-2 stem-loop UUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUAGCAUUCAGGUCAAGCAGCAUUGUACAGGGCUAUGAAAGAACCA This sequence was localised to chromosome 20 and named mir-103-20 in reference [1]. 5 15152 MI0000109 hsa-mir-103-1 Homo sapiens miR-103-1 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG This sequence was localised to chromosome 5 and named mir-103-5 in reference [1]. 5 15153 MI0000111 hsa-mir-105-1 Homo sapiens miR-105-1 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Mourelatos et al. [1] reported two identical predicted stem loop sequences located on chromosome X, which they named mir-105-X.1 and mir-105-X.2. These sequences have been renamed mir-105-1 (MIR:MI0000111) and mir-105-2 (MIR:MI0000112) here. mir-105-2 differs slightly from that published in [1] and deposited in EMBL (EMBL:AF480548). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15154 MI0000112 hsa-mir-105-2 Homo sapiens miR-105-2 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUUAUGCACCACGGAUGUUUGAGCAUGUGCUAUGGUGUCUA Mourelatos et al. [1] reported two identical predicted stem loop sequences located on chromosome X, which they named mir-105-X.1 and mir-105-X.2. These sequences have been renamed mir-105-1 (MIR:MI0000111) and mir-105-2 (MIR:MI0000112) here. mir-105-2 differs slightly from that published in [1] and deposited in EMBL (EMBL:AF480548). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15155 MI0000113 hsa-mir-106a Homo sapiens miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGUAAGCACUUCUUACAUUACCAUGG This miRNA was not cloned in reference [1], rather it was identified by homology to miR-91 (MIR:MI0000071). This sequence is localised to chromosome X and was named mir-106-X in [1]. Mouse and human miR-106a (MIR:MI0000406 and MIR:MI0000113) differ at two positions but the precursor sequences are clearly closely related. The sequences are also related to mir-17 (MIR:MI0000071 and MIR:MI0000687). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15156 MI0000114 hsa-mir-107 Homo sapiens miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA This miRNA was identified by homology to miR-103 [1], and later verified by cloning in human [2]. 5 15157 MI0000115 hsa-mir-16-2 Homo sapiens miR-16-2 stem-loop GUUCCACUCUAGCAGCACGUAAAUAUUGGCGUAGUGAAAUAUAUAUUAAACACCAAUAUUACUGUGCUGCUUUAGUGUGAC This entry represents a second putative hairpin precursor sequence for miR-16, located on chromosome 3 (see also MIR:MI0000070). The sequence was previously named mir-16-3 here and in references [1] and [2]. 5 15158 MI0000116 dme-mir-1 Drosophila melanogaster miR-1 stem-loop UUCAGCCUUUGAGAGUUCCAUGCUUCCUUGCAUUCAAUAGUUAUAUUCAAGCAUAUGGAAUGUAAAGAAGUAUGGAGCGAAAUCUGGCGAG 4 15159 MI0000117 dme-mir-2a-1 Drosophila melanogaster miR-2a-1 stem-loop GCUGGGCUCUCAAAGUGGUUGUGAAAUGCAUUUCCGCUUUGCGCGGCAUAUCACAGCCAGCUUUGAUGAGCUUAGC Stark et al. [2] have identified targets for miR-2 in Drosophila using computational prediction followed by experimental validation. miR-2 regulates the proapoptotic genes reaper, grim and sickle, suggesting that it may be involved in the control of apoptosis. 4 15160 MI0000118 dme-mir-2a-2 Drosophila melanogaster miR-2a-2 stem-loop AUCUAAGCCUCAUCAAGUGGUUGUGAUAUGGAUACCCAACGCAUAUCACAGCCAGCUUUGAUGAGCUAGGAU Stark et al. [2] have identified targets for miR-2 in Drosophila using computational prediction followed by experimental validation. miR-2 regulates the proapoptotic genes reaper, grim and sickle, suggesting that it may be involved in the control of apoptosis. 4 15161 MI0000119 dme-mir-2b-1 Drosophila melanogaster miR-2b-1 stem-loop CUUCAACUGUCUUCAAAGUGGCAGUGACAUGUUGUCAACAAUAUUCAUAUCACAGCCAGCUUUGAGGAGCGUUGCGG Stark et al. [2] have identified targets for miR-2 in Drosophila using computational prediction followed by experimental validation. miR-2 regulates the proapoptotic genes reaper, grim and sickle, suggesting that it may be involved in the control of apoptosis. 4 15162 MI0000120 dme-mir-2b-2 Drosophila melanogaster miR-2b-2 stem-loop UUGUGUCAUUCUUCAAAGUGGUUGUGAAAUGUUUGCCUUUUUAUGCCUAUUCAUAUCACAGCCAGCUUUGAGGAGCGACGCGA Stark et al. [2] have identified targets for miR-2 in Drosophila using computational prediction followed by experimental validation. miR-2 regulates the proapoptotic genes reaper, grim and sickle, suggesting that it may be involved in the control of apoptosis. 4 15163 MI0000121 dme-mir-3 Drosophila melanogaster miR-3 stem-loop GAUCCUGGGAUGCAUCUUGUGCAGUUAUGUUUCAAUCUCACAUCACUGGGCAAAGUGUGUCUCAAGAUC 4 15164 MI0000122 dme-mir-4 Drosophila melanogaster miR-4 stem-loop UUGCAAUUAGUUUCUUUGGUCGUCCAGCCUUAGGUGAUUUUUCCGGUCAUAAAGCUAGACAACCAUUGAAGUUCGUUGUGG 4 15165 MI0000123 dme-mir-5 Drosophila melanogaster miR-5 stem-loop GCUAAAAGGAACGAUCGUUGUGAUAUGAGUUGUUUCCUAACAUAUCACAGUGAUUUUCCUUUAUAACGC 4 15166 MI0000124 dme-mir-6-1 Drosophila melanogaster miR-6-1 stem-loop UUUAAUGUAGAGGGAAUAGUUGCUGUGCUGUAAGUUAAUAUACCAUAUCUAUAUCACAGUGGCUGUUCUUUUUGUACCUAAA 4 15167 MI0000125 dme-mir-6-2 Drosophila melanogaster miR-6-2 stem-loop UAACCCAAGGGAACUUCUGCUGCUGAUAUAUUAUUGAAAAACUACUAUAUCACAGUGGCUGUUCUUUUUGGUUG 4 15168 MI0000126 dme-mir-6-3 Drosophila melanogaster miR-6-3 stem-loop CAAAAAGAAGGGAACGGUUGCUGAUGAUGUAGUUUGAAACUCUCACAAUUUAUAUCACAGUGGCUGUUCUUUUUUGUUUG 4 15169 MI0000127 dme-mir-7 Drosophila melanogaster miR-7 stem-loop GAGUGCAUUCCGUAUGGAAGACUAGUGAUUUUGUUGUUUGGUCUUUGGUAAUAACAAUAAAUCCCUUGUCUUCUUACGGCGUGCAUUU Stark et al. [2] have identified targets for miR-7 in Drosophila using computational prediction followed by experimental validation. miR-7 regulates a family of Notch targets including the Enhancer of split and Bearded complex genes Tom and m4, and the basic helix-loop-helix transcriptional repressors HLHm3 and hairy. 4 15170 MI0000128 dme-mir-8 Drosophila melanogaster miR-8 stem-loop AAGGACAUCUGUUCACAUCUUACCGGGCAGCAUUAGAUCCUUUUUAUAACUCUAAUACUGUCAGGUAAAGAUGUCGUCCGUGUCCUU 4 15171 MI0000129 dme-mir-9a Drosophila melanogaster miR-9a stem-loop GCUAUGUUGUCUUUGGUUAUCUAGCUGUAUGAGUGAUAAAUAACGUCAUAAAGCUAGCUUACCGAAGUUAAUAUUAGC This sequence was named miR-9 in reference [1]. The 5' end has been determined by cloning. A length distribution of 21-23 nt was reported with 23 nt most commonly expressed. The sequence maps to chromosome 3L. 4 15172 MI0000130 dme-mir-10 Drosophila melanogaster miR-10 stem-loop CCACGUCUACCCUGUAGAUCCGAAUUUGUUUUAUACUAGCUUUAAGGACAAAUUCGGUUCUAGAGAGGUUUGUGUGG 4 15173 MI0000131 dme-mir-11 Drosophila melanogaster miR-11 stem-loop GCACUUGUCAAGAACUUUCUCUGUGACCCGCGUGUACUUAAAAGCCGCAUCACAGUCUGAGUUCUUGCUGAGUGC 4 15174 MI0000132 dme-mir-12 Drosophila melanogaster miR-12 stem-loop UACGGUUGAGUAUUACAUCAGGUACUGGUGUGCCUUAAAUCCAACAACCAGUACUUAUGUCAUACUACGCCGUG 4 15175 MI0000133 dme-mir-13a Drosophila melanogaster miR-13a stem-loop UACGUAACUCCUCAAAGGGUUGUGAAAUGUCGACUAUUAUCUACUCAUAUCACAGCCAUUUUGAUGAGUUUCGUG 4 15176 MI0000134 dme-mir-13b-1 Drosophila melanogaster miR-13b-1 stem-loop CCAUGUCGUUAAAAUGUUUGUGAACUUAUGUAUUCACAAUCAUAUCACAGCCAUUUUGACGAGUUUGG 4 15177 MI0000135 dme-mir-13b-2 Drosophila melanogaster miR-13b-2 stem-loop UAUUAACGCGUCAAAAUGACUGUGAGCUAUGUGGAUUUGACUUCAUAUCACAGCCAUUUUGACGAGUUUG 4 15178 MI0000136 dme-mir-14 Drosophila melanogaster miR-14 stem-loop UGUGGGAGCGAGACGGGGACUCACUGUGCUUAUUAAAUAGUCAGUCUUUUUCUCUCUCCUAUA miR-14 was identified in D. melanogaster by cloning and Northern blot [1]. miR-14 has been reported to act as a cell death repressor and regulator of fat metabolism [2]. 4 15179 MI0000137 mmu-let-7g Mus musculus let-7g stem-loop CCAGGCUGAGGUAGUAGUUUGUACAGUUUGAGGGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCCACUGCCUUGCCAGG The mature sequence reported in [1] has a 3' terminal A residue, which is incompatible with the reported precursor sequence from [1] and in this entry. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15180 MI0000138 mmu-let-7i Mus musculus let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15181 MI0000139 mmu-mir-1-1 Mus musculus miR-1-1 stem-loop GCUUGGGACACAUACUUCUUUAUAUGCCCAUAUGAACCUGCUAAGCUAUGGAAUGUAAAGAAGUAUGUAUUUCAGGC Lagos-Quintana et al. [1] reported the cloning of miR-1b, miR-1c and miR-1d. The mature processed miR sequences are identical apart from the 3' residues (A in mir-1b, C in mir-1c and UU in mir-1d). The 3' residues of both miR-1b and miR-1c conflict with the predicted stem-loop precursor sequence shown here and these sequences are not found in current assemblies of human and mouse genomes. It is suggested that polyA polymerase may add 1-3 nts to the 3' end of the mature transcript (Tom Tuschl, pers. comm.). The common 21 nts of the 3 reported miR sequences have been rationalised here and named miR-1. There are 2 pairs of orthologous putative hairpin precursor structures named mir-1-1 (human MIR:MI0000651, mouse MIR:MI0000139), and mir-1-2 (human MIR:MI0000437, mouse MIR:MI0000652). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15182 MI0000140 mmu-mir-15b Mus musculus miR-15b stem-loop CUGUAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAG 6 15183 MI0000141 mmu-mir-23b Mus musculus miR-23b stem-loop GGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUGAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAACC 6 15184 MI0000142 mmu-mir-27b Mus musculus miR-27b stem-loop AGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGGUUUCCGCUUUGUUCACAGUGGCUAAGUUCUGCACCU 6 15185 MI0000143 mmu-mir-29b-1 Mus musculus miR-29b-1 stem-loop AGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCU 6 15186 MI0000144 mmu-mir-30a Mus musculus miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAAAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC Landgraf et al. confirm that the 5' mature miRNA product is the predominant one [4]. 6 15187 MI0000145 mmu-mir-30b Mus musculus miR-30b stem-loop CUAAGCCAAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUCAUACAUGCGUUGGCUGGGAUGUGGAUGUUUACGUCAGCUGUCUUGGAGUAU 6 15188 MI0000146 mmu-mir-99a Mus musculus miR-99a stem-loop CAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCGCAAGCUCGUUUCUAUGGGUCUGUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15189 MI0000147 mmu-mir-99b Mus musculus miR-99b stem-loop GGCACCCACCCGUAGAACCGACCUUGCGGGGCCUUCGCCGCACACAAGCUCGUGUCUGUGGGUCCGUGUC Expression of this miRNA in mouse was independently verified in the brain [1], embryonic stem cells [2] and testes [3]. 6 15190 MI0000148 mmu-mir-101a Mus musculus miR-101a stem-loop AGGCUGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCAGCCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15191 MI0000150 mmu-mir-124-3 Mus musculus miR-124-3 stem-loop CUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGUCUAUACAAUUAAGGCACGCGGUGAAUGCCAAGAG miR-124 was cloned from mouse brain [1] and embryonic stem cells [2] by independent groups. There are 3 predicted precursor hairpin sequences: mir-124-1 (MIR:MI0000716) on chromosome 14, mir-124-2 (MIR:MI0000717) on chromosome 3, and mir-124-3 (previously known as miR-124a here, MIR:MI0000150) on chromosome 2. All have closely related predicted human homologues (MIR:MI0000443, MIR:MI0000444 and MIR:MI0000445). Lagos-Quintana et al. also report a mature miRNA sequence miR-124b, with a G insertion at position 12 [1]. miR-124b is not found in either the mouse or human genome assemblies. 6 15192 MI0000151 mmu-mir-125a Mus musculus miR-125a stem-loop CUGGGUCCCUGAGACCCUUUAACCUGUGAGGACGUCCAGGGUCACAGGUGAGGUUCUUGGGAGCCUGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15193 MI0000152 mmu-mir-125b-2 Mus musculus miR-125b-2 stem-loop GCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGUUCUUGGGACCUAGGC Mouse miR-125b was cloned from mouse brain tissues in [1]. There are 2 predicted hairpin precursor structures in the mouse genome, each has a closely related human homologue [2] (mir-125b-1, MIR:MI0000725; mir-125b-2, MIR:MI0000152; the latter was previously named mir-125b here). 6 15194 MI0000153 mmu-mir-126 Mus musculus miR-126 stem-loop UGACAGCACAUUAUUACUUUUGGUACGCGCUGUGACACUUCAAACUCGUACCGUGAGUAAUAAUGCGCGGUCA miR-123 identified in [1] was later found to originate from the same precursor as miR-126 and was hence renamed miR-126-5p. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15195 MI0000154 mmu-mir-127 Mus musculus miR-127 stem-loop CCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [6]. 6 15196 MI0000155 mmu-mir-128-1 Mus musculus miR-128-1 stem-loop GUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGC The most commonly cloned mature sequences derived from the previously annotated mir-128a and mir-128b were shown by Landgraf et al to be identical [3]. The sequences are therefore renamed mir-128-1 and mir-128-2. 6 15197 MI0000156 mmu-mir-130a Mus musculus miR-130a stem-loop GAGCUCUUUUCACAUUGUGCUACUGUCUAACGUGUACCGAGCAGUGCAAUGUUAAAAGGGCAUC This sequence was named miR-130 in reference [1], but is renamed here to avoid confusion with miR-130b (MIR:MI0000408). 6 15198 MI0000157 mmu-mir-9-2 Mus musculus miR-9-2 stem-loop GUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAAC Mouse miR-9 was cloned from mouse brain tissues in [1]. There are 3 predicted hairpin precursor structures in the mouse genome, each has a closely related human homologue [3]. Two copies of mir-9-1 (MIR:MI0000720) are found as part of a larger duplicated region on mouse chromosome 3, mir-9-2 (MIR:MI0000157, previously named mir-9 here) is found on chromosome 13, and mir-9-3 (MIR:MI0000721) on chromosome 7. miR-9* was described as miR-131 in reference [1], but appears to be expressed from the opposite arm of all 3 mir-9 predicted stem-loops. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15199 MI0000158 mmu-mir-132 Mus musculus miR-132 stem-loop GGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAACCGGAGGUAACAGUCUACAGCCAUGGUCGCCC 6 15200 MI0000159 mmu-mir-133a-1 Mus musculus miR-133a-1 stem-loop GCUAAAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGC This mature miRNA sequence was named miR-133 in reference [1], and renamed miR-133a on subsequent identification of a homologue differing at the terminal 3' position (MIR:MI0000821). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15201 MI0000160 mmu-mir-134 Mus musculus miR-134 stem-loop AGGGUGUGUGACUGGUUGACCAGAGGGGCGUGCACUCUGUUCACCCUGUGGGCCACCUAGUCACCAACCCU 6 15202 MI0000161 mmu-mir-135a-1 Mus musculus miR-135-1 stem-loop AGGCCUCACUGUUCUCUAUGGCUUUUUAUUCCUAUGUGAUUCUAUUGCUCGCUCAUAUAGGGAUUGGAGCCGUGGCGUACGGUGAGGAUA 6 15203 MI0000162 mmu-mir-136 Mus musculus miR-136 stem-loop GAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAAGCUCCAUCAUCGUCUCAAAUGAGUCUUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15204 MI0000163 mmu-mir-137 Mus musculus miR-137 stem-loop CUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUCGAGG 6 15205 MI0000164 mmu-mir-138-2 Mus musculus miR-138-2 stem-loop CAGCUGGUGUUGUGAAUCAGGCCGACGAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUG Mouse miR-138 was cloned from mouse brain tissue in [1]. There are 2 predicted hairpin precursor structures in the mouse genome, each has a closely related human homologue [2]. mir-138-1 (MIR:MI0000722) is found on mouse chromosome 8, and mir-138-2 (MIR:MI0000164, previously named mir-138 here) on chromosome 9. Kim et al. and Obernosterer et al. independently show that the mature product is a 23mer [3,4]. 6 15206 MI0000165 mmu-mir-140 Mus musculus miR-140 stem-loop CCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGG 6 15207 MI0000166 mmu-mir-141 Mus musculus miR-141 stem-loop GGGUCCAUCUUCCAGUGCAGUGUUGGAUGGUUGAAGUAUGAAGCUCCUAACACUGUCUGGUAAAGAUGGCCC 6 15208 MI0000167 mmu-mir-142 Mus musculus miR-142 stem-loop ACCCAUAAAGUAGAAAGCACUACUAACAGCACUGGAGGGUGUAGUGUUUCCUACUUUAUGGAUG Expression of miRNAs from both 5' and 3' arms of this precursor have been independently verified in the mouse gut tissue [1] and in embryonic stem cells [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15209 MI0000168 mmu-mir-144 Mus musculus miR-144 stem-loop GGCUGGGAUAUCAUCAUAUACUGUAAGUUUGUGAUGAGACACUACAGUAUAGAUGAUGUACUAGUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15210 MI0000169 mmu-mir-145 Mus musculus miR-145 stem-loop CUCACGGUCCAGUUUUCCCAGGAAUCCCUUGGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15211 MI0000170 mmu-mir-146a Mus musculus miR-146a stem-loop AGCUCUGAGAACUGAAUUCCAUGGGUUAUAUCAAUGUCAGACCUGUGAAAUUCAGUUCUUCAGCU 6 15212 MI0000171 mmu-mir-149 Mus musculus miR-149 stem-loop GGCUCUGGCUCCGUGUCUUCACUCCCGUGUUUGUCCGAGGAGGGAGGGAGGGACGGGGGCGGUGCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15213 MI0000172 mmu-mir-150 Mus musculus miR-150 stem-loop CCCUGUCUCCCAACCCUUGUACCAGUGCUGUGCCUCAGACCCUGGUACAGGCCUGGGGGAUAGGG 6 15214 MI0000173 mmu-mir-151 Mus musculus miR-151 stem-loop CCUGCCCUCGAGGAGCUCACAGUCUAGUAUGUCUCCUCCCUACUAGACUGAGGCUCCUUGAGGACAGG 6 15215 MI0000174 mmu-mir-152 Mus musculus miR-152 stem-loop CCGGGCCUAGGUUCUGUGAUACACUCCGACUCGGGCUCUGGAGCAGUCAGUGCAUGACAGAACUUGGGCCCGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15216 MI0000175 mmu-mir-153 Mus musculus miR-153 stem-loop CGGUGUCAUUUUUGUGACGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUG 6 15217 MI0000176 mmu-mir-154 Mus musculus miR-154 stem-loop GAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUCGUGACGAAUCAUACACGGUUGACCUAUUUUU 6 15218 MI0000177 mmu-mir-155 Mus musculus miR-155 stem-loop CUGUUAAUGCUAAUUGUGAUAGGGGUUUUGGCCUCUGACUGACUCCUACCUGUUAGCAUUAACAG Mouse mir-155 resides in the non-coding BIC transcript (EMBL:AY096003), located on chromosome 16 [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15219 MI0000178 ath-MIR156a Arabidopsis thaliana miR156a stem-loop CAAGAGAAACGCAAAGAAACUGACAGAAGAGAGUGAGCACACAAAGGCAAUUUGCAUAUCAUUGCACUUGCUUCUCUUGCGUGCUCACUGCUCUUUCUGUCAGAUUCCGGUGCUGAUCUCUUU MIR156a is found on chromosome 2 in Arabidopsis thaliana [1] and is thought to target 10 mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box. The complementary sites are downstream of this conserved domain, within a poorly conserved protein-coding context or the 3' UTR [2]. 1 15220 MI0000179 ath-MIR156b Arabidopsis thaliana miR156b stem-loop GCUAGAAGAGGGAGAGAUGGUGAUUGAGGAAUGCAACAGAGAAAACUGACAGAAGAGAGUGAGCACAUGCAGGCACUGUUAUGUGUCUAUAACUUUGCGUGUGCGUGCUCACCUCUCUUUCUGUCAGUUGCCUAUCUCUGCCUGCUUGACCUCUCUCUCUCUCUCUCUCUCUCAAAUUUGGCU MIR156b is found on chromosome 4 in Arabidopsis thaliana [1] and is thought to target 10 mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box. The complementary sites are downstream of this conserved domain, within a poorly conserved protein-coding context or the 3' UTR [2]. 1 15221 MI0000180 ath-MIR156c Arabidopsis thaliana miR156c stem-loop CGCAUAGAAACUGACAGAAGAGAGUGAGCACACAAAGGCACUUUGCAUGUUCGAUGCAUUUGCUUCUCUUGCGUGCUCACUGCUCUAUCUGUCAGAUUCCGGCU MIR156c is found on chromosome 4 in Arabidopsis thaliana [1] and is thought to target 10 mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box. The complementary sites are downstream of this conserved domain, within a poorly conserved protein-coding context or the 3' UTR [2]. 1 15222 MI0000181 ath-MIR156d Arabidopsis thaliana miR156d stem-loop GAUGGGGGAAAAGAAGUUGACAGAAGAGAGUGAGCACACAAAGGGGAAGUUGUAUAAAAGUUUUGUAUAUGGUUGCUUUUGCGUGCUCACUCUCUUUUUGUCAUAACUUCUCCUUCAU MIR156d is found on chromosome 5 in Arabidopsis thaliana [1] and is thought to target 10 mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box. The complementary sites are downstream of this conserved domain, within a poorly conserved protein-coding context or the 3' UTR [2]. 1 15223 MI0000182 ath-MIR156e Arabidopsis thaliana miR156e stem-loop AGGAGGUGACAGAAGAGAGUGAGCACACAUGGUGGUUUCUUGCAUGCUUUUUUGAUUAGGGUUUCAUGCUUGAAGCUAUGUGUGCUUACUCUCUCUCUGUCACCCCU MIR156e is found on chromosome 5 in Arabidopsis thaliana [1] and is thought to target 10 mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box. The complementary sites are downstream of this conserved domain, within a poorly conserved protein-coding context or the 3' UTR [2]. 1 15224 MI0000183 ath-MIR156f Arabidopsis thaliana miR156f stem-loop GAGUGGUGAGGAAUUGAUGGUGACAGAAGAGAGUGAGCACACAUGGUGGCUUUCUUGCAUAUUUGAAGGUUCCAUGCUUGAAGCUAUGUGUGCUCACUCUCUAUCCGUCACCCCCUUCUCUCCCUCUCCCUC MIR156f is found on chromosome 5 in Arabidopsis thaliana [1] and is thought to target 10 mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box. The complementary sites are downstream of this conserved domain, within a poorly conserved protein-coding context or the 3' UTR [2]. 1 15225 MI0000184 ath-MIR157a Arabidopsis thaliana miR157a stem-loop GUGUUGACAGAAGAUAGAGAGCACAGAUGAUGAGAUACAAUUCGGAGCAUGUUCUUUGCAUCUUACUCCUUUGUGCUCUCUAGCCUUCUGUCAUCACC MIR157a is found on chromosome 1 in Arabidopsis thaliana [1] and is thought, like the miR156 family, to target mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box [2]. 1 15226 MI0000185 ath-MIR157b Arabidopsis thaliana miR157b stem-loop UGGGAGGCAUUGAUAGUGUUGACAGAAGAUAGAGAGCACAGAUGAUAAGAUACAAUUCCUCGCAGCUUCUUUGCAUCUUACUCCUUUGUGCUCUCUAGCCUUCUGUCAUCACCCGUUAUUUGCCAUCACCCA MIR157b is found on chromosome 1 in Arabidopsis thaliana [1] and is thought, like the miR156 family, to target mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box [2]. 1 15227 MI0000186 ath-MIR157c Arabidopsis thaliana miR157c stem-loop AGGUUUGAGAGUGAUGUUGGUUGUUGACAGAAGAUAGAGAGCACUAAGGAUGACAUGCAAGUACAUACAUAUAUAUCAUCACACCGCAUGUGGAUGAUAAAAUAUGUAUAACAAAUUCAAAGAAAGAGAGGGAGAGAAAGAGAGAGAACCUGCAUCUCUACUCUUUUGUGCUCUCUAUACUUCUGUCACCACCUUUAUCUCUUCUUCUCUCUAACCU MIR157c is found on chromosome 3 in Arabidopsis thaliana [1] and is thought, like the miR156 family, to target mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box [2]. 1 15228 MI0000187 ath-MIR157d Arabidopsis thaliana miR157d stem-loop GUGGAGGGUGAUAGUGUGGUUGCUGACAGAAGAUAGAGAGCACUAAGGAUGCUAUGCAAAACAGACACAGAUAUGUGUUUCUAAUUGUAUUUCAUACUUUAACCUCAAAGUUGAUAUAAAAAAAGAAAGAAAGAUAGAAGAGCUAGAAGACUAUCUGCAUCUCUAUUCCUAUGUGCUCUCUAUGCUUCUGUCAUCACCUUUCUUUCUCUAUUUCUCUCUAC MIR157d is found on chromosome 1 in Arabidopsis thaliana [1] and is thought, like the MIR156 family, to target mRNAs coding for proteins containing the Squamosa-promoter Binding Protein (SBP) box [2]. 1 15229 MI0000188 ath-MIR158a Arabidopsis thaliana miR158a stem-loop ACACGUCAUCUCUGUGCUUCUUUGUCUACAAUUUUGGAAAAAGUGAUGACGCCAUUGCUCUUUCCCAAAUGUAGACAAAGCAAUACCGUGAUGAUGUCGU MIR158 is found on chromosome 3 in Arabidopsis thaliana [1]. The target of this miRNA is unknown [2]. 1 15230 MI0000189 ath-MIR159a Arabidopsis thaliana miR159a stem-loop GUAGAGCUCCUUAAAGUUCAAACAUGAGUUGAGCAGGGUAAAGAAAAGCUGCUAAGCUAUGGAUCCCAUAAGCCCUAAUCCUUGUAAAGUAAAAAAGGAUUUGGUUAUAUGGAUUGCAUAUCUCAGGAGCUUUAACUUGCCCUUUAAUGGCUUUUACUCUUCUUUGGAUUGAAGGGAGCUCUAC MIR159a was identified independently by Reinhart et al. [1] and Mette et al. [2]. The latter group referred to this sequence by the internal identifier MIR40a. This sequence is not related to C. elegans miR-40. MIR159a is found on chromosome 1 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for MYB proteins which are known to bind to the promoter of the floral meristem identity gene LEAFY [3]. 1 15231 MI0000190 ath-MIR160a Arabidopsis thaliana miR160a stem-loop GUAUGCCUGGCUCCCUGUAUGCCAUAUGCUGAGCCCAUCGAGUAUCGAUGACCUCCGUGGAUGGCGUAUGAGGAGCCAUGCAUAU MIR160a is found on chromosome 2 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for auxin response factor proteins [2]. 1 15232 MI0000191 ath-MIR160b Arabidopsis thaliana miR160b stem-loop GUCGUGCCUGGCUCCCUGUAUGCCACAAGAAAACAUCGAUUUAGUUUCAAAAUCGAUCACUAGUGGCGUACAGAGUAGUCAAGCAUGAC MIR160b is found on chromosome 4 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for auxin response factor proteins [2]. 1 15233 MI0000192 ath-MIR160c Arabidopsis thaliana miR160c stem-loop GUUAUGCCUGGCUCCCUGUAUGCCACGAGUGGAUACCGAUUUUGGUUUUAAAAUCGGCUGCCGGUGGCGUACAAGGAGUCAAGCAUGAC MIR160c is found on chromosome 5 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for auxin response factor proteins [2]. 1 15234 MI0000193 ath-MIR161 Arabidopsis thaliana miR161 stem-loop UGCUUGAUCUCGGUUUUUGACCAGUUUAUUGCGUCGAUCAAUGCAUUGAAAGUGACUACAUCGGGGUUCCGAUUUUUUUUGUUCUUCAUAUGAUGAAGCGGAAACAGUAAUCAACCCUGGUUUAGUCACUUUCACUGCAUUAAUCAAUGCAUUUGUAAAAAGAGGGAAAAGCA MIR161 is found on chromosome 1 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for PPR repeat proteins [2]. 1 15235 MI0000194 ath-MIR162a Arabidopsis thaliana miR162a stem-loop UAGUUGGAAGAAGAGUGAGAGUCGCUGGAGGCAGCGGUUCAUCGAUCUCUUCCUGUGAACACAUUAAAAAUGUAAAAGCAUGAAUAGAUCGAUAAACCUCUGCAUCCAGCGUUUGCCUCUUGUAUCUUUCUUAUUGACUU MIR162a is found on chromosome 5 in Arabidopsis thaliana [1] and its target is unknown. 1 15236 MI0000195 ath-MIR162b Arabidopsis thaliana miR162b stem-loop GAGUGAAGUCGCUGGAGGCAGCGGUUCAUCGAUCAAUUCCUGUGAAUAUUUAUUUUUGUUUACAAAAGCAAGAAUCGAUCGAUAAACCUCUGCAUCCAGCGCUGCUUGCUC MIR162b is found on chromosome 5 in Arabidopsis thaliana [1] and its target is unknown. 1 15237 MI0000196 ath-MIR163 Arabidopsis thaliana miR163 stem-loop ACCCGGUGGAUAAAAUCGAGUUCCAACCUCUUCAACGACAACGAUUUCAACACUCUCUUCCAGGAACAACUUCCUCCAGGCAGAUGAUACUAAAGUGCUGGAGUUCCCGGUUCCUGAGAGUGAGUCCAUAUCAAAAUGCGCAUUCGUUAUCACUUGGUUGAACCCAUUUGGGGAUUUAAAUUUGGAGGUGAAAUGGAACGCGUAAUUGAUGACUCCUACGUGGAACCUCUUCUUAGGAAGAGCACGGUCGAAGAAGUAACUGCGCAGUGCUUAAAUCGUAGAUGCUAAAGUCGUUGAAGAGGACUUGGAACUUCGAUAUUAUCCCCCGUGU MIR163 is found on chromosome 1 in Arabidopsis thaliana [1] and its target is unknown. 1 15238 MI0000197 ath-MIR164a Arabidopsis thaliana miR164a stem-loop GGGUGAGAAUCUCCAUGUUGGAGAAGCAGGGCACGUGCAAACCAACAAACACGAAAUCCGUCUCAUUUGCUUAUUUGCACGUACUUAACUUCUCCAACAUGAGCUCUUCACCC MIR164a is found on chromosome 2 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for NAC domain containing proteins such as Cup-Shaped Cotyledon 2 (CUC2) which is required for shoot apical meristem formation [2]. 1 15239 MI0000198 ath-MIR164b Arabidopsis thaliana miR164b stem-loop GAUGGAGAAGCAGGGCACGUGCAUUACUAGCUCAUAUAUACACUCUCACCACAAAUGCGUGUAUAUAUGCGGAAUUUUGUGAUAUAGAUGUGUGUGUGUGUUGAGUGUGAUGAUAUGGAUGAGUUAGUUCUUCAUGUGCCCAUCUUCACCAUC MIR164b is found on chromosome 5 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for NAC domain containing proteins such as Cup-Shaped Cotyledon 2 (CUC2) which is required for shoot apical meristem formation [2]. 1 15240 MI0000199 ath-MIR165a Arabidopsis thaliana miR165a stem-loop GUUGAGGGGAAUGUUGUCUGGAUCGAGGAUAUUAUAGAUAUAUACAUGUGUAUGUUAAUGAUUCAAGUGAUCAUAGAGAGUAUCCUCGGACCAGGCUUCAUCCCCCCCAAC MIR165a is found on chromosome 1 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15241 MI0000200 ath-MIR165b Arabidopsis thaliana miR165b stem-loop UGAAGAGGCUAUUUCUGUUGUGGGGAAUGUUGUUUGGAUCGAGGAUAUCAUAAACGCAUACACAUGUUUAUAUGUUAUGAUGCAUUAUAUGACUGAUGUAAUGUACAUAUAUAUACAUACAUGCCACAUGGUAUCGUCGGACCAGGCUUCAUCCCCCUCAACAUGUUAAUUGCCUUCAAUCA MIR165b is found on chromosome 4 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15242 MI0000201 ath-MIR166a Arabidopsis thaliana miR166a stem-loop AGGGGCUUUCUCUUUUGAGGGGACUGUUGUCUGGCUCGAGGACUCUGGCUCGCUCUAUUCAUGUUGGAUCUCUUUCGAUCUAACAAUCGAAUUGAACCUUCAGAUUUCAGAUUUGAUUAGGGUUUUAGCGUCUUCGGACCAGGCUUCAUUCCCCCCAAUUGUUGCUCCCU MIR166a is found on chromosome 2 in Arabidopsis thaliana [1] and, like miR165, is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15243 MI0000202 ath-MIR166b Arabidopsis thaliana miR166b stem-loop UUGAGGGGACUGUUGUCUGGCUCGAGGACUCUUAUUCUAAUACAAUCUCAUUUGAAUACAUUCAGAUCUGAUGAUUGAUUAGGGUUUUAGUGUCGUCGGACCAGGCUUCAUUCCCCCCAA MIR166b is found on chromosome 3 in Arabidopsis thaliana [1] and, like miR165, is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15244 MI0000203 ath-MIR166c Arabidopsis thaliana miR166c stem-loop GCGAUUUAGUGUUGAGAGGAUUGUUGUCUGGCUCGAGGUCAUGAAGAAGAGAAUCACUCGAAUUAAUUUGGAAGAACAAAUUAAGAAAACCCUAGAUGAUUCUCGGACCAGGCUUCAUUCCCCCUAACCUACUUAUCGC MIR166c is found on chromosome 5 in Arabidopsis thaliana [1] and, like miR165, is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15245 MI0000204 ath-MIR166d Arabidopsis thaliana miR166d stem-loop GGUUGAGAGGAAUAUUGUCUGGCUCGAGGUCAUGAAGAAGAUCGGUAGAUUGAUUCAUUUUAAAGAGUGAAAUCCCUAAAUGAUUCUCGGACCAGGCUUCAUUCCCCCCAACC MIR166d is found on chromosome 5 in Arabidopsis thaliana [1] and, like miR165, is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15246 MI0000205 ath-MIR166e Arabidopsis thaliana miR166e stem-loop UUGAGGGGAAUGUUGUCUGGCACGAGGCCCUUAACUUAGAUCUAUAUUUGAUUAUAUAUAUAUGUCUCUUCUUUAUUCAUUAGUCUAUACAUGAAUGAUCAUUUUACGGUUAAUGACGUCGGACCAGGCUUCAUUCCCCUCAA MIR166e is found on chromosome 5 in Arabidopsis thaliana [1] and, like miR165, is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15247 MI0000206 ath-MIR166f Arabidopsis thaliana miR166f stem-loop AAGUUCAGGUGAAUGAUGCCUGGCUCGAGACCAUUCAAUCUCAUGAUCUCAUGAUUAUAACGAUGAUGAUGAUGAUGUCGGACCAGGCUUCAUUCCCCUCAACUU MIR166f is found on chromosome 5 in Arabidopsis thaliana [1] and, like miR165, is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15248 MI0000207 ath-MIR166g Arabidopsis thaliana miR166g stem-loop GCGAUUUAGGGUUUAGAGGAAUGUUGUUUGGCUCGAGGUCAUGGAGAGUAAUUCGUUAACCCAACUCAAAACUCUAAAUGAUUCUCGGACCAGGCUUCAUUCCCCUCAACCUAUUUUAUCGC MIR166g is found on chromosome 5 in Arabidopsis thaliana [1] and, like miR165, is thought to target mRNAs coding for HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV) that regulate axillary meristem initiation and leaf development [2]. 1 15249 MI0000208 ath-MIR167a Arabidopsis thaliana miR167a stem-loop UGGUGCACCGGCAUCUGAUGAAGCUGCCAGCAUGAUCUAAUUAGCUUUCUUUAUCCUUUGUUGUGUUUCAUGACGAUGGUUAAGAGAUCAGUCUCGAUUAGAUCAUGUUCGCAGUUUCACCCGUUGACUGUCGCACCC MIR167a is found on chromosome 3 in Arabidopsis thaliana [1] and is thought, like miR160, to target mRNAs coding for auxin response factors, DNA binding proteins that are thought to control transcription in response to the phytohormone auxin. Transcriptional regulation is important for many of the diverse developmental responses to auxin signals, which include cell elongation, division, and differentiation in both roots and shoots [2]. 1 15250 MI0000209 ath-MIR167b Arabidopsis thaliana miR167b stem-loop GGGAACAAGUGAAGCUGCCAGCAUGAUCUAUCUUUGGUUAAGAGAUGAAUGUGGAAACAUAUUGCUUAAACCCAAGCUAGGUCAUGCUCUGACAGCCUCACUCCUUCCU MIR167b is found on chromosome 3 in Arabidopsis thaliana [1] and is thought, like miR160, to target mRNAs coding for auxin response factors, DNA binding proteins that are thought to control transcription in response to the phytohormone auxin. Transcriptional regulation is important for many of the diverse developmental responses to auxin signals, which include cell elongation, division, and differentiation in both roots and shoots [2]. 1 15251 MI0000210 ath-MIR168a Arabidopsis thaliana miR168a stem-loop CACCAUCGGGCUCGGAUUCGCUUGGUGCAGGUCGGGAACCAAUUCGGCUGACACAGCCUCGUGACUUUUAAACCUUUAUUGGUUUGUGAGCAGGGAUUGGAUCCCGCCUUGCAUCAACUGAAUCGGAUCCUCGAGGUG MIR168a is found on chromosome 4 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for Argonaute (AGO1), which is required for axillary shoot meristem formation and leaf development in Arabidopsis. It has been suggested that AGO1 may also influence miRNA accumulation in plants and that miR168 may act as a negative-feedback mechanism for controlling expression of the AGO1 gene [2]. 1 15252 MI0000211 ath-MIR168b Arabidopsis thaliana miR168b stem-loop UUACCGGCGGUCUCGGAUUCGCUUGGUGCAGGUCGGGAACUGAUUGGCUGACACCGACACGUGUCUUGUCAUGGUUGGUUUGUGAGCUCCCGUCUUGUAUCAACUGAAUCGGAGUCCGAGGUGA MIR168b is found on chromosome 5 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for Argonaute (AGO1), which is required for axillary shoot meristem formation and leaf development in Arabidopsis. It has been suggested that AGO1 may also influence miRNA accumulation in plants and that miR168 may act as a negative-feedback mechanism for controlling expression of the AGO1 gene [2]. 1 15253 MI0000212 ath-MIR169a Arabidopsis thaliana miR169a stem-loop GUGACGAAAGUAGUGUGCAGCCAAGGAUGACUUGCCGAUUUAAAUGAUCUUUCUUUAUACUCUAUUAAGACAAUUUAGUUUCAAACUUUUUUUUUUUUUUUUUUUUGAAGGAUUCAGGAAGAAAUUAGGAUAUAUUAUUCCGUAUAAAAUACAAGAUAUAUAAAACCAAAAAGAAAAAGUAACAUGAUCGGCAAGUUGUCCUUGGCUACACGUUACUUUGUGUCGC MIR169 is found on chromosome 3 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for CCAAT binding factor (CBF)-HAP2-like proteins [2]. 1 15254 MI0000213 ath-MIR170 Arabidopsis thaliana miR170 stem-loop CGAGAGAGUCCCUCUGAUAUUGGCCUGGUUCACUCAGAUUCUCUUUUACUAACUCAUCUGAUUGAGCCGUGUCAAUAUCUCAGUCCUCUCUCG MIR170 is found on chromosome 5 in Arabidopsis thaliana [1] and is thought to target mRNAs coding for GRAS domain or SCARECROW-like proteins, a family of transcription factors whose members have been implicated in radial patterning in roots, signaling by the phytohormone gibberellin, and light signaling [2]. 1 15255 MI0000214 ath-MIR171a Arabidopsis thaliana miR171a stem-loop AUGAGAGAGUCCCUUUGAUAUUGGCCUGGUUCACUCAGAUCUUACCUGACCACACACGUAGAUAUACAUUAUUCUCUCUAGAUUAUCUGAUUGAGCCGCGCCAAUAUCUCAGUACUCUCUCGU MIR171 is found on chromosomes 2, 3 and 4 in Arabidopsis thaliana [1] and is thought, like miR170, to target mRNAs coding for GRAS domain or SCARECROW-like proteins, a family of transcription factors whose members have been implicated in radial patterning in roots, signaling by the phytohormone gibberellin, and light signaling [2]. 1 15256 MI0000215 ath-MIR172a Arabidopsis thaliana miR172a stem-loop UGCUGUGGCAUCAUCAAGAUUCACAUCUGUUGAUGGACGGUGGUGAUUCACUCUCCACAAAGUUCUCUAUGAAAAUGAGAAUCUUGAUGAUGCUGCAUCGGC This sequence was independently identified by two groups. Park et al. described miR172a1, found on chromosome 2 in Arabidopsis thaliana and thought to target mRNAs coding for Apetala 2 (AP2) proteins, and miR172a2 (MIR:MI0000216) [1]. These sequences have been renamed miR172a and miR172b here to match previous plant miRNA nomenclature. This sequence was referred to by Mette et al. by the internal identifier MIR123a [2], and was previously identified as MIR180a here. This sequence is not related to mouse miR-123. 1 15257 MI0000216 ath-MIR172b Arabidopsis thaliana miR172b stem-loop AGGCGCAGCACCAUUAAGAUUCACAUGGAAAUUGAUAAAUACCCUAAAUUAGGGUUUUGAUAUGUAUAUGAGAAUCUUGAUGAUGCUGCAUCAAC This sequence was independently identified by two groups. Park et al. described miR172a2, found on chromosome 5 in Arabidopsis thaliana and thought to target mRNAs coding for Apetala 2 (AP2) proteins, and miR172a1 (MIR:MI0000215) [1]. These sequences have been renamed miR172b and miR172a here to match previous plant miRNA nomenclature. This sequence was referred to by Mette et al. by the internal identifier MIR123b [2], and was previously identified as MIR180b here. This sequence is not related to mouse miR-123. Wang et al. [2] report Northern blot evidence for the miR172b* sequence from the opposite arm of the precursor. 1 15258 MI0000217 ath-MIR173 Arabidopsis thaliana miR173 stem-loop UAAGUACUUUCGCUUGCAGAGAGAAAUCACAGUGGUCAAAAAAGUUGUAGUUUUCUUAAAGUCUCUUUCCUCUGUGAUUCUCUGUGUAAGCGAAAGAGCUUG MIR173 is found on chromosome 3 in Arabidopsis thaliana and is thought to target mRNAs coding for a protein of unknown function (At3g28460) [1]. 1 15259 MI0000218 ath-MIR159b Arabidopsis thaliana miR159b stem-loop GGAAGAGCUCCUUGAAGUUCAAUGGAGGGUUUAGCAGGGUGAAGUAAAGCUGCUAAGCUAUGGAUCCCAUAAGCCUUAUCAAAUUCAAUAUAAUUGAUGAUAAGGUUUUUUUUAUGGAUGCCAUAUCUCAGGAGCUUUCACUUACCCCUUUAAUGGCUUCACUCUUCUUUGGAUUGAAGGGAGCUCUUCAUCUCUC Reference [1] described the discovery of MIR159b, but referred to the sequence by the internal identifier MIR40b. This sequence is not related to C. elegans miR-40. MIR159b is found on chromosome 1 in Arabidopsis thaliana [2] and is thought to target mRNAs coding for MYB proteins which are known to bind to the promoter of the floral meristem identity gene LEAFY [3]. 1 15260 MI0000221 mmu-mir-10b Mus musculus miR-10b stem-loop UAUAUACCCUGUAGAACCGAAUUUGUGUGGUACCCACAUAGUCACAGAUUCGAUUCUAGGGGAAUAUA The sequence of mouse miR-10b, as reported by Lagos-Quintana et al. [1], is offset by 2 nt in the 3' direction with respect to sequences cloned from human (MIR:MI0000267) and zebrafish (MIR:MI0001364). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15261 MI0000222 mmu-mir-129-1 Mus musculus miR-129-1 stem-loop UGGAUCUUUUUGCGGUCUGGGCUUGCUGUUCUCUCGACAGUAGUCAGGAAGCCCUUACCCCAAAAAGUAUCUA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15262 MI0000223 mmu-mir-181a-2 Mus musculus mir-181a-2 stem-loop CCAUGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUCAAAAACAAAAAAACCACCGACCGUUGACUGUACCUUGG Mouse miR-181a (previously named miR-181 here and in [1]) was cloned from various mouse tissues in [1]. Expression has also been validated in zebrafish [2]. 6 15263 MI0000224 mmu-mir-182 Mus musculus miR-182 stem-loop ACCAUUUUUGGCAAUGGUAGAACUCACACCGGUAAGGUAAUGGGACCCGGUGGUUCUAGACUUGCCAACUAUGGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15264 MI0000225 mmu-mir-183 Mus musculus miR-183 stem-loop CUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCAGUCAGUGAAUUACCGAAGGGCCAUAAACAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15265 MI0000226 mmu-mir-184 Mus musculus miR-184 stem-loop CCUUUCCUUAUCACUUUUCCAGCCAGCUUUGUGACUCUAAGUGUUGGACGGAGAACUGAUAAGGGUAGG 6 15266 MI0000227 mmu-mir-185 Mus musculus miR-185 stem-loop AGGGAUUGGAGAGAAAGGCAGUUCCUGAUGGUCCCCUCCCAGGGGCUGGCUUUCCUCUGGUCCUU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15267 MI0000228 mmu-mir-186 Mus musculus miR-186 stem-loop ACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUCAUUUUAUUUUAAGCCCUAAGGUGAAUUUUUUGGGAAGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15268 MI0000229 mmu-mir-187 Mus musculus miR-187 stem-loop UCAGGCUACAACACAGGACCCGGGCGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGG 6 15269 MI0000230 mmu-mir-188 Mus musculus miR-188 stem-loop UCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUCUCUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15270 MI0000231 mmu-mir-24-1 Mus musculus miR-24/miR-189 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUCACACACUGGCUCAGUUCAGCAGGAACAGGAG miR-24 was identified in mouse by cloning [1], and is predicted to be excised from the 3' arm of a hairpin originating from chromosome 13. Mouse miR-189 identified in reference [2] appears to originate from the 5' arm of the same precursor. Subsequent analyses suggest that miR-189 may be the miR* sequence, so is renamed miR-24* here. A second predicted hairpin sequence on mouse chromosome 8 (MIR:MI0000572) may also express miR-24. 6 15271 MI0000232 mmu-mir-190 Mus musculus miR-190 stem-loop CUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAGCAUAUUCCUACAG 6 15272 MI0000233 mmu-mir-191 Mus musculus miR-191 stem-loop AGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCACUUGGAUUUCGUUCCCUGCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15273 MI0000234 hsa-mir-192 Homo sapiens miR-192 stem-loop GCCGAGACCGAGUGCACAGGGCUCUGACCUAUGAAUUGACAGCCAGUGCUCUCGUCUCCCCUCUGGCUGCCAAUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGCCAGC Lagos-Quintana et al. validated the presence of an 18 nt excised sequence by cloning [1]. Lim et al. predicted the miR by computational methods using conservation with mouse and Fugu rubripes sequences. Expression of the excised miR was validated in zebrafish, and the 5' end mapped by PCR [2]. The 3' ends of the reported sequences differ by 3 nt - this entry contains the longer sequence. Lim et al. report three separate copies of this gene named mir-192-1, -2 and -3 based on 2001 human genome assemblies [2]. Subsequent assemblies suggest the presence of only one gene located on chromosome 11. 5 15274 MI0000235 mmu-mir-193 Mus musculus miR-193 stem-loop GAGAGCUGGGUCUUUGCGGGCAAGAUGAGAGUGUCAGUUCAACUGGCCUACAAAGUCCCAGUCCUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15275 MI0000236 mmu-mir-194-1 Mus musculus miR-194-1 stem-loop AUCGGGUGUAACAGCAACUCCAUGUGGACUGUGCUCGGAUUCCAGUGGAGCUGCUGUUACUUCUGAU Lagos-Quintana cloned miR-194 from mouse kidney tissue [1]. Michael et al. subsequently verified expression of miR-194 in human [2]. Two putative pairs of orthologous hairpin precursors structures are found in mouse (mir-194-1 (MIR:MI0000236) on chromosome 1, and mir-194-2 (MIR:MI0000733) on chromosome 19) and human (mir-194-1 (MIR:MI0000488) on chromosome 1, and mir-194-2 (MIR:MI0000732) on chromosome 11). 6 15276 MI0000237 mmu-mir-195 Mus musculus miR-195 stem-loop ACACCCAACUCUCCUGGCUCUAGCAGCACAGAAAUAUUGGCAUGGGGAAGUGAGUCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUGGUGA 6 15277 MI0000238 hsa-mir-196a-1 Homo sapiens miR-196a-1 stem-loop GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAACACAACAACAUUAAACCACCCGAUUCAC Lagos-Quintana et al. [1] cloned this miRNA from human osteoblast sarcoma cells. Lim et al [2] independently predicted this miRNA by computational methods using conservation with mouse and Fugu rubripes sequences [2]. Expression of the excised miR was validated in zebrafish. The sequence maps to human chromosome 17. Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15278 MI0000239 hsa-mir-197 Homo sapiens miR-197 stem-loop GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGCAUGGCC 5 15279 MI0000240 hsa-mir-198 Homo sapiens miR-198 stem-loop UCAUUGGUCCAGAGGGGAGAUAGGUUCCUGUGAUUUUUCCUUCUUCUCUAUAGAAUAAAUGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15280 MI0000241 mmu-mir-199a-1 Mus musculus miR-199a-1 stem-loop GCCAUCCCAGUGUUCAGACUACCUGUUCAGGAGGCUGGGACAUGUACAGUAGUCUGCACAUUGGUUAGGC The hairpin precursor sequence mir-199 maps to two loci within 50 kb on mouse chromosome 9. This sequence was named mir-199 in [1] and [2], but is renamed here to avoid overlap with the predicted homologues of human mir-199a-2 and mir-199b. Landgraf et al. demonstrate comparable expression for products from both arms of the hairpin, which are therefore renamed miR-199a-5p and miR-199a-3p here [4]. The mature sequences shown here represent the most commonly cloned forms from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15281 MI0000242 hsa-mir-199a-1 Homo sapiens miR-199a-1 stem-loop GCCAACCCAGUGUUCAGACUACCUGUUCAGGAGGCUCUCAAUGUGUACAGUAGUCUGCACAUUGGUUAGGC Lagos-Quintana et al. [1] cloned miR-199 from human osteoblast sarcoma cells. They also reported identification of a miRNA from the opposite arm in mouse cells. This sequence was named miR-199-s and the sequence from the 3' arm of the homologous mouse precursor miR-199-as. Lim et al. [2] independently predicted this miRNA computationally using conservation with mouse and Fugu rubripes sequences [2]. Expression of the miR excised from the 5' arm was validated in zebrafish, and the ends mapped by cloning. The excised miR sequences are renamed miR-199a (to avoid confusion with the subsequently identified miR-199b (MIR:MI0000282)) and miR-199a* (from the 3' arm) here. The two putative hairpin precursors in human map to chromosome 19 (mir-199a-1, MIR:MI0000242) and chromosome 1 (mir-199a-2, MIR:MI0000281). Landgraf et al. show that both mature products are expressed, prompting the renaming to miR-199a-5p and miR-199a-3p [4]. 5 15282 MI0000243 mmu-mir-200b Mus musculus miR-200b stem-loop GCCGUGGCCAUCUUACUGGGCAGCAUUGGAUAGUGUCUGAUCUCUAAUACUGCCUGGUAAUGAUGACGGC 6 15283 MI0000244 mmu-mir-201 Mus musculus miR-201 stem-loop UACCUUACUCAGUAAGGCAUUGUUCUUCUAUAUUAAUAAAUGAACAGUGCCUUUCUGUGUAGGGUA 6 15284 MI0000245 mmu-mir-202 Mus musculus miR-202 stem-loop GUUCCUUUUUCCUAUGCAUAUACUUCUUUGUGGAUCUGGUCUAAAGAGGUAUAGCGCAUGGGAAGAUGGAGC 6 15285 MI0000246 mmu-mir-203 Mus musculus miR-203 stem-loop GCCUGGUCCAGUGGUUCUUGACAGUUCAACAGUUCUGUAGCACAAUUGUGAAAUGUUUAGGACCACUAGACCCGGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15286 MI0000247 mmu-mir-204 Mus musculus miR-204 stem-loop UGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15287 MI0000248 mmu-mir-205 Mus musculus miR-205 stem-loop CUCUUGUCCUUCAUUCCACCGGAGUCUGUCUUAUGCCAACCAGAUUUCAGUGGAGUGAAGCUCAGGAG 6 15288 MI0000249 mmu-mir-206 Mus musculus miR-206 stem-loop CCAGGCCACAUGCUUCUUUAUAUCCUCAUAGAUAUCUCAGCACUAUGGAAUGUAAGGAAGUGUGUGGUUUUGG 6 15289 MI0000250 mmu-mir-207 Mus musculus miR-207 stem-loop AAGGCAGGGGUGAGGGGCUGCGGGAGGAGCCGGGCGGAGGCUGCGGCUUGCGCUUCUCCUGGCUCUCCUCCCUCUCUUU 6 15290 MI0000251 hsa-mir-208a Homo sapiens miR-208a stem-loop UGACGGGCGAGCUUUUGGCCCGGGUUAUACCUGAUGCUCACGUAUAAGACGAGCAAAAAGCUUGUUGGUCA 5 15291 MI0000252 hsa-mir-129-1 Homo sapiens miR-129-1 stem-loop GGAUCUUUUUGCGGUCUGGGCUUGCUGUUCCUCUCAACAGUAGUCAGGAAGCCCUUACCCCAAAAAGUAUCU This miRNA sequence was predicted based on homology to a verified miRNA cloned from mouse cerebellum [1]. Expression of this miRNA was subsequently verified in a human osteoblast sarcoma cell line [2]. Reference [2] named the human/mouse conserved sequence miR-129b, but subsequent genome searches suggest that the same mature sequence may be expressed from two predicted hairpin precursors in both human (this entry and MIR:MI0000473) and mouse (MIR:MI0000222 and MIR:MI0000585). Landgraf et al. show that the 5' product of mir-129-1 (this entry) is the predominant one, whereas both 5' and 3' products are significantly expressed from mir-129-2 (MIR:MI0000585) [3]. 5 15292 MI0000253 hsa-mir-148a Homo sapiens miR-148a stem-loop GAGGCAAAGUUCUGAGACACUCCGACUCUGAGUAUGAUAGAAGUCAGUGCACUACAGAACUUUGUCUC 5 15293 MI0000254 hsa-mir-30c-2 Homo sapiens miR-30c-2 stem-loop AGAUACUGUAAACAUCCUACACUCUCAGCUGUGGAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUUUCU miR-30c was cloned from mouse heart and brain tissues by Lagos-Quintana et al. [1]. Two human hairpin precursor sequences are predicted based on homology with the mouse sequences, on chromosomes 1 (MIR:MI0000736) and 6 (MIR:MI0000254) [3]. Expression of miR-30c was later independently verified in human HL-60 leukemia cells [2]. 5 15294 MI0000255 hsa-mir-30d Homo sapiens miR-30d stem-loop GUUGUUGUAAACAUCCCCGACUGGAAGCUGUAAGACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC 5 15295 MI0000256 mmu-mir-122 Mus musculus miR-122 stem-loop AGCUGUGGAGUGUGACAAUGGUGUUUGUGUCCAAACCAUCAAACGCCAUUAUCACACUAAAUAGCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15296 MI0000257 mmu-mir-143 Mus musculus miR-143 stem-loop CCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGG Expression of this miRNA in mouse was independently verified in heart and brain [1], embryonic stem cells [2] and testes [3]. The predominant miRNA cloned by Langraf et al. has a 3' terminal U residue, which is incompatible with the genome sequence [4]. 6 15297 MI0000259 mmu-mir-30e Mus musculus miR-30e stem-loop GGGCAGUCUUUGCUACUGUAAACAUCCUUGACUGGAAGCUGUAAGGUGUUGAGAGGAGCUUUCAGUCGGAUGUUUACAGCGGCAGGCUGCCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 6 15298 MI0000261 hsa-mir-139 Homo sapiens miR-139 stem-loop GUGUAUUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15299 MI0000262 hsa-mir-147 Homo sapiens miR-147 stem-loop AAUCUAAAGACAACAUUUCUGCACACACACCAGACUAUGGAAGCCAGUGUGUGGAAAUGCUUCUGCUAGAUU Lagos-Quintana et al. cloned miR-147 from mouse spleen tissue [1], but the sequence is not present in the mouse genome assembly (NCBI32). The human genome sequence contains a predicted precursor hairpin for miR-147 shown in [1] (supplementary information) and represented here. The expression of miR-147 has not been verified in human. 5 15300 MI0000263 hsa-mir-7-1 Homo sapiens miR-7-1 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Landgraf et al. confirm expression in human [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15301 MI0000264 hsa-mir-7-2 Homo sapiens miR-7-2 stem-loop CUGGAUACAGAGUGGACCGGCUGGCCCCAUCUGGAAGACUAGUGAUUUUGUUGUUGUCUUACUGCGCUCAACAACAAAUCCCAGUCUACCUAAUGGUGCCAGCCAUCGCA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Landgraf et al. confirm expression in human [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15302 MI0000265 hsa-mir-7-3 Homo sapiens miR-7-3 stem-loop AGAUUAGAGUGGCUGUGGUCUAGUGCUGUGUGGAAGACUAGUGAUUUUGUUGUUCUGAUGUACUACGACAACAAGUCACAGCCGGCCUCAUAGCGCAGACUCCCUUCGAC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Expression in human was later verified by cloning [1,2]. 5 15303 MI0000266 hsa-mir-10a Homo sapiens miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCU This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Mature products were later verified in human [2]. 5 15304 MI0000267 hsa-mir-10b Homo sapiens miR-10b stem-loop CCAGAGGUUGUAACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUAUCCGUAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Michael et al. subsequently verified expression of miR-10b in human [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15305 MI0000268 hsa-mir-34a Homo sapiens miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGGGCCC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Dostie et al. independently cloned this sequence in human but misnamed the sequence miR-172 (the sequence is unrelated to MIR172 from Arabidopsis) [2]. The sequence maps to human chromosome 1. Human miR-34a was previously named miR-34 here and in [1], but is renamed to clarify homology with the alternatively named mouse sequence (MIR:MI0000584). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15306 MI0000269 hsa-mir-181a-2 Homo sapiens mir-181a-2 stem-loop AGAAGGGCUAUCAGGCCAGCCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACUGACCGUUGACUGUACCUUGGGGUCCUUA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Landgraf et al. and Lui et al. later verify expression in human [4-5]. 5 15307 MI0000270 hsa-mir-181b-1 Homo sapiens miR-181b-1 stem-loop CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Its expression was later verified in human BC-1 cells [3]. There are two predicted hairpin precursor sequences in the human genome; mir-181b-1 (MIR:MI0000270) is found on chromosome 1 [1], and mir-181b-2 (MIR:MI0000683) on chromosome 9 [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15308 MI0000271 hsa-mir-181c Homo sapiens miR-181c stem-loop CGGAAAAUUUGCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACCCUGAGGCCUGGAAUUGCCAUCCU This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Landgraf et al. confirm the expression of miR-181c in human [2]. 5 15309 MI0000272 hsa-mir-182 Homo sapiens miR-182 stem-loop GAGCUGCUUGCCUCCCCCCGUUUUUGGCAAUGGUAGAACUCACACUGGUGAGGUAACAGGAUCCGGUGGUUCUAGACUUGCCAACUAUGGGGCGAGGACUCAGCCGGCAC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR was validated in zebrafish, and the 5' end mapped by PCR. A less predominantly expressed miR was identified originating from the opposite arm of the precursor (designated miR-182*). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. Additionally, Landgraf et al. clone a minor product which appears to originate from the loop region (GUGAGGUAACAGGAUCCGGUGG) [2]. 5 15310 MI0000273 hsa-mir-183 Homo sapiens miR-183 stem-loop CCGCAGAGUGUGACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCAGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCACGA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Expression was later confirmed in human [2,3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15311 MI0000274 hsa-mir-187 Homo sapiens miR-187 stem-loop GGUCGGGCUCACCAUGACACAGUGUGAGACCUCGGGCUACAACACAGGACCCGGGCGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCCGCA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Landgraf et al. confirm expression in human [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15312 MI0000279 hsa-mir-196a-2 Homo sapiens miR-196a-2 stem-loop UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. miR-196a was later validated in human [3,4]. Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15313 MI0000281 hsa-mir-199a-2 Homo sapiens miR-199a-2 stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Lagos-Quintana et al. [1] cloned miR-199 from human osteoblast sarcoma cells. They also reported identification of a miRNA from the opposite arm in mouse cells. This sequence was named miR-199-s and the sequence from the 3' arm of the homologous mouse precursor miR-199-as. Lim et al. [2] independently predicted this miRNA computationally using conservation with mouse and Fugu rubripes sequences [2]. Expression of the miR excised from the 5' arm was validated in zebrafish, and the ends mapped by cloning. The excised miR sequences are renamed miR-199a (to avoid confusion with the subsequently identified miR-199b (MIR:MI0000282)) and miR-199a* (from the 3' arm) here. The two putative hairpin precursors in human map to chromosome 19 (mir-199a-1, MIR:MI0000242) and chromosome 1 (mir-199a-2, MIR:MI0000281). Landgraf et al. show that both mature products are expressed, prompting the renaming to miR-199a-5p and miR-199a-3p [4]. 5 15314 MI0000282 hsa-mir-199b Homo sapiens miR-199b stem-loop CCAGAGGACACCUCCACUCCGUCUACCCAGUGUUUAGACUAUCUGUUCAGGACUCCCAAAUUGUACAGUAGUCUGCACAUUGGUUAGGCUGGGCUGGGUUAGACCCUCGG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised 5' miR has been validated in zebrafish, the ends mapped by cloning [2], and later verified in human [3]. 5 15315 MI0000283 hsa-mir-203 Homo sapiens miR-203 stem-loop GUGUUGGGGACUCGCGCGCUGGGUCCAGUGGUUCUUAACAGUUCAACAGUUCUGUAGCGCAAUUGUGAAAUGUUUAGGACCACUAGACCCGGCGGGCGCGGCGACAGCGA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Landgraf et al. confirm expression in human [2]. 5 15316 MI0000284 hsa-mir-204 Homo sapiens miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Landgraf et al. confirm expression in human [2]. 5 15317 MI0000285 hsa-mir-205 Homo sapiens miR-205 stem-loop AAAGAUCCUCAGACAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCUGACA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Landgraf et al. confirm expression in human [2]. 5 15318 MI0000286 hsa-mir-210 Homo sapiens miR-210 stem-loop ACCCGGCAGUGCCUCCAGGCGCAGGGCAGCCCCUGCCCACCGCACACUGCGCUGCCCCAGACCCACUGUGCGUGUGACAGCGGCUGAUCUGUGCCUGGGCAGCGCGACCC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Its expression was later verified in human BC-1 cells [2]. 5 15319 MI0000287 hsa-mir-211 Homo sapiens miR-211 stem-loop UCACCUGGCCAUGUGACUUGUGGGCUUCCCUUUGUCAUCCUUCGCCUAGGGCUCUGAGCAGGGCAGGGACAGCAAAGGGGUGCUCAGUUGUCACUUCCCACAGCACGGAG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. The sequence maps to human chromosome 15. 5 15320 MI0000288 hsa-mir-212 Homo sapiens miR-212 stem-loop CGGGGCACCCCGCCCGGACAGCGCGCCGGCACCUUGGCUCUAGACUGCUUACUGCCCGGGCCGCCCUCAGUAACAGUCUCCAGUCACGGCCACCGACGCCUGGCCCCGCC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. The 3' end was not experimentally determined. The sequence maps to human chromosome 17, but its expression has not been experimentally verified in human. 5 15321 MI0000289 hsa-mir-181a-1 Homo sapiens miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUACUCCA Human miR-181a, cloned by Dostie et al [2], is predicted to be expressed from two genomic hairpin loci, hsa-mir-181a-1 (MIR:MI0000289) and hsa-mir-181a-2 (MIR:MI0000269). A miRNA from the 3' arm of this hairpin, named miR-213, was predicted by computational methods using conservation with mouse and Fugu rubripes sequences, and validated in zebrafish [1]. Subsequent cloning and Northern evidence shows that the 3' mature sequence is the biogenesis byproduct miR-181a* (Chang-Zheng Chen and David Bartel, pers. comm.). 5 15322 MI0000290 hsa-mir-214 Homo sapiens miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Landgraf et al. confirm expression in human [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15323 MI0000291 hsa-mir-215 Homo sapiens miR-215 stem-loop AUCAUUCAGAAAUGGUAUACAGGAAAAUGACCUAUGAAUUGACAGACAAUAUAGCUGAGUUUGUCUGUCAUUUCUUUAGGCCAAUAUUCUGUAUGACUGUGCUACUUCAA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Landgraf et al. confirm expression in human [2]. 5 15324 MI0000292 hsa-mir-216a Homo sapiens miR-216a stem-loop GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUAGCCCUCACGA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15325 MI0000293 hsa-mir-217 Homo sapiens miR-217 stem-loop AGUAUAAUUAUUACAUAGUUUUUGAUGUCGCAGAUACUGCAUCAGGAACUGAUUGGAUAAGAAUCAGUCACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAAACAAG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. The sequence maps to human chromosome 2. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15326 MI0000294 hsa-mir-218-1 Homo sapiens miR-218-1 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Landgraf et al. later verified the expression of miR-218 in human [2]. 5 15327 MI0000295 hsa-mir-218-2 Homo sapiens miR-218-2 stem-loop GACCAGUCGCUGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Landgraf et al. confirm expression in human [2]. 5 15328 MI0000296 hsa-mir-219-1 Homo sapiens miR-219-2 stem-loop CCGCCCCGGGCCGCGGCUCCUGAUUGUCCAAACGCAAUUCUCGAGUCUAUGGCUCCGGCCGAGAGUUGAGUCUGGACGUCCCGAGCCGCCGCCCCCAAACCUCGAGCGGG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the 5' excised miR has been validated in zebrafish, and the 5' end mapped by PCR [2]. The mature products were later validated in human [3]. Two hairpin precursor structures are predicted, mir-219-1 on chromosome 6 (MIR:MI0000296) and mir-219-2 on chromosome 9 (MIR:MI0000740) [2]. 5 15329 MI0000297 hsa-mir-220a Homo sapiens miR-220a stem-loop GACAGUGUGGCAUUGUAGGGCUCCACACCGUAUCUGACACUUUGGGCGAGGGCACCAUGCUGAAGGUGUUCAUGAUGCGGUCUGGGAACUCCUCACGGAUCUUACUGAUG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. The 3' end was not experimentally determined. 5 15330 MI0000298 hsa-mir-221 Homo sapiens miR-221 stem-loop UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUCGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAACAUGUUCUC This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and later validated in human HL-60 leukemia cells [2]. 5 15331 MI0000299 hsa-mir-222 Homo sapiens miR-222 stem-loop GCUGCUGGAAGGUGUAGGUACCCUCAAUGGCUCAGUAGCCAGUGUAGAUCCUGUCUUUCGUAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUCUUCUAGCU This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR was validated in zebrafish, and the ends mapped by cloning. Subsequent cloning studies have also verified the expression of miR-222 in human ES cells. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15332 MI0000300 hsa-mir-223 Homo sapiens miR-223 stem-loop CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCCAUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGCGGCACAUGCUUACCAG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. Landgraf et al. confirm expression in human [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15333 MI0000301 hsa-mir-224 Homo sapiens miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC This miR was identified and ends mapped by cloning from Weri cells in human. The sequence maps to chromosome X. An erratum corrected the originally published name miR-175 to miR-224. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15334 MI0000302 cel-mir-124 Caenorhabditis elegans miR-124 stem-loop GUCCCACUUGUCAUCUGGCAUGCACCCUAGUGACUUUAGUGGACAUCUAAGUCUUCCAACUAAGGCACGCGGUGAAUGCCACGUGGCCAUGAUGGG 3 15335 MI0000303 cel-mir-228 Caenorhabditis elegans miR-228 stem-loop CCUUAUCCCGUUCGCAAUGGCACUGCAUGAAUUCACGGCUAUGCAUAACGACAGACCGCGGAUCAUACGGUACCAUAGCGGACGGUGAUGAGGUUAAU This precursor sequence was predicted by comparative computational approaches [1,2]. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed, and the 5' and 3' ends were confirmed later [4]. 3 15336 MI0000304 cel-mir-229 Caenorhabditis elegans miR-229 stem-loop CGCCGGCAAUGACACUGGUUAUCUUUUCCAUCGUGGAAUGCCCCCCAUUGAUUUUUUCCCCUUUUCGGGGGGAAAAAAUUGGAAACGAGAAAGGUAUCGGGUGUCAUAGCCGGCG The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [3]. 3 15337 MI0000305 cel-mir-230 Caenorhabditis elegans miR-230 stem-loop UUGAUGUAAUGCCGUCACUUGGUCGGCGAUUUAAUAUUAUCAGAACAUAGGAAAUUGUUAGUAUUAGUUGUGCGACCAGGAGACGGUAUUCGCAUAUU 3 15338 MI0000306 cel-mir-231 Caenorhabditis elegans miR-231 stem-loop UAGCACCACAGGUUGUUCUGACUGUUUCAAAAGCUUGUAGUAUCUUAAUAAAUAAACAUAUAAGCUCGUGAUCAACAGGCAGAACAACUCGGUUUUGUG 3 15339 MI0000307 cel-mir-232 Caenorhabditis elegans miR-232 stem-loop AAGUUCAAUUUUUGGAUCCCUGCAGUUUCGAUGAUUUUAUCCUUAAUUCUGAAGAUGUGAUAAAUGCAUCUUAACUGCGGUGAUCUAGAUCAUGAACA 3 15340 MI0000308 cel-mir-233 Caenorhabditis elegans miR-233 stem-loop AUAUAGCAUCUUUCUGUCUCGCCCAUCCCGUUGCUCCAAUAUUCUAACAACAAGUGAUUAUUGAGCAAUGCGCAUGUGCGGGAUAGACUGAUGGCUGC The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [3]. 3 15341 MI0000309 cel-mir-234 Caenorhabditis elegans miR-234 stem-loop CAAAAAAUGAUCAAACGGUAUUCCAGAGUUGAUAAUAAAAAUGCGUCAGUCCGCAAUCUAUUAUUGCUCGAGAAUACCCUUUGACUACUAUGUGUA 3 15342 MI0000310 cel-mir-235 Caenorhabditis elegans miR-235 stem-loop UCCGAAGAUAUCAGGAUCAGGCCUUGGCUGAUUGCAAAAUUGUUCACCGUGAAAAUUAAAUAUUGCACUCUCCCCGGCCUGAUCUGAGAGUAAGGCG 3 15343 MI0000311 cel-mir-236 Caenorhabditis elegans miR-236 stem-loop UCGGUGACCGAUGUCCAGCGUCUUACCUGUUCAAUAUUUAGACUGACUAUCAAAGAGAUCUAAUACUGUCAGGUAAUGACGCUGGAUUGUCAUGUCAU This precursor sequence was predicted by comparative computational approaches [1,3]. The excised miRNA sequence was predicted to comprise bases 64 to 87, and the precise 5' and 3' ends were determined later [4]. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. 3 15344 MI0000312 cel-mir-237 Caenorhabditis elegans miR-237 stem-loop UUCUACAUUGCGUGGUCCCUGAGAAUUCUCGAACAGCUUCAAAGUGUUCAAGCUGUCGAGUUUUGUCAAGGACCAAACAAUAGAAGAUCACUUGGGAAC The sequence is reported to be related to lin-4 [2]. The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [3]. 3 15345 MI0000313 cel-mir-238 Caenorhabditis elegans miR-238 stem-loop UCUCCAUUGACUGUUUGGAUGUUCUCGGACGUUCAAAGCUACAUCCAACAAAUUGGUAGCUUUGUACUCCGAUGCCAUUCAGAUAGUUAUGAGCCAUG 3 15346 MI0000314 cel-mir-239a Caenorhabditis elegans miR-239a stem-loop UACACGUUUGCAAUUUUUGUACUACACAUAGGUACUGGACAAUUUUCAAAAUAUAUCCAGUGUCUAGUCUAGUGCAAACAUUGCUCGGUGUUGUUUGA 3 15347 MI0000315 cel-mir-239b Caenorhabditis elegans miR-239b stem-loop GCGACAGAUGCAAUUUUUGUACUACACAAAAGUACUGGUCAUUUAAGUUGAGGCUCAGCACUUUUGUGGUGUGCAAAAAUGGCAAGUUGCUUUUAUCU miR-239b was predicted by computational analysis and conservation in C. elegans and C. briggsae, and the microRNA confirmed by PCR amplification, cloning and sequencing [1]. A large scale cloning and sequencing study finds two dominant mature miRNA products: the second is 1 nt shorter at the 5' end [3]. 3 15348 MI0000316 cel-mir-240 Caenorhabditis elegans miR-240 stem-loop UUGUUAGAAACUUUUUCAAAUCGAGGAUUUUGAGACUAGAAUGCUUGAAUUGUACUAGCAUACUGGCCCCCAAAUCUUCGCUUAGAAAUACAGUUCA 3 15349 MI0000317 cel-mir-241 Caenorhabditis elegans miR-241 stem-loop CGGGGGUGUCAAAGUUGAGGUAGGUGCGAGAAAUGACGGCAUCCAUAUAGUAAUCGUUCAUUGUCUCUCAGCUGCUUCAUCUGUGACAUGGCUACG 3 15350 MI0000318 cel-mir-242 Caenorhabditis elegans miR-242 stem-loop UGGCUCGCGAGAGUAUUGCGUAGGCCUUUGCUUCGAGAGAGAAGCUUCAGUUCGCAGCAAUAUCCUCCGCAAAACUUUCCCCGGCUAUGCAAAAAA 3 15351 MI0000319 cel-mir-243 Caenorhabditis elegans miR-243 stem-loop UGUUCACGCAUAAGCCUGAUAUCUCGGUGCGAUCGUACCGUAUCGCUCACACUUAGAUUACGGUACGAUCGCGGCGGGAUAUCAGGUACGUGAUUGGA 3 15352 MI0000320 cel-mir-244 Caenorhabditis elegans miR-244 stem-loop CUCCAUAUCUCAAUCUCUUUGGUUGUACAAAGUGGUAUGGCUCAUCGAAUAAGCACAUACUGCUUUUCAGCUAAAGGAAUUGAGAUUUUGUAGGCUUUU 3 15353 MI0000321 cel-mir-245 Caenorhabditis elegans miR-245 stem-loop CUGAAUUCAAUGUUGGAGAGCUAUUUGCAAGGUACCUAAUUGUUUGAUUAUUGAUUCUCAAUUGGUCCCCUCCAAGUAGCUCUAUUGCAUUGUUUGC 3 15354 MI0000322 cel-mir-246 Caenorhabditis elegans miR-246 stem-loop AUCUGAAUUAUAAAACAUCGCCUAACCGUUGUCAUGUAAUAUUUCCCAGAGAAAAUGAUAUUACAUGUUUCGGGUAGGAGCUGUUCAAACUUUGGAC The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15355 MI0000323 cel-mir-247 Caenorhabditis elegans miR-247 stem-loop AUUACCAGCUAUUUUCCAAGUAGAGAAAAGUUUCUAAUUACCCAUCAUGCACAAAUGUGGUGACUAGAGCCUAUUCUCUUCUUGGAAAAGUGGCGACU The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15356 MI0000324 cel-mir-248 Caenorhabditis elegans miR-248 stem-loop UUUCCCGGCUGCAACUACGGUAAGCGGUAUCCAGCCGAUGUUUUCAAUACUGCAUUUGAAUACACGUGCACGGAUAACGCUCAUUGUUUUUCGCAUGC The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15357 MI0000325 cel-mir-249 Caenorhabditis elegans miR-249 stem-loop AUACUCUUGAACGACUAGCAACGCACAAACGUCUUCUGUGCGACAACAUCUGAAUGUUUGUCACAGGACUUUUGAGCGUUGCCAGUCGAAAGAGGAA The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15358 MI0000326 cel-mir-250 Caenorhabditis elegans miR-250 stem-loop AGGGUCUUCGGACCACGCCUUCAGUUGCCUCGUGAUCCGCCAAACACAAUAAAUGGACGAAUCACAGUCAACUGUUGGCAUGGUGCUCGUACCCAUUUU The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15359 MI0000327 cel-mir-251 Caenorhabditis elegans miR-251 stem-loop ACUUUCAAUGACCCCUUGUUAAGUAGUGGUGCCGCUCUUAUUAGGUUGAAAAGUAAUAAGAGUAGUUCACUACUUAUCAAGGUGAAAUUUGAAAUUU 3 15360 MI0000328 cel-mir-252 Caenorhabditis elegans miR-252 stem-loop UCCAGGGGUCUCUUUCAGUUAUAAGUAGUAGUGCCGCAGGUAACCGCCAGUCUAAAAGGCUUACCUACUGCCUUCUGCUUAAAAUUGAAAUAUUGAUG The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15361 MI0000329 cel-mir-253 Caenorhabditis elegans miR-253 stem-loop GAAUUGUUCCGAUCGCCGCUCUUUUCACACACCUCACUAACACUGACCACCGAUGCAUAGAUGUUAGUAGGCGUUGUGGGAAGGGCGGCGACAGUGAACGUCGUUUC A mature miRNA product from the 5' arm of this hairpin precursor was first identified [1]. A later large scale cloning and sequencing study identified a 3' product and showed it to be the dominant mature miRNA [2]. 3 15362 MI0000330 cel-mir-254 Caenorhabditis elegans miR-254 stem-loop ACUAUGCAUAUUGCCGCCUACAGAAGCAUAGAUUUCCACAAACCAUUCGAGGUGUUUGUGCAAAUCUUUCGCGACUGUAGGCGGCGAACAUGCAGUUUUU 3 15363 MI0000331 cel-mir-255 Caenorhabditis elegans miR-255 stem-loop CAGUGGUUCGACUAAAUUUUGGAGGUAAGAAAUCUUUGUAGUUCUCCGUAUUGUGACGUGAAAACUGAAGAGAUUUUUUACAGACUUCACAAAUUUGAAAUAUAUUCCUG This precursor sequence was identified computationally using sequence homology with C. briggsae [1]. The mature microRNA was identified later [2]. 3 15364 MI0000333 cel-mir-256 Caenorhabditis elegans miR-256 stem-loop GCAAGGAGUGCAGAGGCUUACUAUGAGACGGUCAAGAGGCGCCUCCGUCACGUGGAUACGUCGGGUGGAAUGCAUAGAAGACUGUACUCAAAAAAUUUUAC This sequence maps to chromosome V and appears to be related to mir-1. 3 15365 MI0000334 cel-mir-257 Caenorhabditis elegans miR-257 stem-loop AUAAUAUUUCCCGCUGAGUAUCAGGAGUACCCAGUGAUCGCCUUCACAUAUUGGGAAGAAGUAUGUGAUUGCGUCCUGCAGUUCUUCCAUGAUGUACUCAGG This sequence maps to chromosome IV. 3 15366 MI0000335 cel-mir-258 Caenorhabditis elegans miR-258 stem-loop GCAAUGGUUUUGAGAGGAAUCCUUUUACAUAUUUGUUGAAGUUUUCGCUCGAAUUUGUGGUCGAAUACUGUAGAAGGAAGCCUGCACGAAGUUUUG The predicted hairpin portion of the primary transcript of mir-258 is found in two exact copies within 10kb on chromosome X in C. elegans. 3 15367 MI0000336 cel-mir-259 Caenorhabditis elegans miR-259 stem-loop UCAGUCAUUGAAACGAGUAAAUCUCAUCCUAAUCUGGUAGCAUCUUUCGAACCUUGCCACCGAUUUGGCAUGGGAUUGACUUGUUAAAUAGUGACUUUUUU miR-259 was predicted by computational analysis and conservation in C. elegans and C. briggsae, and the microRNA confirmed by PCR amplification, cloning and sequencing [1]. The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [3]. 3 15368 MI0000337 cel-mir-260 Caenorhabditis elegans miR-260 stem-loop CGUACAACAAAAUUAUUGCGAGAGAAUUUUUUAACAUGGCGUUUGCUUUACCAGGUCGAUAGACUAUCGUGAUGUCGAACUCUUGUAGGACAAUCUGGUAUUU This sequence maps to chromosome II. 3 15369 MI0000338 cel-mir-261 Caenorhabditis elegans miR-261 stem-loop UGAUGGCUUUUCUGGAUUUGUUCCCUUCACGUGUAGAAAGAAACGAGCAAAAAAAAUCUUAGUGUUAGCUUUUUAGUUUUCACGGUGAAUAUGGAUAUU This sequence maps to chromosome II. 3 15370 MI0000339 cel-mir-262 Caenorhabditis elegans miR-262 stem-loop GUGCAAAAUUGUAUUAAAAUAAACUUUAUUGGAUUACAAAAAAAAUGUAUCAAUUUUUCUUUUUCAUUUUUACGUUUCUCGAUGUUUUCUGAUACUGUUGCUAGCAGU This sequence maps to chromosome V. 3 15371 MI0000342 hsa-mir-200b Homo sapiens miR-200b stem-loop CCAGCUCGGGCAGCCGUGGCCAUCUUACUGGGCAGCAUUGGAUGGAGUCAGGUCUCUAAUACUGCCUGGUAAUGAUGACGGCGGAGCCCUGCACG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15372 MI0000343 dme-mir-263a Drosophila melanogaster miR-263a stem-loop UAGAUCUCGGCACAGUUAAUGGCACUGGAAGAAUUCACGGGGUAAUUUUUAUACAACCCGUGAUCUCUUAGUGGCAUCUAUGGUGCGAGAAUAA This sequence was computationally predicted by two independent groups based on similarity with C. elegans miR-228 (MIR:MI0000303) [1] and conservation in D. pseudoobscura [2]. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed, but the precise 5' or 3' ends are unknown. The sequence was named miR-263 in in reference [1], and maps to chromosome 2L. 4 15373 MI0000344 cel-mir-264 Caenorhabditis elegans miR-264 stem-loop UGGCGGCGGUCGACAUGUACAUAUCACCAGUCUGGCUUUUCCCGUUUCCGCGAGCAAGCGGCGGGUGGUUGUUGUUAUGGGAUACCGGAGCCA This precursor sequence was predicted by comparative computational approaches. The excised miRNA sequence is predicted and the precise 5' or 3' end unknown. A PCR amplification protocol confirmed that the strand containing the predicted miR is predominantly expressed. 3 15374 MI0000345 cel-mir-265 Caenorhabditis elegans miR-265 stem-loop GGUUUGACUUACCCCCUCCUUCCGCUGGCCGCCGUUUUUAUUAUGAACUUGAUGUGGUUUGAGGGAGGAAGGGUGGUAUUUGAACC This precursor sequence was predicted by comparative computational approaches. The excised miRNA sequence is predicted and the precise 5' or 3' end unknown. A PCR amplification protocol confirmed that the strand containing the predicted miR is predominantly expressed. 3 15375 MI0000346 cel-mir-266 Caenorhabditis elegans miR-266 stem-loop UGUCUAAACUUGGGCAAAAGUUAGGCAAGACUUUGGCAAAGCUUGAAUCCAAGUUUUGCCAAAGUUUUGCCCAACUUUUGCCCAAAUUCAGCCA This precursor sequence was predicted by comparative computational approaches. The excised miRNA sequence is predicted and the precise 5' or 3' end unknown. A PCR amplification protocol confirmed that the strand containing the predicted miR is predominantly expressed. 3 15376 MI0000347 cel-mir-267 Caenorhabditis elegans miR-267 stem-loop UAAAAGUUUCAAAACCCCGUGAAGUGUCUGCUGCAAUCUAAAUUUUUAGAUAUAGAUGCAGUCGACUCUUCAUUGGGUUUUCAGGAACCCGUA This precursor sequence was predicted by comparative computational approaches. The excised miRNA sequence is predicted and the precise 5' or 3' end unknown. A PCR amplification protocol confirmed that the strand containing the predicted miR is predominantly expressed. 3 15377 MI0000348 cel-mir-268 Caenorhabditis elegans miR-268 stem-loop GGAAGUGGCUUUGAAGCGGCAAGAAUUAGAAGCAGUUUGGUGUCAGACACACUACUCACUCACUGCUUCUUGUUUUUUCUGCUUUCUUUGCUUUU This precursor sequence was predicted by comparative computational approaches. The excised miRNA sequence is predicted and the precise 5' or 3' end unknown. A PCR amplification protocol confirmed that the strand containing the predicted miR is predominantly expressed. 3 15378 MI0000349 cel-mir-269 Caenorhabditis elegans miR-269 stem-loop GGGCAAAAGUUGGGCAAGACUCUGGCAAAACUUGGAUUUAUGCUGCGCCAAAGUUUAACCCAAGUUUGACCCAACUCUUGUCAAAUUUUUGUCC This precursor sequence was predicted by comparative computational approaches. The excised miRNA sequence is predicted and the precise 5' or 3' end unknown. A PCR amplification protocol confirmed that the strand containing the predicted miR is predominantly expressed. 3 15379 MI0000350 cel-mir-270 Caenorhabditis elegans miR-270 stem-loop GUCGCUAGCCUCUUUACCUGCCUACACACCUUUCUGCCUACGUGGCACAUUGGUAGGCAAGAGGGCAUGAUGUAGCAGUGGAGAUGGACUGCCAC This sequence was predicted by computational approaches and validated using a PCR amplification protocol. 3 15380 MI0000351 cel-mir-271 Caenorhabditis elegans miR-271 stem-loop AAUAGAAAACGGGGCCCGCCGGCUCGCCGGGUGGGAAAGCAUUCGACAGCAAGACGUGUUUUUCAAUCUGCGACUCGGCGAUUCCCAUCAUCACU This sequence was predicted by computational approaches and validated using a PCR amplification protocol. 3 15381 MI0000352 cel-mir-272 Caenorhabditis elegans miR-272 stem-loop CGCAGGCACGUGCAGGUAUGUAGGCAGGCGUAGGCCCGUAGGCAAGUGUAGGUCUGCAGGCAUGAAUGUAGGCAUGGGUGUUUGGAAGACCUGCG This sequence was predicted by computational approaches and validated using a PCR amplification protocol. 3 15382 MI0000353 cel-mir-273 Caenorhabditis elegans miR-273 stem-loop ACCUCGUUUUGGGAGCAGCCGGCAUUUUACGGGCUACACUUUUUUUAAAAUUGAUGUGUGCCCGUACUGUGUCGGCUGCUUUGAAAAUUUCGGU This sequence was predicted by computational approaches and validated using a PCR amplification protocol. 3 15383 MI0000354 dme-mir-184 Drosophila melanogaster miR-184 stem-loop GGUUGGCCGGUGCAUUCGUACCCUUAUCAUUCUCUCGCCCCGUGUGCACUUAAAGACAACUGGACGGAGAACUGAUAAGGGCUCGUAUCACCAAUUCAUC miR-184 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the 5' end of the excised miRNA by cloning and reported a length distribution of 19-23 nt with 22 nt the most commonly expressed. They also reported the less predominantly expressed sequence miR-184* from the opposite 5' arm. The sequence is localised to chromosome 2R. 4 15384 MI0000355 dme-mir-274 Drosophila melanogaster miR-274 stem-loop UCCUGUGUUGCAGUUUCGUUUUGUGACCGACACUAACGGGUAAUUGUUUGGCCGCCAGGAUUACUCGUUUUUGCGAUCACAAAUUAUGAAAUUGCAGCAA This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome 3L. 4 15385 MI0000356 dme-mir-275 Drosophila melanogaster miR-275 stem-loop UGUAAAGUCUCCUACCUUGCGCGCUAAUCAGUGACCGGGGCUGGUUUUUUAUAUACAGUCAGGUACCUGAAGUAGCGCGCGUGGUGGCAGACAUAUAU miR-275 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the 5' end of the excised miRNA by cloning and reported a length distribution of 19-25 nt with 22 nt the most commonly expressed. The sequence is localised to chromosome 2L. 4 15386 MI0000357 dme-mir-92a Drosophila melanogaster miR-92a stem-loop AAUAUGAAUUUCCCGUAGGACGGGAAGGUGUCAACGUUUUGCAUUUCGAAUAAACAUUGCACUUGUCCCGGCCUAUGGGCGGUUUGUAAUAAACA miR-92a was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the 5' end of the excised miRNA by cloning and reported a length distribution of 22-25 nt with 22 nt the most commonly expressed. The sequence is localised to chromosome 3R. 4 15387 MI0000358 dme-mir-219 Drosophila melanogaster miR-219 stem-loop UAAUUCGAUUUUUAGCUAUGAUUGUCCAAACGCAAUUCUUGUUGAUAUUCAAUAUUCAAGGGUUGCGACUGGGCAUCGCGGCUCGAAAUAAGAAUACAAC This sequence is computationally predicted based on conservation in D. pseudoobscura [1]. The sequence of the excised miR is strikingly conserved in human (MIR:MI0000296), but the expression of the miR has not been confirmed in fly and the precise 5' or 3' ends are unknown. The sequence is localised to chromosome 3L. 4 15388 MI0000359 dme-mir-276a Drosophila melanogaster miR-276a stem-loop CCUGGUUUUUGCCAUCAGCGAGGUAUAGAGUUCCUACGUUCAUUAUAAACUCGUAGGAACUUCAUACCGUGCUCUUGGAAGACCAAAAAACAACCAAG miR-276 was reported independently in references [1] and [2]. Reference [2] reported a 22 nt excised sequence from the 3' arm of the precursor by cloning. Computational approaches followed by Northern blotting predicted an excised sequence from the 5' arm which is designated miR-276a* here [1]. The sequence is localised to chromosome 3L. 4 15389 MI0000360 dme-mir-277 Drosophila melanogaster miR-277 stem-loop UUGAAGGUUUUGGGCUGCGUGUCAGGAGUGCAUUUGCACUGAAACUAUCUGAAGCAUGUAAAUGCACUAUCUGGUACGACAUUCCAGAACGUACAAUCUU miR-277 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the 5' end of the excised miRNA by cloning and reported a length distribution of 21-23 nt with 23 nt the most commonly expressed. The sequence is localised to chromosome 3R. Stark et al. [3] have predicted that miR-277 controls the pathway for valine, leucine and isoleucine degradation by downregulating many of its enzymes. 4 15390 MI0000361 dme-mir-278 Drosophila melanogaster miR-278 stem-loop GUAAUGGUACGGUGCGACCGGAUGAUGGUUCACAACGACCGUGUCAUUUAAACGGGUCGGUGGGACUUUCGUCCGUUUGUAACGCCAUUUGUCAACGA miR-278 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the 5' end of the excised miRNA by cloning and reported a length distribution of 20-22 nt with 22 nt the most commonly expressed. The sequence is localised to chromosome 2R. 4 15391 MI0000362 dme-mir-133 Drosophila melanogaster miR-133 stem-loop ACCUGCAACACUGUGUGUAGCUGGUUGACAUCGGGUCAGAUCUGUUUUUCAAGCAUUUGGUCCCCUUCAACCAGCUGUAGCCAGUGGUUGAUGACAAC miR-133 was reported independently by three groups using computational prediction [2], Northern blot analysis [1] and cloning [3]. References [1] and [2] confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [3] confirmed the ends of the excised miRNA by cloning. The sequence maps to chromosome 2L. 4 15392 MI0000363 dme-mir-279 Drosophila melanogaster miR-279 stem-loop GGAAUUCAUACUACUGUUUUUAGUGGGUGGGGGUCCAGUGUUUCACAUUGAUUUUCUUAGUAUUUGUGACUAGAUCCACACUCAUUAAUAACGGUAGUUC miR-279 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the ends of the excised miRNA by cloning. The sequence is localised to chromosome 3R. 4 15393 MI0000364 dme-mir-33 Drosophila melanogaster miR-33 stem-loop CUCUUCCUCUGGAGAUGACACGAAGGUGCAUUGUAGUCGCAUUGUCUGUCCCAAUUGCUUCAGGCAAUACAACUUCAGUGCAAGCUCUGUGCAUUUCAC This sequence is computationally predicted based on conservation in D. pseudoobscura [1]. The sequence of the excised miR is strikingly conserved in human (MIR:MI0000091), but the expression of the miR has not been confirmed in fly and the precise 5' or 3' ends are unknown. The sequence is localised to chromosome 3L. 4 15394 MI0000365 dme-mir-280 Drosophila melanogaster miR-280 stem-loop UGGCUUUUAUGUAUUUACGUUGCAUAUGAAAUGAUAUUUAUAGUAAACAGAUUAUUUUAUAUGCAGGUAUAUGCAAGUCGAGGUCCUCCACACUG This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome 2R. 4 15395 MI0000366 dme-mir-281-1 Drosophila melanogaster miR-281-1 stem-loop CGAAUAAGUGAAUAAAGAGAGCUGUCCGUCGACAGUCCAGAAACUAUUUAAUAUCACUGUCAUGGAAUUGCUCUCUUUGUAUAAUAUUCG miR-281 was reported independently in references [1] and [2]. The sequence in this entry is from reference [2] which identified a 23 nt excised sequence from the 3' arm of the precursor by cloning. Reference [1] reported the reverse complement of this foldback precursor from computational prediction and northern blotting. The predicted mature sequence (5' and 3' ends unknown) from the 3' arm of the reverse complement was named miR-281a in reference [1] and is designated miR-281-1* here. The predicted precursor maps to chromosome 2R. 4 15396 MI0000367 dme-mir-282 Drosophila melanogaster miR-282 stem-loop AGUUUCCUUCUAAAUCUAGCCUCUACUAGGCUUUGUCUGUGCAUUCGAAAGCCGAUCAGACAUAGCCUAUAAGAGGUUAGGUGUACCAAGGCGAACA This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome 3L. 4 15397 MI0000368 dme-mir-283 Drosophila melanogaster miR-283 stem-loop CUCACACGAUUCUCAAAGGUAAAUAUCAGCUGGUAAUUCUGGGAGCUAAGCCUAAAUAUGAAACACUCGGAAUUUCAGUUGGUAUCGACUUUUUUGAAUU miR-283 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the ends of the excised miRNA by cloning. The sequence is localised to chromosome X. 4 15398 MI0000369 dme-mir-284 Drosophila melanogaster miR-284 stem-loop GUUGCAGUUCCUGGAAUUAAGUUGACUGUGUAGCCUGUGAGGGCAAGGCUUGAAUAAUGCUCCUGAAGUCAGCAACUUGAUUCCAGCAAUUGCGGCCCGA This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome 3R. 4 15399 MI0000370 dme-mir-281-2 Drosophila melanogaster miR-281-2 stem-loop CGAAUUGUGAAAUGAAGAGAGCUAUCCGUCGACAGUCAAGUUAAGACCGAUUGUAAUACUGUCAUGGAAUUGCUCUCUUUGUAUAACAUUCG miR-281 was reported independently in references [1] and [2]. The sequence in this entry is from reference [2] which identified a 23 nt excised sequence from the 3' arm of the precursor by cloning. Reference [1] reported the reverse complement of this foldback precursor from computational prediction and northern blotting. The predicted mature sequence (5' and 3' ends unknown) from the 3' arm of the reverse complement was named miR-281b in reference [1] and is designated miR-281-2* here. The predicted precursor maps to chromosome 2R. 4 15400 MI0000371 dme-mir-34 Drosophila melanogaster miR-34 stem-loop AAUUGGCUAUGCGCUUUGGCAGUGUGGUUAGCUGGUUGUGUAGCCAAUUAUUGCCGUUGACAAUUCACAGCCACUAUCUUCACUGCCGCCGCGACAAGC This sequence is computationally predicted based on conservation in D. pseudoobscura and C. elegans. The precise 5' or 3' ends are unknown. Expression in D. melanogaster was confirmed by Northern blot analysis [1]. Aravin et al. later identify the 5' and 3' ends by cloning [3]. 4 15401 MI0000373 dme-mir-124 Drosophila melanogaster miR-124 stem-loop UCAUUUGGUACGUUUUUCUCCUGGUAUCCACUGUAGGCCUAUAUGUAUUUCCACCAUAAGGCACGCGGUGAAUGCCAAGAGCGAACGCAGUUCUACAAAU miR-124 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the 5' end of the excised miRNA by cloning and reported a length distribution of 19-23 nt with 23 nt the most commonly expressed. The sequence is localised to chromosome 2L. 4 15402 MI0000374 dme-mir-79 Drosophila melanogaster miR-79 stem-loop UGAAGCUGACUUGCCAUUGCUUUGGCGCUUUAGCUGUAUGAUAGAUUUAAACUACUUCAUAAAGCUAGAUUACCAAAGCAUUGGCUUCUGCAGGUCA miR-79 was reported independently by three groups using computational prediction [2], Northern blot analysis [1] and cloning [3]. References [1] and [2] confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [3] confirmed the ends of the excised miRNA by cloning. The sequence maps to chromosome 2L. 4 15403 MI0000375 dme-mir-276b Drosophila melanogaster miR-276b stem-loop AAAACCGAAGUCUUUUUACCAUCAGCGAGGUAUAGAGUUCCUACGUUCCUAUAUUCAGUCGUAGGAACUUAAUACCGUGCUCUUGGAGGACUGUCGACC miR-276b was reported independently in references [1] and [2]. Reference [2] reported a 22 nt excised sequence from the 3' arm of the precursor by cloning. Computational approaches followed by northern blotting predicted an excised sequence from the 5' arm which is designated miR-276b* here [1]. The sequence is localised to chromosome 3L. 4 15404 MI0000376 dme-mir-210 Drosophila melanogaster miR-210 stem-loop AAAGGUGCUUAUUGCAGCUGCUGGCCACUGCACAAGAUUAGACUUAAGACUCUUGUGCGUGUGACAGCGGCUAUUGUAAGAGGCCAUAGAAGCAACAGCC This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome X. 4 15405 MI0000377 dme-mir-285 Drosophila melanogaster miR-285 stem-loop UCGAAUCGAAGAACUGAGAUCGAUUGGUGCAUAGAUAUCAGGAGAACCCACUCAAUUUAACUCUAGCACCAUUCGAAAUCAGUGCUUUUGAUAAGAAAC miR-285 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the ends of the excised miRNA by cloning. The sequence is localised to chromosome 3L. 4 15406 MI0000378 dme-mir-100 Drosophila melanogaster miR-100 stem-loop CCAUUAACAGAAACCCGUAAAUCCGAACUUGUGCUGUUUUAUAUCUGUUACAAGACCGGCAUUAUGGGAGUCUGUCAAUGCAAACAACUGGUUUUUGGCA miR-100 was reported independently by three groups using computational prediction [2], Northern blot analysis [1] and cloning [3]. References [1] and [2] confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [3] confirmed the ends of the excised miRNA by cloning. The sequence is localised to chromosome 2L. 4 15407 MI0000379 dme-mir-92b Drosophila melanogaster miR-92b stem-loop UAAAACGUCACCUGAUGUAGGCCGUGCCCAGUGCUUAUUUGUUGCAUUUUCGAAAUACAAAUUGCACUAGUCCCGGCCUGCAAUGAGUGUCGCAGUCGAC miR-92b was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the ends of the excised miRNA by cloning. The sequence is localised to chromosome 3R. 4 15408 MI0000380 dme-mir-286 Drosophila melanogaster miR-286 stem-loop UUAAAAUUGAAUGGCGAAUGUCGGUAUGGUCUCUUUUUCAAAGAAAGGUUUCGAUUAAGCGAAGUGACUAGACCGAACACUCGUGCUAUAAUUUUAAAAU miR-286 was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the 5' end of the excised miRNA by cloning and reported a length distribution of 22-24 nt with 23 nt the most commonly expressed. The sequence is localised to chromosome 2R. 4 15409 MI0000381 dme-mir-287 Drosophila melanogaster miR-287 stem-loop GGACGCCGGGGAUGUAUGGGUGUGUAGGGUCUGAAAUUUUGCACACAUUUACAAUAAUUGUAAAUGUGUUGAAAAUCGUUUGCACGACUGUGA This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome 2L. 4 15410 MI0000382 dme-mir-87 Drosophila melanogaster miR-87 stem-loop AACACAUUUCAUUCGCGCCUGUAUCUUGCUGAACCGCUGCCAUUAUGGCCAACGAUCCGGUUGAGCAAAAUUUCAGGUGUGUGAGAAAUGUGUUUAGCA miR-87 was predicted by computational approaches based on conservation in C. elegans [2,3]. Northern blot analysis confirmed that the strand containing the predicted miR is predominantly expressed [1,2]. The precise 5' and 3' ends are not known, but alignment with the worm miR suggests the sequence shown here is closest [2]. This miR maps to chromosome 2L. 4 15411 MI0000383 dme-mir-263b Drosophila melanogaster miR-263b stem-loop UUGCUGACUUUGAGUCUUGGCACUGGGAGAAUUCACAGUUGACUUUAUUAUUCUGUGGUUCUGCGGGUGCCAAAACUUAAAAACCGGCUU miR-263b was reported independently in references [1] and [2]. Computational prediction followed by northern blotting confirmed that the strand containing the predicted miR is predominantly expressed [1]. Reference [2] confirmed the ends of the excised miRNA by cloning. The sequence is localised to chromosome 3L. 4 15412 MI0000384 dme-mir-288 Drosophila melanogaster miR-288 stem-loop CGGCCAUGUCGUAAUUAGCGGAGCACGGCAUCGCCGGCGAUAAUUAAUGACGGUGGUCACGUUGGUUUCAUGUCGAUUUCAUUUCAUGACACGGCCG This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome 2L. 4 15413 MI0000385 dme-mir-289 Drosophila melanogaster miR-289 stem-loop GAGUUUACAGUAAAAUAAAUAUUUAAGUGGAGCCUGCGACUUCAGUCCCUCUGACUGACUGGGGUAAGUCACUUGAGCGUUUGUUGGCACGUAAAAGAC This sequence is computationally predicted based on conservation in D. pseudoobscura. The precise 5' or 3' ends are unknown. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. The sequence is localised to chromosome 3L. 4 15414 MI0000387 dme-bantam Drosophila melanogaster bantam stem-loop AUUUGACUACGAAACCGGUUUUCGAUUUGGUUUGACUGUUUUUCAUACAAGUGAGAUCAUUUUGAAAGCUGAUUUUGUCAA bantam microRNA was predicted independently by two groups using computational approaches [1,2]. Northern blotting confirmed that the strand containing the predicted miR is predominantly expressed. Subsequent cloning studies have independently identified the same miRNA and confirmed the 5' end [3]. A length distribution of 20-23 nt was reported with a 23 nt sequence the most commonly expressed. bantam is reported to promote tissue growth [1]. bantam expression is temporally and spatially regulated in response to patterning cues. bantam microRNA simultaneously stimulates cell proliferation and prevents apoptosis and is predicted to target the pro-apoptotic gene hid [1]. The sequence maps to chromosome 3L. 4 15415 MI0000388 mmu-mir-290 Mus musculus miR-290 stem-loop CUCAUCUUGCGGUACUCAAACUAUGGGGGCACUUUUUUUUUUCUUUAAAAAGUGCCGCCUAGUUUUAAGCCCCGCCGGUUGAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15416 MI0000389 mmu-mir-291a Mus musculus miR-291a stem-loop CCUAUGUAGCGGCCAUCAAAGUGGAGGCCCUCUCUUGAGCCUGAAUGAGAAAGUGCUUCCACUUUGUGUGCCACUGCAUGGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15417 MI0000390 mmu-mir-292 Mus musculus miR-292 stem-loop CAGCCUGUGAUACUCAAACUGGGGGCUCUUUUGGAUUUUCAUCGGAAGAAAAGUGCCGCCAGGUUUUGAGUGUCACCGGUUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15418 MI0000391 mmu-mir-293 Mus musculus miR-293 stem-loop UUCAAUCUGUGGUACUCAAACUGUGUGACAUUUUGUUCUUUGUAAGAAGUGCCGCAGAGUUUGUAGUGUUGCCGAUUGAG 6 15419 MI0000392 mmu-mir-294 Mus musculus miR-294 stem-loop UUCCAUAUAGCCAUACUCAAAAUGGAGGCCCUAUCUAAGCUUUUAAGUGGAAAGUGCUUCCCUUUUGUGUGUUGCCAUGUGGAG 6 15420 MI0000393 mmu-mir-295 Mus musculus miR-295 stem-loop GGUGAGACUCAAAUGUGGGGCACACUUCUGGACUGUACAUAGAAAGUGCUACUACUUUUGAGUCUCUCC 6 15421 MI0000394 mmu-mir-296 Mus musculus miR-296 stem-loop GGGCCUUUCUGGAGGGCCCCCCCUCAAUCCUGUUGUGCUCGCUUCAGAGGGUUGGGUGGAGGCUCUCCUGAAGGUGUCC 6 15422 MI0000395 mmu-mir-297a-1 Mus musculus miR-297a-1 stem-loop AUAUGUAUGUAUGUAUGUAUGUGUGCAUGUGCAUGUGCAUGUAUGCAUAUUGCAUGUAUAUAUUAUGCAUACAUGU Houbaviy et al. report that the cloned sequence of miR-297 is found over 20 times in the mouse genomic sequence [1]. This sequence appears to match several low complexity repetitive regions. Confidence in which loci actually express miR-297 is low because of the low complexity nature of the sequence. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 6 15423 MI0000397 mmu-mir-297a-2 Mus musculus miR-297a-2 stem-loop UGUAUGUGCAUGCAUAUGUGCUCAUGUGUGUGUACAUGUAUGUGUGCAUGUGCAUGUAUAUAUG Houbaviy et al. report that the cloned sequence of miR-297 is found over 20 times in the mouse genomic sequence [1]. This sequence appears to match several low complexity repetitive regions. Confidence in which loci actually express miR-297 is low because of the low complexity nature of the sequence. 6 15424 MI0000398 mmu-mir-298 Mus musculus miR-298 stem-loop CCAGGCCUUUGGCAGAGGAGGGCUGUUCUUCCCUUGAGUUUUAUGACUGGGAGGAACUAGCCUUCUCUCAGCUUAGGAGUGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15425 MI0000399 mmu-mir-299 Mus musculus miR-299 stem-loop AAGAAAUGGUUUACCGUCCCACAUACAUUUUGAGUAUGUAUGUGGGACGGUAAACCGCUUCUU Houbaviy et al. identified a mature miRNA from the 5' arm of this hairpin, and named it miR-299 [1]. Landgraf et al. later show that the 3' product is the predominant one [2]. The 5' miRNA is renamed miR-299* here. 6 15426 MI0000400 mmu-mir-300 Mus musculus miR-300 stem-loop GCUACUUGAAGAGAGGUUAUCCUUUGUGUGUUUGCUUUACGCGAAAUGAAUAUGCAAGGGCAAGCUCUCUUCGAGGAGC 6 15427 MI0000401 mmu-mir-301a Mus musculus miR-301a stem-loop CCUGCUAACGGCUGCUCUGACUUUAUUGCACUACUGUACUUUACAGCGAGCAGUGCAAUAGUAUUGUCAAAGCAUCCGCGAGCAGG 6 15428 MI0000402 mmu-mir-302a Mus musculus miR-302a stem-loop CCACCACUUAAACGUGGUUGUACUUGCUUUAGACCUAAGAAAGUAAGUGCUUCCAUGUUUUGGUGAUGG 6 15429 MI0000403 mmu-mir-34c Mus musculus miR-34c stem-loop AGUCUAGUUACUAGGCAGUGUAGUUAGCUGAUUGCUAAUAGUACCAAUCACUAACCACACAGCCAGGUAAAAAGACU Houbaviy et al. cloned 3 closely related sequences from mouse embryonic stem cells [1], and named them miR-34a, miR-34b and miR-172. These names have been remapped to miR-34c (MIR:MI0000403), miR-34b (MIR:MI0000404) and miR-34a (MIR:MI0000584) to clarify homology with human sequences. 6 15430 MI0000404 mmu-mir-34b Mus musculus miR-34b stem-loop GUGCUCGGUUUGUAGGCAGUGUAAUUAGCUGAUUGUAGUGCGGUGCUGACAAUCACUAACUCCACUGCCAUCAAAACAAGGCAC Houbaviy et al. cloned 3 closely related sequences from mouse embryonic stem cells [1], and named them miR-34a, miR-34b and miR-172. These names have been remapped to miR-34c (MIR:MI0000403), miR-34b (MIR:MI0000404) and miR-34a (MIR:MI0000584) to clarify homology with human sequences. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15431 MI0000405 mmu-let-7d Mus musculus let-7d stem-loop AAUGGGUUCCUAGGAAGAGGUAGUAGGUUGCAUAGUUUUAGGGCAGAGAUUUUGCCCACAAGGAGUUAACUAUACGACCUGCUGCCUUUCUUAGGGCCUUAUU Lagos-Quintana et al. identified let-7d by cloning in a number of mouse tissues [1]. Houbaviy et al. identified an miRNA, let-7d-as, which appears to be cleaved from the opposite strand of the same precursor [2]. Because of the similarity of let-7d to other let-7 miRNAs in a variety of organisms, the miRNA from the 3' arm of the precursor has been named let-7d* here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 6 15432 MI0000406 mmu-mir-106a Mus musculus miR-106a stem-loop AUGUCAAAGUGCUAACAGUGCAGGUAGCUUUUUGAGUUCUACUGCAGUGCCAGCACUUCUUACAU Mouse and human miR-106a (MIR:MI0000406 and MIR:MI0000113) differ at two positions but the precursor sequences are clearly closely related. The sequences are also related to mir-17 (MIR:MI0000071 and MIR:MI0000687). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15433 MI0000407 mmu-mir-106b Mus musculus miR-106b stem-loop CCUGCUGGGACUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCUGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Reference [1] reported the same miRNA sequence with two different identifiers - miR-106b and miR-94. This sequence maps to mouse chromosome 5. 6 15434 MI0000408 mmu-mir-130b Mus musculus miR-130b stem-loop GGCUUGUUGGACACUCUUUCCCUGUUGCACUACUGUGGGCCUCUGGGAAGCAGUGCAAUGAUGAAAGGGCAUCUGUCGGGCC 6 15435 MI0000409 dme-mir-303 Drosophila melanogaster miR-303 stem-loop UCUUGGUUUAGGUUUCACAGGAAACUGGUUUAAUAACGAAAACUAGUUUCCUCUAAAAUCCUAAUCAAGA miR-303 was identified and ends mapped by cloning. The sequence is localised to chromosome X. 4 15436 MI0000410 dme-mir-31b Drosophila melanogaster miR-31b stem-loop CAAAUAAUGAAUUUGGCAAGAUGUCGGAAUAGCUGAGAGCACAGCGGAUCGAACAUUUUAUCGUCCGAAAAAAUGUGAUUAUUUUUGAAAAGCGGCUAUGCCUCAUCUAGUCAAUUGCAUUACUUUG miR-31b was identified and ends mapped by cloning. The sequence is localised to chromosome X. 4 15437 MI0000411 dme-mir-304 Drosophila melanogaster miR-304 stem-loop GCAGCAUUGAAUAAUCUCAAUUUGUAAAUGUGAGCGGUUUAAGCCAUUUGACGCACUCACUUUGCAAUUGGAGAUUGCUCGAGACUGC miR-304 was identified and 5' end mapped by cloning. Reference [1] reports a length distribution of 21-23 nt, with 23 nt most commonly expressed. The sequence is localised to chromosome X. 4 15438 MI0000412 dme-mir-305 Drosophila melanogaster miR-305 stem-loop CAUGUCUAUUGUACUUCAUCAGGUGCUCUGGUGUGUCUCGUAACCCGGCACAUGUUGAAGUACACUCAAUAUG Lai et al. predicted this sequence based on conservation in D. pseudoobscura, but did not verify expression [2]. Aravin et al. describe identification and mapping of the 5' end of the excised sequence by cloning [1]. They report a length distribution of 19-23 nt, with 23 nt most commonly expressed. The sequence maps to chromosome 2L. 4 15439 MI0000413 dme-mir-9c Drosophila melanogaster miR-9c stem-loop AUUUUUGCUGUUUCUUUGGUAUUCUAGCUGUAGAUUGUUUCACGCACAUUGUAUAUCAUCUAAAGCUUUUAUACCAAAGCUCCAGCUUAAAU Lai et al. predicted this sequence based on conservation in D. pseudoobscura, but did not verify expression [2]. Aravin et al. describe identification and mapping of the ends of the excised sequence by cloning [1]. The sequence maps to chromosome 2L. 4 15440 MI0000414 dme-mir-306 Drosophila melanogaster miR-306 stem-loop GUCCACUCGAUGGCUCAGGUACUUAGUGACUCUCAAUGCUUUUGACAUUUUGGGGGUCACUCUGUGCCUGUGCUGCCAGUGGGAC miR-306 was identified and ends mapped by cloning. Reference [1] also identified a less predominantly expressed miR from the opposite arm of the precursor, designated miR-306* here. The sequence is localised to chromosome X. 4 15441 MI0000415 dme-mir-9b Drosophila melanogaster miR-9b stem-loop UGCAUAUUAUUUGCUCUUUGGUGAUUUUAGCUGUAUGGUGUUUAUGUAUAUUCCAUAGAGCUUUAUUACCAAAAACCAAAUGGUUUCUGCA Lai et al. predicted this sequence based on conservation in D. pseudoobscura, but did not verify expression [2]. Aravin et al. describe identification and mapping of the 5' end of the excised sequence by cloning [1]. They report a length distribution of 21-23 nt, with 23 nt most commonly expressed. The sequence maps to chromosome 2L. 4 15442 MI0000416 dme-let-7 Drosophila melanogaster let-7 stem-loop UCUGGCAAAUUGAGGUAGUAGGUUGUAUAGUAGUAAUUACACAUCAUACUAUACAAUGUGCUAGCUUUCUUUGCUUGA let-7 was identified and 5' end mapped by cloning. Reference [1] reports a length distribution of 20-21 nt, with 21 nt most commonly expressed. The sequence is localised to chromosome 2L. 4 15443 MI0000417 dme-mir-125 Drosophila melanogaster miR-125 stem-loop GACAUGUGCAAAUGUUUGUAUGGCUGAUUCCCUGAGACCCUAACUUGUGACUUUUAAUACCAGUUUCACAAGUUUUGAUCUCCGGUAUUGGACGCAAACUUGCUGAUGUU miR-125 was identified and ends mapped by cloning. The sequence is localised to chromosome 2L. 4 15444 MI0000418 dme-mir-307 Drosophila melanogaster miR-307 stem-loop UGUCUUGCUUUGACUCACUCAACCUGGGUGUGAUGUUAUUUCGAUAUGGUAUCCAUCACAACCUCCUUGAGUGAGCGAUAGCAGGACA miR-307 was identified and ends mapped by cloning. The sequence is localised to chromosome 2R. 4 15445 MI0000419 dme-mir-308 Drosophila melanogaster miR-308 stem-loop CUCGCAGUAUAUUUUUGUGUUUUGUUUCGUUUUGCAAUCCAAAUCACAGGAUUAUACUGUGAG miR-308 was identified and 5' end mapped by cloning. Reference [1] reports a length distribution of 18-22 nt, with 22 nt most commonly expressed. The sequence is localised to chromosome 2R. 4 15446 MI0000420 dme-mir-31a Drosophila melanogaster miR-31a stem-loop UCCGUUGGUAAAUUGGCAAGAUGUCGGCAUAGCUGACGUUGAAAAGCGAUUUUGAAGAGCGCUAUGCUGCAUCUAGUCAGUUGUUCAAUGGA miR-31a was identified and 5' end mapped by cloning. Reference [1] reports a length distribution of 22-23 nt, with 23 nt most commonly expressed. The sequence is localised to chromosome 2R. 4 15447 MI0000421 dme-mir-309 Drosophila melanogaster miR-309 stem-loop AUUAUACGACAAACCUUGUUCGGUUUUGCCAAUUUCCAAGCCAGCACUGGGUAAAGUUUGUCCUAUAAU miR-309 was identified and ends mapped by cloning. The sequence is localised to chromosome 2R. 4 15448 MI0000422 dme-mir-310 Drosophila melanogaster miR-310 stem-loop AACAUAAACAUUUGCAGGGCGGGUCGUGUGUCAGUGUAUUUAUAUCUUAGCUAUAUUGCACACUUCCCGGCCUUUAAAUGUCCAAUGUU miR-310 was identified and ends mapped by cloning. The sequence is localised to chromosome 2R. 4 15449 MI0000423 dme-mir-311 Drosophila melanogaster miR-311 stem-loop UCUAGAUCAUUUUUCGGACGGUAUAUGGGUUAAUAUUUCAUUUGUCGAAUAUAUUGCACAUUCACCGGCCUGAAAAUAUCAAGA miR-311 was identified and 5' end mapped by cloning. Reference [1] reports a length distribution of 22-23 nt, with 22 nt most commonly expressed. The sequence is localised to chromosome 2R. 4 15450 MI0000424 dme-mir-312 Drosophila melanogaster miR-312 stem-loop GAUUUGGUUCGUCACAAGGGCAAUUCUGCAUUUUUUAACUAGUAUUGCACUUGAGACGGCCUGAUU miR-312 was identified and 5' end mapped by cloning. Reference [1] reports a length distribution of 22-23 nt, with 22 nt most commonly expressed. The sequence is localised to chromosome 2R. 4 15451 MI0000425 dme-mir-313 Drosophila melanogaster miR-313 stem-loop AUUUUCUGCUGCGGAUGGGGGCAGUACUGUUUUUUUAACAUUGAGUAUUGCACUUUUCACAGCCCGAAAAU miR-313 was predicted based on conservation of clustering with miR-310 (MIR:MI0000422), miR-311 (MIR:MI0000423) and miR-312 (MIR:MI0000424). Its expression has not been verified. 4 15452 MI0000426 dme-mir-314 Drosophila melanogaster miR-314 stem-loop UCGUAACUUGUGUGGCUUCGAACUUACCUAGUUGAGGAAAACUCCCAUGUCGGAUUUUGUUACCUCUGGUAUUCGAGCCAAUAAGUUCGG miR-314 was identified and ends mapped by cloning. The sequence is localised to chromosome 3L. 4 15453 MI0000427 dme-mir-315 Drosophila melanogaster miR-315 stem-loop CACUUAUAUAAUUUUGAUUGUUGCUCAGAAAGCCCUCAUUGUUUACCAGUUGGCUUUCGAGCAAUAAUUGAAACCAGAUAAGUG Lai et al. predicted this sequence based on conservation in D. pseudoobscura, but did not verify expression [2]. Aravin et al. describe identification and mapping of the ends of the excised sequence by cloning [1]. The sequence maps to chromosome 3L. 4 15454 MI0000428 dme-mir-316 Drosophila melanogaster miR-316 stem-loop AAAUUCUAGUCGAUUUGUCUUUUUCCGCUUACUGGCGUUUCAAUUCCACAACGACAGGAAAGGGAAAAAGGCGUAUUUACUAUGAGUUU Lai et al. predicted this sequence based on conservation in D. pseudoobscura, but did not verify expression [2]. Aravin et al. describe identification and mapping of the 5' end of the excised sequence by cloning [1]. They report a length distribution of 20-22 nt, with 22 nt most commonly expressed. The sequence maps to chromosome 3L. 4 15455 MI0000429 dme-mir-317 Drosophila melanogaster miR-317 stem-loop AUGCAACUGCCAUUGGGAUACACCCUGUGCUCGCUUUGAAUGAAAUGCAAGCAAGUGAACACAGCUGGUGGUAUCCAGUGGCCGUUUGGCAU miR-317 was identified and 5' end mapped by cloning. Reference [1] reports a length distribution of 20-24 nt, with 24 nt most commonly expressed. The sequence is localised to chromosome 3R. 4 15456 MI0000430 dme-mir-318 Drosophila melanogaster miR-318 stem-loop UUUAUGGGAUACACACAGUUCAGUUUUGUCACACUUCAAGCAUCACUGGGCUUUGUUUAUCUCAUGAG miR-318 was identified and ends mapped by cloning. The sequence is localised to chromosome 3R. 4 15457 MI0000431 dme-mir-2c Drosophila melanogaster miR-2c stem-loop UCGUAUCUUACUUUCAAUGUCAUCAAAAAGGGCUGAAGAAAGAUAUUUCUGCAUUUGAAUCGUAUCACAGCCAGCUUUGAUGGGCAUUGCAAUGAGCAGCGA miR-2c was predicted by similarity to miR-2a (MIR:MI0000117). Expression in Drosophila was independently confirmed by Northern blot analysis [1] and by cloning [2]. The latter study confirmed the ends of the excised miR. The sequence is localised to chromosome 3R. Stark et al. [3] have identified targets for miR-2 in Drosophila using computational prediction followed by experimental validation. miR-2 regulates the proapoptotic genes reaper, grim and sickle, suggesting that it may be involved in the control of apoptosis. 4 15458 MI0000432 dme-mir-iab-4 Drosophila melanogaster miR-iab-4 stem-loop UCGUAAACGUAUACUGAAUGUAUCCUGAGUGUAUCCUAUCCGGUAUACCUUCAGUAUACGUAACACGA iab-4 is a transcript of the Bithorax complex which has been previously shown to contribute to proper formation of abdominal segments [2]. Reference [1] identified a miRNA gene within the transcript and mapped the ends of the mature miR sequence by cloning. Excised miR sequences were identified from both arms of the precursor and are named miR-iab-4-5p (5') and miR-iab-4-3p (3') as too few sequences were cloned to decide on which was predominantly expressed. 4 15459 MI0000433 hsa-let-7g Homo sapiens let-7g stem-loop AGGCUGAGGUAGUAGUUUGUACAGUUUGAGGGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCCACUGCCUUGCCA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. let-7g* cloned in [2] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 15460 MI0000434 hsa-let-7i Homo sapiens let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15461 MI0000437 hsa-mir-1-2 Homo sapiens miR-1-2 stem-loop ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAUAUGAACAUACAAUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUUGGUAGGC Lagos-Quintana et al. [1] reported the cloning of miR-1b, miR-1c and miR-1d. The mature processed miR sequences are identical apart from the 3' residues (A in mir-1b, C in mir-1c and UU in mir-1d). The 3' residues of both miR-1b and miR-1c conflict with the predicted stem-loop precursor sequence shown here and these sequences are not found in current assemblies of human and mouse genomes. It is suggested that polyA polymerase may add 1-3 nts to the 3' end of the mature transcript (Tom Tuschl, pers. comm.). The common 21 nts of the 3 reported miR sequences have been rationalised here and named miR-1. There are 2 pairs of orthologous putative hairpin precursor structures named mir-1-1 (human MIR:MI0000651, mouse MIR:MI0000139), and mir-1-2 (human MIR:MI0000437, mouse MIR:MI0000652). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15462 MI0000438 hsa-mir-15b Homo sapiens miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUGCUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU This miRNA sequence was predicted based on homology to a verified miRNA from mouse [1]. Michael et al. subsequently verified expression of miR-15b in human [2]. 5 15463 MI0000439 hsa-mir-23b Homo sapiens miR-23b stem-loop CUCAGGUGCUCUGGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAACCACGACCUUGGC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15464 MI0000440 hsa-mir-27b Homo sapiens miR-27b stem-loop ACCUCUCUAACAAGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGGUUUCCGCUUUGUUCACAGUGGCUAAGUUCUGCACCUGAAGAGAAGGUG Lagos-Quintana et al. determined the expression of miR-27b in mouse [1] - a human sequence was predicted based on homology. Michael et al. subsequently verified the expression of this miRNA in human cells [2]. 5 15465 MI0000441 hsa-mir-30b Homo sapiens miR-30b stem-loop ACCAAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACUUGGA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15466 MI0000442 hsa-mir-122 Homo sapiens miR-122 stem-loop CCUUAGCAGAGCUGUGGAGUGUGACAAUGGUGUUUGUGUCUAAACUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGCUAGGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15467 MI0000443 hsa-mir-124-1 Homo sapiens miR-124-1 stem-loop AGGCCUCUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAAUGGGGCUG miR-124 was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15468 MI0000444 hsa-mir-124-2 Homo sapiens miR-124-2 stem-loop AUCAAGAUUAGAGGCUCUGCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA miR-124 was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15469 MI0000445 hsa-mir-124-3 Homo sapiens miR-124-3 stem-loop UGAGGGCCCCUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGUCUAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAGGCGCCUCC miR-124 was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15470 MI0000446 hsa-mir-125b-1 Homo sapiens miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. Its expression was later verified in human BC-1 cells [2]. 5 15471 MI0000447 hsa-mir-128-1 Homo sapiens miR-128-1 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC The most commonly cloned mature sequences derived from the previously annotated mir-128a and mir-128b were shown by Landgraf et al to be identical [3]. The sequences are therefore renamed mir-128-1 and mir-128-2. 5 15472 MI0000448 hsa-mir-130a Homo sapiens miR-130a stem-loop UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUACUGUCUGCACCUGUCACUAGCAGUGCAAUGUUAAAAGGGCAUUGGCCGUGUAGUG miR-130a was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. 5 15473 MI0000449 hsa-mir-132 Homo sapiens miR-132 stem-loop CCGCCCCCGCGUCUCCAGGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAACUGGAGGUAACAGUCUACAGCCAUGGUCGCCCCGCAGCACGCCCACGCGC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15474 MI0000450 hsa-mir-133a-1 Homo sapiens miR-133a-1 stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15475 MI0000451 hsa-mir-133a-2 Homo sapiens miR-133a-2 stem-loop GGGAGCCAAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGACUGUCCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUGUGCAUUGAUGGCGCCG This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1] later verified in human [2]. 5 15476 MI0000452 hsa-mir-135a-1 Homo sapiens miR-135a-1 stem-loop AGGCCUCGCUGUUCUCUAUGGCUUUUUAUUCCUAUGUGAUUCUACUGCUCACUCAUAUAGGGAUUGGAGCCGUGGCGCACGGCGGGGACA miR-135a was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. 5 15477 MI0000453 hsa-mir-135a-2 Homo sapiens miR-135a-2 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA miR-135a was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. 5 15478 MI0000454 hsa-mir-137 Homo sapiens miR-137 stem-loop GGUCCUCUGACUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUCGAGGAGAGUACCAGCGGCA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15479 MI0000455 hsa-mir-138-2 Homo sapiens miR-138-2 stem-loop CGUUGCUGCAGCUGGUGUUGUGAAUCAGGCCGACGAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUGCAUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15480 MI0000456 hsa-mir-140 Homo sapiens miR-140 stem-loop UGUGUCUCUCUCUGUGUCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACCGGGGCACC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. Its expression was later verified in human [2,3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15481 MI0000457 hsa-mir-141 Homo sapiens miR-141 stem-loop CGGCCGGCCCUGGGUCCAUCUUCCAGUACAGUGUUGGAUGGUCUAAUUGUGAAGCUCCUAACACUGUCUGGUAAAGAUGGCUCCCGGGUGGGUUC This miRNA sequence was predicted based on homology to a verified miRNA from mouse [1]. Michael et al. subsequently verified expression of miR-141 in human [2]. 5 15482 MI0000458 hsa-mir-142 Homo sapiens miR-142 stem-loop GACAGUGCAGUCACCCAUAAAGUAGAAAGCACUACUAACAGCACUGGAGGGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGUG This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. Michael et al. verified the expression of a sequence from the 3' arm of this stem-loop (named miR-142-3p here) [2], and both miR-142-5p (from the 5' arm) and miR-142-3p ware later detected in human HL-60 leukemia cells [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15483 MI0000459 hsa-mir-143 Homo sapiens miR-143 stem-loop GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUGUUCUGCAGC This miRNA sequence was predicted based on homology to a verified miRNA from mouse [1]. Michael et al. subsequently verified expression of miR-143 in human, and demonstrated significantly reduced levels of the miRNA in precancerous and neoplastic colorectal tissue [2]. miR-143 cloned in [3] has a 1 nt 3' extension (A), which is incompatible with the genome sequence. 5 15484 MI0000460 hsa-mir-144 Homo sapiens miR-144 stem-loop UGGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGCGAUGAGACACUACAGUAUAGAUGAUGUACUAGUCCGGGCACCCCC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. The expression of this miRNA has not been verified in human. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15485 MI0000461 hsa-mir-145 Homo sapiens miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGUU This miRNA sequence was predicted based on homology to a verified miRNA from mouse [1]. Michael et al. subsequently verified expression of miR-145 in human, and demonstrated significantly reduced levels of the miRNA in precancerous and neoplastic colorectal tissue [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15486 MI0000462 hsa-mir-152 Homo sapiens miR-152 stem-loop UGUCCCCCCCGGCCCAGGUUCUGUGAUACACUCCGACUCGGGCUCUGGAGCAGUCAGUGCAUGACAGAACUUGGGCCCGGAAGGACC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15487 MI0000463 hsa-mir-153-1 Homo sapiens miR-153-1 stem-loop CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAUUCUCACUCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGCAGGUGUGGC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15488 MI0000464 hsa-mir-153-2 Homo sapiens miR-153-2 stem-loop AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15489 MI0000465 hsa-mir-191 Homo sapiens miR-191 stem-loop CGGCUGGACAGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCGCUUGGAUUUCGUCCCCUGCUCUCCUGCCU This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. The expression of this miRNA was later confirmed in human HL-60 leukemia cells [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15490 MI0000466 hsa-mir-9-1 Homo sapiens miR-9-1 stem-loop CGGGGUUGGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGGUGUGGAGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAAUAACCCCA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15491 MI0000467 hsa-mir-9-2 Homo sapiens miR-9-2 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15492 MI0000468 hsa-mir-9-3 Homo sapiens miR-9-3 stem-loop GGAGGCCCGUUUCUCUCUUUGGUUAUCUAGCUGUAUGAGUGCCACAGAGCCGUCAUAAAGCUAGAUAACCGAAAGUAGAAAUGAUUCUCA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15493 MI0000469 hsa-mir-125a Homo sapiens miR-125a stem-loop UGCCAGUCUCUAGGUCCCUGAGACCCUUUAACCUGUGAGGACAUCCAGGGUCACAGGUGAGGUUCUUGGGAGCCUGGCGUCUGGCC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15494 MI0000470 hsa-mir-125b-2 Homo sapiens miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. Its expression was later verified in human BC-1 cells [2]. 5 15495 MI0000471 hsa-mir-126 Homo sapiens miR-126 stem-loop CGCUGGCGACGGGACAUUAUUACUUUUGGUACGCGCUGUGACACUUCAAACUCGUACCGUGAGUAAUAAUGCGCCGUCCACGGCA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. The expression of this miRNA has not been verified in human. miR-123 identified in the same mouse study was later found to originate from the same precursor as miR-126 and was hence renamed miR-126*. miR-126* also appears to be conserved in human. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15496 MI0000472 hsa-mir-127 Homo sapiens miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCAUCAUC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. The expression of this miRNA was later confirmed by cloning in human cells [2,3]. 5 15497 MI0000473 hsa-mir-129-2 Homo sapiens miR-129-2 stem-loop UGCCCUUCGCGAAUCUUUUUGCGGUCUGGGCUUGCUGUACAUAACUCAAUAGCCGGAAGCCCUUACCCCAAAAAGCAUUUGCGGAGGGCG This miRNA sequence was predicted based on homology to a verified miRNA cloned from mouse cerebellum [1]. Expression of this miRNA was subsequently verified in a human osteoblast sarcoma cell line [2]. Reference [2] named the human/mouse conserved sequence miR-129b, but subsequent genome searches suggest that the same mature sequence may be expressed from two predicted hairpin precursors in both human (this entry and MIR:MI0000252) and mouse (MIR:MI0000222 and MIR:MI0000585). Landgraf et al. show that the 5' product of mir-129-1 (MIR:MI0000222) is the predominant one, whereas both 5' and 3' products are significantly expressed from mir-129-2 (this entry) [3]. 5 15498 MI0000474 hsa-mir-134 Homo sapiens miR-134 stem-loop CAGGGUGUGUGACUGGUUGACCAGAGGGGCAUGCACUGUGUUCACCCUGUGGGCCACCUAGUCACCAACCCUC miR-134 was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15499 MI0000475 hsa-mir-136 Homo sapiens miR-136 stem-loop UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU miR-136 was first identified by cloning studies in mouse [1]. Its expression was later verified in human embryonic stem cells [2]. 5 15500 MI0000476 hsa-mir-138-1 Homo sapiens miR-138-1 stem-loop CCCUGGCAUGGUGUGGUGGGGCAGCUGGUGUUGUGAAUCAGGCCGUUGCCAAUCAGAGAACGGCUACUUCACAACACCAGGGCCACACCACACUACAGG This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. Expression in human was later validated by cloning [2,3]. 5 15501 MI0000477 hsa-mir-146a Homo sapiens miR-146a stem-loop CCGAUGUGUAUCCUCAGCUUUGAGAACUGAAUUCCAUGGGUUGUGUCAGUGUCAGACCUCUGAAAUUCAGUUCUUCAGCUGGGAUAUCUCUGUCAUCGU This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. Its expression was later verified in human [2,3]. 5 15502 MI0000478 hsa-mir-149 Homo sapiens miR-149 stem-loop GCCGGCGCCCGAGCUCUGGCUCCGUGUCUUCACUCCCGUGCUUGUCCGAGGAGGGAGGGAGGGACGGGGGCUGUGCUGGGGCAGCUGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15503 MI0000479 hsa-mir-150 Homo sapiens miR-150 stem-loop CUCCCCAUGGCCCUGUCUCCCAACCCUUGUACCAGUGCUGGGCUCAGACCCUGGUACAGGCCUGGGGGACAGGGACCUGGGGAC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15504 MI0000480 hsa-mir-154 Homo sapiens miR-154 stem-loop GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA miR-154 is predicted based on homology to a verified miRNA from mouse (MIR:MI0000176) [1]. Its expression was verifed later in human cell lines [3]. Suh et al. [2] have cloned a sequence from human ES cells, which appears to originate from the opposite arm of this hairpin precursor, so is named miR-154* here. 5 15505 MI0000481 hsa-mir-184 Homo sapiens miR-184 stem-loop CCAGUCACGUCCCCUUAUCACUUUUCCAGCCCAGCUUUGUGACUGUAAGUGUUGGACGGAGAACUGAUAAGGGUAGGUGAUUGA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15506 MI0000482 hsa-mir-185 Homo sapiens miR-185 stem-loop AGGGGGCGAGGGAUUGGAGAGAAAGGCAGUUCCUGAUGGUCCCCUCCCCAGGGGCUGGCUUUCCUCUGGUCCUUCCCUCCCA This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1]. Its expression was later verified in human BC-1 cells [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15507 MI0000483 hsa-mir-186 Homo sapiens miR-186 stem-loop UGCUUGUAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUGGUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUGAGCU This miRNA sequence is predicted based on homology to a verified miRNA from mouse. Expression of this miRNA was also verified in a human osteoblast sarcoma cell line [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15508 MI0000484 hsa-mir-188 Homo sapiens miR-188 stem-loop UGCUCCCUCUCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUUUCUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGAUGGCGAGCC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15509 MI0000486 hsa-mir-190 Homo sapiens miR-190 stem-loop UGCAGGCCUCUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCUUGCC This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15510 MI0000487 hsa-mir-193a Homo sapiens miR-193a stem-loop CGAGGAUGGGAGCUGAGGGCUGGGUCUUUGCGGGCGAGAUGAGGGUGUCGGAUCAACUGGCCUACAAAGUCCCAGUUCUCGGCCCCCG This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15511 MI0000488 hsa-mir-194-1 Homo sapiens miR-194-1 stem-loop AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGUACCAAUUUCCAGUGGAGAUGCUGUUACUUUUGAUGGUUACCAA This miRNA sequence was predicted based on homology to a verified miRNA from mouse [1]. Michael et al. subsequently verified expression of miR-194 in human [2]. Two putative pairs of orthologous hairpin precursors structures are found in mouse (mir-194-1 (MIR:MI0000236) on chromosome 1, and mir-194-2 (MIR:MI0000733) on chromosome 19) and human (mir-194-1 (MIR:MI0000488) on chromosome 1, and mir-194-2 (MIR:MI0000732) on chromosome 11). 5 15512 MI0000489 hsa-mir-195 Homo sapiens miR-195 stem-loop AGCUUCCCUGGCUCUAGCAGCACAGAAAUAUUGGCACAGGGAAGCGAGUCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUGGUG This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15513 MI0000490 hsa-mir-206 Homo sapiens miR-206 stem-loop UGCUUCCCGAGGCCACAUGCUUCUUUAUAUCCCCAUAUGGAUUACUUUGCUAUGGAAUGUAAGGAAGUGUGUGGUUUCGGCAAGUG This miRNA sequence is predicted based on homology to a verified miRNA from mouse [1], later verified in human [2]. 5 15514 MI0000491 cbr-let-7 Caenorhabditis briggsae let-7 stem-loop ACUGGGGUACGGUGAGGUAGUAGGUUGUAUAGUUUAGAAUAUUACUCUCGGUGAACUAUGCAAGUUUCUACCUCACCGAAUACCAGG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1,2]. The expression of this miRNA has not been verified in C. briggsae. 2 15515 MI0000492 cbr-lin-4 Caenorhabditis briggsae lin-4 stem-loop AUCAGAUGCUUUCGGCCUGUUCCCUGAGACCUCAAGUGUGAGCGUUCUGAACAUGCUUCACGCCUGGGCUCUCCGGGUACCAGGACGGUCUGAG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1,2]. The expression of this miRNA has not been verified in C. briggsae. 2 15516 MI0000493 cbr-mir-1 Caenorhabditis briggsae miR-1 stem-loop UGCUGUGCCGAGCUGCAUACUUCCUUACAUGCCCAUACUGUACUGUGAAUGGAUAUGGAAUGUAAAGAAGUAUGUAGAACGGAAUCUAACGGCG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1,2]. The expression of this miRNA has not been verified in C. briggsae. 2 15517 MI0000494 cbr-mir-34 Caenorhabditis briggsae miR-34 stem-loop AAGCACUCAUGGUCGUGAGGCAGUGUGGUUAGCUGGUUGCAUACACAGGUUGACAACGGCUACCUUCACUGCCACCCCGAACAUGUAGUCCUC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15518 MI0000495 cbr-mir-42 Caenorhabditis briggsae miR-42 stem-loop UAACCCUUGUCGGACCUUUGUGGGUGUUCGCCUUUUCGGUGAAGUUACUGAAUGCUUCUUCACCGGGUUAACAUCUACAGAGGUCCUAAAGGGUUC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15519 MI0000496 cbr-mir-43 Caenorhabditis briggsae miR-43 stem-loop AGGCGAUUCUGCCCGUGACAUCAAGAUGCUUGUGAUUAUGCGAAAAUGUUGGGACAUAUCACAGUUUACUUGCUGUCGCAGGCGGAUUAUUGCUA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15520 MI0000497 cbr-mir-44 Caenorhabditis briggsae miR-44 stem-loop GAGAAGGGCCGAUCUGGAUGUGCUCGUUAGUCAUAGACGAAUCACACUUGAAAGGUCAUAUGACUAGAGACACAUUCAGCUUGGCCUGGAUCUCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15521 MI0000498 cbr-mir-45-1 Caenorhabditis briggsae miR-45-1 stem-loop AGUGCCACGCUGGAUGUGCUCGUUAGUCAUAGUAACCUCAUCAAUUCAGGCUUAUGACUAGAGACACAUUCAGCUUGGCGCC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15522 MI0000499 cbr-mir-45-2 Caenorhabditis briggsae miR-45-2 stem-loop AGUGCCACGCUGGAUGUGUUCGUUAGUCAUAGUAACCUCAUCAAUUCAGGCUUAUGACUAGAGACACAUUCAGCUUGGCGCC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15523 MI0000500 cbr-mir-46 Caenorhabditis briggsae miR-46 stem-loop GAGAUACAAGUGAAGCUGAAGAGAGCCGUCUAUUGACAGUUCGCUUGUUUCAUGUGCUGUCAUGGAGUCGCUCUCUUCAGAUGAUCUGAAUCUA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15524 MI0000501 cbr-mir-47 Caenorhabditis briggsae miR-47 stem-loop UAGCUGAGGAAGACUGAAGGGAGCUUUCUUUUGACAGUUCGAUUUCGAACUCUUACUGUCAUGGAGGCGCUCUCUUCAGGUGAACUCUGGCUC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15525 MI0000502 cbr-mir-48 Caenorhabditis briggsae miR-48 stem-loop AGAACCAUUCGGGAUGUUGAGGUAGGCUCAGUAGAUGCGAGGAGAUCCACCAUUCCUCACAUCGUCUGUCCUAACUCGCCUUCCCUUGUGCUUCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15526 MI0000503 cbr-mir-49 Caenorhabditis briggsae miR-49 stem-loop ACCGAAACCAUUUGCCAUCCGCAGUUUUUUGUAGUGUGCUCCGCGCCAUCUUAGUGCCCGAAGCACCACGAGAAGCUGCAGAUGGAAGUUUUGGUU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15527 MI0000504 cbr-mir-50 Caenorhabditis briggsae miR-50 stem-loop UUCCACCCACCGGCCGCUGAUAUGUCUGAUAUUCUUGGGUUAUCUGAUAAUGAUUGUUGUAACUCAAGUAUUAGACGUAUCGACGGCCGGCUGGGUUGGAA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15528 MI0000505 cbr-mir-52 Caenorhabditis briggsae miR-52 stem-loop UUUCCCGCUCUGACAGUCCACCCGUACAUAUGUUUCCGUGCUUGACAUAGAGCUCAAUCACGAUACAAUGAGCGGGUAGCCGGUCAUCGAGUCGGAAC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1,2]. The expression of this miRNA has not been verified in C. briggsae. 2 15529 MI0000507 cbr-mir-57 Caenorhabditis briggsae miR-57 stem-loop GCUCUGAGUUCGUCUACCCUGUAGAUCGAGCUGUGUGUUCUGAAGUAUCAUACACGAGCUAGACUACUAGGUGAACGAUGGAAUGGAGCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15530 MI0000508 cbr-mir-58 Caenorhabditis briggsae miR-58 stem-loop AUCCAUUGCCCUACUAUUCGCAUCUCAUCACUCCAGUAUAUAUAUAUAUAUAUAAGGAUGAGAUCGUUCAGUACGGCAAUGGAA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15531 MI0000509 cbr-mir-60 Caenorhabditis briggsae miR-60 stem-loop UUCUUGAGCUGGAAAGGUGACAUAAAAUCAUGUCCAAGCACGCGAUAUUAUGCACAUUUUCUAGUCCAAGAC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1,2]. The expression of this miRNA has not been verified in C. briggsae. 2 15532 MI0000510 cbr-mir-67 Caenorhabditis briggsae miR-67 stem-loop UAGAUAUUUCGAUCAACUCAUUCUGCUGGUUGUUAUGCUGACAAUUGAUGAUUAAGCAUCACAACCUCCUAGAAAGAGUAGACCGAUUCUAUCUU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15533 MI0000511 cbr-mir-71 Caenorhabditis briggsae miR-71 stem-loop AGCUGAACGAUGAAAGACAUGGGUAGUGAGACGUCGGAGCCUCGUCGUAUCACUAUUCUGUUUUUCGCCGAUCAGUC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15534 MI0000512 cbr-mir-73 Caenorhabditis briggsae miR-73 stem-loop CGGUCCCUCAAACAACCGAGCUUCCCCGUCAAGCCACAGCUAUCUCUGACAUUGCUGGCAAGAUGUUGGCAGUUCAGUUGUAUGACGGAGACCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15535 MI0000513 cbr-mir-74 Caenorhabditis briggsae miR-74 stem-loop CGCACUUUUGGGCUUCCAUAUCUUUCCCAGCUCCUCUCAUUUACUAUGGAUGCUGGCAAGAAAUGGCAGUCUAGAUGUGCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15536 MI0000514 cbr-mir-75 Caenorhabditis briggsae miR-75 stem-loop UGCGAGACCGAAUUGCAGUCGGUUGCAAGCUUCAAUACAGACAAUGGUUCUUGAUAUUAAAGCUACCAACCGCCUUCAAAUCGUGCAUCGCG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15537 MI0000515 cbr-mir-77 Caenorhabditis briggsae miR-77 stem-loop GAGCUGUGAAUUUGGAUAGCUGUGCUCUGAGGAAAUAACAAUAGUCACACCCCAUGUCAUUUCAUCAGGCCAUAGCUGUCCAAAUUUCUCGGUUCG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. The hairpin precursor sequence represented here matches two positions on FPC contig 2260 in the C. briggsae genome sequence. 2 15538 MI0000517 cbr-mir-79 Caenorhabditis briggsae miR-79 stem-loop AGAACAUUCUCCGAUCUUUGGUGAUUCAGCUUAAAUGAUAGAAUUCAGACGUCUUCAUAAAGCUAGGUUACCAAAGCUCGGCGUUCCAGUUCG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15539 MI0000518 cbr-mir-80 Caenorhabditis briggsae miR-80 stem-loop UGGACACUCUUUCGCUCAGCUUUCGACAUGAUUCUAAACAAUACGCUGUCGCAAUGUUGUUGAGAUCAUUAGUUGAAAGCCGAACGAUUCGAGAUAUCCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1,2]. The expression of this miRNA has not been verified in C. briggsae. 2 15540 MI0000519 cbr-mir-81 Caenorhabditis briggsae miR-81 stem-loop CGUGAUUAACGGUCGGUUUUCACCUUGAUCUGAGAGCAAUAACCAGAAUGCUUAUCUGAGAUCAUCGUGAAAGCUAGUUGUUACUUCACU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15541 MI0000520 cbr-mir-82 Caenorhabditis briggsae miR-82 stem-loop AAGUUCUUCUAGCGACAGGUUUUCGCCGUGAUCUGCAGAGUUCCAUGAAGAAAACAUCUGAGAUCAUCGUGAAAGCCAGUUGCUUAAGAGGACUC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15542 MI0000521 cbr-mir-85 Caenorhabditis briggsae miR-85 stem-loop CCCCGGUGCCCGCUUUUUCAGUAGUUUGAAACCAGAGAUGAUAGUUGGUUACAAAGUAUUUGAAAAGGCGUGCACUGGGU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15543 MI0000522 cbr-mir-86 Caenorhabditis briggsae miR-86 stem-loop CGAGUCAAUGCCGUUUAAGUGAAUGCUUUGCCACAGUCUUCGAUCAUGUCACAUGAAGCCUGGGCUUAGAUUCACUUAGGCCGGCGUUCCUUGACUCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15544 MI0000523 cbr-mir-87 Caenorhabditis briggsae miR-87 stem-loop GGUUGUGCCCACCCGGCCGCCUGAUACUUUCGUCUCAACCUCGCUGUCAGAAUGUCGUAGGUGAGCAAAGUUUCAGGUGUGCCGGAACACACCCA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15545 MI0000524 cbr-mir-90 Caenorhabditis briggsae miR-90 stem-loop CGCACUCAUUUCAAGCGGCUUUCAACGACUAUAUCAACCAAAUCAAGCUAGAUACGUUGAUAUGUUGUUUGAAUGCCCCUUGAGAUUUUGGAGUGUU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15546 MI0000525 cbr-mir-124 Caenorhabditis briggsae miR-124 stem-loop UUUCCAGUCGUCAUAUGGCGUCCACCUGAGUGACUUUAGUGGACAUGUAUAGUUUCCAACUAAGGCACGCGGUGAAUGCCACGUGGCAAUUCUGGGAU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15547 MI0000526 cbr-mir-228 Caenorhabditis briggsae miR-228 stem-loop AUCCCACCCUGUUCGCAAUGGCACUGCAUGAAUUCACGGAUGCAAAGCGACAGACCGCGGAUCAUGCGGUACCAUAGCUGACGGUGGUGAGAU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15548 MI0000527 cbr-mir-230 Caenorhabditis briggsae miR-230 stem-loop AAAAUGCCUUACCGAUACUUGGUCGACAAUUUAAUAGUAUCUGAUUAAUUGAUGGAUAGUAUUAGUUGUGCGACCAGGAAAUGGUAUGAGCAUUUC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15549 MI0000528 cbr-mir-232 Caenorhabditis briggsae miR-232 stem-loop AUUCAAGAUUUCGGAUCUCCGUAGUUUUGACCAUUUUAUCCAACCUAAUAAUGUGAUAAAUGCAUCUUAACUGCGGUGAUCUGGAUUUUGUGAAC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. The hairpin precursor sequence represented here matches two positions on FPC contig 143 in the C. briggsae genome sequence. 2 15550 MI0000530 cbr-mir-233 Caenorhabditis briggsae miR-233 stem-loop AAGCAUUUUUCUGUCCCGCGCAUCCCUUUGUUCCAAUAUUCAAACCAGUAGAAAGAUUAUUGAGCAAUGCGCAUGUGCGGGACAGAUUGAAUAGCUG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15551 MI0000531 cbr-mir-234 Caenorhabditis briggsae miR-234 stem-loop GACUCUAGCAAAGAUCAAACGGUAUUCCUGAGUGAAUAAUAAAAAUGAGUCCAUUCUAUUAUUGCUCGAGAAUACCCUUUGACAAGCUGAAAAGUG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15552 MI0000532 cbr-mir-236 Caenorhabditis briggsae miR-236 stem-loop AAGUGACCAAUGUCCAGCGUCUUACCUGUUCAAUAUUUAGACUGACCAAACCCAUAGCUCUAAUACUGUCAGGUAAUGACGCUGGAUAGUCUUGUCAUUG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15553 MI0000533 cbr-mir-241 Caenorhabditis briggsae miR-241 stem-loop ACGGUGUCAAAGCUGAGGUAGGUGUGAGAAAUGACGAAAGGCUCUUAAUCGUUUCAUUGUCUCGCAGCUGCUUCAACUGUGAUUUACCGA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15554 MI0000534 cbr-mir-244 Caenorhabditis briggsae miR-244 stem-loop ACCCAAAUUUCUCGAUUUCUUUGGUUGUACAAAGUGGUAUGGCUCUCUUGCUCAUACCGCUUUACAGCUAAAGGAAUCGAUUGAUUUUGGA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15555 MI0000535 cbr-mir-245 Caenorhabditis briggsae miR-245 stem-loop UCAAUGUCGAAGAGCUGCUUGCAAGGUACCUAAUUGUUUGACUCUAUUCUCAAUUGGUCCCCUCCAAGUAGCUCUAUUGCAUUGU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15556 MI0000536 cbr-mir-248 Caenorhabditis briggsae miR-248 stem-loop UGCAAACUGAUAUUCACGAUAAGCGCUAUCCUUCCGUUGUAUUCAAGCUUGGUUGUCGAGUACACGUGCUCGGAUAACGCUCAUCGAGUCUGAUCGGUUAUGUU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15557 MI0000537 cbr-mir-250 Caenorhabditis briggsae miR-250 stem-loop UCUUCGGACCACGCCUUCAGUUGCCUCGUGAUCCGCCGAAUCUGUAAUGGACGAAUCACAGUCAACUGUUGGCACGGUCCUUGAAGU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15558 MI0000538 cbr-mir-251 Caenorhabditis briggsae miR-251 stem-loop CCCAAAUGACAUCUCGUUAAGUAGUGGUGCCGCUCUUAUUAGAAUUAUCAAGUAAUAAGAGUUGUUCGCUACUUAACGAGAGGAAAUUUGGA This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15559 MI0000539 cbr-mir-252 Caenorhabditis briggsae miR-252 stem-loop AGGUCUCUCCCAGUUAUAAGUAGUAGUGCCGCAGGUAACCGCUUCCAGAAAAUUGGUUUACCUACUGCCUUCUGCUUAGAAUUGGGAUUUUGAUGACCG This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15560 MI0000540 cbr-mir-259 Caenorhabditis briggsae miR-259 stem-loop AGUCAUCGAAACGAGUAAAUCUCAUCCUAAUCUGGUUGCAUUUUCAAUACUUUUUGCUACCGAUUUGGUUUGGGAUUGGCUUGUCUAGUAUUGAC This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15561 MI0000541 cbr-mir-268 Caenorhabditis briggsae miR-268 stem-loop UGAAGCGGCAAGAAUUAGAAGCAGUUUUGGUGUCAGACACACUCACUGACUCACUGCUUCUUGUUUUUCUUCUUCUUCU This miRNA sequence is predicted based on homology to a verified miRNA from C. elegans [1]. The expression of this miRNA has not been verified in C. briggsae. 2 15562 MI0000542 hsa-mir-320a Homo sapiens miR-320a stem-loop GCUUCGCUCCCCUCCGCCUUCUCUUCCCGGUUCUUCCCGGAGUCGGGAAAAGCUGGGUUGAGAGGGCGAAAAAGGAUGAGGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15563 MI0000544 ath-MIR319a Arabidopsis thaliana miR319a stem-loop AGAGAGAGCUUCCUUGAGUCCAUUCACAGGUCGUGAUAUGAUUCAAUUAGCUUCCGACUCAUUCAUCCAAAUACCGAGUCGCCAAAAUUCAAACUAGACUCGUUAAAUGAAUGAAUGAUGCGGUAGACAAAUUGGAUCAUUGAUUCUCUUUGAUUGGACUGAAGGGAGCUCCCUCU The A. thaliana jaw-D mutant has crinkly leaves and fruits, delayed flowering time and greenish petals. The jaw-D phenotype is caused by the over-expression of miR319 (also therefore known as miR-JAW), which is produced from a ~500 base long primary transcript RNA [1]. The mir-JAW microRNA is expressed in two forms, 20 and 21 nt, differing by the presence of the 3' terminal U. Cloned microRNA sequence was obtained from the jaw-D mutant. This miR has been shown targets TCP genes for cleavage [1]. This sequence is located on BAC F9D16. miR-JAW has a homologue located in BAC MBK23 (MIR:MI0000545). The mature excised miR shows sequence similarity to miR159 (MIR:MI0000189, MIR:MI0000218). 1 15564 MI0000545 ath-MIR319b Arabidopsis thaliana miR319b stem-loop AGAGAGCUUUCUUCGGUCCACUCAUGGAGUAAUAUGUGAGAUUUAAUUGACUCUCGACUCAUUCAUCCAAAUACCAAAUGAAAGAAUUUGUUCUCAUAUGGUAAAUGAAUGAAUGAUGCGAGAGACAAAUUGAGUCUUCACUUCUCUAUGCUUGGACUGAAGGGAGCUCCCU This sequence is a homologue of miR319a (MIR:MI0000544) -- also called miR-JAW -- and is located on BAC MBK23. 1 15565 MI0000546 mmu-mir-19b-2 Mus musculus miR-19b-2 stem-loop ACUUACGAUUAGUUUUGCAGAUUUGCAGUUCAGCGUAUAUGUGAAUAUAUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGGGA Mouse miR-19b was cloned from mouse tissues by independent groups [1,2]. There are two predicted hairpin precursors, with closely related human homologues [4]: mir-19b-1 (MIR:MI0000718) on chromosome 14, and mir-19b-2 (previously named mir-19b here, MIR:MI0000546) on mouse chromosome X. 6 15566 MI0000547 mmu-mir-30c-1 Mus musculus miR-30c-1 stem-loop ACCAUGUUGUAGUGUGUGUAAACAUCCUACACUCUCAGCUGUGAGCUCAAGGUGGCUGGGAGAGGGUUGUUUACUCCUUCUGCCAUGGA 6 15567 MI0000548 mmu-mir-30c-2 Mus musculus miR-30c-2 stem-loop GAGUGACAGAUAUUGUAAACAUCCUACACUCUCAGCUGUGAAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUCUCUGCCUU miR-30c was cloned and mapped to chromosome 4 in reference [1] (MIR:MI0000547). A search of more recent mouse genome assemblies suggests the presence of a second locus encoding miR-30c on chromosome 1, represented by this entry. 6 15568 MI0000549 mmu-mir-30d Mus musculus miR-30d stem-loop AAGUCUGUGUCUGUAAACAUCCCCGACUGGAAGCUGUAAGCCACAGCCAAGCUUUCAGUCAGAUGUUUGCUGCUACUGGCUC 6 15569 MI0000550 mmu-mir-148a Mus musculus miR-148a stem-loop AGCCAGUUUGGUCUUUUGAGACAAAGUUCUGAGACACUCCGACUCUGAGUAUGAUAGAAGUCAGUGCACUACAGAACUUUGUCUCUAGAGGCUGUGGUC This sequence was previsouly named mir-148 here and in [1], but is renamed to avoid confusion with mir-148b (MIR:MI0000617). This sequence maps to mouse chromosome 6. 6 15570 MI0000551 mmu-mir-192 Mus musculus miR-192 stem-loop CGUGCACAGGGCUCUGACCUAUGAAUUGACAGCCAGUACUCUUUUCUCUCCUCUGGCUGCCAAUUCCAUAGGUCACAGGUAUGUUCACC 6 15571 MI0000552 mmu-mir-196a-1 Mus musculus miR-196a-1 stem-loop UGAGCCGGGACUGUUGAGUGAAGUAGGUAGUUUCAUGUUGUUGGGCCUGGCUUUCUGAACACAACGACAUCAAACCACCUGAUUCAUGGCAGUUACUGCUUC Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15572 MI0000553 mmu-mir-196a-2 Mus musculus miR-196a-2 stem-loop AGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUC Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15573 MI0000554 mmu-mir-200a Mus musculus miR-200a stem-loop CUGGGCCUCUGUGGGCAUCUUACCGGACAGUGCUGGAUUUCUUGGCUUGACUCUAACACUGUCUGGUAACGAUGUUCAAAGGUGACCCAC 6 15574 MI0000555 mmu-mir-208a Mus musculus miR-208a stem-loop UUCCUUUGACGGGUGAGCUUUUGGCCCGGGUUAUACCUGACACUCACGUAUAAGACGAGCAAAAAGCUUGUUGGUCAGAGGAG 6 15575 MI0000556 mmu-let-7a-1 Mus musculus let-7a-1 stem-loop UUCACUGUGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCUAAGGUGAU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15576 MI0000557 mmu-let-7a-2 Mus musculus let-7a-2 stem-loop CUGCAUGUUCCCAGGUUGAGGUAGUAGGUUGUAUAGUUUAGAGUUACAUCAAGGGAGAUAACUGUACAGCCUCCUAGCUUUCCUUGGGACUUGCAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15577 MI0000558 mmu-let-7b Mus musculus let-7b stem-loop GCAGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGCAGUGAUGUUGCCCCUCCGAAGAUAACUAUACAACCUACUGCCUUCCCUGA 6 15578 MI0000559 mmu-let-7c-1 Mus musculus let-7c-1 stem-loop UGUGUGCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGCACACU 6 15579 MI0000560 mmu-let-7c-2 Mus musculus let-7c-2 stem-loop ACGGCCUUUGGGGUGAGGUAGUAGGUUGUAUGGUUUUGGGCUCUGCCCCGCUCUGCGGUAACUAUACAAUCUACUGUCUUUCCUGAAGUGGCCGC 6 15580 MI0000561 mmu-let-7e Mus musculus let-7e stem-loop CGCGCCCCCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGAAGACACCCGAGGAGAUCACUAUACGGCCUCCUAGCUUUCCCCAGGCUGCGCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15581 MI0000562 mmu-let-7f-1 Mus musculus let-7f-1 stem-loop AUCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUUAGGAGAUAACUAUACAAUCUAUUGCCUUCCCUGAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15582 MI0000563 mmu-let-7f-2 Mus musculus let-7f-2 stem-loop UGUGGGAUGAGGUAGUAGAUUGUAUAGUUUUAGGGUCAUACCCCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCCCACG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15583 MI0000564 mmu-mir-15a Mus musculus miR-15a stem-loop CCCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUGUUGAAAAGGUGCAGGCCAUACUGUGCUGCCUCAAAAUACAAGGA 6 15584 MI0000565 mmu-mir-16-1 Mus musculus miR-16-1 stem-loop AUGUCAGCGGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUGAAAUUACCUCCAGUAUUGACUGUGCUGCUGAAGUAAGGUUGGCAA This sequence is a clear homologue of human mir-16 and maps to mouse chromosome 14 [1]. A search of NCBIM30 genome assembly suggests a possible second hairpin precursor for miR-16 (MIR:MI0000566). 6 15585 MI0000566 mmu-mir-16-2 Mus musculus miR-16-2 stem-loop CAUGCUUGUUCCACUCUAGCAGCACGUAAAUAUUGGCGUAGUGAAAUAAAUAUUAAACACCAAUAUUAUUGUGCUGCUUUAGUGUGACAGGGAUA 6 15586 MI0000567 mmu-mir-18a Mus musculus miR-18a stem-loop UGCGUGCUUUUUGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGACUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCAUAAGAAGUUAUGUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 6 15587 MI0000568 mmu-mir-20a Mus musculus miR-20a stem-loop GUGUGAUGUGACAGCUUCUGUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUGUAGCCAUCUACUGCAUUACGAGCACUUAAAGUACUGCCAGCUGUAGAACUCCAG 6 15588 MI0000569 mmu-mir-21 Mus musculus miR-21 stem-loop UGUACCACCUUGUCGGAUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACAGCAGUCGAUGGGCUGUCUGACAUUUUGGUAUC 6 15589 MI0000570 mmu-mir-22 Mus musculus miR-22 stem-loop ACCUGGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCCCCUGGC 6 15590 MI0000571 mmu-mir-23a Mus musculus miR-23a stem-loop CGGACGGCUGGGGUUCCUGGGGAUGGGAUUUGAUGCCAGUCACAAAUCACAUUGCCAGGGAUUUCCAACUGACCC 6 15591 MI0000572 mmu-mir-24-2 Mus musculus miR-24-2 stem-loop GCCUCUCUCCGGGCUCCGCCUCCCGUGCCUACUGAGCUGAAACAGUUGAUUCCAGUGCACUGGCUCAGUUCAGCAGGAACAGGAGUCCAGCCCCCUAGGAGCUGGCA 6 15592 MI0000573 mmu-mir-26a-1 Mus musculus miR-26a-1 stem-loop AAGGCCGUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAGGGGCCUAUUCUUGGUUACUUGCACGGGGACGCGGGCCUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15593 MI0000575 mmu-mir-26b Mus musculus miR-26b stem-loop UGCCCGGGACCCAGUUCAAGUAAUUCAGGAUAGGUUGUGGUGCUGACCAGCCUGUUCUCCAUUACUUGGCUCGGGGGCCGGUGCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [6]. 6 15594 MI0000576 mmu-mir-29a Mus musculus miR-29a stem-loop ACCCCUUAGAGGAUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAGAAUUUUCUAGCACCAUCUGAAAUCGGUUAUAAUGAUUGGGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 6 15595 MI0000577 mmu-mir-29c Mus musculus miR-29c stem-loop AUCUCUUACACAGGCUGACCGAUUUCUCCUGGUGUUCAGAGUCUGUUUUUGUCUAGCACCAUUUGAAAUCGGUUAUGAUGUAGGGGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15596 MI0000578 mmu-mir-27a Mus musculus miR-27a stem-loop UGGCCUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAAGGUCCACAGCAAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCUGGACCC This sequence maps to mouse chromosome 8. 6 15597 MI0000579 mmu-mir-31 Mus musculus miR-31 stem-loop UGCUCCUGUAACUCGGAACUGGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGAGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCCUGUCUGACAGCAGCU This sequence maps to mouse chromosome 4. 6 15598 MI0000580 mmu-mir-92a-2 Mus musculus miR-92a-2 stem-loop UGCCCAUUCAUCCACAGGUGGGGAUUGGUGGCAUUACUUGUGUUAGAUAUAAAGUAUUGCACUUGUCCCGGCCUGAGGAAGAAAGAGGGUU 6 15599 MI0000581 mmu-mir-93 Mus musculus miR-93 stem-loop AGUCAUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUAAUUACCUGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCAGGACA 6 15600 MI0000583 mmu-mir-96 Mus musculus miR-96 stem-loop CCAGUACCAUCUGCUUGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUGUGAGCAAUCAUGUGUAGUGCCAAUAUGGGAAAAGCGGGCUGCUGC 6 15601 MI0000584 mmu-mir-34a Mus musculus miR-34a stem-loop CCAGCUGUGAGUAAUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGUAUUAGCUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACAUUGU Houbaviy et al. cloned this miRNA from embryonic stem cells and named it miR-172 [1]. This sequence is homologous to human miR-34a (MIR:MI0000268), and so is renamed miR-34a here. This sequence is not related to miR172 from plants (MIR:MI0000215 and MIR:MI0000216). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15602 MI0000585 mmu-mir-129-2 Mus musculus miR-129-2 stem-loop UGCCUUUCGCGAAUCUUUUUGCGGUCUGGGCUUGCUGUACAUAACUCAAUAGCCGGAAGCCCUUACCCCAAAAAGCAUUCGCGGAGGGCG The miRNA from the 5' arm of this precursor was verified by cloning in mouse [1]. Reference [2] named the human/mouse conserved sequence miR-129b, but subsequent genome searches suggest that the same mature sequence may be expressed from two predicted hairpin precursors in both mouse (this entry and MIR:MI0000222) and human (MIR:MI0000252 and MIR:MI0000473). Poy et al. independently cloned a mature miRNA from the 3' arm of the precursor, called mmu-miR-129-3p [3]. This sequence is not perfectly conserved in the other predicted mouse miR-129 precursor (MIR:MI0000222). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15603 MI0000586 mmu-mir-98 Mus musculus miR-98 stem-loop CUGCACAUGCUGGGGUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUUUUAGGCCCCAGUAAGAAGAUAACUAUACAACUUACUACUUUCCUUGGUGUGUGGCAU 6 15604 MI0000587 mmu-mir-103-1 Mus musculus miR-103-1 stem-loop UUCUUACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUGAGAC This miRNA sequence was predicted based on homology to a verified miRNA from human [1], and subsequently verified by cloning [2-4]. 6 15605 MI0000588 mmu-mir-103-2 Mus musculus miR-103-2 stem-loop GUCUUCGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUAGCAUUCAGGUCAAGCAGCAUUGUACAGGGCUAUGAAAGAACCAAGAA This miRNA sequence was predicted based on homology to a verified miRNA from human [1], and subsequently verified by cloning [2,3]. 6 15606 MI0000589 rno-mir-322 Rattus norvegicus miR-322/miR-424 stem-loop CCUCGCUGACUCCGAAGGGAUGCAGCAGCAAUUCAUGUUUUGGAGUAUUGCCAAGGUUCAAAACAUGAAGCGCUGCAACACCCCUUCGUGGGAAA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The miR-322 locus has an orthologous sequence in human (MIR:MI0001446), which expresses an experimentally validated mature miRNA sequence from its 5' arm, named miR-424. The human mir-424 locus does not appear to contain a homolog of the miR-322 sequence. The mouse ortholog (MIR:MI0000590) appears able to express both miR-322 and miR-424. Both miR-322 and miR-424 have been experimentally verified in rat. Landgraf et al. show that the 5' product is the predominant one [3]. The 5' product is therefore renamed miR-322 and the 3' product renamed miR-322*. 8 15607 MI0000590 mmu-mir-322 Mus musculus miR-322/miR-424 stem-loop CCUCGUUGACUCCGAAGGGCUGCAGCAGCAAUUCAUGUUUUGGAGUAUUGCCAAGGUUCAAAACAUGAAGCGCUGCAACACCCCUUCGUGGGGAA The mir-322 locus appears able to express two mature miRNA sequences. Poy et al. cloned a sequence originating from the 5' arm from mouse pancreatic beta cells [2]. This sequence is orthologous to the experimentally validated miR-424 sequence from human (MIR:MI0001446), but was named miR-322-5p in [2]. The mature product from the 3' arm of this precursor sequence is the predicted mouse homologue of miR-322, experimentally verified in rat (MIR:MI0000589) [1], and later in mouse [3]. The orthologous human locus does not appear to contain the miR-322 sequence. Landgraf et al. confirm that the 5' product is the predominant one [4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15608 MI0000591 rno-mir-323 Rattus norvegicus miR-323 stem-loop UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCGUUCGCUUCAUUUAUGGCGCACAUUACACGGUCGACCUCUUUGCGGUAUCUAAUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15609 MI0000592 mmu-mir-323 Mus musculus miR-323 stem-loop UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCGUUCGCUUCAUUUAUGGCGCACAUUACACGGUCGACCUCUUUGCGGUAUCUAAUC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000591). Seitz et al. independently predicted the miRNA hairpin precursor sequence by conservation between mouse and human [2]. Landgraf et al. later cloned and sequenced mature products from both arms of the predicted hairpin [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15610 MI0000593 rno-mir-301a Rattus norvegicus miR-301a stem-loop CCUGCUGGCUACUGCUGACGACUGCUCUGACUUUAUUGCACUACUGUACUGUACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCAUCCGGGAGCAGGCUAC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This rat miRNA has an independently verified homologue in mouse (MIR:MI0000401). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15611 MI0000594 rno-mir-324 Rattus norvegicus miR-324 stem-loop CUGACUAUGCCUCCUCGCAUCCCCUAGGGCAUUGGUGUAAAGCUGGAGACCCACUGCCCCAGGUGCUGCUGGGGGUUGUAGUC 8 15612 MI0000595 mmu-mir-324 Mus musculus miR-324 stem-loop AACUGACUAUGCCUCCUCGCAUCCCCUAGGGCAUUGGUGUAAAGCUGGAGACCCACUGCCCCAGGUGCUGCUGGGGGUUGUAGUCUGAC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000594) - expression of miRNAs from both arms was later independently verified in mouse [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The predominant miR-324-3p clone has a 3' terminal U residue, which is incompatible with the genome sequence [3]. 6 15613 MI0000596 rno-mir-325 Rattus norvegicus miR-325 stem-loop AUAUAGUGCUUGGUUCCUAGUAGGUGCUCAGUAAGUGUUUGUGACAUAAUUCGUUUAUUGAGCACCUCCUAUCAAUCAAGCACUGUGCUAGGCUCUGG 8 15614 MI0000597 mmu-mir-325 Mus musculus miR-325 stem-loop AUAUAGUGCUUGGUUCCUAGUAGGUGCUCAGUAAGUGUUUGUGACAUAAUUCGUUUAUUGAGCACCUCCUAUCAAUCAAGCACUGUGCUAGGCUCUGG Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000596). Landgraf et al. later cloned a mature product from the 3' arm [2]. The 5' product is renamed miR-325* here. 6 15615 MI0000598 mmu-mir-326 Mus musculus miR-326 stem-loop CUCAUCUGUCUGUUGGGCUGGGGGCAGGGCCUUUGUGAAGGCGGGUUAUGCUCAGAUCGCCUCUGGGCCCUUCCUCCAGUCCCGAGGCAGAUUUA 6 15616 MI0000599 rno-mir-326 Rattus norvegicus miR-326 stem-loop CUCAUCUGUCUGUGGGGCUGGGGGCAGGGCCUUUGUGAAGGCGGGUUAUGCUCAGAUCGCCUCUGGGCCCUUCCUCCAGUCCCGAGGCAGAUUUA 8 15617 MI0000600 rno-mir-327 Rattus norvegicus miR-327 stem-loop GUCUGAUGCCCUCAUCCUUGAGGGGCAUGAGGGUAGUCAGUAGCCUGAUGUCCCUCUUGAUGGCACUUCGGACAUGUUGGAAUGGCUUGUGAGG Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. 8 15618 MI0000601 rno-let-7d Rattus norvegicus let-7d stem-loop UGGGCUCCUAGGAAGAGGUAGUAGGUUGCAUAGUUUUAGGGCAGAGAUUUUGCCCACAAGGAGUUAACUAUACGACCUGCUGCCUUUCUUAGGGCCUU Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons, including the sequence identical to the miRNA cloned from the reverse strand of mouse let-7d (MIR:MI0000405), named let-7* [1]. The predicted precursor sequence from a newer assembly of the rat genome also contains the let-7d sequence in the 5' arm. The let-7d* sequence published in [1] had an extra 3' A residue, which conflicts with the sequence of the precursor shown here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 8 15619 MI0000602 rno-mir-328 Rattus norvegicus miR-328 stem-loop UGGGGCAGGGGGGCAGGAGGGGCUCAGGGAGAAAGCAUCUACAGCCCCUGGCCCUCUCUGCCCUUCCGUCCCCUGUCCCCAAAU 8 15620 MI0000603 mmu-mir-328 Mus musculus miR-328 stem-loop CUGUCUCGGAGCCUGGGGCAGGGGGGCAGGAGGGGCUCAGGGAGAAAGUAUCUACAGCCCCUGGCCCUCUCUGCCCUUCCGUCCCCUGUCCCCAAGU Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000602) - its expression was later independently verified in mouse [2]. 6 15621 MI0000604 rno-mir-329 Rattus norvegicus miR-329 stem-loop UGUUCGCUUCUGGUACCGGAAGAGAGGUUUUCUGGGUCUCUGUUUCUUUGAUGAGAAUGAAACACACCCAGCUAACCUUUUUUUCAGUAUCAAAUCC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This rat miRNA has a predicted homologue in mouse (MIR:MI0000605). 8 15622 MI0000605 mmu-mir-329 Mus musculus miR-329 stem-loop UGUUCGCUUCUGGUACCGGAAGAGAGGUUUUCUGGGUCUCUGUUUCUUUGAUGAGAAUGAAACACACCCAGCUAACCUUUUUUUCAGUAUCAAAUCC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000604). Seitz et al. independently predicted the miRNA hairpin precursor sequence by conservation between mouse and human [2]. Landgraf et al. verified expression by cloining [3]. 6 15623 MI0000606 rno-mir-330 Rattus norvegicus miR-330 stem-loop ACCCUUUGGCGAUCUCUGCCUCUCUGGGCCUGUGUCUUAGGCUCUUCAAGAUCUAACGAGCAAAGCACAGGGCCUGCAGAGAGGUAGCGCUCUGCUC The mature miRNA originating from the 3' arm reported in [1] contains an extra 3' A residue, which conflicts with the precursor sequence shown here. Landgraf et al. show that the 5' miRNA is the predominant one [2]. The 3' mature sequence is renamed miR-300* here. 8 15624 MI0000607 mmu-mir-330 Mus musculus miR-330 stem-loop GACCCUUUGGCGAUCUCUGCCUCUCUGGGCCUGUGUCUUAGGCUCUUCAAGAUCCAACGAGCAAAGCACAGGGCCUGCAGAGAGGUAGCGCUCUGCUC 6 15625 MI0000608 rno-mir-331 Rattus norvegicus miR-331 stem-loop GAGUCUGGUCUUGUUUGGGUUUGUUCUAGGUAUGGUCCCAGGGAUCCCAGAUCAAACCAGGCCCCUGGGCCUAUCCUAGAACCAACCUAAACCCAU Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This rat miRNA has a predicted homologue in mouse (MIR:MI0000609). 8 15626 MI0000609 mmu-mir-331 Mus musculus miR-331 stem-loop GAGUCUGGUUUUGUUUGGGUUUGUUCUAGGUAUGGUCCCAGGGAUCCCAGAUCAAACCAGGCCCCUGGGCCUAUCCUAGAACCAACCUAAACCCGU 6 15627 MI0000610 rno-mir-333 Rattus norvegicus miR-333 stem-loop CCCCGGUGGAACCACGUGGUGUGCUAGUUACUUUUGGGCUGGAGAGACGGCUCAGGGGUUAAGAGCACAGACUGCUCUUCCAGAGGUCCUGAGUU Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. 8 15628 MI0000611 rno-mir-140 Rattus norvegicus miR-140 stem-loop GUGUCUCUCUCUGUGUCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACAUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACUGGAGCACC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The cloned miRNA appears to be expressed from the 3' strand of the precursor, and is therefore named miR-140* here. The sequence of miR-140 is predicted based on homology with mouse and human - its expression has not been verified in rat. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 8 15629 MI0000612 rno-mir-335 Rattus norvegicus miR-335 stem-loop UCUUUUGGGCGGGGGUCAAGAGCAAUAACGAAAAAUGUUUGUUUUUCGUAAACCGUUUUUCAUUAUUGCUCCUGACCUCCUCUCAUUUGUUAUAGCCA 8 15630 MI0000613 rno-mir-336 Rattus norvegicus miR-336 stem-loop AUGUGACCGUGCCUCUCACCCUUCCAUAUCUAGUCUCUGAGAAAAAUGAAGACUGGAUUCCAUGAAGGGAUGUGAGGCCUGGAAACUGGAGCUUUA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. 8 15631 MI0000614 rno-mir-337 Rattus norvegicus miR-337 stem-loop AGUGUAGUGAGAAGUUGGGGGGUGGGAACGGCGUCAUGCAGGAGUUGAUUGCACAGCCAUUCAGCUCCUAUAUGAUGCCUUUCUUCACCCCCUUCAA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This rat miRNA has a predicted homologue in mouse (MIR:MI0000615). 8 15632 MI0000615 mmu-mir-337 Mus musculus miR-337 stem-loop CAGUGUAGUGAGAAGUUGGGGGGUGGGAACGGCGUCAUGCAGGAGUUGAUUGCACAGCCAUUCAGCUCCUAUAUGAUGCCUUUCUUCACCCCCUUCA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000614). Seitz et al. later predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse [2]. Landgraf et al. later cloned and sequenced mature products from both arms of the hairpin, named here miR-337-5p and miR-337-3p [3]. 6 15633 MI0000616 rno-mir-148b Rattus norvegicus miR-148b stem-loop CAGGCACUCUUAGCAUUUGAGGUGAAGUUCUGUUAUACACUCAGGCUGUGGCUCUGAAAGUCAGUGCAUCACAGAACUUUGUCUCGAAAGCUUUCUA 8 15634 MI0000617 mmu-mir-148b Mus musculus miR-148b stem-loop CAGGCACCCUUAGCAUUUGAGGUGAAGUUCUGUUAUACACUCAGGCUGUGGCUCUGAAAGUCAGUGCAUCACAGAACUUUGUCUCGAAAGCUUUCUA 6 15635 MI0000618 rno-mir-338 Rattus norvegicus miR-338 stem-loop UCCCCAACAAUAUCCUGGUGCUGAGUGGGUGCACAGUGACUCCAGCAUCAGUGAUUUUGUUGAAGA 8 15636 MI0000619 mmu-mir-338 Mus musculus miR-338 stem-loop CAACGCUGCACAGGCCGUCCUCCCCAACAAUAUCCUGGUGCUGAGUGGGUGCACAGUGACUCCAGCAUCAGUGAUUUUGUUGAAGAGGGCAGCUGCCA 6 15637 MI0000620 rno-mir-339 Rattus norvegicus miR-339 stem-loop ACGGGGUGGACACCGUCCCUGUCCUCCAGGAGCUCACGUAUGCCUGCCUGUGAGCGCCUCGACGACAGAGCCAGAGUCCACCCCUGCACUGCCCAA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The miR-339-5p sequence reported in [1] contains two 3' terminal U residues, which conflict with the precursor sequence shown here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15638 MI0000621 mmu-mir-339 Mus musculus miR-339 stem-loop ACGGGGUGGCCACUAUCCCUGUCCUCCAGGAGCUCACGUAUGCCUGCCUGUGAGCGCCUCGGCGACAGAGCCGGUGUCCACCCCUGCACUGUCCAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [1]. 6 15639 MI0000622 rno-mir-340 Rattus norvegicus miR-340 stem-loop CACUUGUACUCGGUGUGAUUAUAAAGCAAUGAGACUGAUUGUCAUGUGUCGUUUGUGGGAUCCGUCUCAGUUACUUUAUAGCCAUACCUGGUAUCUUA 8 15640 MI0000623 mmu-mir-340 Mus musculus miR-340 stem-loop CAAUUGUACUUGGUGUGAUUAUAAAGCAAUGAGACUGAUUGUCAUAUGUCGUUUGUGGGAUCCGUCUCAGUUACUUUAUAGCCAUACCUGGUAUCUUA 6 15641 MI0000624 rno-mir-341 Rattus norvegicus miR-341 stem-loop AAAAUGAUGAUGUCAGUUGGCCGGUCGGCCGAUCGCUCGGUCUGUCAGUCAGUCGGUCGGUCGAUCGGUCGGUCGGUCAGUCGGCUUCCUGUCUUC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15642 MI0000625 mmu-mir-341 Mus musculus miR-341 stem-loop AAAAUGAUGAUGUCAGUUGGCCGGUCGGCCGAUCGCUCGGUCUGUCAGUCAGUCGGUCGGUCGAUCGGUCGGUCGGUCAGUCGGCUUCCUGUCUUC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000624) - its expression was later verified in mouse [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15643 MI0000626 rno-mir-342 Rattus norvegicus miR-342 stem-loop GAAAAUGGGCUCAAGGUGAGGGGUGCUAUCUGUGAUUGAGGGACAUGGUCAAUGGAAUUGUCUCACACAGAAAUCGCACCCGUCACCUUGGCCUGCUGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 8 15644 MI0000627 mmu-mir-342 Mus musculus miR-342 stem-loop GAAAAUGGGCUCAAGGUGAGGGGUGCUAUCUGUGAUUGAGGGACAUGGUCAAUGGAAUUGUCUCACACAGAAAUCGCACCCGUCACCUUGGCCUGCUGA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000626). Seitz et al. independently predicted the miRNA hairpin precursor sequence by conservation between mouse and human [2]. Landgraf et al. later cloned and sequenced mature products from both arms of the predicted hairpin [3]. The mature sequences shown here represent the most commonly cloned forms from large-scale cloning studies [3]. 6 15645 MI0000628 rno-mir-343 Rattus norvegicus miR-343 stem-loop GCACCUUCAUGGACCUGGAGUAGAGUGGGUGUGGCGGGGGGAGCAGGGCCCAGGGCAACCUCUCCCUCCGUGUGCCCAGAUCCUGCAUGCCAA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The sequence reported in [1] contains a 3' terminal UU sequence, which conflicts with the precursor sequence shown here. 8 15646 MI0000629 rno-mir-344-1 Rattus norvegicus miR-344-1 stem-loop CUGCAGCCAGAGUUUUUACCAGUCAGGCUCCUGGCUAGAUUCCAGGUACCAACUGGUACCUGAUCUAGCCAAAGCCUGACCGUAAGCUGCAAAAGAAA 8 15647 MI0000630 mmu-mir-344-1 Mus musculus miR-344-1 stem-loop CUGCAGCCAGGGUUUUUACCAGUCAGGCUCCUGGCUAGAUUCCAGGUACCAGCUGGUACCUGAUCUAGCCAAAGCCUGACUGUAAGCCCUGAACA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000629) - its expression was later independently verified in mouse [2]. 6 15648 MI0000631 rno-mir-345 Rattus norvegicus miR-345 stem-loop ACCCAAGUCCAGGCCUGCUGACCCCUAGUCCAGUGCUUGUGGUGGCUACUGGGCCCUGAACUAGGGGUCUGGAGACCUGGGUUUGAUCUCCACAGG 8 15649 MI0000632 mmu-mir-345 Mus musculus miR-345 stem-loop ACCCAAGUCCAGGCCUGCUGACCCCUAGUCCAGUGCUUGUGGUGGCUACUGGGCCCUGAACUAGGGGUCUGGAGACCUGGGUUUGAUCUCCACAGG Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA was predicted based on homology to the verified rat sequence (MIR:MI0000631). Seitz et al. independently predicted the miRNA hairpin precursor sequence by conservation between mouse and human [2]. Landgraf et al. later verified mature miRNA expression from both arms of the hairpin precursor [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15650 MI0000633 rno-mir-346 Rattus norvegicus miR-346 stem-loop UCUGUGUUGGGCAUCUGUCUGCCUGAGUGCCUGCCUCUCUGUUGCUCUGAAGGAGGCAGGGGCUGGGCCUGCAGCUGCCUGGGCAGAGCUGCUCCUUC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The sequence reported in [1] contains two 3' terminal A residues, which conflict with the precursor sequence shown here. 8 15651 MI0000634 mmu-mir-346 Mus musculus miR-346 stem-loop UCUGUGUUGGGCGUCUGUCUGCCCGAGUGCCUGCCUCUCUGUUGCUCUGAAGGAGGCAGGGGCUGGGCCUGCAGCUGCCUGGGCAGAGCUGCUCCUUC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000633) - its expression has not been verified in mouse. The sequence reported in [1] contains two 3' terminal A residues, which conflict with the precursor sequence shown here. 6 15652 MI0000635 rno-mir-347 Rattus norvegicus miR-347 stem-loop GAGCCCCUGCUGGUGGGCGCGGGGCGGGGGUUUCAGGUGGUCUCGCGGUGGCCGCCCGACUGUCCCUCUGGGUCGCCCAGCUGGGGAGUUCC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. 8 15653 MI0000636 rno-mir-349 Rattus norvegicus miR-349 stem-loop GAAGACUCUAGCAUGUAAGGUUGGGGGAGGGGGCUGUGUCUAGCAAGUCUUCUUCCCCCACAGCCCUGCUGUCUUAACCUCUAGGUGUUCCGGCUCC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. 8 15654 MI0000637 rno-mir-129-2 Rattus norvegicus miR-129-2 stem-loop AGACUGCCCUUCGCGAAUCUUUUUGCGGUCUGGGCUUGCUGUACAUAACUCAAUAGCCGGAAGCCCUUACCCCAAAAAGCAUUCGCGGAGGGCGCGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. Kim et al [1] and He et al [4] both identify the mature product from the 3' arm, named miR-129* here. 8 15655 MI0000638 rno-mir-20a Rattus norvegicus miR-20a stem-loop CAGCUUCUGUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUGUCGUCAUCUACUGCAUUACGAGCACUUACAGUACUGCCAGCUG 8 15656 MI0000639 rno-mir-350 Rattus norvegicus miR-350 stem-loop AGAUGCCUUGCUCCUACAAGAGUAAAGUGCACGUGCUUUGGGACAGUGAGGAAAAUAAUGUUCACAAAGCCCAUACACUUUCACCCUUUAGGAGAGUUG Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This rat miRNA has a predicted homologue in mouse (MIR:MI0000640). The sequence reported in [1] contains a 5' terminal A residue, which conflicts with the precursor sequence shown here. 8 15657 MI0000640 mmu-mir-350 Mus musculus miR-350 stem-loop AGAUGCCUUGCUCCUACAAGAGUAAAGUGCAUGCGCUUUGGGACAGUGAGGAAAAUAAUGUUCACAAAGCCCAUACACUUUCACCCUUUAGGAGAGUUG Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000639) - its expression was later independently verified in mouse [2]. The sequence reported in [1] contains a 5' terminal A residue, which conflicts with the precursor sequence shown here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15658 MI0000641 rno-mir-7a-1 Rattus norvegicus miR-7a-1 stem-loop UGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAGACGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCACCU Landgraf et al. show that the 5' product is the predominant one [3]. The 3' product is renamed miR-7a*. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15659 MI0000642 rno-mir-351 Rattus norvegicus miR-351 stem-loop CAUGGCACCUCCAUUUCCCUGAGGAGCCCUUUGAGCCUGAGGUGAAAAAAAAACAGGUCAAGAGGCGCCUGGGAACUGGAG Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The sequence reported in [1] contains a 3' terminal U residue, which conflicts with the precursor sequence shown here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15660 MI0000643 mmu-mir-351 Mus musculus miR-351 stem-loop CAUGGCACCUCCGUUUCCCUGAGGAGCCCUUUGAGCCUGGAGUGAAAAAAAAAAACAGGUCAAGAGGCGCCUGGGAACUGGAGAAGAGUGUUAAACUUC The predominant miRNA cloned by Langraf et al. has a 3' terminal U residue, which is incompatible with the genome sequence [1]. 6 15661 MI0000644 rno-mir-352 Rattus norvegicus miR-352 stem-loop GUACAUAUGUUGAAGAUUAUUAAUAUAUAGAGUGGGUGUUGUGGUGGUAGUAUGAUAUGUAGAGUAGUAGGUUGCAUAGUACGAUGUAGUGUAUGA Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. miR-352 is closely related to let-7d (a single deletion), but the predicted hairpin precursor sequences are unrelated, and express their mature forms from opposite strands. 8 15662 MI0000645 rno-mir-135b Rattus norvegicus miR-135b stem-loop CGCUCUGCUGUGGCCUAUGGCUUUUCAUUCCUAUGUGAUUGCUGUUCCGAACUCAUGUAGGGCUAAAAGCCAUGGGCUACAGUGAGGGGCAAGCUCC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15663 MI0000646 mmu-mir-135b Mus musculus miR-135b stem-loop CGCUCUGCUGUGGCCUAUGGCUUUUCAUUCCUAUGUGAUUGCUGCUCCGAACUCAUGUAGGGCUAAAAGCCAUGGGCUACAGUGAGGGGCAAGCUCC 6 15664 MI0000647 rno-mir-151 Rattus norvegicus miR-151 stem-loop AGCGCUUUCCUGCCCUCGAGGAGCUCACAGUCUAGUAUGUCUCCUCCCUACUAGACUGAGGCUCCUUGAGGACAGGGAUCGUCAUACUCACCUCCCG Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. Landgraf et al show that the 5' product is the predominant one [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15665 MI0000648 rno-mir-101b Rattus norvegicus miR-101b stem-loop AUCUGAGACUGAACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAGAUCUGAAAGGUACAGUACUGUGAUAGCUGAAGAAUGGUGGUGCCAUC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 8 15666 MI0000649 mmu-mir-101b Mus musculus miR-101b stem-loop AUCUGAGACUGAACUGCCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAGCUCUGAAAGGUACAGUACUGUGAUAGCUGAAGAAUGGCGGUGCCAUC Kim et al. cloned 40 new miRNAs from rat E18 primary cortical neurons [1]. This mouse miRNA is predicted based on homology to the verified rat sequence (MIR:MI0000648) -- expression in mouse was verified independently [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15667 MI0000650 hsa-mir-200c Homo sapiens miR-200c stem-loop CCCUCGUCUUACCCAGCAGUGUUUGGGUGCGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15668 MI0000651 hsa-mir-1-1 Homo sapiens miR-1-1 stem-loop UGGGAAACAUACUUCUUUAUAUGCCCAUAUGGACCUGCUAAGCUAUGGAAUGUAAAGAAGUAUGUAUCUCA Lagos-Quintana et al. [1] reported the cloning of miR-1b, miR-1c and miR-1d. The mature processed miR sequences are identical apart from the 3' residues (A in mir-1b, C in mir-1c and UU in mir-1d). The 3' residues of both miR-1b and miR-1c conflict with the predicted stem-loop precursor sequence shown here and these sequences are not found in current assemblies of human and mouse genomes. It is suggested that polyA polymerase may add 1-3 nts to the 3' end of the mature transcript (Tom Tuschl, pers. comm.). The common 21 nts of the 3 reported miR sequences have been rationalised here and named miR-1. There are 2 pairs of orthologous putative hairpin precursor structures named mir-1-1 (human MIR:MI0000651, mouse MIR:MI0000139), and mir-1-2 (human MIR:MI0000437, mouse MIR:MI0000652). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15669 MI0000652 mmu-mir-1-2 Mus musculus miR-1-2 stem-loop UCAGAGCACAUACUUCUUUAUGUACCCAUAUGAACAUUCAGUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUG Lagos-Quintana et al. [1] reported the cloning of miR-1b, miR-1c and miR-1d. The mature processed miR sequences are identical apart from the 3' residues (A in mir-1b, C in mir-1c and UU in mir-1d). The 3' residues of both miR-1b and miR-1c conflict with the predicted stem-loop precursor sequence shown here and these sequences are not found in current assemblies of human and mouse genomes. It is suggested that polyA polymerase may add 1-3 nts to the 3' end of the mature transcript (Tom Tuschl, pers. comm.). The common 21 nts of the 3 reported miR sequences have been rationalised here and named miR-1. There are 2 pairs of orthologous putative hairpin precursor structures named mir-1-1 (human MIR:MI0000651, mouse MIR:MI0000139), and mir-1-2 (human MIR:MI0000437, mouse MIR:MI0000652). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15670 MI0000653 osa-MIR156a Oryza sativa miR156a stem-loop GGAGGGUGACAGAAGAGAGUGAGCACACGUGGUUGUUUCCUUGCAUAAAUGAUGCCUAUGCUUGGAGCUACGCGUGCUCACUUCUCUCUCUGUCACCUCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15671 MI0000654 osa-MIR156b Oryza sativa miR156b stem-loop UUGUCUUGAGAGGGGAAGAGAUCUCUAUGGGUUUUGGAGGUCUGACAGAAGAGAGUGAGCACACACGGUGCUUUCUUAGCAUGCAAGAGCCAUGCUGGGAGCUGUGCGUGCUCACUCUCUAUCUGUCAGCCGUUCACCAUGCCCAAUAUGAUUAAUCUCCUUCUCUCAGUUGACAG The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15672 MI0000655 osa-MIR156c Oryza sativa miR156c stem-loop GGAGGAAGAGAGGGGUGAGAGGUGAGGCUGACAGAAGAGAGUGAGCACACAUGGUGACUUUCUUGCAUGCUGAAUGGACUCAUGCUUGAAGCUAUGUGUGCUCACUUCUCUCUCUGUCAGCCAUUUGAUCUCUCUUUCUCUCUUUCUCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15673 MI0000656 osa-MIR156d Oryza sativa miR156d stem-loop GGAGAAGCUCUCAUGAGAUUGACAGAAGAGAGUGAGCACACGGCGUGAUGGCCGGCAUAAAAUCUAUCCCGUCCUCGCCGCGUGCUCACUCCUCUUUCUGUCACCCUCUUUCUCUCAGGGCUCAACUCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15674 MI0000657 osa-MIR156e Oryza sativa miR156e stem-loop GGCGCGAGGUGACAGAAGAGAGUGAGCACACGGCCGGGCGUGACGGCACCGGCGGGCGUGCCGUCGCGGCCGCGUGCUCACUGCUCUUUCUGUCAUCCGGUGCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15675 MI0000658 osa-MIR156f Oryza sativa miR156f stem-loop AGUUGACAGAAGAGAGUGAGCACACAGCGGCCAGACUGCAUCGAUCUAUCAAUCUUCCCUUCGACAGGAUAGCUAGAUAGAAAGAAAGAGAGGCCGUCGGCGGCCAUGGAAGAGAGAGAGAGAGAGAGAUGAAAUGAUGAUGAUGAUACAGCUGCCGCUGCGUGCUCACUUCUCUUUCUGUCAGCU The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15676 MI0000659 osa-MIR156g Oryza sativa miR156g stem-loop GGCUGACAGAAGAGAGUGAGCACACAGCGGGCAGACUGCAUCUGAAUUACCUGUUGCGACGAAGAAGACGACGGACGCAGCUUGCCGUUGCGUGCUCACUUCUCUCUCUGUCAGCU The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15677 MI0000660 osa-MIR156h Oryza sativa miR156h stem-loop GAGAUUGUUGACAGAAGAGAGUGAGCACACGGCGCGGCGGCUAGCCAUCGGCGGGAUGCCUGCCCCCGCCGCGUGCUCGCUCCUCUUUCUGUCAGCAUCUC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15678 MI0000661 osa-MIR156i Oryza sativa miR156i stem-loop GGUGACAGAAGAGAGUGAGCACACGGCCGGGCGGAACGGCACCGGCGGAUGUGCCGUCGCGGCCGCGUGCUCACUGCUCUGUCUGUCAUC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15679 MI0000662 osa-MIR156j Oryza sativa miR156j stem-loop UUGGGGCGGGGCGGGAUCGAGCAUAUGAAAGGCGAGAUUGUUGACAGAAGAGAGUGAGCACACGGCGCGGCGGCUAGCCAUCGGCGGGAUGCCUGCCCCCGCCGCGUGCUCGCUCCUCUUUCUGUCAGCAUCUCUCAUCACUCCCUCCCGCAUCCCCCGCCCCGA The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15680 MI0000663 osa-MIR160a Oryza sativa miR160a stem-loop GUGUGCCUGGCUCCCUGUAUGCCACACAUGUAGACCAACCCAUGGUGUCUGGUUGCCUACUGGGUGGCGUGCAAGGAGCCAAGCAUGC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15681 MI0000664 osa-MIR160b Oryza sativa miR160b stem-loop AAGGUUUGGUUUUGAUCGGCUUGAGAGCGUGCCUGGCUCCCUGUAUGCCACUCAUGUAGCCCAAUCCAUGGUGUGUUUGGAUGCUGUGGGUGGCGUGCAAGGAGCCAAGCAUGCGUGCCAUGAUCUCUCUUUCUGCCUU The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15682 MI0000665 osa-MIR160c Oryza sativa miR160c stem-loop GGAAUGUGCCUGGCUCCCUGUAUGCCACUCAUCUAGAGCAACAAACUUCUGCGAGAGGUUGCCUAUGAUGGAUGGCGUGCACGGAGCCAAGCAUAUUCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15683 MI0000666 osa-MIR160d Oryza sativa miR160d stem-loop GGGGAUAUGCCUGGCUCCCUGUAUGCCACUCGCGUAGCUGCCAAACUCAGUUGAAACAACUGCCUUCUCCCGGCGAGAUUCAGGCAUUGUGUUCGUACGUUUGGCUCUACUGCGGAUGGCGUGCGAGGAGCCAAGCAUGACC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15684 MI0000667 osa-MIR162a Oryza sativa miR162a stem-loop GGUGAUGCCUGGGCGCAGUGGUUUAUCGAUCCCUUCCCUGCCUUGUGGCGCUGAUCCAGGAGCGGCGAAUUUCUUUGAGAGGGUGUUCUUUUUUUUUCUUCCUUUUGGUCCUUGUUGCAGCCAACGACAACGCGGGAAUCGAUCGAUAAACCUCUGCAUCCAGUUCUCGCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15685 MI0000668 osa-MIR164a Oryza sativa miR164a stem-loop GUGAGAAGGACCGCGUUGGAGAAGCAGGGCACGUGCAUGCAUAUGUUCAUCAUCAUCUUCUUCCUCCUCCUCUAGCUCCAGCCUUGUGUGGGUUGGAAGUUUAGAUAGAACUCGCACUGCACGUGGUCUCCUUCUCCAUCCCGGUCUUUUUCUCAC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15686 MI0000669 osa-MIR164b Oryza sativa miR164b stem-loop GUGCACGGUGGAGAAGCAGGGCACGUGCAUUACCAUCCACUCGCCUGCCGGCCGCCGGCCGCCAUUGCCAUGGAUGGUUCUUCAUGUGCCCGUCUUCUCCACCGAGCAC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15687 MI0000670 osa-MIR166a Oryza sativa miR166a stem-loop UGAAGCUAUUUGCUUCUGAGUGGAAUGUUGUCUGGUUCAAGGUCUCAUGCACCUUGCGGUUUUGAGGAUGAUUUGUGCAAGGUUUUUCAUUCCUCUCAUCCGUGGGAUCUCGGACCAGGCUUCAUUCCCCUCAGAGAUAGCUUCA The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15688 MI0000671 osa-MIR166b Oryza sativa miR166b stem-loop GGGAGCCUUUUCAUUUUGAGGGGAAUGUUGUCUGGCUCGGGGCUACUUUUAAUUUCUCUCUCUUUUGAUAUCUUCUUUUCUCGAUCUCCUAGCUUGAUCUUUUGAUCUCUCAAAUCGAUCUUAAGAAAAAGAUCAGUCAAAGAGAUGAGAGUAGAUGUCUGUAGAUCUCGGACCAGGCUUCAUUCCCCCCAAACAGAAGGGCUCCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15689 MI0000672 osa-MIR166c Oryza sativa miR166c stem-loop GGCAGUUGAGGGGAAUGUUGUCUGGUCCGAGACCUAACACCGGGCGGAAUGGCGGAUUCAGCUGCAGCUAAGCAAGCUAGGUGGGGGGUUUCGGACCAGGCUUCAUUCCCCCCAACUCAACUGUU The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15690 MI0000673 osa-MIR166d Oryza sativa miR166d stem-loop GAAGCUUUUUCACUUUGAGGGGAAUGUUGUCUGGCUCGAGGUGCAUGGAGAAACCUCUGAUCGAUCAGGUUUGAUCUGUAGAGACUGAUCUCGGACCAGGCUUCAUUCCCCUCAAGUAAAGCUCC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15691 MI0000674 osa-MIR166e Oryza sativa miR166e stem-loop UGUUUCUGGGUGGAAUGUUGUCUGGUUCAAGGCCCCUUAGGAUGUGUGAUUUUUGAUGGUUUAUGCAUUCAUCUUGAUGCGAACAUCUAUCUCGGAUCUUUGGGUUCUCGAACCAGGCUUCAUUCCCCUCAGAGAUA The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15692 MI0000675 osa-MIR166f Oryza sativa miR166f stem-loop CGAUCAUCUUGUUGAGAGGAAUGUCGUCUGGCCUGAGAUCGUACCACAGUGGUGGGUACACGUGGACGGUCUCGGACCAGGCUUCAUUCCCCUCAACAACUCGUCGG The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15693 MI0000676 osa-MIR167a Oryza sativa miR167a stem-loop UAGUGUGAAUGAGUGAAGCUGCCAGCAUGAUCUAGCUCUGAUUAAUCGGCACUGUUGGCGUACAGUCGAUUGACUAAUCGUCAGAUCUGUGUGUGUAAAUCACUGUUAGAUCAUGCAUGACAGCCUCAUUUCUUCACACUG The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15694 MI0000677 osa-MIR167b Oryza sativa miR167b stem-loop GUGCCCAAGAGAAAGCGUGAAGCUGCCAGCAUGAUCUAACUUGCAGACAAGAAAUCAGCUCAGCUCGCUGGUUUCGAACAGGAAGGCGGCUAGCUGAGGCUUCUUCUGAGUACGUGAUGGUUAGAUCAUGCUGUGACAGUUUCACUCCUUCCCUGUUGGGCAC The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15695 MI0000678 osa-MIR167c Oryza sativa miR167c stem-loop UGUCCAAGGGAACGAGUGAAGCUGCCAGCAUGAUCUAGCUCUGAAUGAUCAACAAGAUGUGCUCCCACACUGCCUUCCUGUGGAUCUUGAGCUGUUGCUAGUCUUGUGGUCAUGCCUUGCUAGGUCAUGCUGCGGCAGCCUCACUUCUUCCCAUUGUUGGGCA The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15696 MI0000679 osa-MIR169a Oryza sativa miR169a stem-loop CGCCGGCGGCCUGACAUUGGGAUCGGAGGCCAUGGUGCAGCCAAGGAUGACUUGCCGAUCGAUCGAUCUAUCUAUGAAGCUAAGCUAGCUGGCCAUGGAUCCAUCCAUCAAUUGGCAAGUUGUUCUUGGCUACAUCUUGGCCCCUGCUCCUCAUGUAAGGCCGGCCUGUGGCG The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15697 MI0000680 osa-MIR171a Oryza sativa miR171a stem-loop GGAAAGAGCGAUAUUGGUGAGGUUCAAUCCGAUGAUUGGUUUUACAGCAGUGGUAAAAUCAGUAUCUGAUUGAGCCGCGCCAAUAUCUCUUCCUCU The stem-loop sequence represented here is predicted based on homology to miRNAs cloned from Arabidopsis [1]. Its expression has not been verified in rice. 7 15698 MI0000681 hsa-mir-155 Homo sapiens miR-155 stem-loop CUGUUAAUGCUAAUCGUGAUAGGGGUUUUUGCCUCCAACUGACUCCUACAUAUUAGCAUUAACAG Human mir-155 is predicted based on homology to a cloned miR from mouse (MIR:MI0000177) [1], and later experimentally validated in human HL-60 leukemia cells [2]. Like the mouse miRNA, human mir-155 resides in the non-coding BIC transcript (EMBL:AF402776), located on chromosome 21 [3]. The mature form differs from that in mouse at a single position. Eis et al. confirm that miR-155 is processed from the BIC transcript in human, and demonstrate elevated expression of miR-155 in lymphoma samples [4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 5 15699 MI0000683 hsa-mir-181b-2 Homo sapiens miR-181b-2 stem-loop CUGAUGGCUGCACUCAACAUUCAUUGCUGUCGGUGGGUUUGAGUCUGAAUCAACUCACUGAUCAAUGAAUGCAAACUGCGGACCAAACA This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. Its expression was later verified in human BC-1 cells [3]. There are two predicted hairpin precursor sequences in the human genome; mir-181b-1 (MIR:MI0000270) is found on chromosome 1 [1], and mir-181b-2 (MIR:MI0000683) on chromosome 9 [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15700 MI0000684 mmu-mir-107 Mus musculus miR-107 stem-loop UUCUCUGUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGAGAGC Mouse mir-107 is predicted [2] based on homology to a cloned miR from human (MIR:MI0000114) [1], and later verified in mouse [3,4]. 6 15701 MI0000685 mmu-mir-10a Mus musculus miR-10a stem-loop GACCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCA 6 15702 MI0000687 mmu-mir-17 Mus musculus miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUGUGUGCAUCUACUGCAGUGAGGGCACUUGUAGCAUUAUGCUGAC Mouse mir-17 is predicted [4] based on homology to a cloned miR from human (MIR:MI0000071) [1,2]. miRNAs derived from the 5' [1] and 3' [2] arms of the human mir-17 precursor have been reported. Landgraf et al. show that the 5' product is the predominant one [5]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 6 15703 MI0000688 mmu-mir-19a Mus musculus miR-19a stem-loop GCAGCCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC 6 15704 MI0000689 mmu-mir-25 Mus musculus miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC Mouse mir-25 is predicted [3] based on homology to a cloned miR from human (MIR:MI0000082) [1]. Its expression has been later independently verified in mouse [2,4]. 6 15705 MI0000690 mmu-mir-28 Mus musculus miR-28 stem-loop GGUCCCUACCUUCAAGGAGCUCACAGUCUAUUGAGUUGCCUUUCUGAUUCUCCCACUAGAUUGUGAGCUGCUGGAGGGCAGGCACU Mouse mir-28 is predicted [2] based on homology to a cloned miR from human (MIR:MI0000086) [1]. Its expression was later verified by cloning [3]. 6 15706 MI0000691 mmu-mir-32 Mus musculus miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Mouse mir-32 is predicted [3] based on homology to a cloned miR from human (MIR:MI0000090) [1]. Its expression in mouse was later independently verified [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15707 MI0000692 mmu-mir-100 Mus musculus miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGCUGAUUCUGCACACAAGCUUGUGUCUAUAGGUAUGUGUCUGUUAGG Mouse mir-100 is predicted [2] based on homology to a cloned miR from human (MIR:MI0000102) [1]. Its expression was later verified in mouse [3]. 6 15708 MI0000693 mmu-mir-139 Mus musculus miR-139 stem-loop GUGUAUUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 15709 MI0000694 mmu-mir-200c Mus musculus miR-200c stem-loop CCCUCGUCUUACCCAGCAGUGUUUGGGUGCUGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG Mouse mir-200c is predicted [3] based on homology to a cloned miR from human (MIR:MI0000650) [1]. Its expression in mouse was later verified independently [2,4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15710 MI0000695 mmu-mir-210 Mus musculus miR-210 stem-loop CCGGGGCAGUCCCUCCAGGCUCAGGACAGCCACUGCCCACCGCACACUGCGUUGCUCCGGACCCACUGUGCGUGUGACAGCGGCUGAUCUGUCCCUGGGCAGCGCGAACC Mouse mir-210 is predicted [3] based on homology to a reported miR from human (MIR:MI0000286) [1]. Its expression in mouse was later verified independently [2,4]. 6 15711 MI0000696 mmu-mir-212 Mus musculus miR-212 stem-loop GGGCAGCGCGCCGGCACCUUGGCUCUAGACUGCUUACUGCCCGGGCCGCCUUCAGUAACAGUCUCCAGUCACGGCCACCGACGCCUGGCCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15712 MI0000697 mmu-mir-181a-1 Mus musculus miR-181a-1 stem-loop GGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUCAAAUAAAAACCAUCGACCGUUGAUUGUACCCUAUAGCUAACC Mouse miR-181a, cloned by Poy et al [2], is predicted to be expressed from two genomic hairpin loci, mmu-mir-181a-1 (MIR:MI0000697) and mmu-mir-181a-2 (MIR:MI0000223). A miRNA from the 3' arm of this hairpin, named miR-213 was predicted [3] based on homology to a human miRNA (MIR:MI0000289), and later cloned [2]. Subsequent cloning and Northern evidence shows that the 3' mature sequence is the biogenesis byproduct miR-181a* (Chang-Zheng Chen and David Bartel, pers. comm.). 6 15713 MI0000698 mmu-mir-214 Mus musculus miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Mouse mir-214 is predicted [2] based on homology to a reported miR from human (MIR:MI0000290) [1]. Its expression was later verified by cloning [3]. 6 15714 MI0000699 mmu-mir-216a Mus musculus miR-216a stem-loop UUGGUUUAAUCUCAGCUGGCAACUGUGAGAUGUCCCUAUCAUUCCUCACAGUGGUCUCUGGGAUUAUGCUAA Mouse mir-216 is predicted [2] based on homology to a reported miR from human (MIR:MI0000292) [1]. Its expression was later verified by cloning [3]. 6 15715 MI0000700 mmu-mir-218-1 Mus musculus miR-218-1 stem-loop GUGAUAAUGGAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGCUUGCGAGGUAUGAGAAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Mouse miR-218 is predicted [2] based on homology to a reported miR from human (MIR:MI0000294) [1]. Its expression was later verified by cloning [3]. 6 15716 MI0000701 mmu-mir-218-2 Mus musculus miR-218-2 stem-loop GACCAGUUGCCGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCAUCGCUCUCUCCUGCA Mouse miR-218 is predicted [2] based on homology to a reported miR from human (MIR:MI0000295) [1]. Its expression was later verified by cloning [3]. 6 15717 MI0000702 mmu-mir-219-1 Mus musculus miR-219-1 stem-loop CCGUCCCGGGCCGCGGCUCCUGAUUGUCCAAACGCAAUUCUCGAGUCUCUGGCUCCGGCCGAGAGUUGCGUCUGGACGUCCCGAGCCGCCGCCCCCAAACCUCGAGGGGG Mouse mir-219 is predicted [2] based on homology to a reported miR from human (MIR:MI0000296) [1]. Its expression was later verified in mouse [3]. 6 15718 MI0000703 mmu-mir-223 Mus musculus miR-223 stem-loop UCUGGCCAUCUGCAGUGUCACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCUGUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGUGGCUCAUGCCUAUCAG Mouse mir-223 is predicted [2] based on homology to a reported miR from human (MIR:MI0000300) [1]. Its expression was later verified by cloning [3]. 6 15719 MI0000704 mmu-mir-320 Mus musculus miR-320 stem-loop GCCUCGCCGCCCUCCGCCUUCUCUUCCCGGUUCUUCCCGGAGUCGGGAAAAGCUGGGUUGAGAGGGCGAAAAAGGAUGUGGG Mouse mir-320 is predicted [2] based on homology to a cloned miR from human (MIR:MI0000542) [1]. Its expression was later verified in mouse [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15720 MI0000706 mmu-mir-26a-2 Mus musculus miR-26a-2 stem-loop GGCUGCGGCUGGAUUCAAGUAAUCCAGGAUAGGCUGUGUCCGUCCAUGAGGCCUGUUCUUGAUUACUUGUUUCUGGAGGCAGCG This sequence is a second predicted hairpin precursor for miR-26a (MIR:MI0000573), conserved in human [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 6 15721 MI0000707 mmu-mir-33 Mus musculus miR-33 stem-loop CUGUGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGCAAUACCUGUGCAAUGUUUCCACAGUGCAUCACGG Mouse mir-33 is predicted [2] based on homology to a cloned miR from human (MIR:MI0000091) [1]. Its expression was later verified by cloning [3]. 6 15722 MI0000708 mmu-mir-211 Mus musculus miR-211 stem-loop CUGCUUGGACCUGUGACCUGUGGGCUUCCCUUUGUCAUCCUUUGCCUAGGCCUCUGAGUGAGGCAAGGACAGCAAAGGGGGGCUCAGUGGUCACCUCUACUGCAGA Mouse mir-211 is predicted [2] based on homology to a reported miR from human (MIR:MI0000287) [1]. Its expression has not been verified in mouse. The mature miR differs from the human sequence at a single base. This sequence maps to mouse chromosome 7. 6 15723 MI0000709 mmu-mir-221 Mus musculus miR-221 stem-loop AUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUUGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAA Mouse mir-221 is predicted [2] based on homology to a reported miR from human (MIR:MI0000298) [1]. Its expression was later verified by cloning [3]. 6 15724 MI0000710 mmu-mir-222 Mus musculus miR-222 stem-loop CCCUCAGUGGCUCAGUAGCCAGUGUAGAUCCUGUCUUUGGUAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGGUGGC Mouse mir-222 is predicted [2] based on homology to a reported miR from human (MIR:MI0000299) [1]. Its expression was later verified in mouse by cloning [3]. 6 15725 MI0000711 mmu-mir-224 Mus musculus miR-224 stem-loop GGGCUUUUAAGUCACUAGUGGUUCCGUUUAGUAGAUGGUUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC Mouse mir-224 is predicted [2] based on homology to a cloned miR from human (MIR:MI0000301) [1]. Its expression was later verified by cloning [3]. 6 15726 MI0000712 mmu-mir-29b-2 Mus musculus miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG 6 15727 MI0000713 mmu-mir-199a-2 Mus musculus miR-199a-2 stem-loop UGGAAGCUUCAGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGCCAGCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15728 MI0000714 mmu-mir-199b Mus musculus miR-199b stem-loop CCAGAGGAUACCUCCACUCCGUCUACCCAGUGUUUAGACUACCUGUUCAGGACUCCCAAAUUGUACAGUAGUCUGCACAUUGGUUAGGCUGGGCUGGGUUAGACCCUCGG Mouse miR-199b is predicted based on homology with the previously identified human miR-199b (MIR:MI0000282) [1,2]. Landgraf et al. later showed that the 3' product is the predominant one [3]. 6 15729 MI0000715 mmu-mir-135a-2 Mus musculus miR-135a-2 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUCGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAUUCA 6 15730 MI0000716 mmu-mir-124-1 Mus musculus miR-124-1 stem-loop AGGCCUCUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAAUGGGGCUG miR-124 was cloned from mouse brain [1] and embryonic stem cells [2] by independent groups. There are 3 predicted precursor hairpin sequences: mir-124-1 (MIR:MI0000716) on chromosome 14, mir-124-2 (MIR:MI0000717) on chromosome 3, and mir-124-3 (previously known as miR-124 here, MIR:MI0000150) on chromosome 2. All have closely related predicted human homologues (MIR:MI0000443, MIR:MI0000444 and MIR:MI0000445). Lagos-Quintana et al. also report a mature miRNA sequence miR-124b, with a G insertion at position 12 [1]. miR-124b is not found in either the mouse or human genome assemblies. 6 15731 MI0000717 mmu-mir-124-2 Mus musculus miR-124-2 stem-loop AUCAAGAUCAGAGACUCUGCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA miR-124 was cloned from mouse brain [1] and embryonic stem cells [2] by independent groups. There are 3 predicted precursor hairpin sequences: mir-124-1 (MIR:MI0000716) on chromosome 14, mir-124-2 (MIR:MI0000717) on chromosome 3, and mir-124-3 (previously known as miR-124 here, MIR:MI0000150) on chromosome 2. All have closely related predicted human homologues (MIR:MI0000443, MIR:MI0000444 and MIR:MI0000445). Lagos-Quintana et al. also report a mature miRNA sequence miR-124b, with a G insertion at position 12 [1]. miR-124b is not found in either the mouse or human genome assemblies. 6 15732 MI0000718 mmu-mir-19b-1 Mus musculus miR-19b-1 stem-loop CACUGGUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUAUAAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUGGUG Mouse miR-19b was cloned from mouse tissues by independent groups [1,2]. There are two predicted hairpin precursors, with closely related human homologues [4]: mir-19b-1 (MIR:MI0000718) on chromosome 14, and mir-19b-2 (previously named mir-19b here, MIR:MI0000546) on mouse chromosome X. -- CONFLICT -- Mouse mir-92-1 and mir-19b-1 map to an unfinished region of chromosome 14. 6 15733 MI0000719 mmu-mir-92a-1 Mus musculus miR-92a-1 stem-loop CUUUCUACACAGGUUGGGAUUUGUCGCAAUGCUGUGUUUCUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG The predominant miR-92 form cloned by Landgraf et al. has a additional 3' U residue, which is compatible with this precursor sequence, but not with that of mir-92-2 (MIR:MI0000580) [4]. 6 15734 MI0000720 mmu-mir-9-1 Mus musculus miR-9-1 stem-loop CGGGGUUGGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGGUGUGGAGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAAUAACCCCA Mouse miR-9 was cloned from mouse brain tissues in [1]. There are 3 predicted hairpin precursor structures in the mouse genome, each has a closely related human homologue [3]. Two copies of mir-9-1 (MIR:MI0000720) are found as part of a larger duplicated region on mouse chromosome 3, mir-9-2 (MIR:MI0000157, previously named mir-9 here) is found on chromosome 13, and mir-9-3 (MIR:MI0000721) on chromosome 7. miR-9* was described as miR-131 in reference [1], but appears to be expressed from the opposite arm of all 3 mir-9 predicted stem-loops. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15735 MI0000721 mmu-mir-9-3 Mus musculus miR-9-3 stem-loop GGAGGCCCGUUUCUCUCUUUGGUUAUCUAGCUGUAUGAGUGCCACAGAGCCGUCAUAAAGCUAGAUAACCGAAAGUAGAAAUGACUCUCA Mouse miR-9 was cloned from mouse brain tissues in [1]. There are 3 predicted hairpin precursor structures in the mouse genome, each has a closely related human homologue [3]. Two copies of mir-9-1 (MIR:MI0000720) are found as part of a larger duplicated region on mouse chromosome 3, mir-9-2 (MIR:MI0000157, previously named mir-9 here) is found on chromosome 13, and mir-9-3 (MIR:MI0000721) on chromosome 7. miR-9* was described as miR-131 in reference [1], but appears to be expressed from the opposite arm of all 3 mir-9 predicted stem-loops. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15736 MI0000722 mmu-mir-138-1 Mus musculus miR-138-1 stem-loop CUCUAGCAUGGUGUUGUGGGACAGCUGGUGUUGUGAAUCAGGCCGUUGCCAAUCAGAGAACGGCUACUUCACAACACCAGGGCCACACUGCACUGCAAG Mouse miR-138 was cloned from mouse brain tissue in [1]. There are 2 predicted hairpin precursor structures in the mouse genome, each has a closely related human homologue [2]. mir-138-1 (MIR:MI0000722) is found on mouse chromosome 8, and mir-138-2 (MIR:MI0000164, previously named mir-138 here) on chromosome 9. Kim et al. and Obernosterer et al. independently show that the mature product is a 23mer [3,4]. 6 15737 MI0000723 mmu-mir-181b-1 Mus musculus miR-181b-1 stem-loop AGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUAGAAAAGCUCACUGAACAAUGAAUGCAACUGUGGCC Mouse miR-181b was predicted by computational methods using conservation with human and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and independently in mouse [2,3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15738 MI0000724 mmu-mir-181c Mus musculus miR-181c stem-loop GCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAGGCCUGGA Mouse miR-181c was predicted by computational methods using conservation with human and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish and independently in mouse [2,3]. 6 15739 MI0000725 mmu-mir-125b-1 Mus musculus miR-125b-1 stem-loop UGCGCUCCCCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUG 6 15740 MI0000726 mmu-mir-128-2 Mus musculus miR-128-2 stem-loop CAGUGGGAAGGGGGGCCGAUGCACUGUAAGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUUUCCCUACUG The most commonly cloned mature sequences derived from the previously annotated mir-128a and mir-128b were shown by Landgraf et al to be identical [3]. The sequences are therefore renamed mir-128-1 and mir-128-2. 6 15741 MI0000727 hsa-mir-128-2 Homo sapiens miR-128-2 stem-loop UGUGCAGUGGGAAGGGGGGCCGAUACACUGUACGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUUUCCCUACUGUGUC The most commonly cloned mature sequences derived from the previously annotated mir-128a and mir-128b were shown by Landgraf et al to be identical [3]. The sequences are therefore renamed mir-128-1 and mir-128-2. 5 15742 MI0000728 mmu-mir-7a-1 Mus musculus miR-7a-1 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAACGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCACCUCUACAG miR-7a (previously named miR-7) was predicted by computational methods using conservation between mouse, human and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and later independently verified in mouse [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 6 15743 MI0000729 mmu-mir-7a-2 Mus musculus miR-7a-2 stem-loop GGUCGGGCCAGCCCCGUUUGGAAGACUAGUGAUUUUGUUGUUGUGUCUCUGUAUCCAACAACAAGUCCCAGUCUGCCACAUGGUGCUGGUCAUUUCA miR-7a (previously named miR-7) was predicted by computational methods using conservation between mouse, human and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and later independently verified in mouse [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 6 15744 MI0000730 mmu-mir-7b Mus musculus miR-7b stem-loop AGGAGCGGAGUACGUGAGCCAGUGCUAUGUGGAAGACUUGUGAUUUUGUUGUUCUGAUAUGAUAUGACAACAAGUCACAGCCAGCCUCAUAGCGUGGACUCCUAUCACCUU miR-7 was predicted by computational methods using conservation between mouse, human and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. This sequence represents the mouse homologue of human mir-7-3 -- the derived mature form differs at a single position from that expressed from mir-7-1 (MIR:MI0000728) and mir-7-2 (MIR:MI0000729) in mouse, and mir-7-1 (MIR:MI0000263), mir-7-2 (MIR:MI0000264) and mir-7-3 (MIR:MI0000265) in human. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies in mouse [2]. 6 15745 MI0000731 mmu-mir-217 Mus musculus miR-217 stem-loop AAACAUAGUCAUUACAGUUUUUGAUGUUGCAGAUACUGCAUCAGGAACUGACUGGAUAAGACUUAAUCCCCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAAACAA This miRNA was predicted by computational methods using conservation in with human, mouse and Fugu rubripes [1]. Expression of the excised miR has been validated in zebrafish, and the ends mapped by cloning. The mature mouse and human (MIR:MI0000293) sequences differ at a single position [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies in mouse [3]. 6 15746 MI0000732 hsa-mir-194-2 Homo sapiens miR-194-2 stem-loop UGGUUCCCGCCCCCUGUAACAGCAACUCCAUGUGGAAGUGCCCACUGGUUCCAGUGGGGCUGCUGUUAUCUGGGGCGAGGGCCAG This miRNA sequence was predicted based on homology to a verified miRNA from mouse [1]. Michael et al. subsequently verified expression of miR-194 in human [2]. Two putative pairs of orthologous hairpin precursors structures are found in mouse (mir-194-1 (MIR:MI0000236) on chromosome 1, and mir-194-2 (MIR:MI0000733) on chromosome 19) and human (mir-194-1 (MIR:MI0000488) on chromosome 1, and mir-194-2 (MIR:MI0000732) on chromosome 11). 5 15747 MI0000733 mmu-mir-194-2 Mus musculus miR-194-2 stem-loop GUGGCUCCCACCCUCUGUAACAGCAACUCCAUGUGGAAGUGCCCACUGGUUCCAGUGGGGCUGCUGUUAUCUGGGGUGGCGGCUAG Lagos-Quintana cloned miR-194 from mouse kidney tissue [1]. Michael et al. subsequently verified expression of miR-194 in human [2]. Two putative pairs of orthologous hairpin precursors structures are found in mouse (mir-194-1 (MIR:MI0000236) on chromosome 1, and mir-194-2 (MIR:MI0000733) on chromosome 19) and human (mir-194-1 (MIR:MI0000488) on chromosome 1, and mir-194-2 (MIR:MI0000732) on chromosome 11). 6 15748 MI0000734 hsa-mir-106b Homo sapiens miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG 5 15749 MI0000735 hsa-mir-29c Homo sapiens miR-29c stem-loop AUCUCUUACACAGGCUGACCGAUUUCUCCUGGUGUUCAGAGUCUGUUUUUGUCUAGCACCAUUUGAAAUCGGUUAUGAUGUAGGGGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15750 MI0000736 hsa-mir-30c-1 Homo sapiens miR-30c-1 stem-loop ACCAUGCUGUAGUGUGUGUAAACAUCCUACACUCUCAGCUGUGAGCUCAAGGUGGCUGGGAGAGGGUUGUUUACUCCUUCUGCCAUGGA miR-30c was cloned from mouse heart and brain tissues by Lagos-Quintana et al. [1]. Two human hairpin precursor sequences are predicted based on homology with the mouse sequences, on chromosomes 1 (MIR:MI0000736) and 6 (MIR:MI0000254) [3]. Expression of miR-30c was later validated in human HL-60 leukemia cells [2]. 5 15751 MI0000737 hsa-mir-200a Homo sapiens miR-200a stem-loop CCGGGCCCCUGUGAGCAUCUUACCGGACAGUGCUGGAUUUCCCAGCUUGACUCUAACACUGUCUGGUAACGAUGUUCAAAGGUGACCCGC miR-200a was cloned from mouse kidney tissue [1], and expression later confirmed by cloning in human [3]. 5 15752 MI0000738 hsa-mir-302a Homo sapiens miR-302a stem-loop CCACCACUUAAACGUGGAUGUACUUGCUUUGAAACUAAAGAAGUAAGUGCUUCCAUGUUUUGGUGAUGG miR-302 was first cloned from mouse embryonic stem cells (MIR:MI0000402) [1]. Human miR-302 was predicted based on homology with mouse [3], and later confirmed by cloning in human embryonic stem cells. miR-302a is located in a cluster with the related miRNAs miR-302b (MIR:MI0000772), miR-302c (MIR:MI0000773), miR-302d (MI0000774), and miR-367 (MIR:MI0000775) on human chromosome 4. 5 15753 MI0000739 hsa-mir-101-2 Homo sapiens miR-101-2 stem-loop ACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAUAUCUGAAAGGUACAGUACUGUGAUAACUGAAGAAUGGUGGU Reference [1] reports two miR-101 precursor hairpin structures in human, on chromosome 1 (MIR:MI0000103) and 9 (MIR:MI0000739, named mir-101-precursor-9 in [1]). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15754 MI0000740 hsa-mir-219-2 Homo sapiens miR-219-2 stem-loop ACUCAGGGGCUUCGCCACUGAUUGUCCAAACGCAAUUCUUGUACGAGUCUGCGGCCAACCGAGAAUUGUGGCUGGACAUCUGUGGCUGAGCUCCGGG This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR [2]. The mature products were later verified in human [3]. Two hairpin precursor structures are predicted, mir-219-1 on chromosome 6 (MIR:MI0000296) and mir-219-2 on chromosome 9 (MIR:MI0000740) [2]. 5 15755 MI0000741 mmu-mir-219-2 Mus musculus miR-219-2 stem-loop ACUCAGGGGCUUCGCCACUGAUUGUCCAAACGCAAUUCUUGUACGAGUCUGCGGCCAACCGAGAAUUGUGGCUGGACAUCUGUGGUUGAGCUCCGGG Mouse mir-219 is predicted [2] based on homology to a reported miR from human (MIR:MI0000740) [1]. Its expression has not been verified in mouse. Two hairpin precursor structures are predicted, mir-219-1 on chromosome 17 (MIR:MI0000702) and mir-219-2 on chromosome 2 (MIR:MI0000741). 6 15756 MI0000742 hsa-mir-34b Homo sapiens miR-34b stem-loop GUGCUCGGUUUGUAGGCAGUGUCAUUAGCUGAUUGUACUGUGGUGGUUACAAUCACUAACUCCACUGCCAUCAAAACAAGGCAC Houbaviy et al. cloned 3 closely related sequences from mouse embryonic stem cells [1], and named them miR-34a, miR-34b and miR-172. These names have been remapped to miR-34c (MIR:MI0000403), miR-34b (MIR:MI0000404) and miR-34a (MIR:MI0000584) to clarify homology with human sequences. The predominant mature miRNA in human is expressed from the 3' arm (in contrast to previous annotation) [2]. Both arms express mature products in mouse. 5 15757 MI0000743 hsa-mir-34c Homo sapiens miR-34c stem-loop AGUCUAGUUACUAGGCAGUGUAGUUAGCUGAUUGCUAAUAGUACCAAUCACUAACCACACGGCCAGGUAAAAAGAUU Houbaviy et al. cloned 3 closely related sequences from mouse embryonic stem cells [1], and named them miR-34a, miR-34b and miR-172. These names have been remapped to miR-34c (MIR:MI0000403), miR-34b (MIR:MI0000404) and miR-34a (MIR:MI0000584) to clarify homology with human sequences. 5 15758 MI0000744 hsa-mir-299 Homo sapiens miR-299 stem-loop AAGAAAUGGUUUACCGUCCCACAUACAUUUUGAAUAUGUAUGUGGGAUGGUAAACCGCUUCUU The sequence from the 5' arm of this miRNA precursor is the predicted human homologue of mouse miR-299, cloned from mouse embryonic stem cells [1,2], later validated in human [4]. Altuvia et al [3] report the cloning of a miRNA sequence from the 3' arm of the same precursor in human. 5 15759 MI0000745 hsa-mir-301a Homo sapiens miR-301a stem-loop ACUGCUAACGAAUGCUCUGACUUUAUUGCACUACUGUACUUUACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCAUCUGAAAGCAGG This sequence is the predicted human homologue of mouse miR-301, cloned from mouse embryonic stem cells [1,3]. Its expression has also been confirmed in human ES cells [2]. 5 15760 MI0000746 hsa-mir-99b Homo sapiens miR-99b stem-loop GGCACCCACCCGUAGAACCGACCUUGCGGGGCCUUCGCCGCACACAAGCUCGUGUCUGUGGGUCCGUGUC This sequence is the predicted human homologue of mouse miR-99b, cloned from mouse brain [1] and embryonic stem cells [2,3]. Its expression was later validated in human [4-6]. 5 15761 MI0000747 hsa-mir-296 Homo sapiens miR-296 stem-loop AGGACCCUUCCAGAGGGCCCCCCCUCAAUCCUGUUGUGCCUAAUUCAGAGGGUUGGGUGGAGGCUCUCCUGAAGGGCUCU This sequence is the predicted human homologue of mouse miR-296 cloned from mouse embryonic stem cells [1,3]. Its expression has also been verified in human ES cells [2]. 5 15762 MI0000748 hsa-mir-130b Homo sapiens miR-130b stem-loop GGCCUGCCCGACACUCUUUCCCUGUUGCACUACUAUAGGCCGCUGGGAAGCAGUGCAAUGAUGAAAGGGCAUCGGUCAGGUC This sequence is the predicted human homologue of mouse miR-130b cloned from mouse embryonic stem cells [1,2]. Its expression was later verified in human BC-1 cells [3]. 5 15763 MI0000749 hsa-mir-30e Homo sapiens miR-30e stem-loop GGGCAGUCUUUGCUACUGUAAACAUCCUUGACUGGAAGCUGUAAGGUGUUCAGAGGAGCUUUCAGUCGGAUGUUUACAGCGGCAGGCUGCCA This sequence is the predicted human homologue of mouse miR-30e [1,2,4]. Mature products from both arms of the precursor (hsa-miR-30e-5p and hsa-miR-30e-3p) were later independently verified in human myelocytic leukemia (HL-60) cells [3]. Landgraf et al. later showed that the 5' product is the predominant one [5]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 5 15764 MI0000750 hsa-mir-26a-2 Homo sapiens miR-26a-2 stem-loop GGCUGUGGCUGGAUUCAAGUAAUCCAGGAUAGGCUGUUUCCAUCUGUGAGGCCUAUUCUUGAUUACUUGUUUCUGGAGGCAGCU miR-26a was cloned from HeLa cells [1]. Two predicted hairpin precursor sequences are present on chromosome 3 (MIR:MI0000083) and 12 (MIR:MI0000750), each with homologues in mouse (MIR:MI0000573 and MIR:MI0000706). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [6]. 5 15765 MI0000751 cbr-mir-72 Caenorhabditis briggsae miR-72 stem-loop UGGACUCGCCCGAGCUAGGCAGAUGUUGGCAUAGCUGAAUGCAAAUCAGAAAUCGAAAUUCGAAAAGUUUGAAUUUCGCGCGCUCAGCUUCGCCACAUCGUGCCAUGCGUAGGCUUGAGACCA This sequence is the predicted C. briggsae homologue of a miRNA cloned from C. elegans (MIR:MI0000043) (Uwe Ohler, pers. comm.). 2 15766 MI0000752 cel-mir-353 Caenorhabditis elegans miR-353 stem-loop UGUUGAAGUAUUGCAAAAGCAAAGGACGGGCACAAUUGCCAUGUGUUGGUAUUAUUGCUUCAAGUUAUUUGAAGCUGUAAUAUCAAUAAGCAUGUCUCGUGUGAAGUCCG This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing. The 5' end of the mature sequence ws mapped by PCR, but the 3' ends have not been experimentally determined. 3 15767 MI0000753 cel-mir-354 Caenorhabditis elegans miR-354 stem-loop CAGAGCCGACUAAGCACCUUGGUGCGGCUGCAGACGGGUAUCCGGCUCGACGUUCAUACAUCACGACUUCUUUCCUUUUACCUUGUUUGUUGCUGCUCCUAUUGGUUUUG This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing. The 5' end of the mature sequence ws mapped by PCR, but the 3' ends have not been experimentally determined. 3 15768 MI0000754 cel-mir-355 Caenorhabditis elegans miR-355 stem-loop AAUAAUGUCAAGAAUUGAAUGGUUUGUUUUAGCCUGAGCUAUGAGUCAUCGGAAUAUGCAUAGCUUCUUGCUAAAACAUGCCAAUCAAUCUUAAUUGACGAAGUUUUUGA This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing [1]. The 5' end of the mature sequence was mapped by PCR, and the 3' end confirmed later [2]. 3 15769 MI0000755 cel-mir-356 Caenorhabditis elegans miR-356 stem-loop UAAAGUUUCCUUGAGAACAAUGUGGUUGAGCAACGCGAACAAAUCAUCAAUGUAAAUUUCAGCGGAUUCGUUACGACGUGUCUCACCACAUCGUUAGUAGGAUUUCAGAA This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing. The 5' end of the mature sequence ws mapped by PCR, but the 3' ends have not been experimentally determined. 3 15770 MI0000756 cel-mir-357 Caenorhabditis elegans miR-357 stem-loop ACGCUGUACUACUCACCAGCGGAUCCCUACAACGCUGCGCAUAUGCAUGAACACAAUGAAAAUGUAAAUGCCAGUCGUUGCAGGAGUUCGCAUACAGUAGUAAAAUGCGC This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing [1]. The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15771 MI0000757 cel-mir-358 Caenorhabditis elegans miR-358 stem-loop AAACUCGCGACGGCUGGCGACCUGGCCAGGCAUUCCAACUGUCAAACUUACAAAGCUUUCUCGACAAUUGGUAUCCCUGUCAAGGUCUCAAUCCGUUCAGCGAAUUCGUU This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing [1]. The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15772 MI0000758 cel-mir-359 Caenorhabditis elegans miR-359 stem-loop AAUGCUCCUUGAAAUUUCAAUCGUUAGAGUAACACACAGUUACACGACCUCAUCAAUCGUGUCACUGGUCUUUCUCUGACGAAUUGAAGUUCUGGAGACAAUUUUGGUUG This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing [1]. The extents of the dominant mature miRNA species are adjusted here in accordance with a large scale cloning and sequencing study [2]. 3 15773 MI0000759 cel-mir-360 Caenorhabditis elegans miR-360 stem-loop CAUUCUGUUAGGAAGCAUCAAUGUGUUGUGACCGUUGUUACGGUCAAUUUGCAAAUUGAAAAAAUGACCGUAAUCCCGUUCACAAUACAUUGUUCGUUUUCUCCAAAGGU This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing. The 5' end of the mature sequence ws mapped by PCR, but the 3' ends have not been experimentally determined. 3 15774 MI0000760 hsa-mir-361 Homo sapiens miR-361 stem-loop GGAGCUUAUCAGAAUCUCCAGGGGUACUUUAUAAUUUCAAAAAGUCCCCCAGGUGUGAUUCUGAUUUGCUUC 5 15775 MI0000761 mmu-mir-361 Mus musculus miR-361 stem-loop GAAGCUUAUCAGAAUCUCCAGGGGUACUUAGUAUUUGAAAAGUCCCCCAGGUGUGAUUCUGAUUUGUUUC 6 15776 MI0000762 hsa-mir-362 Homo sapiens miR-362 stem-loop CUUGAAUCCUUGGAACCUAGGUGUGAGUGCUAUUUCAGUGCAACACACCUAUUCAAGGAUUCAAA 5 15777 MI0000763 mmu-mir-362 Mus musculus miR-362 stem-loop CUCGAAUCCUUGGAACCUAGGUGUGAAUGCUGCUUCAGUGCAACACACCUGUUCAAGGAUUCAAA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 15778 MI0000764 hsa-mir-363 Homo sapiens miR-363 stem-loop UGUUGUCGGGUGGAUCACGAUGCAAUUUUGAUGAGUAUCAUAGGAGAAAAAUUGCACGGUAUCCAUCUGUAAACC 5 15779 MI0000765 mmu-mir-363 Mus musculus miR-363 stem-loop UGUUAUCAGGUGGAACACGAUGCAAUUUUGGUUGGUGUAAUAGGAGGAAAAUUGCACGGUAUCCAUCUGUAAACC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15780 MI0000767 hsa-mir-365-1 Homo sapiens miR-365-1 stem-loop ACCGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUCCAUUCCACUAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCA Xie et al. [1] refer to this sequence by the internal identifier MIR245. The sequence is unrelated to C. elegans mir-245 (MIR:MI0000321). 5 15781 MI0000768 mmu-mir-365-1 Mus musculus miR-365-1 stem-loop ACCGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUCCAUUCCGCUAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCA Xie et al. [1] refer to this sequence by the internal identifier MIR245. The sequence is unrelated to C. elegans mir-245 (MIR:MI0000321). 6 15782 MI0000769 hsa-mir-365-2 Homo sapiens miR-365-2 stem-loop AGAGUGUUCAAGGACAGCAAGAAAAAUGAGGGACUUUCAGGGGCAGCUGUGUUUUCUGACUCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGUUCUUGCAGUGUGCAUCGGG Xie et al. [1] refer to this sequence by the internal identifier MIR190. The sequence is unrelated to mammalian mir-190 (MIR:MI0000486). 5 15783 MI0000772 hsa-mir-302b Homo sapiens miR-302b stem-loop GCUCCCUUCAACUUUAACAUGGAAGUGCUUUCUGUGACUUUAAAAGUAAGUGCUUCCAUGUUUUAGUAGGAGU Human miR-302a (MIR:MI0000738), miR-302b (MIR:MI0000772), miR-302c (MIR:MI0000773), miR-302d (MIR:MI0000774) and miR-367 (MIR:MI0000775) are clustered on chromosome 4. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 15784 MI0000773 hsa-mir-302c Homo sapiens miR-302c stem-loop CCUUUGCUUUAACAUGGGGGUACCUGCUGUGUGAAACAAAAGUAAGUGCUUCCAUGUUUCAGUGGAGG 5 15785 MI0000774 hsa-mir-302d Homo sapiens miR-302d stem-loop CCUCUACUUUAACAUGGAGGCACUUGCUGUGACAUGACAAAAAUAAGUGCUUCCAUGUUUGAGUGUGG Human miR-302a (MIR:MI0000738), miR-302b (MIR:MI0000772), miR-302c (MIR:MI0000773), miR-302d (MIR:MI0000774) and miR-367 (MIR:MI0000775) are clustered on chromosome 4. 5 15786 MI0000775 hsa-mir-367 Homo sapiens miR-367 stem-loop CCAUUACUGUUGCUAAUAUGCAACUCUGUUGAAUAUAAAUUGGAAUUGCACUUUAGCAAUGGUGAUGG 5 15787 MI0000776 hsa-mir-376c Homo sapiens miR-376c stem-loop AAAAGGUGGAUAUUCCUUCUAUGUUUAUGUUAUUUAUGGUUAAACAUAGAGGAAAUUCCACGUUUU This miRNA has been named both miR-368 and miR376c in the literature, and previously here. The mature miR-376c product has been shown to be modified by A to I edits [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15788 MI0000777 hsa-mir-369 Homo sapiens miR-369 stem-loop UUGAAGGGAGAUCGACCGUGUUAUAUUCGCUUUAUUGACUUCGAAUAAUACAUGGUUGAUCUUUUCUCAG 5 15789 MI0000778 hsa-mir-370 Homo sapiens miR-370 stem-loop AGACAGAGAAGCCAGGUCACGUCUCUGCAGUUACACAGCUCACGAGUGCCUGCUGGGGUGGAACCUGGUCUGUCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15790 MI0000779 hsa-mir-371 Homo sapiens miR-371 stem-loop GUGGCACUCAAACUGUGGGGGCACUUUCUGCUCUCUGGUGAAAGUGCCGCCAUCUUUUGAGUGUUAC Human miR-371 (MIR:MI0000779), miR-372 (MIR:MI0000780) and miR-373 (MIR:MI0000781) are clustered within 1.1kb on chromosome 19. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15791 MI0000780 hsa-mir-372 Homo sapiens miR-372 stem-loop GUGGGCCUCAAAUGUGGAGCACUAUUCUGAUGUCCAAGUGGAAAGUGCUGCGACAUUUGAGCGUCAC 5 15792 MI0000781 hsa-mir-373 Homo sapiens miR-373 stem-loop GGGAUACUCAAAAUGGGGGCGCUUUCCUUUUUGUCUGUACUGGGAAGUGCUUCGAUUUUGGGGUGUCCC 5 15793 MI0000782 hsa-mir-374a Homo sapiens miR-374a stem-loop UACAUCGGCCAUUAUAAUACAACCUGAUAAGUGUUAUAGCACUUAUCAGAUUGUAUUGUAAUUGUCUGUGUA 5 15794 MI0000783 hsa-mir-375 Homo sapiens miR-375 stem-loop CCCCGCGACGAGCCCCUCGCACAAACCGGACCUGAGCGUUUUGUUCGUUCGGCUCGCGUGAGGC 5 15795 MI0000784 hsa-mir-376a-1 Homo sapiens miR-376a-1 stem-loop UAAAAGGUAGAUUCUCCUUCUAUGAGUACAUUAUUUAUGAUUAAUCAUAGAGGAAAAUCCACGUUUUC The mature miR-376a products have been shown to be modified by A to I edits [3]. 5 15796 MI0000785 hsa-mir-377 Homo sapiens miR-377 stem-loop UUGAGCAGAGGUUGCCCUUGGUGAAUUCGCUUUAUUUAUGUUGAAUCACACAAAGGCAACUUUUGUUUG 5 15797 MI0000786 hsa-mir-378 Homo sapiens miR-378 stem-loop AGGGCUCCUGACUCCAGGUCCUGUGUGUUACCUAGAAAUAGCACUGGACUUGGAGUCAGAAGGCCU miR-422b was the most abundant miRNA cloned from human promyelocytic leukemia (HL-60) cells [2]. The sequence originates from the opposite arm of the human homologue of previously identified mouse mir-378 [1]. Landgraf et al. show that the 3' product (previously called miR-422b) is the predominant one [3]. Further, mir-378 and mir-422a loci are unrelated. miR-422b is thus renamed miR-378 here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15798 MI0000787 hsa-mir-379 Homo sapiens miR-379 stem-loop AGAGAUGGUAGACUAUGGAACGUAGGCGUUAUGAUUUCUGACCUAUGUAACAUGGUCCACUAACUCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15799 MI0000788 hsa-mir-380 Homo sapiens miR-380 stem-loop AAGAUGGUUGACCAUAGAACAUGCGCUAUCUCUGUGUCGUAUGUAAUAUGGUCCACAUCUU Landgraf et al. confirm that the 3' product is the predominant one [3]. 5 15800 MI0000789 hsa-mir-381 Homo sapiens miR-381 stem-loop UACUUAAAGCGAGGUUGCCCUUUGUAUAUUCGGUUUAUUGACAUGGAAUAUACAAGGGCAAGCUCUCUGUGAGUA 5 15801 MI0000790 hsa-mir-382 Homo sapiens miR-382 stem-loop UACUUGAAGAGAAGUUGUUCGUGGUGGAUUCGCUUUACUUAUGACGAAUCAUUCACGGACAACACUUUUUUCAGUA 5 15802 MI0000791 hsa-mir-383 Homo sapiens miR-383 stem-loop CUCCUCAGAUCAGAAGGUGAUUGUGGCUUUGGGUGGAUAUUAAUCAGCCACAGCACUGCCUGGUCAGAAAGAG 5 15803 MI0000792 mmu-mir-375 Mus musculus miR-375 stem-loop CCCCGCGACGAGCCCCUCGCACAAACCGGACCUGAGCGUUUUGUUCGUUCGGCUCGCGUGAGGC 6 15804 MI0000793 mmu-mir-376a Mus musculus miR-376a stem-loop UAAAAGGUAGAUUCUCCUUCUAUGAGUACAAUAUUAAUGACUAAUCGUAGAGGAAAAUCCACGUUUUC Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse [1]. The expression of miR-376a was independently verified by Poy et al. [2]. The mature miR-376a products have been shown to be modified by A to I edits [4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 6 15805 MI0000794 mmu-mir-377 Mus musculus miR-377 stem-loop UGAGCAGAGGUUGCCCUUGGUGAAUUCGCUUUAUUGAUGUUGAAUCACACAAAGGCAACUUUUGUUUG 6 15806 MI0000795 mmu-mir-378 Mus musculus miR-378 stem-loop AGGGCUCCUGACUCCAGGUCCUGUGUGUUACCUCGAAAUAGCACUGGACUUGGAGUCAGAAGGCCU Landgraf et al. show that the 3' product is the predominant one [2]. The 5' product (identified in [1]) is renamed miR-378* here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15807 MI0000796 mmu-mir-379 Mus musculus miR-379 stem-loop AGAGAUGGUAGACUAUGGAACGUAGGCGUUAUGUUUUUGACCUAUGUAACAUGGUCCACUAACUCU 6 15808 MI0000797 mmu-mir-380 Mus musculus miR-380 stem-loop AAGAUGGUUGACCAUAGAACAUGCGCUACUUCUGUGUCGUAUGUAGUAUGGUCCACAUCUU Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse, including a sequence from the 3' arm of this precursor [1]. Poy et al. cloned a sequence from the 5' arm from mouse pancreatic beta cell line MIN6 [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15809 MI0000798 mmu-mir-381 Mus musculus miR-381 stem-loop UACUUAAAGCGAGGUUGCCCUUUGUAUAUUCGGUUUAUUGACAUGGAAUAUACAAGGGCAAGCUCUCUGUGAGUA 6 15810 MI0000799 mmu-mir-382 Mus musculus miR-382 stem-loop UACUUGAAGAGAAGUUGUUCGUGGUGGAUUCGCUUUACUUGUGACGAAUCAUUCACGGACAACACUUUUUUCAGUA 6 15811 MI0000800 mmu-mir-383 Mus musculus miR-383 stem-loop CUCAGAUCAGAAGGUGACUGUGGCUUUGGGUGGAUAUUAAUCAGCCACAGCACUGCCUGGUCAGAAAGAG 6 15812 MI0000801 cel-lsy-6 Caenorhabditis elegans lsy-6 stem-loop CCAUCAAAUGCGUCUAGUAUCAAAAUCAUGUAAAAACUGUAAAACAGAUUUUGUAUGAGACGCAUUUCGAUGA The bilateral taste receptor neurons ASE left (ASEL) and ASE right (ASER) are thought to be responsible for an assymetrical pattern of chemoreceptor gene expression in C. elegans. miRNA lsy-6 is expressed in ASEL but not ASER and has been shown to control this bilateral assymetry by binding to a complementary site in the 3' UTR of cog-1, an Nkx-type homeobox gene. Johnston and Hobert determined the locus of lsy-6, and predicted the position of the mature miR sequence [1]. The miR location was refined by Ohler et al. who mapped the 5' end by PCR and confirmed the 3' end from the cloning of the miR* sequence from the opposite arm of the precursor [2]. 3 15813 MI0000802 hsa-mir-340 Homo sapiens miR-340 stem-loop UUGUACCUGGUGUGAUUAUAAAGCAAUGAGACUGAUUGUCAUAUGUCGUUUGUGGGAUCCGUCUCAGUUACUUUAUAGCCAUACCUGGUAUCUUA This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2]. Landgraf et al. show that the 5' product is the predominant one in human, mouse and rat [3], in contrast to the previous annotation. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15814 MI0000803 hsa-mir-330 Homo sapiens miR-330 stem-loop CUUUGGCGAUCACUGCCUCUCUGGGCCUGUGUCUUAGGCUCUGCAAGAUCAACCGAGCAAAGCACACGGCCUGCAGAGAGGCAGCGCUCUGCCC This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. 5 15815 MI0000804 hsa-mir-328 Homo sapiens miR-328 stem-loop UGGAGUGGGGGGGCAGGAGGGGCUCAGGGAGAAAGUGCAUACAGCCCCUGGCCCUCUCUGCCCUUCCGUCCCCUG This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. 5 15816 MI0000805 hsa-mir-342 Homo sapiens miR-342 stem-loop GAAACUGGGCUCAAGGUGAGGGGUGCUAUCUGUGAUUGAGGGACAUGGUUAAUGGAAUUGUCUCACACAGAAAUCGCACCCGUCACCUUGGCCUACUUA This sequence was predicted by homology to a rat miRNA [1,2] and later verified in human [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15817 MI0000806 hsa-mir-337 Homo sapiens miR-337 stem-loop GUAGUCAGUAGUUGGGGGGUGGGAACGGCUUCAUACAGGAGUUGAUGCACAGUUAUCCAGCUCCUAUAUGAUGCCUUUCUUCAUCCCCUUCAA This sequence was predicted based on homology with a verified rat miRNA [1,2], and later confirmed in human [3]. 5 15818 MI0000807 hsa-mir-323 Homo sapiens miR-323 stem-loop UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCGUUCGCUUUAUUUAUGGCGCACAUUACACGGUCGACCUCUUUGCAGUAUCUAAUC This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. 5 15819 MI0000808 hsa-mir-326 Homo sapiens miR-326 stem-loop CUCAUCUGUCUGUUGGGCUGGAGGCAGGGCCUUUGUGAAGGCGGGUGGUGCUCAGAUCGCCUCUGGGCCCUUCCUCCAGCCCCGAGGCGGAUUCA This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. miR-326 cloned in [3] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 15820 MI0000809 hsa-mir-151 Homo sapiens miR-151 stem-loop UUUCCUGCCCUCGAGGAGCUCACAGUCUAGUAUGUCUCAUCCCCUACUAGACUGAAGCUCCUUGAGGACAGGGAUGGUCAUACUCACCUC This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3,4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15821 MI0000810 hsa-mir-135b Homo sapiens miR-135b stem-loop CACUCUGCUGUGGCCUAUGGCUUUUCAUUCCUAUGUGAUUGCUGUCCCAAACUCAUGUAGGGCUAAAAGCCAUGGGCUACAGUGAGGGGCGAGCUCC This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. 5 15822 MI0000811 hsa-mir-148b Homo sapiens miR-148b stem-loop CAAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUUAUACACUCAGGCUGUGGCUCUCUGAAAGUCAGUGCAUCACAGAACUUUGUCUCGAAAGCUUUCUA This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2]. Its expression was later verified in human [3,4]. 5 15823 MI0000812 hsa-mir-331 Homo sapiens miR-331 stem-loop GAGUUUGGUUUUGUUUGGGUUUGUUCUAGGUAUGGUCCCAGGGAUCCCAGAUCAAACCAGGCCCCUGGGCCUAUCCUAGAACCAACCUAAGCUC This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. 5 15824 MI0000813 hsa-mir-324 Homo sapiens miR-324 stem-loop CUGACUAUGCCUCCCCGCAUCCCCUAGGGCAUUGGUGUAAAGCUGGAGACCCACUGCCCCAGGUGCUGCUGGGGGUUGUAGUC This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2]. Expression of the miRNA from the 3' arm of the hairpin was later verified in human BC-1 cells [3]. The 5' end of the miRNA may be offset with respect to previous annotations. miR-324-3p cloned in [4] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 15825 MI0000814 hsa-mir-338 Homo sapiens miR-338 stem-loop UCUCCAACAAUAUCCUGGUGCUGAGUGAUGACUCAGGCGACUCCAGCAUCAGUGAUUUUGUUGAAGA This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 15826 MI0000815 hsa-mir-339 Homo sapiens miR-339 stem-loop CGGGGCGGCCGCUCUCCCUGUCCUCCAGGAGCUCACGUGUGCCUGCCUGUGAGCGCCUCGACGACAGAGCCGGCGCCUGCCCCAGUGUCUGCGC This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,3]. Expression of mature miRNA was later verified in human [2,4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 5 15827 MI0000816 hsa-mir-335 Homo sapiens miR-335 stem-loop UGUUUUGAGCGGGGGUCAAGAGCAAUAACGAAAAAUGUUUGUCAUAAACCGUUUUUCAUUAUUGCUCCUGACCUCCUCUCAUUUGCUAUAUUCA This sequence is the predicted homologue of a miRNA cloned from rat neuronal tissue [1,2], later verified in human [3]. 5 15828 MI0000817 mmu-mir-335 Mus musculus miR-335 stem-loop UCUUUUGGGCGGGGGUCAAGAGCAAUAACGAAAAAUGUUUGUUUUUCGUAAACCGUUUUUCAUUAUUGCUCCUGACCCCCUCUCAUGGGUUAUAGCCA 6 15829 MI0000818 cbr-lsy-6 Caenorhabditis briggsae lsy-6 stem-loop CCACAGAAUGCGUCCAGUAUCAAAAUCACAUCAAAGAGAAUACGGUGGAUUUUGUAUGAGACGCAUUCCGUGGC The bilateral taste receptor neurons ASE left (ASEL) and ASE right (ASER) are thought to be responsible for an assymetrical pattern of chemoreceptor gene expression in C. elegans. miRNA lsy-6 is expressed in ASEL but not ASER and has been shown to control this bilateral assymetry by binding to a complementary site in the 3' UTR of cog-1, an Nkx-type homeobox gene [1]. This sequence is the predicted C. briggsae homologue of miR-lsy-6 from elegans. Its expression has not been verified in briggsae. 2 15830 MI0000819 cel-mir-392 Caenorhabditis elegans miR-392 stem-loop UUUUUGAAAAUCUCGCAGACGUGUUCAGUCAGCAUUCGUGGUUGAGGAUAUCGAACACAAAAAAAGAUAUCAUCGAUCACGUGUGAUGACAGAUUUUCUGCGACUAACAG This miRNA was predicted by computational analysis of C. elegans and C. briggsae, and expression of the mature microRNA confirmed by PCR amplification, cloning and sequencing [1]. The 5' end of the mature sequence was mapped by PCR, and the 3' end confirmed later [2]. 3 15831 MI0000820 mmu-mir-133a-2 Mus musculus miR-133a-2 stem-loop AGAAGCCAAAUGCUUUGCUGAAGCUGGUAAAAUGGAACCAAAUCAGCUGUUGGAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUGCGCAUUGAUCACGCCGCA This mature miRNA sequence was named miR-133 in reference [1], and renamed miR-133a on subsequent identification of a homologue differing at the terminal 3' position (MIR:MI0000821). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15832 MI0000821 mmu-mir-133b Mus musculus miR-133b stem-loop CCUCCAAAGGGAGUGGCCCCCUGCUCUGGCUGGUCAAACGGAACCAAGUCCGUCUUCCUGAGAGGUUUGGUCCCCUUCAACCAGCUACAGCAGGGCUGGCAAAGCUCAAUAUUUGGAGA miR-133b was predicted based on comparative analysis of human, mouse and Fugu [1]. It is homologous to miR-133a (MIR:MI0000159 and MIR:MI0000820). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 15833 MI0000822 hsa-mir-133b Homo sapiens miR-133b stem-loop CCUCAGAAGAAAGAUGCCCCCUGCUCUGGCUGGUCAAACGGAACCAAGUCCGUCUUCCUGAGAGGUUUGGUCCCCUUCAACCAGCUACAGCAGGGCUGGCAAUGCCCAGUCCUUGGAGA miR-133b was predicted based on comparative analysis of human, mouse and Fugu [1], and later verified in human [2]. 5 15834 MI0000823 mmu-mir-181b-2 Mus musculus miR-181b-2 stem-loop UUGAUGGCUGCACUCAACAUUCAUUGCUGUCGGUGGGUUUGAAUGUCAACCAACUCACUGAUCAAUGAAUGCAAACUGCGGGCCAAAAA Mouse miR-181b was predicted by computational methods using conservation with human and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and independently in mouse [2,3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 15835 MI0000824 hsa-mir-325 Homo sapiens miR-325 stem-loop AUACAGUGCUUGGUUCCUAGUAGGUGUCCAGUAAGUGUUUGUGACAUAAUUUGUUUAUUGAGGACCUCCUAUCAAUCAAGCACUGUGCUAGGCUCUGG This sequence is the predicted human homologue [2] of a sequence cloned from rat neuronal tissue [1]. The mature miRNA differs from the rat sequence at two positions, and its expression has not been verified in human. 5 15836 MI0000825 hsa-mir-345 Homo sapiens miR-345 stem-loop ACCCAAACCCUAGGUCUGCUGACUCCUAGUCCAGGGCUCGUGAUGGCUGGUGGGCCCUGAACGAGGGGUCUGGAGGCCUGGGUUUGAAUAUCGACAGC This sequence is the predicted human homologue [2] of a sequence cloned from rat neuronal tissue [1], later validated in human [3,4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 15837 MI0000826 hsa-mir-346 Homo sapiens miR-346 stem-loop GGUCUCUGUGUUGGGCGUCUGUCUGCCCGCAUGCCUGCCUCUCUGUUGCUCUGAAGGAGGCAGGGGCUGGGCCUGCAGCUGCCUGGGCAGAGCGG This sequence is the predicted human homologue [2] of a sequence cloned from rat neuronal tissue [1]. The mature miRNA differs from the rat sequence at two positions, and its expression has not been verified in human. 5 15838 MI0000827 rno-let-7a-1 Rattus norvegicus let-7a-1 stem-loop UUCACUGUGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCUAAGGUGAU 8 15839 MI0000828 rno-let-7a-2 Rattus norvegicus let-7a-2 stem-loop CGGCAUGCUCCCAGGCUGAGGUAGUAGGUUGUAUAGUUUAGAGUUACAACAAGGGAGAUAACUGUACAGCCUCCUAGCUUUCCUUGGGACUUGCAC 8 15840 MI0000829 rno-let-7b Rattus norvegicus let-7b stem-loop GCGGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGCAGUGAUGUCGCCCCUCCGAAGAUAACUAUACAACCUACUGCCUUCCCUGA 8 15841 MI0000830 rno-let-7c-1 Rattus norvegicus let-7c-1 stem-loop UGUGUGCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGCACACU 8 15842 MI0000831 rno-let-7c-2 Rattus norvegicus let-7c-2 stem-loop ACGGCCUUUGGGGUGAGGUAGUAGGUUGUAUGGUUUUGGGCUCUGCCCCGCUCUGCGGUAACUAUACAAUCUACUGUCUUUCCUGAAGUGGCCGC 8 15843 MI0000832 rno-let-7e Rattus norvegicus let-7e stem-loop CGCGCCCCCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGAAGACACCCGAGGAGAUCACUAUACGGCCUCCUAGCUUUCCCCAGGCUGCGCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15844 MI0000833 rno-let-7f-1 Rattus norvegicus let-7f-1 stem-loop AUCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUUAGGAGAUAACUAUACAAUCUAUUGCCUUCCCUGAG 8 15845 MI0000834 rno-let-7f-2 Rattus norvegicus let-7f-2 stem-loop UGUGGGAUGAGGUAGUAGAUUGUAUAGUUUUAGGGUCAUACCCCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCCCACG 8 15846 MI0000835 rno-let-7i Rattus norvegicus let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 8 15847 MI0000836 rno-mir-7a-2 Rattus norvegicus miR-7a-2 stem-loop GGACAGACCAGCCCUGUCUGGAAGACUAGUGAUUUUGUUGUUGUGUCUGUGUCCAACAACAAGUCCCAGUCUGCCACAUGGUGUUGGUCACAUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15848 MI0000837 rno-mir-7b Rattus norvegicus miR-7b stem-loop AGGCCAGAACACAUGAGCCAAUGCUAUGUGGAAGACUUGUGAUUUUGUUGUUCUGAUAUGAUAUGACAACAAGUCACAGCCAGCCUCAUAGAGUGGACUCCCAUCACCUU 8 15849 MI0000838 rno-mir-9-1 Rattus norvegicus miR-9-1 stem-loop CGGGGUUGGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGGUGUGGAGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAAUAACCCCA 8 15850 MI0000839 rno-mir-9-3 Rattus norvegicus miR-9-3 stem-loop GGAGGCCCGUUUCUCUCUUUGGUUAUCUAGCUGUAUGAGUGCCACAGAGCCGUCAUAAAGCUAGAUAACCGAAAGUAGAAAUGACUCUAA 8 15851 MI0000840 rno-mir-9-2 Rattus norvegicus miR-9-2 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA 8 15852 MI0000841 rno-mir-10a Rattus norvegicus miR-10a stem-loop GACCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCA 8 15853 MI0000842 rno-mir-10b Rattus norvegicus miR-10b stem-loop CCAAAGUUGUAACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUACCCACAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCA 8 15854 MI0000843 rno-mir-15b Rattus norvegicus miR-15b stem-loop UUGGAACCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU 8 15855 MI0000844 rno-mir-16 Rattus norvegicus miR-16 stem-loop CAUACUUGUUCCGCUCUAGCAGCACGUAAAUAUUGGCGUAGUGAAAUAAAUAUUAAACACCAAUAUUAUUGUGCUGCUUUAGUGUGACAGGGAUA 8 15856 MI0000845 rno-mir-17-1 Rattus norvegicus miR-17-1 stem-loop GUCAGGAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGGUGUGUGCAUCUACUGCAGUGAAGGCACUUGUGGCAUUGUGCUGAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15857 MI0000846 rno-mir-18a Rattus norvegicus miR-18a stem-loop UGCGUGCUUUUUGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGACUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCAUAAGAAGUUAUGUC This miRNA was predicted based on homology to a verified miRNA from mouse [1]. Its expression in rat was later verified by cloning [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15858 MI0000847 rno-mir-19b-1 Rattus norvegicus miR-19b-1 stem-loop CACUGGUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUAUAAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUGGUG 8 15859 MI0000848 rno-mir-19b-2 Rattus norvegicus miR-19b-2 stem-loop ACAUUGCUACUUACGGUUAGUUUUGCAGAUUUGCAGUUCAGCGUAUAUGUGGAUAUAUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUGAUGU 8 15860 MI0000849 rno-mir-19a Rattus norvegicus miR-19a stem-loop GCAGCCCUCUGUUCGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC 8 15861 MI0000850 rno-mir-21 Rattus norvegicus miR-21 stem-loop UGUACCACCUUGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACAGCAGUCGAUGGGCUGUCUGACAUUUUGGUAUC 8 15862 MI0000851 rno-mir-22 Rattus norvegicus miR-22 stem-loop ACCUGGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCCACUGGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15863 MI0000852 rno-mir-23a Rattus norvegicus miR-23a stem-loop CGGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGAUGCCAGUCACAAAUCACAUUGCCAGGGAUUUCCAACUGACCC 8 15864 MI0000853 rno-mir-23b Rattus norvegicus miR-23b stem-loop CUCACCUGCUCUGGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUGAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAACCAUGACCUUGGC 8 15865 MI0000854 rno-mir-24-1 Rattus norvegicus miR-24/miR-189 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUCACACACUGGCUCAGUUCAGCAGGAACAGGAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15866 MI0000855 rno-mir-24-2 Rattus norvegicus miR-24-2 stem-loop GCCUCUCCCUGGGCUCCGCCUCCUGUGCCUACUGAGCUGAAACAGUUGAUUCCAGUGCACUGGCUCAGUUCAGCAGGAACAGGAGUCCAGCCCCCAUAGGAGCUGGCA 8 15867 MI0000856 rno-mir-25 Rattus norvegicus miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACACGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC 8 15868 MI0000857 rno-mir-26a Rattus norvegicus miR-26a stem-loop AAGGCCGUGGCCUUGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAGGGGCCUAUUCUUGGUUACUUGCACGGGGACGCGGGCCUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15869 MI0000858 rno-mir-26b Rattus norvegicus miR-26b stem-loop UGCCCGGGACCCAGUUCAAGUAAUUCAGGAUAGGUUGUGGUGCUGGCCAGCCUGUUCUCCAUUACUUGGCUCGGGGGCCGGUGCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15870 MI0000859 rno-mir-27b Rattus norvegicus miR-27b stem-loop ACCUCUCUAACAAGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGGUUUCCGCUUUGUUCACAGUGGCUAAGUUCUGCACCUGAAGAGAAGGUG 8 15871 MI0000860 rno-mir-27a Rattus norvegicus miR-27a stem-loop UGGCCUGUGGAGCAGGGCUUAGCUGCUUGUGAGCAAGGUCUACAGCAAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCUGGACCC 8 15872 MI0000861 rno-mir-28 Rattus norvegicus miR-28 stem-loop GGUCCCUACCCGCAAGGAGCUCACAGUCUAUUGAGUUCCUUUUCUGAUUCUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU 8 15873 MI0000862 rno-mir-29b-2 Rattus norvegicus miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG 8 15874 MI0000863 rno-mir-29a Rattus norvegicus miR-29a stem-loop ACCCCUUAGAGGAUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAGAAUUUUCUAGCACCAUCUGAAAUCGGUUAUAAUGAUUGGGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 8 15875 MI0000864 rno-mir-29b-1 Rattus norvegicus miR-29b-1 stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGUGG 8 15876 MI0000865 rno-mir-29c Rattus norvegicus miR-29c stem-loop AUCUCUUACACAGGCUGACCGAUUUCUCCUGGUGUUCAGAGUCUGUUUUUGUCUAGCACCAUUUGAAAUCGGUUAUGAUGUAGGGGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15877 MI0000866 rno-mir-30c-1 Rattus norvegicus miR-30c-1 stem-loop ACCAUGUUGUAGUGUGUGUAAACAUCCUACACUCUCAGCUGUGAGCUCAAGGUGGCUGGGAGAGGGUUGUUUACUCCUUCUGCCAUGGA 8 15878 MI0000867 rno-mir-30e Rattus norvegicus miR-30e stem-loop GGGCAGUCUUUGCUACUGUAAACAUCCUUGACUGGAAGCUGUAAGGUGUUGAGAGGAGCUUUCAGUCGGAUGUUUACAGCGGCAGGCUGCCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15879 MI0000868 rno-mir-30b Rattus norvegicus miR-30b stem-loop CCGAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUCAUACAUGAGUUGGCUGGGAUGUGGAUGUUUACGUCAGCUGUCUUGGA Landgraf et al. show that miRNA sequences from both arms of this hairpin precursor are similarly expressed [4]. 8 15880 MI0000869 rno-mir-30d Rattus norvegicus miR-30d stem-loop AAGUCUGUGUCUGUAAACAUCCCCGACUGGAAGCUGUAAGCCACAGCCAAGCUUUCAGUCAGAUGUUUGCUGCUACUGGCUC 8 15881 MI0000870 rno-mir-30a Rattus norvegicus miR-30a stem-loop GCAACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAAAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC 8 15882 MI0000871 rno-mir-30c-2 Rattus norvegicus miR-30c-2 stem-loop GAGUGACAGAUACUGUAAACAUCCUACACUCUCAGCUGUGAAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUCUCUGCCUU 8 15883 MI0000872 rno-mir-31 Rattus norvegicus miR-31 stem-loop UGCUCCUGAAACUUGGAACUGGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGAGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCCUGUCUGACAGCAGCU 8 15884 MI0000873 rno-mir-32 Rattus norvegicus miR-32 stem-loop GGGGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUCUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15885 MI0000874 rno-mir-33 Rattus norvegicus miR-33 stem-loop CCGUGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGCAGUACCUGUGCAAUGUUUCCACAGUGCAUCACGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15886 MI0000875 rno-mir-34b Rattus norvegicus miR-34b stem-loop GUGCUCGGUUUGUAGGCAGUGUAAUUAGCUGAUUGUAGUGCGGUGCUGACAAUCACUAACUCCACUGCCAUCAAAACAAGGCAC This sequence is the predicted rat homologue of a confirmed miRNA from human [1]. Its expression has not been experimentally verified in rat. 8 15887 MI0000876 rno-mir-34c Rattus norvegicus miR-34c stem-loop AGUCUAGUUACUAGGCAGUGUAGUUAGCUGAUUGCUAAUAGUACCAAUCACUAACCACACAGCCAGGUAAAAAGACU 8 15888 MI0000877 rno-mir-34a Rattus norvegicus miR-34a stem-loop CCGGCUGUGAGUAAUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGUAUUAGCUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15889 MI0000878 rno-mir-92a-1 Rattus norvegicus miR-92a-1 stem-loop CUUUCUACACAGGUUGGGAUUUGUCGCAAUGCUGUGUUUCUGUAUAGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG 8 15890 MI0000879 rno-mir-92a-2 Rattus norvegicus miR-92a-2 stem-loop UGCCCAUUCAUCCACAGGUGGGGAUUAGUGCCAUUACUUGUGUUAGAUAAAAAGUAUUGCACUUGUCCCGGCCUGAGGAAGAAAAGAGGGUU 8 15891 MI0000880 rno-mir-93 Rattus norvegicus miR-93 stem-loop AGUCAUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGCAUUGCCUGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCAGGACA 8 15892 MI0000881 rno-mir-96 Rattus norvegicus miR-96 stem-loop CCAGUACCAUCUGCUUGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAAAGCGGGCUGCUGC 8 15893 MI0000882 rno-mir-98 Rattus norvegicus miR-98 stem-loop CUGCACAUGCUGGGGUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUUUUAGGCCCCAAUAAGAAGAUAACUAUACAACUUACUACUUUCCCUGGUGUGUGGCAU 8 15894 MI0000883 rno-mir-99a Rattus norvegicus miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGUUUCUAUGGGUCUGUGGCAGUGUG 8 15895 MI0000884 rno-mir-99b Rattus norvegicus miR-99b stem-loop GGCACCCACCCGUAGAACCGACCUUGCGGGGCCUUCGCCGCACACAAGCUCGUGUCUGUGGGUCCGUGUC 8 15896 MI0000885 rno-mir-100 Rattus norvegicus miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGCUGACCAUGCACACAAGCUUGUGUCUAUAGGUAUGUGUCUGUUAGG 8 15897 MI0000886 rno-mir-101a Rattus norvegicus miR-101a stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15898 MI0000887 rno-mir-103-2 Rattus norvegicus miR-103-2 stem-loop GUCUUCGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUAGCAUUCAGGUCAAGCAGCAUUGUACAGGGCUAUGAAAGAACCAAGAA 8 15899 MI0000888 rno-mir-103-1 Rattus norvegicus miR-103-1 stem-loop UUCUUACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUGAGAC 8 15900 MI0000889 rno-mir-106b Rattus norvegicus miR-106b stem-loop CCUGCUGGGACUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCUGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG 8 15901 MI0000890 rno-mir-107 Rattus norvegicus miR-107 stem-loop UUCUCUCUGCUUUAAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGAGAGC 8 15902 MI0000891 rno-mir-122 Rattus norvegicus miR-122 stem-loop CCUUAGCAGAGCUCUGGAGUGUGACAAUGGUGUUUGUGUCCAAAACAUCAAACGCCAUCAUCACACUAAACAGCUACUGCUAGGC 8 15903 MI0000892 rno-mir-124-3 Rattus norvegicus miR-124-3 stem-loop UGAGGGCCCCUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGUCUAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAGGCGCCUCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15904 MI0000893 rno-mir-124-1 Rattus norvegicus miR-124-1 stem-loop AGGCCUCUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAAUGGGGCUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15905 MI0000894 rno-mir-124-2 Rattus norvegicus miR-124-2 stem-loop AUCAAGAUCAGAGACUCUGCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15906 MI0000895 rno-mir-125a Rattus norvegicus miR-125a stem-loop UGCCGGCCUCUGGGUCCCUGAGACCCUUUAACCUGUGAGGACGUCCAGGGUCACAGGUGAGGUUCUUGGGAGCCUGGCGCCUGGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15907 MI0000896 rno-mir-125b-1 Rattus norvegicus miR-125b-1 stem-loop UGCGCUCCCCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGC 8 15908 MI0000897 rno-mir-125b-2 Rattus norvegicus miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGAGG 8 15909 MI0000898 rno-mir-126 Rattus norvegicus miR-126 stem-loop UGACAGCACAUUAUUACUUUUGGUACGCGCUGUGACACUUCAAACUCGUACCGUGAGUAAUAAUGCGUGGUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15910 MI0000899 rno-mir-127 Rattus norvegicus miR-127 stem-loop UUUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCAUCAUC 8 15911 MI0000900 rno-mir-128-1 Rattus norvegicus miR-128-1 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC The most commonly cloned mature sequences derived from the previously annotated mir-128a and mir-128b were shown by Landgraf et al to be identical [3]. The sequences are therefore renamed mir-128-1 and mir-128-2. 8 15912 MI0000901 rno-mir-128-2 Rattus norvegicus miR-128-2 stem-loop UGUGCAGUGGGAAGGGGGGCCGAUGCACUGUAAGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUUUCCCUACUGUGUC The most commonly cloned mature sequences derived from the previously annotated mir-128a and mir-128b were shown by Landgraf et al to be identical [3]. The sequences are therefore renamed mir-128-1 and mir-128-2. 8 15913 MI0000902 rno-mir-129-1 Rattus norvegicus miR-129-1 stem-loop UGGGUCUUUUUGCGGUCUGGGCUUGCUGUUCUCUCCACAGUAGUCAGGAAGCCCUUACCCCAAAAAGUAUCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15914 MI0000903 rno-mir-130a Rattus norvegicus miR-130a stem-loop UGCUGCUGGCCGGAGCUCUUUUCACAUUGUGCUACUGUCUACACGUGUACCGAGCAGUGCAAUGUUAAAAGGGCAUCGGCCUUGUAGU 8 15915 MI0000904 rno-mir-130b Rattus norvegicus miR-130b stem-loop GGCUUGCUGGACACUCUUUCCCUGUUGCACUACUGUGGGCCUCUGGGAAGCAGUGCAAUGAUGAAAGGGCAUCCGUCAGGCC 8 15916 MI0000905 rno-mir-132 Rattus norvegicus miR-132 stem-loop CCGCCCCCGCGUCUCCAGGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAACCGGAGGUAACAGUCUACAGCCAUGGUCGCCCCGCAGCACGCCCACGCUC 8 15917 MI0000906 rno-mir-133a Rattus norvegicus miR-133a stem-loop CAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA 8 15918 MI0000907 rno-mir-134 Rattus norvegicus miR-134 stem-loop CAGGGUGUGUGACUGGUUGACCAGAGGGGCGUGCACUUUGUUCACCCUGUGGGCCACCUAGUCACCAACCCUC 8 15919 MI0000908 rno-mir-135a Rattus norvegicus miR-135a stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUCGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAUUCA 8 15920 MI0000909 rno-mir-136 Rattus norvegicus miR-136 stem-loop UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAAGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU 8 15921 MI0000910 rno-mir-137 Rattus norvegicus miR-137 stem-loop GGCCCUCUGACUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUCGAGGAGAGUACCAGCGGCA 8 15922 MI0000911 rno-mir-138-2 Rattus norvegicus miR-138-2 stem-loop GUUGCUGCAGCUGGUGUUGUGAAUCAGGCCGACGAGCAACGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUGCACC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15923 MI0000912 rno-mir-138-1 Rattus norvegicus miR-138-1 stem-loop CUCUGGCAUGGUGUUGUGGGACAGCUGGUGUUGUGAAUCAGGCCGUUGCCAAUCAGAGAACGGCUACUUCACAACACCAGGGUCUCACUGCACUGCAGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15924 MI0000913 rno-mir-139 Rattus norvegicus miR-139 stem-loop GUGUAUUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15925 MI0000914 rno-mir-141 Rattus norvegicus miR-141 stem-loop GGCUGACUCUGAGUCCAUCUUCCAGUGCAGUGUUGGAUGGUUGAAGUACGAAGCUCCUAACACUGUCUGGUAAAGAUGGCCCCCGGGUCAGUUC 8 15926 MI0000915 rno-mir-142 Rattus norvegicus miR-142 stem-loop GACAGUGCAGUCACCCAUAAAGUAGAAAGCACUACUAACAGCACUGGAGGGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15927 MI0000916 rno-mir-143 Rattus norvegicus miR-143 stem-loop GCGGAGCGCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGGGAGAAGAUGUUCUGCAGC 8 15928 MI0000917 rno-mir-144 Rattus norvegicus miR-144 stem-loop GGGCCUUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGUGAUGAGACACUACAGUAUAGAUGAUGUACUAGUCUGGGUACCCC 8 15929 MI0000918 rno-mir-145 Rattus norvegicus miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUGGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15930 MI0000919 rno-mir-146a Rattus norvegicus miR-146a stem-loop UGUGUAUCCUCAGCUCUGAGAACUGAAUUCCAUGGGUUAUAGCAAUGUCAGACCUGUGAAGUUCAGUUCUUUAGCUGGGAUAGCUCUAUCGUCAU 8 15931 MI0000920 rno-mir-150 Rattus norvegicus miR-150 stem-loop CUUCUCAAGGCCCUGUCUCCCAACCCUUGUACCAGUGCUGUGCCUCAGACCCUGGUACAGGCCUGGGGGACAGGGACUUGGGGAC 8 15932 MI0000921 rno-mir-152 Rattus norvegicus miR-152 stem-loop UGUUCCCCGGGCCCAGGUUCUGUGAUACACUCCGACUCGGGCUCUGGAGCAGUCAGUGCAUGACAGAACUUGGGCCCGGUAGGAC 8 15933 MI0000922 rno-mir-153 Rattus norvegicus miR-153 stem-loop AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG 8 15934 MI0000923 rno-mir-154 Rattus norvegicus miR-154 stem-loop GCGGUGCUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUCGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA 8 15935 MI0000924 rno-mir-181c Rattus norvegicus miR-181c stem-loop AGAACUUGCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGACAAACCAUCGACCGUUGAGUGGACCCCGAGGCCUGGAACUGCCACCC 8 15936 MI0000925 rno-mir-181a-2 Rattus norvegicus mir-181a-2 stem-loop AGAUGGGCAACCAAGGCAGCCUUAAGAGGACUCCAUGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUCAAAAACAAAAAAAACCACCAACCGUUGACUGUACCUUGGGAUUCUUA 8 15937 MI0000926 rno-mir-181b-1 Rattus norvegicus miR-181b-1 stem-loop CCUGUGCAGAGAUGAUGUUUACAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUAGAAAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU 8 15938 MI0000927 rno-mir-181b-2 Rattus norvegicus miR-181b-2 stem-loop UGAUGGCUGCACUCAACAUUCAUUGCUGUCGGUGGGUUUGAAUGUCAACCAACUCACUGGUCAAUGAAUGCAAACUGCGGGCCAAAAA 8 15939 MI0000928 rno-mir-183 Rattus norvegicus miR-183 stem-loop CCAGAGAGUGUGACUCCUGUCCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCGGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCGCGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15940 MI0000929 rno-mir-184 Rattus norvegicus miR-184 stem-loop CACUUUCCCUUAUCAGUUUUCCAGCCAGCUUUGUGACUGUAAAUGUUGGACGGAGAACUGAUAAGGGUAAGUGACUG 8 15941 MI0000930 rno-mir-185 Rattus norvegicus miR-185 stem-loop GGGGGUGAGGGAUUGGAGAGAAAGGCAGUUCCUGAUGGUCCCCUCCCAGGGGCUGGCUUUCCUCUGGUCCUUCUCUCCCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15942 MI0000931 rno-mir-186 Rattus norvegicus miR-186 stem-loop UGCUUACAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUCAUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUGAGCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15943 MI0000932 rno-mir-187 Rattus norvegicus miR-187 stem-loop GGGCUCACAGGACACAAUGCGGAUCCUCAGGCUACAACACAGGACCCGGGCGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCUGCA 8 15944 MI0000933 rno-mir-190 Rattus norvegicus miR-190 stem-loop UGCAGGCCUCUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAGCAUAUUCCUACAGUGUCUUGCC This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15945 MI0000934 rno-mir-191 Rattus norvegicus miR-191 stem-loop GGCUGGACAGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCACUUGGAUUUCGUUCCCUGCUCUCCUGCCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The ends of the miRNA may be offset with respect to previous annotations. 8 15946 MI0000935 rno-mir-192 Rattus norvegicus miR-192 stem-loop GUCAAGAUGGAGUGCACAGGGCUCUGACCUAUGAAUUGACAGCCAGUACUCUGAUCUCGCCUCUGGCUGCCAGUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGCCAGC 8 15947 MI0000936 rno-mir-193 Rattus norvegicus miR-193 stem-loop GCGGACGGGAGCUGAGAGCUGGGUCUUUGCGGGCAAGAUGAGGGUGUCAGUUCAACUGGCCUACAAAGUCCCAGUCCUCGGCUCCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 15948 MI0000937 rno-mir-194-1 Rattus norvegicus miR-194-1 stem-loop AUGGAGUCAUCACGUGUAACAGCAACUCCAUGUGGACUGUGCACAGAUCCCAGUGGAGCUGCUGUUACUUUUGAUGGCCUCCA 8 15949 MI0000938 rno-mir-194-2 Rattus norvegicus miR-194-2 stem-loop UGGCUCCCACCCCCUGUAACAGCAACUCCAUGUGGAAGUGCCCACUGAUUCCAGUGGGGCUGCUGUUAUCUGGGGUGGAGGCUGG 8 15950 MI0000939 rno-mir-195 Rattus norvegicus miR-195 stem-loop AACUCUCCUGGCUCUAGCAGCACAGAAAUAUUGGCACGGGUAAGUGAGUCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUGGUG 8 15951 MI0000940 rno-mir-196a Rattus norvegicus miR-196a stem-loop UGUUUGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 8 15952 MI0000941 rno-mir-199a Rattus norvegicus miR-199a stem-loop UGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGCCAGCA 8 15953 MI0000942 rno-mir-200c Rattus norvegicus miR-200c stem-loop CCCUCGUCUUACCCAGCAGUGUUUGGGUGCUGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG This sequence is the predicted rat homologue of a confirmed miRNA from human [1]. Its expression has not been experimentally verified in rat. 8 15954 MI0000943 rno-mir-200a Rattus norvegicus miR-200a stem-loop CUGGGCCUCUGUGGGCAUCUUACCGGACAGUGCUGGAUUUCUUGGCUUGACUCUAACACUGUCUGGUAACGAUGUUCAAAGGUGACCCA 8 15955 MI0000944 rno-mir-200b Rattus norvegicus miR-200b stem-loop CCAACUUGGGCAGCCGUGGCCAUCUUACUGGGCAGCAUUGGAUAGUGUCUGAUCUCUAAUACUGCCUGGUAAUGAUGACGGCGGAGCCCUGCACG 8 15956 MI0000945 rno-mir-203 Rattus norvegicus miR-203 stem-loop GCGCGCCUGGUCCAGUGGUUCUUAACAGUUCAACAGUUCUGUAGCGCAAUUGUGAAAUGUUUAGGACCACUAGACCCGGCGCGCACGGCAGCGGCGA 8 15957 MI0000946 rno-mir-204 Rattus norvegicus miR-204 stem-loop GGCUACAGCCCUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC 8 15958 MI0000947 rno-mir-205 Rattus norvegicus miR-205 stem-loop AAACAGCCCCAGACAAUCCAUGGGUCCUCCUGUCCUUCAUUCCACCGGAGUCUGUCUUAUGCCAACCAGAUUUCAGUGGAGUGAAGCUCAGGAGGCAUGGAGCUGCCA This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15959 MI0000948 rno-mir-206 Rattus norvegicus miR-206 stem-loop CUUCCCCAGGCCACAUGCUUCUUUAUAUCCUCAUAGAUAUCACUGCGCUAUGGAAUGUAAGGAAGUGUGUGGUUUUGGCAAGUG 8 15960 MI0000949 rno-mir-208 Rattus norvegicus miR-208 stem-loop UUCCUUUGACGGGUGAGCUUUUGGCCCGGGUUAUACCUGACUCUCACGUAUAAGACGAGCAAAAAGCUUGUUGGUCAGAGGAG This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15961 MI0000950 rno-mir-210 Rattus norvegicus miR-210 stem-loop CCGGGGCAGUCCCUCCAGGCUCAGGACAGCCACUGCCCACAGCACACUGCGUUGCUCCGGACCCACUGUGCGUGUGACAGCGGCUGAUCUGUCCCUGGGCAGCGCGAACC 8 15962 MI0000951 rno-mir-211 Rattus norvegicus miR-211 stem-loop CAGCUUGGACCUGUGACCUCUGGGCUUCCCUUUGUCAUCCUUUGCCUAGGCCUCUGAGUGGGGCAAGGACAGCAAAGGGGGGCUCAGUGGUCACCUCUACUGCAGA This sequence is the predicted rat homologue of a miRNA from human [1]. Its expression has not been experimentally verified in rat. 8 15963 MI0000952 rno-mir-212 Rattus norvegicus miR-212 stem-loop CGGGAUAUCCCCGCCCGGGCAGCGCGCCGGCACCUUGGCUCUAGACUGCUUACUGCCCGGGCCGCCCUCAGUAACAGUCUCCAGUCACGGCCACCGACGCCUGGCCCCGCC 8 15964 MI0000953 rno-mir-181a-1 Rattus norvegicus miR-181a-1 stem-loop AGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUCAAAUAAAAACCAUCGACCGUUGAUUGUACCCUAUAGCUAACCAUUAUCUACUCC 8 15965 MI0000954 rno-mir-214 Rattus norvegicus miR-214 stem-loop GUCCUGGAUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU 8 15966 MI0000955 rno-mir-216a Rattus norvegicus miR-216a stem-loop GUUAGCUAUGAGUUAGUUUAAUCUCAGCUGGCAACUGUGAGAUGUCCCUAUCAUUCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUUGACCUC 8 15967 MI0000956 rno-mir-217 Rattus norvegicus miR-217 stem-loop ACCACAGUCAUUGUAGUUUUGAUGUCGCAGAUACUGCAUCAGGAACUGACUGGAUAAGACUCAGUCACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAAACA This sequence is the predicted rat homologue of a miRNA from human [1]. Its expression has not been experimentally verified in rat. 8 15968 MI0000957 rno-mir-218-2 Rattus norvegicus miR-218-2 stem-loop GACCAGUUGCCGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCAUCGCUCUCUCCUGCA 8 15969 MI0000958 rno-mir-218-1 Rattus norvegicus miR-218-1 stem-loop GUGAUAACGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGCUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA 8 15970 MI0000959 rno-mir-219-1 Rattus norvegicus miR-219-1 stem-loop CUGUCCCGGGCCGCGGCUCCUGAUUGUCCAAACGCAAUUCUCGAGUCUCUGGCUCCGGCCGAGAGUUGCGUCUGGACGUCCCGAGCCGCCGCCCCCAAACCUCGAGGGGG 8 15971 MI0000960 rno-mir-219-2 Rattus norvegicus miR-219-2 stem-loop ACUCAGGGGCUUCACCACUGAUUGUCCAAACGCAAUUCUUGUACGAGUCUGCGGCCAACCGAGAAUUGUGGCUGGACAUCUGUGGUUGAGCUCCGG 8 15972 MI0000961 rno-mir-221 Rattus norvegicus miR-221 stem-loop UGAAUAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUUGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAGCAUUUCUC 8 15973 MI0000962 rno-mir-222 Rattus norvegicus miR-222 stem-loop AAGGAUUAGGGUGCCCUCAGUGGCUCAGUAGCCAGUGUAGAUCCUGUCUUUGGUAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUCAUCUAGCU 8 15974 MI0000963 rno-mir-223 Rattus norvegicus miR-223 stem-loop UCUGGCCUUCUGCAGUGUUACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCUGUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGUGGCUCAUGCUUAUCAG 8 15975 MI0000964 rno-mir-290 Rattus norvegicus miR-290 stem-loop UCAUCUUGCGGUUCUCAAACUAUGGGGGCACUUUUUUUUUCUUUAAAAAGUGCCGCCAGGUUUUAGGGCCUGCCGGUUGAG This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15976 MI0000965 rno-mir-291a Rattus norvegicus miR-291a stem-loop CCGGUGUAGUAGCCAUCAAAGUGGAGGCCCUCUCUUGGGCCCGAGCUAGAAAGUGCUUCCACUUUGUGUGCCACUGCAUGGG This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15977 MI0000966 rno-mir-292 Rattus norvegicus miR-292 stem-loop CAACCUGUGAUACUCAAACUGGGGGCUCUUUUGGGUUUUCUUUGGAAGAAAAGUGCCGCCAGGUUUUGAGUGUUACCGAUUG This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15978 MI0000967 rno-mir-296 Rattus norvegicus miR-296 stem-loop GGACCUUUCUGGAGGGCCCCCCCUCAAUCCUGUUGUGCUCGCUUCAGAGGGUUGGGUGGAGGCUCUCCUGAAGGUGUC 8 15979 MI0000968 rno-mir-297 Rattus norvegicus miR-297 stem-loop AUGCAUGUAUGUGUGCAUGUAUGCAUGCAUGCAUGUAUGUAUGUAUGGUGCACUUGUGUGUGUGUG This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15980 MI0000969 rno-mir-298 Rattus norvegicus miR-298 stem-loop CCAGGCCUUCGGCAGAGGAGGGCUGUUCUUCCCUUGGGUUUUAUGACUGGGAGGAACUAGCCUUCUCUCUGCUUAGGAGUGG 8 15981 MI0000970 rno-mir-299 Rattus norvegicus miR-299 stem-loop AAGAAAUGGUUUACCGUCCCACAUACAUUUUGAGUAUGUAUGUGGGACGGUAAACCGCUUCUU This sequence is the predicted rat homologue of a confirmed miRNA from mouse [1]. Its expression has not been experimentally verified in rat. 8 15982 MI0000971 rno-mir-300 Rattus norvegicus miR-300 stem-loop GCUACUUGAAGAGAGGUUAUCCUUUGUGUGUUUGCUUUACGCGAAAUGAAUAUGCAAGGGCAAGCUCUCUUCGAGGAGC 8 15983 MI0000972 rno-mir-320 Rattus norvegicus miR-320 stem-loop GCCUCGCUGUCCUCCGCCUUCUCUUCCCGGUUCUUCCCGGAGUCGGGAAAAGCUGGGUUGAGAGGGCGAAAAAGGAUAUGGG 8 15984 MI0000974 mmu-mir-215 Mus musculus miR-215 stem-loop AGCUCUCAGCAUCAACGGUGUACAGGAGAAUGACCUAUGAUUUGACAGACCGUGCAGCUGUGUAUGUCUGUCAUUCUGUAGGCCAAUAUUCUGUAUGUCACUGCUACUUAAA This mouse miRNA was predicted by computational methods using conservation with human and Fugu rubripes sequences [1]. Expression of the excised miR has been validated in zebrafish, and the 5' end mapped by PCR. The 3' end was not experimentally determined. The mature sequence differs from the human miR-215 at A12->U, and its expression has not been verified in mouse. 6 15985 MI0000975 ath-MIR167d Arabidopsis thaliana miR167d stem-loop UGUUGGUUUUUAGAAGCUGAAGCUGCCAGCAUGAUCUGGUAAUCGCUACAUACGACAUACACACAUCACUAAACUUCUUUAUAAUUUAUGCACACACAUACAGCUCUUAAUGGCCACAACUCAAAGUUAUAAUUAGUGCAUGAUCUCUAGUUAUUUGACUGCUUUUAAUAUAUGUUUAUGGAUUCACGCAUGUGUGUGUAUGUACAUAAUUUACAUGCAUGCACUUUGUGUAUGGUACACAUCAAUUUGAACCCGUUCAAAAUUCUGUUUUUAUUAGUAUAUAUAUAGAUGUAUGUGGUGUGUGUGUCAGUGUGUGUGUGUGUUUAUAGAUAGUAGUACUAGGUCAUCCUGCAGCUUCAGUCACUAAAUCACCAACA This sequence is a predicted paralogue of the previously identified miR167 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 1 15986 MI0000976 ath-MIR169b Arabidopsis thaliana miR169b stem-loop CCCAACGGAGUAGAAUUGCAUGAAGUGGAGUAGAGUAUAAUGCAGCCAAGGAUGACUUGCCGGAACGUUGUUAACCAUGCAUAUGAAUAAUGUGAUGAUUAAUUAUGUGAUGAACAUAUUUCUGGCAAGUUGUCCUUCGGCUACAUUUUGCUCUCUUCUUCUCAUGCAAACUUUCCUUGGG This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15987 MI0000977 ath-MIR169c Arabidopsis thaliana miR169c stem-loop UCGUCCAUUAUGAGUAUUAAUUAUGGUUAGGGAAUCUUACAGAAUGAAAAUGAAGGUGUGAAUGGAUUGUCUCAUCUAAAGCCUUGAAUGUGGGAAAAAGGCCAUUGUUGUUCAGCCAAGGAUGACUUGCCGGUAGCUUGUAUUAUGAUUACUCUAUAUUCGAUUUAUAUUAUGGAGAUGAUGGUUUAUAUAUAUUUACUUAUCUACAUAGUUUUAGUUGAUUUUUUUUCGUACGUAAUAUAAUACGAAAAAGUAUUUACUUAUUUAUAUAUGUGUGUUGGGGCAAGAAGUGUAACCAAGCUAGCCCGGCAAGUCAUCUAUGGCUAUGCAACUGUCUCUUCCUCUCAUUCUAGGCUUACGAUGACACGUAAAAAAUCCCAAAUAUCACUAAUAUGAUAUGAAUAUGGAUGA This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15988 MI0000978 ath-MIR169d Arabidopsis thaliana miR169d stem-loop GUAUCAUAGAGUCUUGCAUGGAAAAAUUAAAGAAUGAGAUUGAGCCAAGGAUGACUUGCCGAUGUUAUCAACAAAUCUUAACUGAUUUUGGUGUCCGGCAAGUUGACCUUGGCUCUGUUUCCUUCUUUUCUUUUCAAUGUCAAACUCUAGAUAU This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15989 MI0000979 ath-MIR169e Arabidopsis thaliana miR169e stem-loop UGAUGAUGAUGAUGAGUCACUAAUUAAUUGUAUCAUAGAGUCUUGCAUGGAAAAAUAGAAAAUGAGAUUGAGCCAAGGAUGACUUGCCGAUUUUCUCAACGAAUCUUACUGAUUAUGGUAUCCGGCAAGUUGACUUUGGCUCUGUUUCCUUCCCUUCUUUUCGAUGUCAAACUCUAGAUACCUAACCACAUAUCAUAUAUAUCAUCAUCAUUCAUCA This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15990 MI0000980 ath-MIR169f Arabidopsis thaliana miR169f stem-loop GGGUCUUGCAUGAAGGAAUAACGAAUGGAAUUGAGCCAAGGAUGACUUGCCGGUUUAAACCCAACCGGUUUAUGACCAUUGAUUUGGUCUCAUUCACAAUCUGUUGAUUCGUGUCUGGCAAGUUGACCUUGGCUCUGCUUCGUUCUCUAUUCUUCCAUGUUAGAUUC This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15991 MI0000981 ath-MIR169g Arabidopsis thaliana miR169g stem-loop UGCCUAUAAAUACCUUCAUCACGAGUAUGACAAGAUCACAAGACAAGAAAAGAAAGGUAGAGAAAACAUGAUAAUGAUGAUUACGAUGAUGAGAGUCUCUAGUUGUAUCAGAGGGUCUUGCAUGGAAGAAUAGAGAAUGAGGUUGAGCCAAGGAUGACUUGCCGGGUUUUUUUACCAAUGAAUCUAAUUAACUGAUUCUGGUGUCCGGCAAGUUGACCUUGGCUCUGUUUCCUUCUCUUCUUUUGGAUGUCAGACUCCAAGAUAUCUAUCAUCAUGAAUCGUGAUCAAACUUUGUAAUUUCAUUGAAAUGUGUUUUUCUUGAUGCGAAUUUUUUGGCUUACGGUUUUUCGAUUUGAAUGAUCAGAUUUUUGUUUUUGCA This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [3,4]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. Wang et al. report Northern blot evidence for the miR169* sequence from the opposite arm of the precursor [2]. 1 15992 MI0000982 ath-MIR169h Arabidopsis thaliana miR169h stem-loop UCAUAUAAGAGAAAAUGGUGACAUGAAGAAUGAGAACUUGUGUGGUAGCCAAGGAUGACUUGCCUGCGUUUUAGACCAUAUAUAUCAAAGACUCACUCGAUCGAUAGUCUUAGAGUUGGUUGGUCGUCAGGCAGUCUCCUUGGCUAUUCAAACAAUUCUCAUUCUCUUCAUUCACAUUUCUCUUUUUUGG This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2,3]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15993 MI0000983 ath-MIR169i Arabidopsis thaliana miR169i stem-loop GAAGGAGAUGUCAAAGAUGAAUAGAAGAAUCAUAUUUGGUAGCCAAGGAUGACUUGCCUGACUCUUUGUGUAAAAUGUUUAGUGUCUUGUUUGAAGUCACUAUAAGUUGUAUCAAGCAAUGACCAUUUUGCUUAUAAAAAAGAUAUCAGGCAGUCUCCUUGGCUAUCCUUAUAUGUUCUUCUCUUUCAUCUCAGACAUUCACCUUC This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15994 MI0000984 ath-MIR169j Arabidopsis thaliana miR169j stem-loop GAGUAUAAUGAGGAAGAGAGGUCUAACAUGGCGAAAAGAGUCAUGUUUAGUAGCCAAGGAUGACUUGCCUGAUCUUUUUCACCUCCAUGAUUCAAUUUGUAAUUCAUGGGUUUUGGAUUAUUAUACAUUCAAAAGUAUAAUAAUUUGAAAUCAUGUUGAAUCUUGCGGGUUAGGUUUCAGGCAGUCUCCUUGGCUAUCUUGACAUGCUUUUUUCAUUCACG This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15995 MI0000985 ath-MIR169k Arabidopsis thaliana miR169k stem-loop UUAGAAGGAGAUGUCAAAGAUGAAUAGGAGAACAAUAUUUGGUAGCCAAGGAUGACUUGCCUGCUUCUCUGAACAAAAUGGUCGAUGUCAUGUUUUGAAGUGACUAUAAGUUAUACCAAGAAAUGACCAUUUUGUUUAUAAAUAGACAUCAGGCAGUCUCCUUGGCUAUCCUUAUAUGUUCUUCUUUCUCAACUCAGAUAUUUACCUUCAUCC This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15996 MI0000986 ath-MIR169l Arabidopsis thaliana miR169l stem-loop AUGAAGAAGAGAGGUCUAAUAUGGCGAAAAGAGUCAUGUUUAAUAGCCAAGGAUGACUUGCCUGAUCUUUUUCACCUCCAUGAUUCAAUUUUAAGUUCGUGGAUUUUGGAUUAUUAUGCGUUUAAAAGGUAUAAUAAUUUGAGAUCAUGUUGAAUCUUGCGGGUUAGGUUUCAGGCAGUCUCUUUGGCUAUCUUGACAUGCUUUCUUCAUC This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15997 MI0000987 ath-MIR169m Arabidopsis thaliana miR169m stem-loop UAGAAGGAGAAGUCAAAGAUGAAUAGAAGAAUCAUAUUUGGUAGCCAAGGAUGACUUGCCUGUUUCUUUGAGUAAAAUGGGUUAGUGUCAUGUUUGACAAGUGACUAUAAGUUAUAUCAAGCAAUGACCAUUUUACUCAUCAAAAGACAUCAGGCAGUCUCCUUGGCUAUCCUUAUAUGUUCUUCUCUCUCAUCUCAGACGUUUACCUUCAU This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15998 MI0000988 ath-MIR169n Arabidopsis thaliana miR169n stem-loop GAUGAAGAAGAGAGGUCUAACAUGGCGGAAAGCGUCAUGUUUAGUAGCCAAGGAUGACUUGCCUGAUCUUUUUCGCCUCCACGAUUCAAUUUCAAAUUCAUGCAUUUUGGAUUAUUAUACCUUUUAAAGUAUAAUAGGUCAAAUAUCAUGUUGAAUCUUGCGGGUUAGGUUUCAGGCAGUCUCUUUGGCUAUCUUGACAUGCUUUUUCCAUCCAU This sequence is a predicted paralogue of the previously identified miR169 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 1 15999 MI0000989 ath-MIR171b Arabidopsis thaliana miR171b stem-loop UGCAAGGUAACGCGAGAUAUUAGUGCGGUUCAAUCAAAUAGUCGUCCUCUUAACUCAUGGAGAACGGUGUUGUUCGAUUGAGCCGUGCCAAUAUCACGCGGUAAACCAAAAAUGGCA This sequence is a predicted paralogue of the previously identified miR171 family [1]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. Its expression in Arabidopsis was confirmed by cloning and Northern blot [2,3]. The mature sequence reported in [3] is offset by 4 nts with respect to the sequence shown here. 1 16000 MI0000990 ath-MIR171c Arabidopsis thaliana miR171c stem-loop UGAGCGCACUAUCGGACAUCAAAUACGAGAUAUUGGUGCGGUUCAAUCAGAAAACCGUACUCUUUUGUUUUAAAGAUCGGUUUAUUUGAUUGAGCCGUGCCAAUAUCACGCGUUUA This sequence is a predicted paralogue of the previously identified miR171 family [1], later experimentally verified [2,3]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. 1 16001 MI0000991 ath-MIR172c Arabidopsis thaliana miR172c stem-loop AGCUACUGUUCGCUGUUGGAGCAUCAUCAAGAUUCACAAAUCAUCAAGUAUUCGUGUAAAUAAACCCAUUUAUGAUUAGAUUUUUGAUGUAUGUAUGAGAAUCUUGAUGAUGCUGCAGCUGCAAUCAGUGGCU This sequence is a predicted paralogue of the previously identified miR172 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for APETALA2-like transcription factors. 1 16002 MI0000992 ath-MIR172d Arabidopsis thaliana miR172d stem-loop AGUCAUUGUUUGCUAUUGCAACAUCUUCAAGAUUCAGAAAUCAGAUUCUCUUAUGGGUUUUCUUUUGAGCCUUUAUUUUUUGGUUUGAGAAUCUUGAUGAUGCUGCAGCGGCAAUUAAAUGGCU This sequence is a predicted paralogue of the previously identified miR172 family [1], later experimentally verified [2]. It is predicted to target mRNAs coding for APETALA2-like transcription factors. 1 16003 MI0001000 ath-MIR390a Arabidopsis thaliana miR390a stem-loop GUAGAGAAGAAUCUGUAAAGCUCAGGAGGGAUAGCGCCAUGAUGAUCACAUUCGUUAUCUAUUUUUUGGCGCUAUCCAUCCUGAGUUUCAUUGGCUCUUCUUACUAC miR390 was independently cloned by the ASRP project [1], and predicted by computational methods [2]. 1 16004 MI0001001 ath-MIR390b Arabidopsis thaliana miR390b stem-loop GAGAAAUAGCUAUAAAGCUCAGGAGGGAUAGCGCCAUGGCUCACCAGUGCUGUAUGUUUUGUAUAUGCGUACAUGUAUAUCUGUUGGCGCUAUCCAUCCUGAGUUCCAUAGCUUCUUCUU miR390 was independently cloned by the ASRP project [1], and predicted by computational methods [2]. 1 16005 MI0001002 ath-MIR391 Arabidopsis thaliana miR391 stem-loop UAGAGUGAUUACACAUACAAGUGGUCUUGCUUCUUCUAUGGUUUUAAAACUGCAAAUAAAGAUUUGCUUCGCAGGAGAGAUAGCGCCAUCACCUCUUCUAAGAAGUUAACUAGUGGUGACGGUAUCUCUCCUACGUAGCAAUCCUUAUAUAUGCAUCUUAAUACGGAGAGAUCAAGGUAUUUCAGUUGUUCAAUAAUCACCCUCUA 1 16006 MI0001003 ath-MIR393a Arabidopsis thaliana miR393a stem-loop AGAGGAAGGAUCCAAAGGGAUCGCAUUGAUCCUAAUUAAGGUGAAUUCUCCCCAUAUUUUCUUUAUAAUUGGCAAAUAAAUCACAAAAAUUUGCUUGGUUUUGGAUCAUGCUAUCUCUUUGGAUUCAUCCUUC This sequence belongs to the miR393 family of miRNAs, which are predicted to target mRNAs coding for F-box proteins and bHLH transcription factors [1]. 1 16007 MI0001004 ath-MIR393b Arabidopsis thaliana miR393b stem-loop AGAGAAAGGAUCCAAAGGGAUCGCAUUGAUCCUAAUUAAGCUGAUUUAUUCCCCAAUAAUUGUUUUUUUUUUCCUUCUCAAUCGAAAGAUGGAAGAAAAACAAAUUCCAAACAUUUUGCUUACUUUUCCGGAUCAUGCGAUCUCUUUGGAUUCAUUCUUU This sequence belongs to the miR393 family of miRNAs, which are predicted to target mRNAs coding for F-box proteins and bHLH transcription factors [1]. 1 16008 MI0001005 ath-MIR394a Arabidopsis thaliana miR394a stem-loop CUUACAGUCAUCUUUGGCAUUCUGUCCACCUCCUUCUAUACAUAUAUGCAUGUGUAUAUAUAUAUGCGUUUCGUGUGAAAGAAGGAGGUGGGUAUACUGCCAAUAGAGAUCUGUUAG This sequence belongs to the miR394 family of miRNAs, which are predicted to target mRNAs coding for F-box proteins [1]. 1 16009 MI0001006 ath-MIR394b Arabidopsis thaliana miR394b stem-loop CUUACAGAGAUCUUUGGCAUUCUGUCCACCUCCUCUCUCUAUAUUUAUGUGUAAUAAGUGUACGUAUCUACGGUGUGUUUCGUAAGAGGAGGUGGGCAUACUGCCAAUAGAGAUCUGUUAG This sequence belongs to the miR394 family of miRNAs, which are predicted to target mRNAs coding for F-box proteins [1]. 1 16010 MI0001007 ath-MIR395a Arabidopsis thaliana miR395a stem-loop AUGUCUCCUAGAGUUCCUCUGAGCACUUCAUUGGGGAUACAAUUUUUCUAAAUGAUUAUCCACUGAAGUGUUUGGGGGAACUCCCGGACCCAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. 1 16011 MI0001008 ath-MIR395b Arabidopsis thaliana miR395b stem-loop AUGUCCCCAUGAGUUCCCUUUAACGCUUCAUUGUUAAAUACUCAAAGCCACAUUGGUUUGUAUACAACACUGAAGUGUUUGGGGGGACUCUUGGUGUCAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. 1 16012 MI0001009 ath-MIR395c Arabidopsis thaliana miR395c stem-loop AUGUCCACAUGAGUUCCCUUUAACGCUUCAUUGUUGAAUACUCAAAGCCACAUUGGUUUGUAUAUAACACUGAAGUGUUUGGGGGGACUCUUGGUGUCAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. 1 16013 MI0001010 ath-MIR395d Arabidopsis thaliana miR395d stem-loop AUGUCCUCUAGAGUUCUCCUGAACACUUCAUUGGAAAUUUGUUAUUCAGUAAGCUAACAGUUAAUUCCACUGAAGUGUUUGGGGGAACUCCCGAUGUCAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. 1 16014 MI0001011 ath-MIR395e Arabidopsis thaliana miR395e stem-loop AUGUUUUCUAGAGUUCCUCUGAGCACUUCAUUGGAGAUACAAUUUUUUAUAAAAUAGUUUUCUACUGAAGUGUUUGGGGGAACUCCCGGGCUGAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. 1 16015 MI0001012 ath-MIR395f Arabidopsis thaliana miR395f stem-loop AUGUCCCCUUGAGUUCCCUUAAACGCUUCAUUGUUCAUACUUUGUUAUCAUCUAUCGAUCGAUCAAUCAAUCUGAUGAACACUGAAGUGUUUGGGGGGACUCUAGGUGACAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. 1 16016 MI0001013 ath-MIR396a Arabidopsis thaliana miR396a stem-loop CUCUGUAUUCUUCCACAGCUUUCUUGAACUGCAAAACUUCUUCAGAUUUUUUUUUUUUUCUUUUGAUAUCUCUUACGCAUAAAAUAGUGAUUUUCUUCAUAUCUCUGCUCGAUUGAUUUGCGGUUCAAUAAAGCUGUGGGAAGAUACAGAC This sequence belongs to the miR396 family of miRNAs, which are predicted to target mRNAs coding for Growth Regulating Factor (GRF) transcription factors, rhodenase-like proteins, and kinesin-like protein B [1]. 1 16017 MI0001014 ath-MIR396b Arabidopsis thaliana miR396b stem-loop GGUCAUACUUUUCCACAGCUUUCUUGAACUUUCUUUUUCAUUUCCAUUGUUUUUUUCUUAAACAAAAGUAAGAAGAAAAAAAACUUUAAGAUUAAGCAUUUUGGAAGCUCAAGAAAGCUGUGGGAAAACAUGACA This sequence belongs to the miR396 family of miRNAs, which are predicted to target mRNAs coding for Growth Regulating Factor (GRF) transcription factors, rhodenase-like proteins, and kinesin-like protein B [1]. The mature sequence reported in [2] is offset by 1 nt with respect to the sequence shown here. 1 16018 MI0001015 ath-MIR397a Arabidopsis thaliana miR397a stem-loop UGAAUGAACAUCAUUGAGUGCAGCGUUGAUGUAAUUUCGUUUUGUUUUUCAUUGUUGAAUGGAUUAAAAGAAUUUAUACCAGCGUUGCGCUCAAUUAUGUUUUUCUA This sequence belongs to the miR397 family of miRNAs, which are predicted to target mRNAs coding for laccases and beta-6 tubulin [1]. 1 16019 MI0001016 ath-MIR397b Arabidopsis thaliana miR397b stem-loop UGAAUGAACAUCAUUGAGUGCAUCGUUGAUGUAAUUUUACUUAUUUUAUUCCAUUGUUGAAUUAAUUAAAGAAGUAUAUAUCAGCGUUGCAUUCAAUUAUGUUUUUCUA This sequence belongs to the miR397 family of miRNAs, which are predicted to target mRNAs coding for laccases and beta-6 tubulin [1]. 1 16020 MI0001017 ath-MIR398a Arabidopsis thaliana miR398a stem-loop UGAAAUUUCAAAGGAGUGGCAUGUGAACACAUAUCCUAUGGUUUCUUCAAAUUUCCAUUGAAACCAUUGAGUUUUGUGUUCUCAGGUCACCCCUUUGAAUCUCCC This sequence belongs to the miR398 family of miRNAs, which are predicted to target mRNAs coding for copper superoxide dismutases and cytochrome C oxidase subunit V [1]. 1 16021 MI0001018 ath-MIR398b Arabidopsis thaliana miR398b stem-loop UGGAUCUCGACAGGGUUGAUAUGAGAACACACGAGUAAUCAACGGCUGUAAUGACGCUACGUCAUUGUUACAGCUCUCGUUUUCAUGUGUUCUCAGGUCACCCCUGCUGAGCUCUU This sequence belongs to the miR398 family of miRNAs, which are predicted to target mRNAs coding for copper superoxide dismutases and cytochrome C oxidase subunit V [1]. 1 16022 MI0001019 ath-MIR398c Arabidopsis thaliana miR398c stem-loop UGGAUCUCGACAGGGUUGAUAUGAGAACACACGAGCAAUCAACGGCUAUAACGACGCUACGUCAUUGUUACAGCUCUCGUUUCAUGUGUUCUCAGGUCACCCCUGCUGAGCUCUU This sequence belongs to the miR398 family of miRNAs, which are predicted to target mRNAs coding for copper superoxide dismutases and cytochrome C oxidase subunit V [1]. 1 16023 MI0001020 ath-MIR399a Arabidopsis thaliana miR399a stem-loop AAAUGCAUUACAGGGUAAGAUCUCUAUUGGCAGGAAACCAUUACUUAGAUCUUUGCAUCUCUUUAUGCAUUGCUUUUAAUUAGUGAGUUAUCUGCCAAAGGAGAUUUGCCCUGUAAUUCUUCU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 1 16024 MI0001021 ath-MIR399b Arabidopsis thaliana miR399b stem-loop UCACUAGUUUUAGGGCGCCUCUCCAUUGGCAGGUCCUUUACUUCCAAAUAUACACAUACAUAUAUGAAUAUCGAAAAUUUCCGAUGAUCGAUUUAUAAAUGACCUGCCAAAGGAGAGUUGCCCUGAAACUGGUUC This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 1 16025 MI0001022 ath-MIR399c Arabidopsis thaliana miR399c stem-loop GGAGCAGUAAUAGGGCAUCUUUCUAUUGGCAGGCGACUUGGCUAUUUGUAUCUUUUGUGUUCUUGACUAUUGGCUAUGUCACUUGCCAAAGGAGAGUUGCCCUGUCACUGCUUC This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 1 16026 MI0001023 ath-MIR399d Arabidopsis thaliana miR399d stem-loop GGUUGGAUUACUGGGCGAAUACUCCUAUGGCAGAUCGCAUUGGCUAGAUAUGCAAGUAAAAUGCUUCUCUGCCAAAGGAGAUUUGCCCCGCAAUUCAUCC This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 1 16027 MI0001024 ath-MIR399e Arabidopsis thaliana miR399e stem-loop GAAAGCAUUACAGGGCGAAUCCUCUAUUGGCAGUGGAAGUUGAUGACCCUUAUAUGUUAUUUUCUCAUCAUUUUCCUCUGCCAAAGGAGAUUUGCCUCGCAAUGCUUCA This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 1 16028 MI0001025 ath-MIR399f Arabidopsis thaliana miR399f stem-loop AUAUGCAUUACAGGGCAAGAUCACCAUUGGCAGAGAUCUAUUACUUCAUUCUUGCAUCAUAUGCAUAAAUGUUUGUGGUGAGCUCUCUGCCAAAGGAGAUUUGCCCGGUAAUUCUCUU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 1 16029 MI0001026 osa-MIR393 Oryza sativa miR393 stem-loop UGGGGAAGCAUCCAAAGGGAUCGCAUUGAUCCUUCAUCGCUCUCGCUCGCUUCCAUGGCGGUCGUCGUCUACAAGCAGCUUGACGGAUCAUGCGAUCCUUUUGGAGGCUUCCUCU This sequence belongs to the miR393 family of miRNAs, which are predicted to target mRNAs coding for F-box proteins and bHLH transcription factors [1]. 7 16030 MI0001027 osa-MIR394 Oryza sativa miR394 stem-loop UACUGAGAGUUCUUUGGCAUUCUGUCCACCUCCUUGUCGAAUCCUCAGAGACAGAAAUCUCAUAUCUGUUGAUCUUGGAGGUGGGCAUACUGCCAAUGGAGCUGUGUAGG This sequence belongs to the miR394 family of miRNAs, which are predicted to target mRNAs coding for F-box proteins [1]. 7 16031 MI0001028 osa-MIR395b Oryza sativa miR395b stem-loop GAGUCCCUAGGAGUUCCUUUCAAGCACUUUACGACACACUGUAUUGAGAGUUGUCGUGAAGUGUUUGGGGGAACUCUUAGUGUCGC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16032 MI0001029 osa-MIR395d Oryza sativa miR395d stem-loop GUAUUGUCGUGAGUUCCCUUCAAGCACUUCACGUGGCACUAUCUCAAUGCCUACUAUGUGAAGUGUUUGGGGGAACUCUCGAUAUCAC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16033 MI0001030 osa-MIR395e Oryza sativa miR395e stem-loop GUAUUAUCGAGAGUUCCCUUCAACCACUUCACGUGGCACUGUUUCAAGGCCUAUUGUGUGAAGUGUUUGGGGGAACUCUCGAUAUCAC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16034 MI0001031 osa-MIR395g Oryza sativa miR395g stem-loop GUAUCACCGUGAGUUCCCUUCGAACACUUCACGUGGCACUAUUUCAAUGCCUAUUGUGAAGUGUUUGGGGGAACUCUCGAUGUCAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16035 MI0001032 osa-MIR395h Oryza sativa miR395h stem-loop UUGUUACCUGGAGUUUCCUCAACACACUUCACAUCUGCUAGGCCCUAUUACAAUUGCGCAAUGUGGAGUCUGCAAUUGGUAGUGAAGUGUUUGGGGGAACUCUAGGUGGCAC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16036 MI0001033 osa-MIR395i Oryza sativa miR395i stem-loop GUUUUACCGGGAGUUCUCUUCAAGCACUUCACGUAGAGCUUUCUAUUGACAUGGAGCUUUAGAACAAUGUGAAGUGUUUGGGGGAACUCUUGGUACCAA This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16037 MI0001034 osa-MIR395j Oryza sativa miR395j stem-loop GUGUUCCCAAGAGUUCCUUGCAAGCACUUCACAUAGAACUUCUGUUACUCUCAUGUAACAUUGGGAACUUGAGAAGCUACUGUGAAGUGUUUGGGGGAACUCUAGGUGGCAC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16038 MI0001035 osa-MIR395k Oryza sativa miR395k stem-loop GUUUUAUCGGGAGUUUCCUUCAAGCACUUCACGUAGAGCUUUCUAUUGAUAUGGAGCUUUGGAACAAUGUGAAGUGUUUGGGGGAACUCUUGAUACCAA This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16039 MI0001036 osa-MIR395l Oryza sativa miR395l stem-loop GCGUUCCUUCCAAGCACUUCACACAGAGCUUUUAUUUCUCUCACAUCGAUUGAGAACUUAAUUAGAAGCUUUUGUGAAGUGUUUGGGGGAACUC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16040 MI0001037 osa-MIR395s Oryza sativa miR395s stem-loop GUAUCACCGUGAGUUCCCUUCAAGCACUUCACGUGGCACUAUUUCAAUGCCUAUUGUGAAGUGUUUGGGGGAACUCUCGAUGUUCC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16041 MI0001038 osa-MIR395t Oryza sativa miR395t stem-loop UUAUCCACUGGAGUUCUCCUCAAACCACUUCAGCAGAUAGCUAGCUAGGCCUCAUUGCAUUGCACCACUGUUGCAUAACUAUGAGCAUGGGGCCAAAAGUUAGCUGCUUAUAGUGAAGUGUUUGGGGAAACUCCGGUUGGCAA This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16042 MI0001041 osa-MIR395c Oryza sativa miR395c stem-loop GUAUUAUCAAGAGUUCUCUUUAAGCACUUCAUACGACACCAUUAUUUAUAGGGUUGUUGUGAAGUGUUUGGAGGAACUCUCGGUGUCAU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16043 MI0001042 osa-MIR395a Oryza sativa miR395a stem-loop UUGUCCACUGGAGUUCUCCUCAAUCCACUUCAGUAGAUAGCUAUGGCUAGGCCUCAUUGCAUUGCACUGUUACAUAACUGUGAUCAUGGGGCCAAAAGCUAGCUAUGUAUAGUGAAGUGCUUGGGGGAACUCCAGUUGACAC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16044 MI0001043 osa-MIR395f Oryza sativa miR395f stem-loop UUAUCGCGGGUUCCCUUCAAUCACUUCACAUGGUACUAUUUCAAGGCCUACUAUGUGAAUUGUUUGGGGGAACUCUCGAUGU This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16045 MI0001044 osa-MIR395u Oryza sativa miR395u stem-loop ACACUGCCAGGAAUUCCCUUCAAGCAAUUCAUGAAACAAUAUUUUGAGAGUUGUUGUGAAGCGUUUGGGGGAAAUCUCAGUGUCGC This sequence belongs to the miR395 family of miRNAs, which are predicted to target mRNAs coding for ATP sulphurylases [1]. Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the genes have been renamed to reflect this arrangement [2]. 7 16046 MI0001046 osa-MIR396a Oryza sativa miR396a stem-loop CUUUGUGAUCUUCCACAGCUUUCUUGAACUGCACGCAUGAUGAAUAAUCCCUUUGGUUAAUUGUGAUCUGGUCUCUGAGAGAUCGUAGUUAGACUCGAUCGGUUGCAUUGGCAUCAGAGAGAGCAGUUCAAUAAAGCUGUGGGAAAUUGCAGAG This sequence belongs to the miR396 family of miRNAs, which are predicted to target mRNAs coding for Growth Regulating Factor (GRF) transcription factors, rhodenase-like proteins, and kinesin-like protein B [1]. 7 16047 MI0001047 osa-MIR396b Oryza sativa miR396b stem-loop CUUUGUGGUCUUCCACAGCUUUCUUGAACUGCAUCUUUGAGAGAGAUUAGCAUCCCUAUGUGUGGAUUUUGCUUGCACGAGUGUGCAGUUCAAUAAAGCUGUGGGAAAUUACAGAG This sequence belongs to the miR396 family of miRNAs, which are predicted to target mRNAs coding for Growth Regulating Factor (GRF) transcription factors, rhodenase-like proteins, and kinesin-like protein B [1]. 7 16048 MI0001048 osa-MIR396c Oryza sativa miR396c stem-loop UGCCAUGCCUUUCCACAGCUUUCUUGAACUUCUCUUGUGCCUCACUCACUUUCAUUACUGGAGAGAUAUGCAUCAUCAGUGGAAGCUUAUAGGGAGAGGAGUGCAAGAAGAGGGUCAAGAAAGCUGUGGGAAGAAAUGGCA This sequence belongs to the miR396 family of miRNAs, which are predicted to target mRNAs coding for Growth Regulating Factor (GRF) transcription factors, rhodenase-like proteins, and kinesin-like protein B [1]. 7 16049 MI0001049 osa-MIR397a Oryza sativa miR397a stem-loop AUCAAAUGCAUCAUUGAGUGCAGCGUUGAUGAACAACGGUAACCGGUCCAUGUUGAUGCGCAUUUGGCCGGUGAUCUGAUCAUCAUCAGCGCUUCACUCAAUCAUGCGUUUGGC This sequence belongs to the miR397 family of miRNAs, which are predicted to target mRNAs coding for laccases and beta-6 tubulin [1]. 7 16050 MI0001050 osa-MIR397b Oryza sativa miR397b stem-loop AGGGAAGGCAUUAUUGAGUGCAGCGUUGAUGAACCUGCCGGCCGGCUAAAUUAAUUAGCAAGAAAGUCUGAAACUGGCUCAAAGGUUCACCAGCACUGCACCCAAUCACGCCUUUGCU This sequence belongs to the miR397 family of miRNAs, which are predicted to target mRNAs coding for laccases and beta-6 tubulin [1]. 7 16051 MI0001051 osa-MIR398a Oryza sativa miR398a stem-loop GCUGAACCCAGAGGAGUGGUACUGAGAACACAGGUGCCAAUACAAUGUAUGGUGAGCUACUGUAUAAUGGAGUAAUUCUGUAACUGUGUUCUCAGGUCACCCCUUUGGGUUUCUU This sequence belongs to the miR398 family of miRNAs, which are predicted to target mRNAs coding for copper superoxide dismutases and cytochrome C oxidase subunit V [1]. 7 16052 MI0001052 osa-MIR398b Oryza sativa miR398b stem-loop GGAGUUCCUACAGGGGCGAGCUGGGAACACACGGUGAUGAGGCGGUCUGGUCUUUCGUGUGUUCUCAGGUCGCCCCUGCCGGGACUCU This sequence belongs to the miR398 family of miRNAs, which are predicted to target mRNAs coding for copper superoxide dismutases and cytochrome C oxidase subunit V [1]. 7 16053 MI0001053 osa-MIR399a Oryza sativa miR399a stem-loop CUGUGAAUUACAGGGCAGUUCACCUUUGGCACAAGGGCAAGCAGUAGAAACCAUGCGUGCUUGCUAGAGCUGGAAAUGAUGCUGGUAGCAUUGCAUGGUUCAGGGAUCACAGAUCUCGUGCCAAAGGAGAAUUGCCCUGCGAUUUUGUC This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16054 MI0001054 osa-MIR399b Oryza sativa miR399b stem-loop GUGAGAAUCACAGUGCGAUUCUCCUCUGGCAUGGCAUGAGAGGCCUAAAAAAGAGACGCACUGCCGUGCCAAAGGAGAAUUGCCCUGCCAUUCAGAA This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16055 MI0001055 osa-MIR399c Oryza sativa miR399c stem-loop CGGCGAAUUACAGGGCGGUUUCUCCUUUGGCACGUACGGAGGCAAGGCAUGCGGUGAAAAAUCUCUAGCUAGCCAUGCGUGCCAAAGGAGAAUUGCCCUGCGAUUCACCA This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16056 MI0001056 osa-MIR399d Oryza sativa miR399d stem-loop AAGACAGUAGUAGGCAGCUCUCCUCUGGCAGGUGCAUUCUAGGUGAUUUUGUAAUUGUAUAUGCAUCCAAGGUAUAUACAGUCCGGCCAUGGUGCUACAUUGCAAUCAUCCAUAUGUGAUUGCAUUGUGUAUAUAUAUACAUGGUGGCCUUUGAUAGACCAUCAUAUAUCGGUUGGUUAUGUGCAUGUAUGUAUAUACCAGCUGCUACUAGCUUUGAUCGAUCGCCAUGUAGCGAUUGAAUUCACCAAAACGGCCUGCCAAAGGAGAGUUGCCCUGCGACUGUCUU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16057 MI0001057 osa-MIR399e Oryza sativa miR399e stem-loop ACAUGCAUUACCGGGUGAGUCUUCCUUGGCAGUGUUCGAAUCGGCAGUACCGGUCUGCAAGUGAUCGGUCAAUCACCAGUUCACCGCUGCCAAAGGAGAUUUGCCCAGCAAUGCAACU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16058 MI0001058 osa-MIR399f Oryza sativa miR399f stem-loop UGGUGGAUUACCGGGCCAUGUCUCCUUGGGCAGAGGUGAUCAGAUUGCACACUUCACUUCAACCUCUUGCUCUAGCUUGUUCUCUCUGCCAAAGGAGAUUUGCCCAGCAAUCCACAU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16059 MI0001059 osa-MIR399g Oryza sativa miR399g stem-loop AUGUGCAUUGCAGGGCAACUACUCCAUUGGCAGAGGGAUGGAUUGGAUAUGGAUAUGGCUGAUGCUUCCAUUUGAUCCCAUCCCUAUCUGCCAAAGGAGAUUUGCCCAGCGAUUCACUC This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16060 MI0001060 osa-MIR399h Oryza sativa miR399h stem-loop CCAUGCAUUACUGGGCAGGUCUCCCUUGGCAGUGGCCGAUCGAGCUGAUCAAACCACGCAAAAGCCACUGCCAAAGGAGACUUGCCCAGCAAUGCAGAU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16061 MI0001061 osa-MIR399i Oryza sativa miR399i stem-loop GUGAGAAUCACAGUGCAGUUCUCCUCUGGCAUGGAGGGCAAGAGGAGCUGAAUAGCUAAUGGAUGAUAAACUGCUAGCCUUUCCCUGCCAAAGGAGAGCUGCCCUGCCAUUCAGUG This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16062 MI0001062 osa-MIR399j Oryza sativa miR399j stem-loop AGUCCAGUUUCAGGGCUCCUCUCUCUUGGCAGGGAGCAUGUGAAGUCUUUUGUAGCUCACUCAUUUUCAGCCCUCUGCCAAAGGAGAGUUGCCCUAAAACUGGACU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16063 MI0001063 osa-MIR399k Oryza sativa miR399k stem-loop AGCUGCAUUGCUGGGCAAGUUGUCCUUUGGCAGAUGUUGCAGUUCAUCAUCGAUGCCUGGGGGUUACCAGACUACUGCCAAAGGAAAUUUGCCCCGGAAUUCAUCU This sequence belongs to the miR399 family of miRNAs, which are predicted to target mRNAs coding for a phosphatase transporter [1]. 7 16064 MI0001064 ebv-mir-BHRF1-1 Epstein Barr virus miR-BHRF1-1 stem-loop UAUUAACCUGAUCAGCCCCGGAGUUGCCUGUUUCAUCACUAACCCCGGGCCUGAAGAGGUUGACAA Pfeffer et al. cloned 5 miRNAs from a Burkitt's lymphoma cell line (BL41) infected with the B95-8 strain of Epstein-Barr virus [1]. They were all confirmed by Northern blot. 9 16065 MI0001065 ebv-mir-BHRF1-2 Epstein Barr virus miR-BHRF1-2 stem-loop CUUUUAAAUUCUGUUGCAGCAGAUAGCUGAUACCCAAUGUUAUCUUUUGCGGCAGAAAUUGAAAG Pfeffer et al. cloned 5 miRNAs from a Burkitt's lymphoma cell line (BL41) infected with the B95-8 strain of Epstein-Barr virus [1]. They were all confirmed by Northern blot. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 9 16066 MI0001066 ebv-mir-BHRF1-3 Epstein Barr virus miR-BHRF1-3 stem-loop UCUAACGGGAAGUGUGUAAGCACACACGUAAUUUGCAAGCGGUGCUUCACGCUCUUCGUUAAAAU Pfeffer et al. cloned 5 miRNAs from a Burkitt's lymphoma cell line (BL41) infected with the B95-8 strain of Epstein-Barr virus [1]. They were all confirmed by Northern blot. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 9 16067 MI0001067 ebv-mir-BART1 Epstein Barr virus miR-BART1 stem-loop GGGGGUCUUAGUGGAAGUGACGUGCUGUGAAUACAGGUCCAUAGCACCGCUAUCCACUAUGUCUCGCCCG Pfeffer et al. cloned 5 miRNAs from a Burkitt's lymphoma cell line (BL41) infected with the B95-8 strain of Epstein-Barr virus [1]. They were all confirmed by Northern blot. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 16068 MI0001068 ebv-mir-BART2 Epstein Barr virus miR-BART2 stem-loop ACUAUUUUCUGCAUUCGCCCUUGCGUGUCCAUUGUUGCAAGGAGCGAUUUGGAGAAAAUAAA Pfeffer et al. cloned 5 miRNAs from a Burkitt's lymphoma cell line (BL41) infected with the B95-8 strain of Epstein-Barr virus [1]. They were all confirmed by Northern blot. The mature miRNA names reflect cloning frequencies from Landgraf et al. [2], and may differ subtly from previous annotations. 9 16069 MI0001069 ath-MIR400 Arabidopsis thaliana miR400 stem-loop UGAGGAUUGUUUAUGAGAGUAUUAUAAGUCACUACAUUUGGUAAGCAAAGUGUUGUUUCUCAAACGAAGUGACUUAUGAUAAUCUCAUGAAUGGAUUUUGCA 1 16070 MI0001070 ath-MIR401 Arabidopsis thaliana miR401 stem-loop UAUAUAGACCCUAAAAACGUCCAGGGACUAAUAAUGCAAAUAUGGAAAUCUUCUGGGGCAAACUUGAGCUUCUGAAAACUUGAAAGCGUUUAGGGUUUUUGCUGGGCCGAAACUGGUGUCGACCGACACCAAGAGUGUGUCGCUCGACACUCAUCGCUGAUUCCUGAACCAAAAUCGUUCUUAGUUUCCUUUUCCUUAGUUUUUGCUCCAAAAUGUCUCCUUAUCUCCAUUGUUGUCCCAUUGCAUAGAA 1 16071 MI0001071 ath-MIR402 Arabidopsis thaliana miR402 stem-loop CGUGGUAGAUAAGUUUGAGUUGCAUAGUGGCAGUCUUCCUUUGUUUGUUAACCCAUAUUUUCAUGAUUCGAGGCCUAUUAAACCUCUGUUACAUCUGCUUUUUGAAAAGUUGUCAUUUUUCUGAAAUCUUCUUGCCUCAAUUUCCAACAGCAGAUUCAUCUUUCAUUGGAUGAUCCGUUAGUUUUUGAUAGAAAAAAUGAGGUGGGAAGAAAUUAAGACUGACUUCGAAAUAGCCUUUAAAAUAGGGGUUUAUAGACCUCGAAUCAUAUCAAACGAGUCUGCUACUAUGCUACUGAAAACUUUAUCAAA 1 16072 MI0001072 ath-MIR403 Arabidopsis thaliana miR403 stem-loop UUGUCAUUAGAAGAGUCGUAUUACAUGUUUUGUGCUUGAAUCUAAUUCAACAGGCUUUAUGUAAGAGAUUCUUUAACAAUUCCUAUAAUCUUUGUUGUUGGAUUAGAUUCACGCACAAACUCGUAAUCUGUCUUU 1 16073 MI0001073 ath-MIR404 Arabidopsis thaliana miR404 stem-loop UAGCAUGUUCGUUUCAUUAACGCUGGCGGUUGCGGCAGCGGCUGCGGUAGCGGUGGCGGCAAACACUACCGCAGGUUGUUGUUCGUUUUGUUGCCGCAGACGCUGCCGCAGCCGCUGCCGCAACCGCAGGUUUCUUUGUUCGUUUCGACG 1 16074 MI0001074 ath-MIR405a Arabidopsis thaliana miR405a stem-loop UCAAAAUGGGUAACCCAACCCAACCCAACUCAUAAUCAAAUGAGUUUAUGAUUAAAUGAGUUAUGGGUUGACCCAACUCAUUUUGUUAAAUGAGUUGGGUCUAACCCAUAACUCAUUUCAUUUGAUGGGUUGAGUUGUUAAAUGGGUUAACCAUUUA 1 16075 MI0001075 ath-MIR405b Arabidopsis thaliana miR405b stem-loop UUAACCCAUUUAACAAUUCAACCCAUCAAAUGAAAUGAGUUAUGGGUUAGACCCAACUCAUUUAACAAAAUGAGUUGGGUCUAACCCAUAACUCAUUUAAUUAUAAACUCAUUUGAUUAUGAGU 1 16076 MI0001077 ath-MIR405d Arabidopsis thaliana miR405d stem-loop ACCCAUCAAAUGAAAUGAGUUAUGGGUUGACCCAACUCAUUUUGUUAAAUGAGUUGGGUCUAACCCAUAACUCAUUUAAUCAUAAA 1 16077 MI0001078 ath-MIR406 Arabidopsis thaliana miR406 stem-loop UAAAGUCUUAAUUUUUAGUUAUCACGAUUUAGCACAUAUCAAUCUAUAGAUUUGAUUUUUCUUUUAUUAGUUCUUAAAUUUUGAUUUGAGACAGUAACUAUUCAAAUAGAAUGCUAUUGUAAUCCAGAAUCCGAAAGAAACGAAUCAAAAAAAAAAAAAACGAGUCUUCAUAGUAAAAAUCGAUUAACUAAAAAGGAUGG 1 16078 MI0001079 ath-MIR407 Arabidopsis thaliana miR407 stem-loop UGGGAAAAAUGUUAAAAAAAUCGCCAACUUUUAAAAAUGGGACAAAAAAAUCGCCAACUCCUGAAAUGUCAUUUAAAUCAUAUACUUUUGGUUGACUUUUCCAGAAAGAUAAUAAAGCAAAGAUUCGUAAUCAACAAAACUUUGCUCUGUUAUCUUUCUAAAGAACUCAAUCAAAAGUAUGUGAUUAAAACGACAUUUCAGGAGUUGGUGAUUUUUCAUCCCAUUUUUCAAAGUUGGCAAUUUUUUUGACAUUUUUUCCAAUG MIR407a and MIR407b published by Sunkar and Zhu [1] map to the same locus on NC_003071.3. 1 16079 MI0001080 ath-MIR408 Arabidopsis thaliana miR408 stem-loop AAGGUUAGAUUGGUAUUGCAAUGAAAGAAGACAAAGCGGUAAUGAGAGAGAGACAGGGAACAAGCAGAGCAUGGAUUGAGUUUACUAAAACAUUAAACGACUCUGUUUUGUCUCUACCCAUGCACUGCCUCUUCCCUGGCUCCCUCUUUUUUUCUCUAUAUUUCUCUCUCUCCUUUCAUUUCACAGCUUUCAAUGGAAUUUUAUUGCUACUGCUAACG 1 16080 MI0001082 ath-MIR156g Arabidopsis thaliana miR156g stem-loop AUAACGAAGGCGACAGAAGAGAGUGAGCACACAUGGCUCUUUUUCUAGCAUGCUCAUGCUCGAAAGCUCUGCGUGCUUACUCUCUUCUUGUCUCCUGCUCUCU This sequence is a predicted paralogue of the previously identified miR156 family [1], subsequently verified in [2]. It is predicted to target mRNAs coding for Squamosa-promoter Binding Protein (SBP)-like transcription factors. 1 16081 MI0001083 ath-MIR156h Arabidopsis thaliana miR156h stem-loop AUGAAAAAUGUUGACAGAAGAAAGAGAGCACAACCUGGGAUUAGCAAAAAGAUAGUUUUGCCCUUGUCGGGAGUGUGCUCUCUUUCCUUCUGCCACCAUCAUUGCG This sequence is a predicted paralogue of the previously identified miR156 family [1], subsequently verified in [2]. It is predicted to target mRNAs coding for Squamosa-promoter Binding Protein (SBP)-like transcription factors. 1 16082 MI0001084 ath-MIR158b Arabidopsis thaliana miR158b stem-loop AUCUCUGUGCUUCUUUGUCUACACUUUUGGAAAAGGUGAUGAUAUCAUUGCUUUUCCCCAAAUGUAGACAAAGCAAUACCGUGAU 1 16083 MI0001085 ath-MIR159c Arabidopsis thaliana miR159c stem-loop GUGUAACAGAAGGAGCUCCCUUCCUCCAAAACGAAGAGGACAAGAUUUGAGGAACUAAAAUGCAGAAUCUAAGAGUUCAUGUCUUCCUCAUAGAGAGUGCGCGGUGUUAAAAGCUUGAAGAAAGCACACUUUAAGGGGAUUGCACGACCUCUUAGAUUCUCCCUCUUUCUCUACAUAUCAUUCUCUUCUCUUCGUUUGGAUUGAAGGGAGCUCCUUUUCUUCUUC This sequence is a predicted paralogue of the previously identified miR159/JAW family [1]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 1 16084 MI0001086 ath-MIR319c Arabidopsis thaliana miR319c stem-loop UAGAUAUAGAAGGAGAUUCUUUCAGUCCAGUCAUGGAUAGAAAAAGAAGAGGGUAGAAAUAUCUGCCGACUCAUCCAUCCAAACACUCGUGGUAGAGAAACGAUAAAUUUAAACCGCAGUGACUGUGUGAAUGAUGCGGGAGAUAUUUUUGAUCCUUCUUUAUCUGUGUUUGGACUGAAGGGAGCUCCUUCUUUUUCUA This sequence is a predicted paralogue of the previously identified miR159/JAW family [1], subsequently verified in [2,3]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 1 16085 MI0001087 ath-MIR164c Arabidopsis thaliana miR164c stem-loop UAACACUUGAUGGAGAAGCAGGGCACGUGCGAACACAAAUGAAAUCGAUCGGUACUUGUUGAUCAUAUUUUCGCACGUGUUCUACUACUCCAACACGUGUCU This sequence is a predicted paralogue of the previously identified miR164 family [1]. It is predicted to target mRNAs coding for NAC domain transcription factors. 1 16086 MI0001088 ath-MIR167c Arabidopsis thaliana miR167c stem-loop CCAGUAGCAGUUAAGCUGCCAGCAUGAUCUUGUCUUCCUCUCUUAGGUUUCAUAUAUAGUUAAUAAAUAUUUUAUAUAUUUCUUGUUCUUACAAGAUUAUAUGAUCAUAGCUUAGAGAGAGAGAGAGACUAGGUCAUGCUGGUAGUUUCACCUGCUAAUG This sequence is a predicted paralogue of the previously identified miR167 family [1], subsequently verified in [2]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 1 16087 MI0001089 ath-MIR172e Arabidopsis thaliana miR172e stem-loop GUAGUCGCAGAUGCAGCACCAUUAAGAUUCACAAGAGAUGUGGUUCCCUUUGCUUUCGCCUCUCGAUCCGCAGAAAAGGGUUCCUUAUCGAGUGGGAAUCUUGAUGAUGCUGCAUCAGCAAAUAC This sequence is a predicted paralogue of the previously identified miR172 family [1]. It is predicted to target mRNAs coding for APETALA2-like transcription factors. 1 16088 MI0001090 osa-MIR156k Oryza sativa miR156k stem-loop UUGAGAGUGAUGACAGAAGAGAGAGAGCACAACCCGGCAGCAGCGACGACGGCGGUCGCUUCUGCCAGGGCCGUGUGCUCUCUGAUCUAUCUGUCAUUGCCGUCCA This sequence is a predicted paralogue of the previously identified miR156 family [1]. It is predicted to target mRNAs coding for Squamosa-promoter Binding Protein (SBP)-like transcription factors. 7 16089 MI0001091 osa-MIR156l Oryza sativa miR156l stem-loop GCUAGGGAGCCGACAGAAGAGAGUGAGCAUAUAUAGUUCUUUCCUUGCAUAUGUGGUCAUAUGUGUGUUGACUGAAGAGAUACAUAUAUAUAGAGAGAGAGAGUUCAUGUGCUUGAAGCUAUAUGUGCUCACUUCUCUUUCUGUCAGCAAAUUAUC This sequence is a predicted paralogue of the previously identified miR156 family [1]. It is predicted to target mRNAs coding for Squamosa-promoter Binding Protein (SBP)-like transcription factors. 7 16090 MI0001092 osa-MIR159a Oryza sativa miR159a stem-loop GUUGUGGACGUUGAGCUCCUUUCGGUCCAAAAAGGGGUGUUGCUGUGGGUCGAUUGAGCUGCUGGGUCAUGGAUCCCGUUAGCCUACUCCAUGUUCAUCAUUCAGCUCGAGAUCUGAAAGAAACUACUCCAAUUUAUACUAAUAGUAUGUGUGUAGAUAGGAAAAUGAUGGAGUACUCGUUGUUGGGAUAGGCUUAUGGCUUGCAUGCCCCAGGAGCUGCAUCAACCCUACAUGGACCCUCUUUGGAUUGAAGGGAGCUCUGCAUCUUUUGU This sequence is a predicted paralogue of the previously identified miR159/JAW family [1]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 7 16091 MI0001093 osa-MIR159b Oryza sativa miR159b stem-loop GGUUAUGAAGUGGAGCUCCUUUCGUUCCAAUGAAAGGUUUAUCUGAAGGGUGAUACAGCUGCUUGUUCAUGGUUCCCACUAUUCUAUCUCAUAGGAAAAGAGAUAGGCUUGUGGUUUGCAUGACCAAGGAGCCGAAUCAACUCCUUGCUGACCACUCUUUGGAUUGAAGGGAGCUCUGCAUCUUGAUC This sequence is a predicted paralogue of the previously identified miR159/JAW family [1]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 7 16092 MI0001094 osa-MIR159c Oryza sativa miR159c stem-loop GAGGAGGAAGAGGAGCUCCUUUCGAUCCAAUUCAGGAGAGGAAGUGGUAGGAUGCAGCUGCCGAUUCAUGGAUACCUCUGGAGUGCAUGGCAGCAAUGCUGUAGGCCUGCACUUGCAUGGGUUUGCAUGACCCGGGAGAUGAACCCACCAUUGUCUUCCUCUAUUGAUUGGAUUGAAGGGAGCUCCACAUCUCUCUC This sequence is a predicted paralogue of the previously identified miR159/JAW family [1]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 7 16093 MI0001095 osa-MIR159d Oryza sativa miR159d stem-loop UGAUGUGAGGAGGAGCUCCUUUCGAUCCAAUUCAGGAGAGGAAGUGGUGGGAUGCAGCUGCCGGUUCAUGGAUACCUCUGCAGUUCAUGCCGGUAGGCCUGCACUUGCAUGGGUUUGCAUGACCUGGGAGAUGAACCUGCCAUUGUGUUCCUCUAUUGAUUGGAUUGAAGGGAGCUCCGGCUACACCUA This sequence is a predicted paralogue of the previously identified miR159/JAW family [1]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 7 16094 MI0001096 osa-MIR159e Oryza sativa miR159e stem-loop GAUGAAGAAGAAGAGCUCCCUUUCGAUCCAAUUCAGGAGAGGAAGUGGUAGGAUGCAGCUGCCGGUUCAUGGAUACCUCUGGAGUGCAGGGCAAAUAGUCCUACCCUUUCAUGGGUUUGCAUGACUCGGGAGAUGAACCCGCCAUUGUCUUCCUCUAUUGAUUGGAUUGAAGGGAGCUCCUCUAGCUACAU This sequence is a predicted paralogue of the previously identified miR159/JAW family [1]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 7 16095 MI0001097 osa-MIR159f Oryza sativa miR159f stem-loop GAAGAAGAAGACGAGCUCCCUUCGAUCCAAUCCAGGAGAGGAAGUGGUAGGAUGCAGCUGCCGGUUCAUGGAUACCUCUGCAGUGCAUGUCGUAGGCUUGCACUUGCAUGGGUUUGCAUGACCCGGGAGAUGAACCCACCAUUGUCUUCCUCUUAUGCUUGGAUUGAAGGGAGCUCUACACCUCUCUC This sequence is a predicted paralogue of the previously identified miR159/JAW family [1]. It is predicted to target mRNAs coding for MYB and TCP transcription factors. 7 16096 MI0001098 osa-MIR319a Oryza sativa miR319a stem-loop UGUGUAAGAAGAGAGCUCUCUUCAGUCCACUCUCAGAUGGCUGUAGGGUUUUAUUAGCUGCCGAAUCAUCCAUUCACCUACCAAGAAAGUUGCAGGAGUGUAUCUCUUGGUAGCGGACUGGAUGACGCGGGAGCUAAAAUUUAGCUCUGCGCCGUUUGUGGUUGGACUGAAGGGUGCUCCCUUGCUCAAGC 7 16097 MI0001099 osa-MIR319b Oryza sativa miR319b stem-loop GAUGGAUGGAAGAGAGCGUCCUUCAGUCCACUCAUGGGCGGUGCUAGGGUCGAAUUAGCUGCCGACUCAUUCACCCACAUGCCAAGCAAGAAACGCUUGAGAUAGCGAAGCUUAGCAGAUGAGUGAAUGAAGCGGGAGGUAACGUUCCGAUCUCGCGCCGUCUUUGCUUGGACUGAAGGGUGCUCCCUCCUCCUCGA 7 16098 MI0001100 osa-MIR160e Oryza sativa miR160e stem-loop GUAGGGGAUAUGCCUGGCUCCCUGUAUGCCGCUCGCAUGGCUGCCAACCCAAUGAACUCGAUCUCGUUGUUGGCCGCUGCGUACGGCGUGCGAGGUGCCAAGCAUGGCCCUCUU This sequence is a predicted paralogue of the previously identified miR160 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16099 MI0001101 osa-MIR160f Oryza sativa miR160f stem-loop GGAUUAACGCUGCCUGGCUCCCUGAAUGCCAUCCGAGAAGCGUGCCGCUGUGGCCGGCUGCUUCCUGGUUGGCAUUGAGGGAGUCAUGCAGGGUUUGCUC This sequence is a predicted paralogue of the previously identified miR160 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16100 MI0001102 osa-MIR162b Oryza sativa miR162b stem-loop UGGGUGAUGCCUGGGCGCAGUGGUUUAUCGAUCUCUUCCCUGCCUUGUGCUGCUCCGAUCGAUGCCCGUGCUGAUUCUUGAUAAUAUACAACGCAGGAAUCGAUCGAUAAGCCUCUGCAUCCAGAUCUCACUUU This sequence is a predicted paralogue of the previously identified miR162 family [1]. It is predicted to target mRNAs coding for DICER-LIKE 1 (DL1) proteins. 7 16101 MI0001103 osa-MIR164c Oryza sativa miR164c stem-loop AGGUUCUUGUUGGAGAAGCAGGGUACGUGCAAAAUGCACACCGGUUGGUCGAGCUAAUUAACAAGCUCUGACGACCAUGGUGAUCGAAUGCACGUGCUCCCCUUCUCCACCAUGGCCUU This sequence is a predicted paralogue of the previously identified miR164 family [1]. It is predicted to target mRNAs coding for NAC domain transcription factors. 7 16102 MI0001104 osa-MIR164d Oryza sativa miR164d stem-loop CAAACCGUGCUGGAGAAGCAGGGCACGUGCUCGACGGCGGGGCUGGCUGGCCGGCCGGCUUGCAGCAUGUGCGCUCCUUCUCCAGCAUGGCUUC This sequence is a predicted paralogue of the previously identified miR164 family [1]. It is predicted to target mRNAs coding for NAC domain transcription factors. 7 16103 MI0001105 osa-MIR164e Oryza sativa miR164e stem-loop UUGUGCAGGGUGGAGAAGCAGGGCACGUGAGCGGCCAUCCAGUGUAGCUUCGCUGCGCGUCCAUGGCGGCGAACGCGCGUGAUCUGGAGUUUGGAUGGUCGUUCAUGUGUCCGUCUUCUCCACCGAGCACUG This sequence is a predicted paralogue of the previously identified miR164 family [1]. It is predicted to target mRNAs coding for NAC domain transcription factors. 7 16104 MI0001106 osa-MIR166j Oryza sativa miR166j stem-loop AGAUAGGUGUUUGGAAUGCAGUUUGAUCCAAGAUCUGCCUAUAUAUAUGGUGUGUAUAUCAUAUCUUGUGAUAUGGGGGAUAUGCAACAGGUGUGUGACAGGGGUAGGUAGAUCUCGGAUCAGGCUUCAUUCCUCACACC This sequence is a predicted paralogue of the previously identified miR166 family [1]. It is predicted to target mRNAs coding for HD-Zip transcription factors. 7 16105 MI0001107 osa-MIR166k Oryza sativa miR166k stem-loop AUUAGGUUAAGGGGUUUGUUGUCUGGCUCGAGGCAUCCGGGACUCCGGUUUCUCCUUUCCUACUGGAGGCGCCUAAUUUCCGGCGAGCUCGGAGCCUCGGACCAGGCUUCAAUCCCUUUAACCAUGC This sequence is a predicted paralogue of the previously identified miR166 family [1]. It is predicted to target mRNAs coding for HD-Zip transcription factors. 7 16106 MI0001108 osa-MIR166l Oryza sativa miR166l stem-loop GUUAGGUUAAGGGGAUUGUUGUCUGGUUCAAGGUCUCCACAUUGUGCAAAAUGUUCAUUCAUGGAGGCACAGGAUGCUUGGUGAUCUCGGACCAGGCUUCAAUCCCUUUAACCAGCA This sequence is a predicted paralogue of the previously identified miR166 family [1]. It is predicted to target mRNAs coding for HD-Zip transcription factors. 7 16107 MI0001109 osa-MIR167d Oryza sativa miR167d stem-loop CAUUAGGAGCUGAAGCUGCCAGCAUGAUCUGAUGAGUGCUUAUUAGGUGAGGGCAGAAUUGACUGCCAAAACAAAGAUCAGAUCAUGCUGUGCAGUUUCAUCUGCUUGUG This sequence is a predicted paralogue of the previously identified miR167 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16108 MI0001110 osa-MIR167e Oryza sativa miR167e stem-loop UGUGAGAGAAUGAAGCUGCCAGCAUGAUCUGGUUGUCAGGCAUGAGCCAAAUCUAUCCAUGGUGUUGGUGGUACUGAAAUUACCGCGUUUUCGAGGUUUUUCGUCGUGUCAACUUGCGAAGGGAAUUACGGGUUCUUGAUGAGCAUUGGUGAUAGGAGGUGUGGGCUUGGUUAGUAGAGGUAGAAUUAUGAUUGUUCUUGUGAGUUUCAGUAAGAGGUGGGAGUGAUUGGAAUUUGGCUCCAUCAGAUCAUGUUGCAGCUUCACUCUCUCACC This sequence is a predicted paralogue of the previously identified miR167 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16109 MI0001111 osa-MIR167f Oryza sativa miR167f stem-loop CACAAGUGGAUGAAGCUGCCAGCAUGAUCUGAUCACAGUAGUUCUCUAGCUGAUGAUGAUUUACAAAACCUAGAGACAUGCAUCAGAUCAUCUGGCAGUUUCAUCUUCUCAUG This sequence is a predicted paralogue of the previously identified miR167 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16110 MI0001112 osa-MIR167g Oryza sativa miR167g stem-loop CAUAAGCAGGUGAAGCUGCCAGCAUGAUCUGAAAGCAUCUCAAACCAGCGAUCAGAUCAUCCGGCAGCUUCAUCUUCUCAUG This sequence is a predicted paralogue of the previously identified miR167 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16111 MI0001113 osa-MIR167h Oryza sativa miR167h stem-loop CACAAGUUGGUGAAGCUGCCAGCAUGAUCUGAUGAUGAUGAUGAUCCACCUCUCUCAUCUGUGUUCUUGAUUAAUUACGGAUCAAUCGAUCAGGUCAUGCUGUAGUUUCAUCUGCUGGUU This sequence is a predicted paralogue of the previously identified miR167 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16112 MI0001114 osa-MIR167i Oryza sativa miR167i stem-loop UGUGAGAGGCUGAAGCUGCCAGCAUGAUCUGGUCCAUGAGUUGCACUGCUGAAUAUAUUGAAUUCAGCCAGGAGCUGCUACUGCAGUUCUGAUCUCGAUCUGCAUUCGUUGUUCUGAGCUAUGUAUGGAUUUGAUCGGUUUGAAGGCAUCCAUGUCUUUAAUUUCAUCGAUCAGAUCAUGUUGCAGCUUCACUCUCUCACU This sequence is a predicted paralogue of the previously identified miR167 family [1]. It is predicted to target mRNAs coding for Auxin Response Factors (ARF transcription factors). 7 16113 MI0001115 osa-MIR168a Oryza sativa miR168a stem-loop CGCCUCGGGCUCGCUUGGUGCAGAUCGGGACCCGCCGCCGCCGCUGCCGGGGCCGGAUCCCGCCUUGCACCAAGUGAAUCGGAGCCG This sequence is a predicted paralogue of the previously identified miR168 family [1]. It is predicted to target mRNAs coding for the ARGONAUTE protein. 7 16114 MI0001116 osa-MIR168b Oryza sativa miR168b stem-loop UGGUCUUGUGAGGCUUGGUGCAGCUCGGGAACUGUUCUUGAUGGACUGGCAGGAACUCCAUGUCCACCACUGCCACUCCUGUGUUGUGGCAUUCCUCCUUGCCGUU This sequence is a predicted paralogue of the previously identified miR168 family [1]. It is predicted to target mRNAs coding for the ARGONAUTE protein. 7 16115 MI0001117 osa-MIR169b Oryza sativa miR169b stem-loop GAACGGAAUGCAGCCAAGGAUGACUUGCCGGUACGUGUAUGCAUGUUUCAAGGUACUAUAUGUGCCCCCAACUGUUUUAGAUCCAUGCUGACAUUUUCCGGCAAGUUGUCCUUGGCUACGUCUUGUUC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16116 MI0001118 osa-MIR169c Oryza sativa miR169c stem-loop GAACGGGAUGCAGCCAAGGAUGACUUGCCGGCUCCUGGUAUUGGGGGAAUCUCAGCUUUGCUGAAGCGCCUUGGAGUUAGCCGGCAAGUCUGUCCUUGGCUACACCUAGCUC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16117 MI0001119 osa-MIR169d Oryza sativa miR169d stem-loop AUUUAUCGUGUAGCCAAGGAUGAAUUGCCGGCGUUUCACGCUGUUGAUGGUGCGUGCAUAUAUAAGUUGGCGCCGGCAAGUCAUUUCAGGCUACAUGUUUGCC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16118 MI0001120 osa-MIR169e Oryza sativa miR169e stem-loop GCUGGUUGUGUAGCCAAGGAUGACUUGCCGGCCUGGUUUGUGUUCAUCAGCAAUCCAGCAUAUGCUGUAUUGCCGUGUGUGAUCGAUCGAUGCAUGGACCGGCAAGUUAUUUUCUUUGGCUACAUUACAACC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16119 MI0001121 osa-MIR169f Oryza sativa miR169f stem-loop GCUGAUUCGGUAGCCAAGGAUGACUUGCCUAAUGCCUAUGUGCAUGUGUUUAUACGCUGCUCAUCUGCAUUUUGAUUAUCCCCUGAUCAGUCCUGUCGUCAAUUAUAUGUGUGUGUAGUACUCUGUACUCAUACAUAUAUAGGCAUGUCUUCCUUGGCUAUUCGGAGCGG This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16120 MI0001122 osa-MIR169g Oryza sativa miR169g stem-loop CUGCCUCUGGUAGCCAAGGAUGACUUGCCUAUUGUGCUCUUCUGAAUGAUGCAGUGCCAUGAUCAGUGUGGCCUGGCUGGUUCAGAUGAGCCGAGAUAGGCAGUCUCCUUGGCUAGCCUGAGUGGC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16121 MI0001123 osa-MIR169h Oryza sativa miR169h stem-loop UUAGCUCUGGUAGCCAAGGAUGACUUGCCUGUGUCCUUGUGUGUAAGGAUCAUUAAUUAUUAUUCAGAAAAUGAUCCUUUCAGCAGGUUUCAUGGGCAGUCUCCUUGGCUAGCCUGAGUGAU This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16122 MI0001124 osa-MIR169i Oryza sativa miR169i stem-loop GUAGCUCUGGUAGCCAAGGAUGACUUGCCUGUGUCCUUGUGUAGAGGAUCAUUCAGAAAAUGAGCCUUGAACUGGUUCAUAGGCAGUCUCCUUGGCUAGUCUGAGUCG This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16123 MI0001125 osa-MIR169j Oryza sativa miR169j stem-loop UCGCAUCUGGUAGCCAAGGAUGACUUGCCUGUGUCUCUGCUCAUGUGCAGUAGAAGAAGAUGCAUUUCUAGCUGCUUUCUGCAUAUGUGAUCUCACAGGCAGUCUCCUUGGCUAGCCUGAGCGGC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16124 MI0001126 osa-MIR169k Oryza sativa miR169k stem-loop UCUGUCUAGAUAGCCAAGGAUGACUUGCCUGUGGCCUCUUGGAGAGAGAGGUGUAGCUUAAUUAGCAGCAUGGUUUGAGCAUUGCUUGAUCGGUUGAUCGCUUCGCUUGCUCUGCAUGAGAUCUUACAGGCAGUCUCCUUGGCUAGUCUGGGCGGC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16125 MI0001127 osa-MIR169l Oryza sativa miR169l stem-loop UUAUCUCUGAUAGCCAAGGAUGACUUGCCUGUGUCCUCCCUGAAGGAUUAGCAAUUUAAUGAUCCUUUAAGCUGGUUCAUGGGCAGUCUCCUUGGCUAGCCUGAGUGG This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16126 MI0001128 osa-MIR169m Oryza sativa miR169m stem-loop UGAGUCCUGGUAGCCAAGGAUGACUUGCCUGUAUAUUUAUAUAUAUAUGUGUGUGUGAUCAAUGGAUGGAUUGAUCAAGCUGCUUGCAGGCUCAUGCAUAUAUAUGUACAGGCAGUCUCCUUGGCUAGCCCGGCUACC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16127 MI0001129 osa-MIR169n Oryza sativa miR169n stem-loop CUCCCUUUGGUAGCCAAGAAUGACUUGCCUAUGUGUUUUGCCUUGUGUUGGCUCAUCCAUCCAUCUAUCAGCCGUUGCAGAUUUGCAGUGGCAGAUUAAAGGGUUUCAGAAAGAAAUUCUUGUGAUGGAUGUGCAAUGUGGCUGCAUGGGCCGGUCUUCUUGGCUAGCCAGAGUGGC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16128 MI0001130 osa-MIR169o Oryza sativa miR169o stem-loop CUCCCUUUGGUAGCCAAGAAUGACUUGCCUACGCUUUUGCCCUCUGUUGGCUCAUCCAUCCGUCUAUCUAUCUGCCAUGGCAGAUGGCAGAUUAAGGGUUUCUGAAAGAAAUUCUUGUGAUAGGAUGUGCAAUGAGGCUGCAUGGGCCGGUCUUCUUGGCUAGCCAGAGUGGC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16129 MI0001131 osa-MIR169p Oryza sativa miR169p stem-loop GAGCAAGGUGUAGCCAAGGACAAACUUGCCGGAUCAACAGAGAAGGACUGCCAGUCUCCGGCCAAUUAAUUAACCUCGCCGUCGGCCAUCGCCGGCCGGCAAGUCAUCCUUGGCUGCAUCCUGCUC This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16130 MI0001132 osa-MIR169q Oryza sativa miR169q stem-loop CCACUCAGGCUAGCCAAGGAGACUGCCCAUGAACCAGCUUAAAGGAUCAUUAAAUUGCUAAUCCUUCAGGGAGGACACAGGCAAGUCAUCCUUGGCUAUCAGAGAUAA This sequence is a predicted paralogue of the previously identified miR169 family [1]. It is predicted to target mRNAs coding for the CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 7 16131 MI0001133 osa-MIR171b Oryza sativa miR171b stem-loop GCGACGACGGGAUAUUGGGGCGGUUCAAUCAGAAAGCUUGUGCUCCGGAAGCGAGGAGCUCUACUCUUUUGAUUGAGCCGUGCCAAUAUCACGUCGCAUC This sequence is a predicted paralogue of the previously identified miR171 family [1]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. 7 16132 MI0001134 osa-MIR171c Oryza sativa miR171c stem-loop GUGGGAACGGGAUAUUGGUGCGGUUCAAUCAGAAAGCUUGUGCUCCGAAGGCGAGGGGCUCCACUCUUUGAUUGAGCCGUGCCAAUAUCACGUCGCCUU This sequence is a predicted paralogue of the previously identified miR171 family [1]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. 7 16133 MI0001135 osa-MIR171d Oryza sativa miR171d stem-loop UUGUAGCUAUGAUGUUGGCCCGGCUCACUCAGAUGGAUCAUCGGUGCAGAAGAGUGCAUGAAUCUGAUGCAGUCUCAGUGUAGUAUGCUCCAUGCUGGAACUUCUGAUUGAGCCGUGCCAAUAUCUCAGCACCAU This sequence is a predicted paralogue of the previously identified miR171 family [1]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. 7 16134 MI0001136 osa-MIR171e Oryza sativa miR171e stem-loop UGGUAGCUAUGAUGUUGGCUCGGCUCACUCAGACGGCAUUGGCGUGAUGCAAAGCAUGCAUGCGUGCUUGCUAGCUCACUUGUGUUUCUGAUUGAGCCGUGCCAAUAUCUUAGUGCUCU This sequence is a predicted paralogue of the previously identified miR171 family [1]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. 7 16135 MI0001137 osa-MIR171f Oryza sativa miR171f stem-loop GGGAGAGUGCGAUGUUGGCAUGGUUCAAUCAAACCGGGCAAACUUAUGCACUAGCUAAGCAAGAUGCAGGGAUAUGCAGUAUGGUUUUGUUUGGUCUGAUUGAGCCGUGCCAAUAUCACAAGCUUGC This sequence is a predicted paralogue of the previously identified miR171 family [1]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. 7 16136 MI0001138 osa-MIR171g Oryza sativa miR171g stem-loop GACAUGGCAUGGUAUUGACUUGGCUCAUCUCAGCAACAGCAAACUGCAUGCAGCGCUGGAGGUGAGCCGAGCCAAUAUCACUUCAUGUC This sequence is a predicted paralogue of the previously identified miR171 family [1]. It is predicted to target mRNAs coding for SCARECROW-like transcription factors. 7 16137 MI0001139 osa-MIR172a Oryza sativa miR172a stem-loop GUGUUUGCGGGCGUGGCAUCAUCAAGAUUCACAUCCAUGCAUAUAUCACAAGACGCACAUAUACAUCCGAUUUGGCUGAGAAUCUUGAUGAUGCUGCAUCCGCAGACAA This sequence is a predicted paralogue of the previously identified miR172 family [1]. It is predicted to target mRNAs coding for APETALA2-like transcription factors. 7 16138 MI0001140 osa-MIR172b Oryza sativa miR172b stem-loop GUGAUUUCUGACGUGGCAUCAUCAAGAUUCACACAUUACAUUGCAUGCAUGCAUAUGUCUAUGCAUCUUUGAGCUUGUUGUUCUGAUCUCAACAACCUAGCUAGCUAAUAUUUCUCUCCUGGCCCUGACCUGCAUGAUGCAUGGUUGCACGCAUGGAGAGAGAAGAGAGAGAUCGAAGCUAAUUAAACGCAUGUGUAUAUAUGUGUGGGAAUCUUGAUGAUGCUGCAUCGGAAAUUAA This sequence is a predicted paralogue of the previously identified miR172 family [1]. It is predicted to target mRNAs coding for APETALA2-like transcription factors. 7 16139 MI0001141 osa-MIR172c Oryza sativa miR172c stem-loop CUUGUUGCGGGUGCAGCGUCAUCAAGAUUCACGUGUGCCGCACGGCACACGUAUCGGUUUUCAAGUGUAGUCAUCGUGCGUGAAUCUUGAUGAUGCUGCACCAGCAAAGAG This sequence is a predicted paralogue of the previously identified miR172 family [1]. It is predicted to target mRNAs coding for APETALA2-like transcription factors. 7 16140 MI0001142 osa-MIR166g Oryza sativa miR166g stem-loop AGCAUGGUGUCUGGAAUGGAGGCUGAUCCAAGAUCAUUGCUUGGUGCAAAAUACUAGGGCAUUGUUGUAAGUGCCAUUAGUUCUUUUUUGUUUCCGAGUUUGUUAUCGAGGAUCUCGGACCAGGCUUCAUUCCUCACACCGUGCU This sequence is a predicted paralogue of the previously identified miR166 family [1]. It is predicted to target mRNAs coding for HD-Zip transcription factors. 7 16141 MI0001143 osa-MIR166h Oryza sativa miR166h stem-loop GGUGGCUUGUGGGGAAUGUUGGCUGGCUCGAGGUAUCCACAUCUUAAUUCCUCUCCGGCGAUCGAGCCGGCUCGGGCGUGUGGAAGCGUCGGACCAGGCUUCAUUCCUCGCAAGCCGAU This sequence is a predicted paralogue of the previously identified miR166 family [1]. It is predicted to target mRNAs coding for HD-Zip transcription factors. 7 16142 MI0001144 osa-MIR166i Oryza sativa miR166i stem-loop AGAUAGGUGUUUGGAAUGCAGUUUGAUCCAAGAUCUGCCUAUAUAUAUGGUGUGUAUAUCAUAUCUUGUGAUAUGGGGGAUAUGCAACAGGUGUGUGACAGGGGUAGGUAGAUCUCGGAUCAGGCUUCAUUCCUCACACCAAUAC This sequence is a predicted paralogue of the previously identified miR166 family [1]. It is predicted to target mRNAs coding for HD-Zip transcription factors. 7 16143 MI0001145 hsa-mir-384 Homo sapiens miR-384 stem-loop UGUUAAAUCAGGAAUUUUAAACAAUUCCUAGACAAUAUGUAUAAUGUUCAUAAGUCAUUCCUAGAAAUUGUUCAUAAUGCCUGUAACA 5 16144 MI0001146 mmu-mir-384 Mus musculus miR-384 stem-loop UGUUAAAUCAGGAAUUGUAAACAAUUCCUAGGCAAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCUGUAACA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 16145 MI0001147 osa-MIR171h Oryza sativa miR171h stem-loop AGAAGAAGAGGACAUGGUUUGGUAUUGUUUCGGCUCAUGUCGUUCACACAGAUGUGAGCCGAACCAAUAUCACUCAUGUAUUCUUCAUUCAGAGAACUUCU 7 16146 MI0001148 osa-MIR393b Oryza sativa miR393b stem-loop UCGGCCUGAGGAAACUAGUGGAGGACUCCAAAGGGAUCGCAUUGAUCUGGCUAGCUAUCUCGAUCGAUCGCCUCAUCGAUCGACGACGACGUGCGUGAUCGAUCAGUGCAAUCCCUUUGGAAUUUUCCUCUU 7 16147 MI0001149 osa-MIR408 Oryza sativa miR408 stem-loop GGGAGUUCUGUGAUUGGAGAGGAGAGGAGACAGGGAUGAGGCAGAGCAUGGGAUGGGGCUAUCAACAGAUGUAGAUUAUUCCUUGCACAAGAGAUGAUGAUGAGCUGUGAAUGAGUUCUGAGAGAUGGCUGGUGUUGUUGUUGCUCCCUCCCCUGCACUGCCUCUUCCCUGGCUCCCCUGCACACCUCUCUCUCUCUCUCUCUCUCUCUGUGU 7 16148 MI0001150 hsa-mir-196b Homo sapiens miR-196b stem-loop ACUGGUCGGUGAUUUAGGUAGUUUCCUGUUGUUGGGAUCCACCUUUCUCUCGACAGCACGACACUGCCUUCAUUACUUCAGUUG miR-196b is predicted based on sequence homology to miR-196a [1]. Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 16149 MI0001151 mmu-mir-196b Mus musculus miR-196b stem-loop AACUGGUCGGUGAUUUAGGUAGUUUCCUGUUGUUGGGAUCCACCUUUCUCUCGACAGCACGACACUGCCUUCAUUACUUCAGUUG miR-196b is predicted based on sequence homology to miR-196a [1]. Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [1]. Landgraf et al. confirm expression of miR-196b in mouse by cloning [2]. 6 16150 MI0001152 rno-mir-196b Rattus norvegicus miR-196b stem-loop AACUGGUCGGUGAUUUAGGUAGUUUCCUGUUGUUGGGAUCCACCUUUCUCUCGACAGCACGACACUGCCUUCAUUACUUCAGUUG miR-196b is predicted based on sequence homology to miR-196a [1]. Yekta et al. report that miR-196 miRNAs are expressed from HOX gene clusters in mammals, and that HOX genes in these clusters are targets of miR-196. Indeed, HOXB8 mRNA was shown to be a natural target for miR-196-directed cleavage through a perfectly complementary miR-target site. Other HOX genes have imperfect miR-196 complementary sites indicative of regulation by translational repression [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 16151 MI0001154 osa-MIR172d Oryza sativa miR172d stem-loop AAACAGUCGGUGCUUGCAGGUGCAGCACCAUCAAGAUUCACAUCGAGUUCAUCCCUAAACGAGAUCGAGGUUGGCUGACUAUAUGUGAUGAGAAUCUUGAUGAUGCUGCAUCAGCAAACGCUCGACUACU 7 16152 MI0001155 osa-MIR171i Oryza sativa miR171i stem-loop UAAAAAGAGGUAUUGGCGUGCCUCAAUCCGAAGGCAUGGCUGAUUACAGGCACCUCGACCGAUCUAGCGCAUGCAGCCAUGUUUCUUGGAUUGAGCCGCGUCAAUAUCUCUCCUUGCUUC 7 16153 MI0001156 osa-MIR167j Oryza sativa miR167j stem-loop UUGUGAUGUGUGCACCUUAAGCAGCUGAAGCUGCCAGCAUGAUCUGAUCUUUUGCGAUCUCUUUUUUUAUCUGAAUAAGUUGAUGGAAAUAUUGGGUUCCUAAGAUUCAGAUCGUGCUGCGCAGUUUCAUCUGCUAAUCGAUGCACUACACUGUGAAUUU 7 16154 MI0001157 osa-MIR166m Oryza sativa miR166m stem-loop CUCUGCUUUGGUGGUUGGCUGAUGUUCUCGGUUAAGGGGUUUGUUGUCUGGUUCAAGGCCUCCUGCUGUCCUACAUCACAUUUUUUUUUCUUUGUUCUGAAUUUCUGAUGGAUGUGUGUGUGCAUGAUGCAUGGCUGGUGGUGACCUCGGACCAGGCUUCAUUCCCUUUAACCAGCAUUUGCGUUAAUACCAUCAGGCAU 7 16155 MI0001158 osa-MIR166n Oryza sativa miR166n stem-loop UGAUCCAUGGCUGUUGAGAGGAAUGACGUCCGGUCUGAAGAUCGCCGUCCCCAGGCGGUGGCUUCGGACCAGGCUUCAUUCCCCAUGACUCAUGGAACCC 7 16156 MI0001159 osa-MIR164f Oryza sativa miR164f stem-loop UGAGGAUGGCGAGGCGCGCGAGGUGGAGAAGCAGGGCACGUGCAUUCCUAGAGCUUCCGUCCAGCUCCCCGGCGGGCUAGCUAGCUCACUCCGCCGCCGCCGCCGCCGCCGCCGGCGCGCGCACGGCUGGCUGGCUCCGGCCGGCUGAGAUGCAUGCACGGAUGCAUGUGCCCUUCUUCUCCACCGUGCACGCCUCGCCUGCAGCAAGGA 7 16157 MI0001160 mmu-mir-409 Mus musculus miR-409 stem-loop UGGUACUCGGAGAGAGGUUACCCGAGCAACUUUGCAUCUGGAGGACGAAUGUUGCUCGGUGAACCCCUUUUCGGUAUCA Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse, including the miR-409-5p [1]. The 3' end of miR-409-5p was not determined and is predicted based on a miRNA length of 23 nts. Landgraf et al. later confirm expression of mature miRNAs from both arms of the hairpin [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 16158 MI0001161 mmu-mir-410 Mus musculus miR-410 stem-loop GGGUACUUGAGGAGAGGUUGUCUGUGAUGAGUUCGCUUUAUUAAUGACGAAUAUAACACAGAUGGCCUGUUUUCAAUACCA Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 16159 MI0001162 mmu-mir-376b Mus musculus miR-376b stem-loop UGGUAUUUAAAAGGUGGAUAUUCCUUCUAUGGUUACGUGCUUCCUGGAUAAUCAUAGAGGAACAUCCACUUUUUCAGUAUCA Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse [1]. The mature miR-376b products have been shown to be modified by A to I edits [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 16160 MI0001163 mmu-mir-411 Mus musculus miR-411 stem-loop UGGUACUUGGAGAGAUAGUAGACCGUAUAGCGUACGCUUUAUCUGUGACGUAUGUAACACGGUCCACUAACCCUCAGUAUCA Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse, including the mature sequence from the 3' arm of this hairpin [1]. Landgraf et al. later showed that the 5' product is the predominant one [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 16161 MI0001164 mmu-mir-412 Mus musculus miR-412 stem-loop GGGUAUGGGACGGAUGGUCGACCAGCUGGAAAGUAAUUGUUUCUAAUGUACUUCACCUGGUCCACUAGCCGUCGGUGCCC Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 16162 MI0001165 mmu-mir-370 Mus musculus miR-370 stem-loop AGACGGAGAGACCAGGUCACGUCUCUGCAGUUACACAGCUCAUGAGUGCCUGCUGGGGUGGAACCUGGUUUGUCUGUCU Seitz et al. predicted a cluster of 40 miRNAs in the imprinted human 14q32 domain, and confirmed the expression of a subset by Northern blot or primer extension in mouse [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 16163 MI0001166 gga-mir-29a Gallus gallus miR-29a stem-loop ACCCCUUUAGAGGAUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAAUAUUUUCUAGCACCAUUUGAAAUCGGUUAUAGUGAUUGGGGA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16164 MI0001167 gga-mir-29b-1 Gallus gallus miR-29b-1 stem-loop CCUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAACUAUUCAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGAGG 10 16165 MI0001168 gga-let-7i MI0001168 Gallus gallus let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUA 10 16166 MI0001169 gga-mir-135a-2 Gallus gallus miR-135a-2 stem-loop AGAUAAAUUCACUCUAGUGUUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16167 MI0001170 gga-mir-33 Gallus gallus miR-33 stem-loop CUGUAGUGCAUUGUAGUUGCAUUGCAUGUGCUGGCAGUAACUGUGCAAUGUUCCUGCAGUGCAGUACAG 10 16168 MI0001171 gga-let-7a-3 Gallus gallus let-7a-3 stem-loop GGGUGAGGUAGUAGGUUGUAUAGUUUUAGGGUUAUGCCCUGCCUGUCAGAUAACUAUACAAUCUACUGUCUUUCCU 10 16169 MI0001172 gga-let-7b Gallus gallus let-7b stem-loop CAGGAUGAGGUAGUAGGUUGUGUGGUUUCAGGGUAGUGAUUUUGCCCCAAUCAGGAGAUAACUAUACAACCUACUGCCUUCCCUG 10 16170 MI0001173 gga-mir-99a Gallus gallus miR-99a stem-loop CCAAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGUUGAAAUGCACUGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUAUG 10 16171 MI0001174 gga-let-7c Gallus gallus let-7c stem-loop GCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGC 10 16172 MI0001175 gga-mir-125b Gallus gallus miR-125b stem-loop AUCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUUUUGUAGCAACAAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA 10 16173 MI0001176 gga-mir-155 Gallus gallus miR-155 stem-loop UGUUAAUGCUAAUCGUGAUAGGGGUUUUUACCUCUGAAUGACUCCUACAUGUUAGCAUUAACA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16174 MI0001177 gga-mir-222 MI0001177 Gallus gallus miR-222 stem-loop UGUAGUUGCCCAUCAAUCGCUCAGUAGUCAGUGUAGAUUCUGUCUUUACAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGAUGACAUCUCAUAUCU 10 16175 MI0001178 gga-mir-221 MI0001178 Gallus gallus miR-221 stem-loop GACUGUCCAGGUUUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUUGUUAAGCAACAGCUACAUUGUCUGCUGGGUUUCCAGCUGCCUGGAA 10 16176 MI0001179 gga-mir-92 MI0001179 Gallus gallus miR-92 stem-loop CUUUCUACACAGGUUGGGAUCAGUUGCAAUGCUGUGCGUUUCUGUGGUAUUGCACUUGUCCCGGCCUGUUGAGGUUGG 10 16177 MI0001180 gga-mir-19b MI0001180 Gallus gallus miR-19b stem-loop CACUGUUCUCUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUAUGAUACUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGCAGUG 10 16178 MI0001181 gga-mir-20a MI0001181 Gallus gallus miR-20a stem-loop UGACAGCUCUUGUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUCACUAAUCUACUGCAUUAUAAGCACUUAAAGUACUGCUAGCUGUAGAACUACA 10 16179 MI0001182 gga-mir-19a MI0001182 Gallus gallus miR-19a stem-loop GCAGUCUUCUGUUAGUUUUGCAUAGUUGCACUACAGGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUG 10 16180 MI0001183 gga-mir-18a MI0001183 Gallus gallus miR-18a stem-loop GUGCUUUUUGUACUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCAUAAGAAGUUAUGUC 10 16181 MI0001184 gga-mir-17 MI0001184 Gallus gallus miR-17 stem-loop GUCAGAGUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUAUAGAACCUACUGCAGUGAAGGCACUUGUAGCAUUAUGUUGAC 10 16182 MI0001185 gga-mir-16-1 Gallus gallus miR-16-1 stem-loop GUCUGUCAUACUCUAGCAGCACGUAAAUAUUGGUGUUAAAACUGUAAAUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGCU 10 16183 MI0001186 gga-mir-15a MI0001186 Gallus gallus miR-15a stem-loop CCUUGGCAUAACGUAGCAGCACAUAAUGGUUUGUGGGUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG 10 16184 MI0001187 gga-mir-26a MI0001187 Gallus gallus miR-26a stem-loop GUCACCUGGUUCAAGUAAUCCAGGAUAGGCUGUAUCCAUUCCUGCUGGCCUAUUCUUGGUUACUUGCACUGGGAGGC 10 16185 MI0001188 gga-mir-153 Gallus gallus miR-153 stem-loop AGCGGUUGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16186 MI0001189 gga-mir-148a Gallus gallus miR-148a stem-loop GAAGCAAAGUUCUGUGACACUCAGACUCUGGUUACGAUAGCAGUCAGUGCACUACAGAACUUUGUCUC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16187 MI0001190 gga-mir-196-2 Gallus gallus miR-196-2 stem-loop AACUGCUCUGUGGUUUAGGUAGUUUCAUGUUGUUGGGGCUCCACCUUUCUCUCUACAGCACGAAACUGCCUUAAUUACUUCAGUUGAUAUCAUC 10 16188 MI0001191 gga-mir-138-1 Gallus gallus miR-138-1 stem-loop CCCUGCCGGGUGCCGUGCAGCAGCUGGUGUUGUGAAUCAGGCCGUCACCAGUCGGAGAACGGCUACUUCACAACACCAGGGUGGCACUGCACCACA 10 16189 MI0001192 gga-mir-128-2 Gallus gallus miR-128-2 stem-loop UGUCCAGCUGGAAGGGGGGCCGUUACACUGUAAGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUUUUCCUGCUGUGUC 10 16190 MI0001193 gga-mir-187 Gallus gallus miR-187 stem-loop AAACUAUUGUGAGACCUCCGGCUACAACACAGGACAUGGGAGCUUUUCUGAACCCUCGUGUCUUGUGUUGCAGCCAGAGGGGCACA 10 16191 MI0001194 gga-mir-32 Gallus gallus miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAGUGCAAUUUAGUGUGUGCGAUACUUUC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16192 MI0001195 gga-mir-133a-1 Gallus gallus miR-133a-1 stem-loop CAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCACCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16193 MI0001196 gga-mir-1a-2 Gallus gallus miR-1a-2 stem-loop ACCUGCUCAGAGCACAUACUUCUUUAUGUACCCAUAUGAACAUACAAUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUUGGCAGGC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16194 MI0001197 gga-mir-124a Gallus gallus miR-124a stem-loop AGGCUCUGCCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAUCCUCCAGGCGGCAUU This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16195 MI0001198 gga-mir-30d MI0001198 Gallus gallus miR-30d stem-loop GUUGCUGUAAACAUCCCCGACUGGAAGCUGUAGCAGCUUGAGCUUUCAGUCAGAUGUUUGCUGC 10 16196 MI0001199 gga-mir-30b MI0001199 Gallus gallus miR-30b stem-loop CUAACUUUUAGUUCCUGUAAACAUCCUACACUCAGCUAUAACAAGUGGUAGGGCUGGGGGGUGGAUGUUUACUUCAACUGACUUGGA 10 16197 MI0001200 gga-mir-216 Gallus gallus miR-216 stem-loop GAUGGCUGUGAAUUGGCUUAAUCUCAGCUGGCAACUGUGAGCAGUUAAUAAUUCUCACAGUGGUAUCUGGGAUUAUGCUAAACACAGCAAUUUCUUUGCUCUAAUG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16198 MI0001201 gga-mir-217 Gallus gallus miR-217 stem-loop AAAGUCACUGCAGAGUUCUUGAUGUCGCAGAUACUGCAUCAGGAACUGAUUGGAUAAUAAUCAGUCACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAAACAAG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16199 MI0001202 gga-mir-194 Gallus gallus miR-194 stem-loop UGGUGCUCUCAUAUGUAACAGCAACUCCAUGUGGACUACACUGACUUCCAGUGGAGAUGCUGUUACUUUUGAUAG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16200 MI0001203 gga-mir-215 Gallus gallus miR-215 stem-loop UCAGUAAGAACUGGUGUCCAGGAAAAUGACCUAUGAAUUGACAGACUGCUUUCAAAAUGUGCCUGUCAUUUCUAUAGGCCAAUAUUCUGUGCACUUUUCCUACUU This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16201 MI0001204 gga-mir-30a MI0001204 Gallus gallus miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCAGCAGAUGGGGCUUUCAGUCGGAUGUUUGCAGCUGC 10 16202 MI0001205 gga-mir-30c-2 Gallus gallus miR-30c-2 stem-loop AGGUACUGUAAACAUCCUACACUCUCAGCUGUGGAAACUAAGAAAGCUGGGAGAAGGCUGUUUACUCUCCCU 10 16203 MI0001206 gga-mir-133b Gallus gallus miR-133b stem-loop CUCUGCUCUGGCUGGUCAAACGGAACCAAGCCCGUCUUCUUCGGAGGUUUGGUCCCCUUCAACCAGCUAUAGCAGUGUUGAAAA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16204 MI0001207 gga-mir-206 Gallus gallus miR-206 stem-loop GAGAUGACAUGCUUCUUUAUAUCCCCAUAUGGAUUAGGCUGCUAUGGAAUGUAAGGAAGUGUGUGGUUUCAGGGAG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16205 MI0001208 gga-mir-223 Gallus gallus miR-223 stem-loop CUGCAGUGCAGCACUGCGUGUAUUUGACAAGCUGAGUUUGACACUCAGUCUGGCAGAGUGUCAGUUUGUCAAAUACCCCAAGUGAGGCACUUGCUGAGCA 10 16206 MI0001209 gga-mir-18b MI0001209 Gallus gallus miR-18b stem-loop CGUGGUCCUUGUGUUAAGGUGCAUCUAGUGCAGUUAGUGACGUAGCGUAGAAUCUACUGCCCUAAAUGCUCCUUCUGGCACAAG 10 16207 MI0001210 gga-mir-106 MI0001210 Gallus gallus miR-106 stem-loop CCUUGAGUUGUGCAAAAGUGCUUACAGUGCAGGUAGAGCUCAGCACCUACUGCAGUAUAAGCACUUCUGGCAUGACCGUGG 10 16208 MI0001211 gga-mir-302a Gallus gallus miR-302a stem-loop CCACAACUUAAAUGUGGAUGUGCUUGCUUUGUUCUGAAAAGAAAGUGCUUCCAUGUUUUAGUGAUGG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16209 MI0001212 gga-mir-218-1 Gallus gallus miR-218-1 stem-loop UGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGUGAGGUAUGAGUAAAACAUGGUUCUGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA 10 16210 MI0001213 gga-mir-103-2 Gallus gallus miR-103-2 stem-loop UCUCUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUUGCGUUCAUGUCAAGCAGCAUUGUACAGGGCUAUGAAAGAACAGAG 10 16211 MI0001214 gga-mir-203 Gallus gallus miR-203 stem-loop CUCAGCCUCCUUGGUGCAGUGGUUCUUAACAGUUCAACAGUUCUCUAUCAUAAUUGUGAAAUGUUUAGGACCACUUGACCAGCGAGGCCCGGGCAUCG 10 16212 MI0001215 gga-mir-107 Gallus gallus miR-107 stem-loop CUCUUUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCAUGGA 10 16213 MI0001216 gga-mir-10b Gallus gallus miR-10b stem-loop CAGAACGUUAUUACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGAUAUUCAUAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCA 10 16214 MI0001217 gga-mir-128-1 Gallus gallus miR-128-1 stem-loop UGAGCUGUUGAAUUCGGGGCCGUAACACUGUCUGAGAGGUUUAUAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC 10 16215 MI0001218 gga-mir-181a-1 Gallus gallus miR-181a stem-loop UGUAGUGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUUAAGUGAAAACCAUCGACCGUUGAUUGUACCCUCCAGCUAACCAUCCUCCUCCU 10 16216 MI0001219 gga-mir-181b-1 Gallus gallus miR-181b-1 stem-loop AAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUUAACUAUGUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCACAU 10 16217 MI0001220 gga-mir-199-2 Gallus gallus miR-199-2 stem-loop GAAGCGUCCGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCUGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAAAGCA Chicken has two loci predicted to express miR-199. mir-199-2 (MIR:MI0001220) is homologous to mir-199a-2 in human (MIR:MI0000281) and mouse (MIR:MI0000713). mir-199-1 (MIR:MI0001245) is homologous to mir-199b in human (MIR:MI0000282) and mouse (MIR:MI0000714). The expression of chicken miR-199 has been verified experimentally [2]. 10 16218 MI0001221 gga-mir-137 Gallus gallus miR-137 stem-loop UCUGACUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUCGAGGAGAGUACCGGCGGC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16219 MI0001222 gga-mir-16-2 MI0001222 Gallus gallus miR-16-2 stem-loop CCUACUUGUUCCGCCCUAGCAGCACGUAAAUAUUGGUGUAGUAAAAUAAACCUUAAACCCCAAUAUUAUUGUGCUGCUUAAGCGUGGCAGAGAU 10 16220 MI0001223 gga-mir-15b MI0001223 Gallus gallus miR-15b stem-loop UGAGGCCUUAAAGUACUCUAGCAGCACAUCAUGGUUUGCAUGCUGUAGUGAAGAUGCGAAUCAUUAUUUGCUGCUUUAGAAAUUUAAGGAA 10 16221 MI0001224 gga-mir-190 Gallus gallus miR-190 stem-loop UGCAGGACUCUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCCUGCC 10 16222 MI0001225 gga-mir-204-2 Gallus gallus miR-204-2 stem-loop CUACUGAGACUGUGUGACCUGUGGGCUUCCCUUUGUCAUCCUAUGCCUGGAGAUCACAGUGAGGCAGGGACAGCAAAGGGAUGCUCAGCUGUCGUCUCUUC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16223 MI0001226 gga-mir-7-2 Gallus gallus miR-7-2 stem-loop GGACGGCCGCGGUGCCCUCUGGAAGACUAGUGAUUUUGUUGUUGUAUGGCUCAUCCCACCACAACAAGUCACAGUCUGCCUUAGGGCGCACGGCCCCGC 10 16224 MI0001227 gga-mir-184 Gallus gallus miR-184 stem-loop CCGCUCUCACCCCCUUAUCACUUUUCCAGCCCAGCUUCUUCGCUCUGACUGUUGGACGGAGAACUGAUAAGGGU This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16225 MI0001228 gga-mir-138-2 Gallus gallus miR-138-2 stem-loop GUUGCUGCAGCUGGUGUUGUGAAUCAGGCCGACGGCAAGCGCUUCCUACUAUCCGGCUAUUUCACUACACCAGGGUUGCAUCA 10 16226 MI0001229 gga-mir-140 MI0001229 Gallus gallus miR-140 stem-loop UGCGUCUCUCCGUGUCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACGGGAUGCCGGGGC 10 16227 MI0001230 gga-let-7g Gallus gallus let-7g stem-loop AGGCUGAGGUAGUAGUUUGUACAGUUUGAGGGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCCACUGCCUUGCC 10 16228 MI0001231 gga-mir-135a-1 Gallus gallus miR-135a-1 stem-loop GCCUCACUGUCCUGUAUGGCUUUUUAUUCCUAUGUGAUUAUACAUCCCGCUUCAUAUAGGGAUUGAAGCCGUGCAAGGCGCUGGGGUC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16229 MI0001232 gga-let-7d Gallus gallus let-7d stem-loop AUUGGGCUCCUAGGAAGAGGUAGUGGGUUGCAUAGUUUUAGGGCAGGGAUUUUGCUCACAAGGAGGUAACUAUACAACCUGCUGCCUUUCUUAGGGCUUUAUU This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16230 MI0001233 gga-let-7f Gallus gallus let-7f stem-loop UCAGAGUGAGGUAGUAGAUUGUAUAGUUGUAGGGUAGUUAUUUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUUCCCUGA 10 16231 MI0001234 gga-let-7a-1 Gallus gallus let-7a-1 stem-loop UGCACUGUGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCAUACCCGCAACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCUAAAG 10 16232 MI0001235 gga-mir-146a Gallus gallus miR-146a stem-loop GUGUAUCCUCAGCUUUGAGAACUGAAUUCCAUGGGUUGUAAUUGAAUCCUUUGUCAGACCCAUGGGGCUCAGUUCUUCAGCUUGGAUAUUUCUGUCUUC 10 16233 MI0001236 gga-mir-103-1 Gallus gallus miR-103-1 stem-loop UGCUGCCUUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCACUG 10 16234 MI0001237 gga-mir-218-2 Gallus gallus miR-218-2 stem-loop GGGGUUUUCCUUUGUGCUUGAUCUAACCAUGUGGUAGAACAAUACAAAUUGAACAUGGUUCUGUCAAGCACCAUGGAAGGCUGCAUACUCCCUGC 10 16235 MI0001238 gga-mir-205b Gallus gallus miR-205b stem-loop AUACACUACUAGGGCCUUCCUGAUGCCCUUCAUUCCACCGGAAUCUGUCAGUGCAGAAACCAGAUUUCAGUGAAAUGAAGCCCAUCAGAGAGGCAGCU 10 16236 MI0001239 gga-mir-130b Gallus gallus miR-130b stem-loop GGGCGGGCUGCCCCUCUUUCCCUGUUGCACUACUGUCACGGUCGCAGCGAGCAGUGCAAUAAUGAAAGGGCGUCAGU 10 16237 MI0001240 gga-mir-301 MI0001240 Gallus gallus miR-301 stem-loop UGGCUGCUGGUAUCGCUGGCUCUGACAAUGUUGCACUACUGUCUGCACAAAUAAAGCAGUGCAAUAAUAUUGUCAAAGCAUUUGGUUCCAGUC 10 16238 MI0001241 gga-mir-130a MI0001241 Gallus gallus miR-130a stem-loop UGCUGUUGUCCAGAGCCCUUUUUCUGUUGUACUACUGGCAAUUAUGAUGAGCAGUGCAAUAUUAAAAGGGCAUUGGCUGGCAG 10 16239 MI0001242 gga-mir-181b-2 MI0001242 Gallus gallus miR-181b-2 stem-loop CUAAUGGCUGCAAUCAACAUUCAUUGCUGUCGGUGGGUUUUCAUUGCUAUCAACUCACUGAUCAAUGAAUGCAAACUGCGGACCA 10 16240 MI0001243 gga-mir-181a-2 MI0001243 Gallus gallus mir-181a-2 stem-loop GCCAUCUUUGGAUAGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGAGAACUAAGAAAAACCAUCGACCGUUGACUGUACCUUGAGGU 10 16241 MI0001244 gga-mir-126 Gallus gallus miR-126 stem-loop GCUGGUGACGGCCCAUUAUUACUUUUGGUACGCGCUGUGACACUUCAAACUCGUACCGUGAGUAAUAAUGCGCUGUGGUCAGCA 10 16242 MI0001245 gga-mir-199-1 Gallus gallus miR-199-1 stem-loop CUCCACUCCGUCUGCCCAGUGUUCAGACUACCUGUUCAGGACUACGAGAUUGUACAGUAGUCUGCACAUUGGUUAGGCUGUGCUGGGAUACACC Chicken has two loci predicted to express miR-199. mir-199-2 (MIR:MI0001220) is homologous to mir-199a-2 in human (MIR:MI0000281) and mouse (MIR:MI0000713). mir-199-1 (MIR:MI0001245) is homologous to mir-199b in human (MIR:MI0000282) and mouse (MIR:MI0000714). The expression of chicken miR-199 has been verified experimentally [2]. 10 16243 MI0001246 gga-mir-219 Gallus gallus miR-219 stem-loop CUCUGCUCCUGAUUGUCCAAACGCAAUUCUUGUGCGCUGGAGCCGUACGAACCAAGAAUUGUGUCUGGACAUCUGUAGCAGAGAU This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16244 MI0001247 gga-mir-1a-1 Gallus gallus miR-1a-1 stem-loop UGAGAGACAUACUUCUUUAUAUGCCCAUAUGAACCUGGCAAUCUAUGGAAUGUAAAGAAGUAUGUAUUUCA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16245 MI0001248 gga-mir-133a-2 Gallus gallus miR-133a-2 stem-loop GUGAGGCCAAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCAACUGUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUGUGCAUUGAU This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16246 MI0001249 gga-mir-200a Gallus gallus miR-200a stem-loop GGUCCUCUGUGGGCAUCUUACUAGACAGUGCUGGAUUUCUUGGAUCUAUUCUAACACUGUCUGGUAACGAUGUUUAAAGGGUGAACC 10 16247 MI0001250 gga-mir-200b Gallus gallus miR-200b stem-loop GCCAUUACCAUCUUACUGGGCAGCAUUGGAUGUUCUCUGUUUUUCUAAUACUGCCUGGUAAUGAUGAUUGUGGUGUUUCGUGCAC 10 16248 MI0001251 gga-mir-34a MI0001251 Gallus gallus miR-34a stem-loop GCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUACACAUUGUUGGGCC 10 16249 MI0001252 gga-mir-124b-1 Gallus gallus miR-124b-1 stem-loop AGCCCCAGCGUUUUGUGUUCACUGCAGACCUUGAUUUAAUGUCACACGAUUAAGGCACGCAGUGAAUGCCAAAGUUUGGGGCAGCCUGGGCUG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16250 MI0001253 gga-mir-124b-2 Gallus gallus miR-124b-2 stem-loop AGCCCCAGCGUUUUGUGUUCACUGCAGACCUUGAUUUAAUGUCACACGAUUAAGGCACGCAGUGAAUGCCAAAGUUUGGGGCAGCCUGGGCUG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16251 MI0001254 gga-mir-1b Gallus gallus miR-1b stem-loop ACAUACUUCUUCAUAUGCCCAUAUGGAGUCGGCCGGCGUUAUGGAAUGUUAAGAAGUAUGUAUC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16252 MI0001255 gga-mir-133c Gallus gallus miR-133c stem-loop UGCCUUCCUGGGGCUGGUAAAAAGGAACCAGAUCAACUACAACUGGAUUUGGUCCCCUUCAACCAGCUGCAGUGGGGCA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16253 MI0001256 gga-mir-30e Gallus gallus miR-30e stem-loop CGGGGCAGUCAUCGCUGCUGUAAACAUCCUUGACUGGAAGCUGUGAGGUGUCAGCGGGGGCUUUCAGUCGGAUGUUUACAGCUGCAGGCUGCUGCA 10 16254 MI0001257 gga-mir-30c-1 MI0001257 Gallus gallus miR-30c-1 stem-loop ACCAUGCUGUAGCACGUGUAAACAUCCUACACUCUCAGCUGUGAACUCGAGGUGGCUGGGAGAGGAUUGUUUACGCCUUCUGCCAUGGA 10 16255 MI0001258 gga-mir-100 Gallus gallus miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUCAUAUUCCACACAAGCUUGUAUCUAUAGGUAUGUGUCUGUCUGG 10 16256 MI0001259 gga-let-7a-2 MI0001259 Gallus gallus let-7a-2 stem-loop AGGUUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACACCAAGGGAGAUAACUGUACAACCUCCUAGCUUUCCU 10 16257 MI0001260 gga-mir-34b Gallus gallus miR-34b stem-loop GUGCUUGGUUUGCAGGCAGUGUAGUUAGCUGAUUGUACCCAGCGCCCCACAAUCACUAAAUUCACUGCCAUCAAAACAAGGCAC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16258 MI0001261 gga-mir-34c Gallus gallus miR-34c stem-loop AGCCUGGUUACCAGGCAGUGUAGUUAGCUGAUUGCCACCAGGACCAAUCACUAACCACACAGCCAGGUAAAAAG This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16259 MI0001262 gga-let-7j Gallus gallus let-7j stem-loop GUGAGGUAGUAGGUUGUAUAGUUUGGUGGGAGGGAUUCUGUCCCAUUUCAGGUGAUAACUAUACAGUCUAUUGCCUUCCUUAA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16260 MI0001263 gga-let-7k Gallus gallus let-7k stem-loop GGCUGAGGUAGUAGAUUGAAUAGUUGUGGAGUCCUAUCCUCCCUUUGAGCUAACUAUACAAUCUACUGUCUUUCCUAAGGAGA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16261 MI0001264 gga-mir-135a-3 Gallus gallus miR-135a-3 stem-loop CCCUCUGCUGUGGUCUAUGGCUUUUUAUUCCUAUGUGAUUGCUUUUCCUAACUCAUGUAGGGCGAAAAGCCAUGGGCUACUCAGGGGAGGGACUCC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16262 MI0001265 gga-mir-29c Gallus gallus miR-29c stem-loop UCUCUUACACAGGCUGACCGAUUUCUCUUGGUGUUCAGAGUCUCAGUUUCUGUCUAGCACCAUUUGAAAUCGGUUAUGAUGUAGGGGGA 10 16263 MI0001266 gga-mir-29b-2 MI0001266 Gallus gallus miR-29b-2 stem-loop CCUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUCCCACUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUCUAGGAG 10 16264 MI0001267 gga-mir-205a Gallus gallus miR-205a stem-loop GACAAUCCAUGGGUUCUGUUGUCCUUCAUUCCACCGGAGUCUGUCUCGUACCUAACCAGAUUUCAGUGGAGUGAAGCACAAGAGACAUGGAGAUGA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16265 MI0001268 gga-mir-196-1 Gallus gallus miR-196-1 stem-loop UGAACUAGAACUGCUCUGUGAAUUAGGUAGUUUCAUGUUGUUGGGCUUUAAAUUUUAAACACAAGAACAUCAAACUACCUGAUUUACUCCAGUUA 10 16266 MI0001269 gga-mir-7-3 Gallus gallus miR-7-3 stem-loop CUGUGGUCUGGCUCUGUGUGGAAGACUAGUGAUUUUGUUGUUAUGAUUUAUAAAGGUGACAACAAAUCAUAGCCUGCCAUACAGCACAGAUCUUC 10 16267 MI0001270 gga-mir-101 MI0001270 Gallus gallus miR-101 stem-loop ACUAUCCUUUUUCGGUUAUCAUGGUACCGGUGCUGUAUACGUGAAAGGUACAGUACUGUGAUAACUGAAGAAUGGUGGU 10 16268 MI0001271 gga-mir-204-1 Gallus gallus miR-204-1 stem-loop GUCAACAGUGUCUGUUCAUGUGACCCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAAAAUAUAUGAAGGGGGCGGGGAAGGCAAAGGGACGUUCAACUGUCAUC This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16269 MI0001272 gga-mir-7-1 MI0001272 Gallus gallus miR-7-1 stem-loop UGGAUGUUGGUCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAAUUAAAUUGACAACAAAUCACAGUCUGCCAUAUGGCACAGAUCAUGCCUCUACAG 10 16270 MI0001273 gga-mir-23b MI0001273 Gallus gallus miR-23b stem-loop UGUUGUGGCUGUUUGGGUUCCUGGCAUGAUGAUUUGUGAGUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACAUAGCCAUGACC 10 16271 MI0001274 gga-mir-27b MI0001274 Gallus gallus miR-27b stem-loop ACCUCUCUGGUGAGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGUUUCCCUCUUUGUUCACAGUGGCUAAGUUCUGCACCUGAAGAGAAGGUG 10 16272 MI0001275 gga-mir-24 MI0001275 Gallus gallus miR-24 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUGAUUUUACAUACUGGCUCAGUUCAGCAGGAACAGGAG 10 16273 MI0001276 gga-mir-31 Gallus gallus miR-31 stem-loop UUCUUUCAUGCAGAGCUGGAGGGGAGGCAAGAUGUUGGCAUAGCUGUUAACCUAAAAACCUGCUAUGCCAACAUAUUGUCAUCUUUCCUGUCUG 10 16274 MI0001277 gga-mir-122-1 Gallus gallus miR-122-1 stem-loop CAGAGCUGUGGAGUGUGACAAUGGUGUUUGUGUCCAAUCUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGGUAG 10 16275 MI0001278 gga-mir-183 Gallus gallus miR-183 stem-loop ACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGCAACCCCGCGGUCAGUGAAUUACCAUAGGGCCAUAAACAAAGCAGAGAAAGACCCGCGA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16276 MI0001279 gga-mir-7b Gallus gallus miR-7b stem-loop UGGACAUUGGUCUAGUUCUGUGUGGAAGACUAGUGAUUUUUGUUGUUUUUAGAUAACUAAAUUGACAACAAAUCACAGUCUACCAUAUGGCACAGACUAUGCCUCUACAG 10 16277 MI0001280 gga-mir-122-2 Gallus gallus miR-122-2 stem-loop CAGAGCUAUGGAGUGUGACAAUGGUGUUUGUGUCCAAUCUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGGUAG 10 16278 MI0001281 gga-mir-142 MI0001281 Gallus gallus miR-142 stem-loop GACAGUGCAGUCACCCAUAAAGUAGAAAGCACUACUAAACAGCACUGCAGGGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGUG 10 16279 MI0001282 gga-mir-196-3 Gallus gallus miR-196-3 stem-loop UUUCAUGCAGCUGAUCUGUGGUUUAGGUAGUUUCAUGUUGUUGGGAUUGGCUUUUAGCUCGGCAACAAGAAACUGCCUUAAUUACGUCAGUUAGUCUUCAUCAAGGGC 10 16280 MI0001283 gga-mir-9-2 Gallus gallus miR-9-2 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUUUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA This sequence is a predicted homologue of a verified miRNA from human, mouse or rat. Its expression has not been validated in chicken. 10 16281 MI0001284 gga-mir-218-3 Gallus gallus miR-218-3 stem-loop UGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGUGAGGUAUGAGUAAAACAUGGUUCUGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA 10 16282 MI0001287 dps-bantam Drosophila pseudoobscura bantam stem-loop AUUUGACUACGAAACCGGUUUUCGAUUUGGUUUGACUGUUUUUUAUACAAGUGAGAUCAUUUUGAAAGCUGAUUUUGUCAA 11 16283 MI0001288 dps-let-7 Drosophila pseudoobscura let-7 stem-loop UCUGGCAAAUUGAGGUAGUAGGUUGUAUAGUAGUACUUCAGAUCGUACUAUACAAUGUGCUAGCUUUCUUUGCUUGA 11 16284 MI0001289 dps-mir-1 Drosophila pseudoobscura miR-1 stem-loop GCCUUUGAGAGUUCCAUGCUUCCUUGCAUUCAAUAGUAUAACAUAAAGCAUAUGGAAUGUAAAGAAGUAUGGAGCGAAAUCUGGCAAG 11 16285 MI0001290 dps-mir-2a-1 Drosophila pseudoobscura miR-2a-1 stem-loop GCUGGGCUCACAAAGUGGUUGUGAAAUGCAUUUUGCUUUGCCCGCAUAUCACAGCCAGCUUUGAUGAGCUCGGC 11 16286 MI0001291 dps-mir-2a-2 Drosophila pseudoobscura miR-2a-2 stem-loop AUCUAAGCCUCAUCAAGUGGUUGUGAUAUGGAUACCCAACGCAUAUCACAGCCAGCUUUGAUGAGCUAGGAU 11 16287 MI0001292 dps-mir-2b-1 Drosophila pseudoobscura miR-2b-1 stem-loop CUGCGACGCUCUUUAAAGUGGCGGUGACGUGUUGGUAAUAAUAUUCAUAUCACAGCCAGCUUUGAGGAGCGUUGCGG 11 16288 MI0001293 dps-mir-2b-2 Drosophila pseudoobscura miR-2b-2 stem-loop UUGUGUCAUUCUUCAAAGUGGUUGUGAAAUGUUUGCCUUUUUAUGCCUAUUCAUAUCACAGCCAGCUUUGAGGAGCGACACGA 11 16289 MI0001294 dps-mir-2c Drosophila pseudoobscura miR-2c stem-loop UGGUAUCCUUACUUUCAGUGUCAUCAAAAAUGGCUGAAGAAAGAUAUAUUUGCAUUUGAAGCGUAUCACAGCCAGCUUUGAUGGGCAUUGCAAUGAGCAUCGA 11 16290 MI0001295 dps-mir-3 Drosophila pseudoobscura miR-3 stem-loop GAUCCUGGGAUGCAUUUUGUGCAGUUAUGUCUACGUGAUCAUCCUCAUCACUGGGCAAAGUGUGUCUCAGGAU 11 16291 MI0001296 dps-mir-4 Drosophila pseudoobscura miR-4 stem-loop UUGCAAUUAGUUUCUUUGGUCGUCCAGCCUUAGGUGAUUUCUCUGAUCAUAAAGCUAGACAACCAUUGAAGUUCGUUGUGG 11 16292 MI0001297 dps-mir-iab-4 Drosophila pseudoobscura miR-iab-4 stem-loop UCGUAUACGUAUACUGAAUGUAUCCUGAGUGUAUCCUAUCCGGUAUACCUUCAGUAUACGUAACACGA 11 16293 MI0001298 dps-mir-5 Drosophila pseudoobscura miR-5 stem-loop GCUAAAAGGAACGAUCGUUGUGAUAUGCGUUAAUUCACCGUUACAUAUCACAGUGAUUUUCCUUUAUAGCGC 11 16294 MI0001299 dps-mir-6-1 Drosophila pseudoobscura miR-6-1 stem-loop UUUGAAGUAGAGAGAAUAGUUGCUGUGCUAUAUGUCCUUCGACUCUAUAUAUCACAGUGGCUGUUCUUUUUGUACCUAAA 11 16295 MI0001300 dps-mir-6-3 Drosophila pseudoobscura miR-6-3 stem-loop CAAAAAGAAGGGAACGGUUGCUGCUGAUGUAGUUCAAGUUUUGCACAAUUUAUAUCACAGUGGCUGUUCUUUUUUGUUUG 11 16296 MI0001301 dps-mir-6-2 Drosophila pseudoobscura miR-6-2 stem-loop CCAACCGCAGGGAACCGCUGCUGCUGAUAUAUUAUCCACCCAUCUUUGACAUUUCUAUAUCACAGUGGCUGUUCUUUUUGGUU 11 16297 MI0001302 dps-mir-7 Drosophila pseudoobscura miR-7 stem-loop GAGUGUAUUCCGUAUGGAAGACUAGUGAUUUUGUUGUUUGGUCUCUGCUAAUAACAAUAAAUCCCUUGUCUUCUUACGGCGUGCAUCU 11 16298 MI0001303 dps-mir-8 Drosophila pseudoobscura miR-8 stem-loop AAGGACAUCUGUUCACAUCUUACCGGGCAGCAUUAGAUCCUUUAGAUACCUCUAAUACUGUCAGGUAAAGAUGUCGUCCGUGUCCUU 11 16299 MI0001304 dps-mir-9a Drosophila pseudoobscura miR-9a stem-loop GCUAUGUUGUCUUUGGUUAUCUAGCUGUAUGAGUGAUAAAUAACGUCAUAAAGCUAGCUUACCGAAGUUAAUAUUAGC 11 16300 MI0001305 dps-mir-9b Drosophila pseudoobscura miR-9b stem-loop UGCACAUUAUUUGAUCUUUGGUGAUUUUAGCUGUAUGGUGUAUAUCAAAGAUCCAUAGAGCUUUAUCACCAAAACCCAAAUGGUUUUUGCA 11 16301 MI0001306 dps-mir-9c Drosophila pseudoobscura miR-9c stem-loop AUUUUUGCUGUUUCUUUGGUAUUCUAGCUGUAGAUUGUUUUUUGCACAUUGUAUAUCAUCUAAAGCUUUUAUACCAAAGCUCCAGCUUAAAU 11 16302 MI0001307 dps-mir-10 Drosophila pseudoobscura miR-10 stem-loop CCACGUCUACCCUGUAGAUCCGAAUUUGUUUUACAUUAGCUUUAAGGACAAAUUCGGUUCUAGAGAGGUUUGUGUGG 11 16303 MI0001308 dps-mir-11 Drosophila pseudoobscura miR-11 stem-loop CUCUUGUCAAGAACUUAUUCUGUGACCUGCGUGACAUUUAGCCACAUCACAGUCUGAGUUCUUGCUGAGCG 11 16304 MI0001309 dps-mir-12 Drosophila pseudoobscura miR-12 stem-loop UACGGCUGAGUAUUACAUCAGGUACUGGUGUGCUUUAAAUCCAACAACCAGUACUUAUGUUAUACUACGCCGUG 11 16305 MI0001310 dps-mir-13a Drosophila pseudoobscura miR-13a stem-loop UACGUAACCCAUCAAACGGUUGUGAAAUGUUGCAUUUAUCAAAUCAUAUCACAGCCAUUUUGAUGAGUUUCGUG 11 16306 MI0001311 dps-mir-13b-1 Drosophila pseudoobscura miR-13b-1 stem-loop CCAUGUCGUUAAAAUGUUUGUGACCUUAUGUACUCUUGAAUCAUAUCACAGCCAUUUUGACGAGUUUGG 11 16307 MI0001312 dps-mir-13b-2 Drosophila pseudoobscura miR-13b-2 stem-loop AUUUACGCGUCAAAAUGACUGUGAGCUAUGUGUUUUUGAUCUCAUAUCACAGCCAUUUUGACGAGUUUG 11 16308 MI0001313 dps-mir-14 Drosophila pseudoobscura miR-14 stem-loop UGUGGGAGCGAGACGGGGACUCACUGUGCUUUUGAAGUAGUCAGUCUUUUUCUCUCUCCUAUA 11 16309 MI0001314 dps-mir-31a Drosophila pseudoobscura miR-31a stem-loop UCUGUUGGUAAAUUGGCAAGAUGUCGGCAUAGCUGAAGUUGAAAAGCGAUCUUUGAGAACGCUAUGCUGCAUCUAGUCAGUUAUUCAAUGGA 11 16310 MI0001315 dps-mir-31b Drosophila pseudoobscura miR-31b stem-loop AAUUUGGCAAGAUGUCGGAAUAGCUGAGAGCAAAAAGAAGAUGAUUUGAAAUGCGGCUAUGCCUCAUCUAGUCAAUUGCAUUCAUUUGA 11 16311 MI0001316 dps-mir-33 Drosophila pseudoobscura miR-33 stem-loop CCGGAGAUGACACGCAGGUGCAUUGUAGUCGCAUUGUCUGUCCAUCUUGAUUUCAGGCAAUACAACUGCAAUGCAAGCUCUGUGCAUUUCA 11 16312 MI0001317 dps-mir-34 Drosophila pseudoobscura miR-34 stem-loop AAUUGGCUAUGCGCUUUGGCAGUGUGGUUAGCUGGUUGUGUAGCCAAAAUAUUGCCUUUGACCAUUCACAGCCACUAUCUUCACUGCCGCCGCGACAAGC 11 16313 MI0001318 dps-mir-79 Drosophila pseudoobscura miR-79 stem-loop CUGCUCUGCUUCUGCUUUGGCGCUUUAGCUGUAUGAUAGAUUUAAAAUACUUCAUAAAGCUAGAUUACCAAAGCAUUGGCUCUG 11 16314 MI0001319 dps-mir-87 Drosophila pseudoobscura miR-87 stem-loop CAUAUUUCAUUCGCGCCUGUAUCUUGCUGAACCGUAGCCAUAAUGGUCUUUCAUCCCGGUUGAGCAAAAUUUCAGGUGUGUGAGAAAUUUGUUAAGCA 11 16315 MI0001320 dps-mir-92a Drosophila pseudoobscura miR-92a stem-loop AUAGAGAUUGCCCGUAGGACGGGAAGGUGUCAACGUUUUAAAUUUUGAACAAACAUUGCACUUGUCCCGGCCUAUGGGCGGCUUGUCAUACACA 11 16316 MI0001321 dps-mir-92b Drosophila pseudoobscura miR-92b stem-loop UAAAACGUCACCUGAUGUAGGCCGUGCCCAGUGCUUAUUUGUCGUUGUUUGAAAAUACAAAUUGCACUAGUCCCGGCCUGCAGAGAGUGUCGCACACAAC 11 16317 MI0001322 dps-mir-100 Drosophila pseudoobscura miR-100 stem-loop CCAUUAACAGAAACCCGUAAUUCCGAACUUGUGCUGUUUUAUAUCUGUUACAAGACCGGCAUUAUGGGAGUCUGUCAAUGCAAACAACUGGUUUUUGGCA 11 16318 MI0001323 dps-mir-124 Drosophila pseudoobscura miR-124 stem-loop UCGUUUGGUACGUUUUUCUCCUGGUAUCCACUGUAGGCCUAUAUGUAUUUCGACCAUAAGGCACGCGGUGAAUGCCAAGAGCGGACGAAACUCUACUA 11 16319 MI0001324 dps-mir-125 Drosophila pseudoobscura miR-125 stem-loop GACAUGUGCAAAUGUUUGUAUGGCUGAUUCCCUGAGACCCUAACUUGUGACUUUUAAUACCAGUUUCACAAGUUUUGAUCUCCGGUAUUGGACGCAAACUUGCUGAUGUU 11 16320 MI0001325 dps-mir-133 Drosophila pseudoobscura miR-133 stem-loop UACAACGGCUGUAUGUAGCUGGUUGACAUCGGGUCAGAUCUAUUUUAUCAAGUAUUUGGUCCCCUUCAACCAGCUGUAUCAGUGGUUGAUUCCAAC 11 16321 MI0001326 dps-mir-184 Drosophila pseudoobscura miR-184 stem-loop GGUCGACCGGUGCAUUCGUACCCUUAUCAUUCUCGCGCCCCGUGUGCAUUAAAAGACAACUGGACGGAGAACUGAUAAGGGCUCGUAUCACCAACUCAUC 11 16322 MI0001327 dps-mir-210 Drosophila pseudoobscura miR-210 stem-loop GGUACUUAUUGCAGCUGCUGGCCACUGCACAAGAUUAGAUUUAAGACUCUUGUGCGUGUGACAGCGGCUAUUGUAAGAGGCCAUAUUAGCAUCA 11 16323 MI0001328 dps-mir-219 Drosophila pseudoobscura miR-219 stem-loop UAAUUCGAUUUUUAGCUAUGAUUGUCCAAACGCAAUUCUUGUUGAUAUCCAAUACUCAAGGGUUGUGACUGGACAUCGCGGCUCGAAAUAAGAAUACAAC 11 16324 MI0001329 dps-mir-263a Drosophila pseudoobscura miR-263a stem-loop ACAUCCCGGCACAGUUAAUGGCACUGGAAGAAUUCACGGGGUUUUUCAAUACAACCCGUGAUCUCUUAGUGGCAUCUAUGGUGCGGGACUCA 11 16325 MI0001330 dps-mir-263b Drosophila pseudoobscura miR-263b stem-loop UUGCUGGCAUUGGCUCUUGGCACUGGGAGAAUUCACAGUUGGUUUCCAUAUAUUCUGUGGUUCUGCGGGUGCCAAAAUCGAAUGUUCGGCU 11 16326 MI0001331 dps-mir-274 Drosophila pseudoobscura miR-274 stem-loop UCCCGUGCUGCAGUUUCAUUUUGUGACCGACACUAACGGGUAAUGGCUGGCCGCAGGACUACUCGUUUUUGCGAUCACAAUACUGAAAUUGCAGCAA 11 16327 MI0001332 dps-mir-275 Drosophila pseudoobscura miR-275 stem-loop AAAGUCUCCUACCAUGCGCGCUAAUCAGAGACCGGGGCUGGUUUUUUCACUGCAGUCAGGUACCUGAAGUAGCGCGCGUGGUGCUAGACA 11 16328 MI0001333 dps-mir-276a Drosophila pseudoobscura miR-276a stem-loop CCUGGUUUUUGCCAUCAGCGAGGUAUAGAGUUCCUACGUUCAUAUUAUAAACUCGUAGGAACUUCAUACCGUGCUCUUGGAAGACCAAAAGACAACGAA 11 16329 MI0001334 dps-mir-276b Drosophila pseudoobscura miR-276b stem-loop AAAGCGAAGCCUCUUUACCAUCAGCGAGGUAUAGAGUUCCUACGUGCCGUAUCCAAAGUCGUAGGAACUUAAUACCGUGCUCUUGGAGGGCUGUCCAUC 11 16330 MI0001335 dps-mir-277 Drosophila pseudoobscura miR-277 stem-loop UUGAAGGUUUUGGGUUGCGUGUCAGGAGUGCAUUUGCACUGAAACAUUCUGAAGCUUGUAAAUGCACUAUCUGGUACGACAUUCCAGAACGUACAAUCUU 11 16331 MI0001336 dps-mir-278 Drosophila pseudoobscura miR-278 stem-loop GUAAUGGUACGGUGCGACCGGACGAUGGUUCACAACGACCGUGUCUCUUAAACUGGUCGGUGGGACUUUCGUCCGUUUGUAACGCCAUUUGUCAGCGA 11 16332 MI0001337 dps-mir-279 Drosophila pseudoobscura miR-279 stem-loop UCAUACUACUGUUUUUAGUGAGUGAGGGUCCAGUGUUUCACAUUGAUUUUCUUAGUAUUUGUGACUAGAUCCACACUCAUUAAUAACGGUAGUUC 11 16333 MI0001338 dps-mir-280 Drosophila pseudoobscura miR-280 stem-loop GGCUUUUAUGUAUUUACGUUGCAUAUGAAAUGAUAUUUAUAGUAAACAGAUUAUUUUAUAUGCAGGUAUGUGCAGCUGAAGAGCCUGUCCAUUG 11 16334 MI0001339 dps-mir-281-1 Drosophila pseudoobscura miR-281-1 stem-loop CGAAUAGGUGAAUAAAGAGAGCUGUCCGUCGACAGUCAACGUACCAAUUUAAUACUGUCAUGGAAUUGCUCUCUUUGUAUAAUAUUCG 11 16335 MI0001340 dps-mir-281-2 Drosophila pseudoobscura miR-281-2 stem-loop CGAAUAGUGAAAUAAAGAGAGCUAUCCGUCGACAGUCAAGUUAAUCAGAUUGUAAUACUGUCAUGGAAUUGCUCUCUUUGUAUAAUAUUCG 11 16336 MI0001341 dps-mir-282 Drosophila pseudoobscura miR-282 stem-loop UGCCUUAUAAAUCUAGCCUCUACUAGGCUUUGUCUGUGCAUUUGAAAACCCGAUCAGACAUAGCCUAUAAGAGGUUAGGUGUACCAAGGAAGAA 11 16337 MI0001342 dps-mir-283 Drosophila pseudoobscura miR-283 stem-loop CUCACGAUUCUCAAAGGUAAAUAUCAGCUGGUAAUUCUGGGAGCUAAGCAAGAUAUGAAACACUCGGAAUUUCAGUUGGUAUCGACUUUUUUGAAUU 11 16338 MI0001343 dps-mir-284 Drosophila pseudoobscura miR-284 stem-loop GUUGCAGUUCCUGGAAUUAAGUUGACUGUGUAGCCUGGGAAGGCAAGGCUUGAGCACUGCUUCUGAAGUCAGCAACUUGAUUCCAGCAAUUGCGGCCCAA 11 16339 MI0001344 dps-mir-285 Drosophila pseudoobscura miR-285 stem-loop UCGAAUCGAAGAACUGAGAUCGAUUGGUGCAUAGAUAUCAAGAGGACUCGCUAAUUUUCAACUCUAGCACCAUUCGAAAUCAGUGCUUUUGAUGAGAACC 11 16340 MI0001345 dps-mir-286 Drosophila pseudoobscura miR-286 stem-loop UUAAAAUUAAAUGGCGAUUGUCGGUUUGGUCGCUUUUUACCAGGGUUCCGAUCAAGCGAAGUGACUAGACCGAACACUCGUGCUAUAAUUUUAGAAU 11 16341 MI0001346 dps-mir-287 Drosophila pseudoobscura miR-287 stem-loop AUGUGUGAGUGUGGGGCCUGAAAUUUUGCACACAUUUACAAUAAUUGUAAAUGUGUUGAAAAUCGUUUGCACAACUGUGA 11 16342 MI0001347 dps-mir-288 Drosophila pseudoobscura miR-288 stem-loop GGCCAUGUCGUAAUUAGCAGGGUACAGCGUUGCCGGCGAUAAUUAAUGACGUUGGUCACGUUGGUUUCAUGUCGAUUUCAUUUCAUGACACGGCCG 11 16343 MI0001348 dps-mir-289 Drosophila pseudoobscura miR-289 stem-loop GAGUUUACAGUGAAAUAAAUAUUUAAGUGGAGCCUGCGACUGGGACUCCAGCUCUCCGACUGGGCUAACUCACUUGAGCGUUUGUUGGCACGUAAAAGAC 11 16344 MI0001349 dps-mir-304 Drosophila pseudoobscura miR-304 stem-loop GCAGCAUUGAAUAAUCUCAAUUUGUAAAUGUGAGCGAUUUGAGGCAUUUGACACACUCACUUUGCAACUGGAGAUUGCUCGAAACUGC 11 16345 MI0001350 dps-mir-305 Drosophila pseudoobscura miR-305 stem-loop CAUGUCUAUUGUACUUCAUCAGGUGCUCUGGUGUGUCCUGUAACCCGGCACAUGUUGAAGUACACUCAAUAUG 11 16346 MI0001351 dps-mir-306 Drosophila pseudoobscura miR-306 stem-loop CACUUUGCCGGCUCAGGUACUUAGUGACUCUCAAUGCUUUCGACAUCUUGAGAGUCUCUCUGUGCCUGCACUGGCGGUGG 11 16347 MI0001352 dps-mir-307 Drosophila pseudoobscura miR-307 stem-loop UGUCUUGCUUUGACUCACUCAACCUGGGUGUGAUGUUAUUUCGAUAUGGUAUCCAUCACAACCUCCUUGAGUGAGCGAUAGCAGGAUA 11 16348 MI0001353 dps-mir-308 Drosophila pseudoobscura miR-308 stem-loop CUCGCAGUAUAUUUUUGUGUUUUGUUGUGUCUGAAACGCAAAUCACAGGAUUAUACUGUGAG 11 16349 MI0001354 dps-mir-309 Drosophila pseudoobscura miR-309 stem-loop AUUAUACGAUAAACUUUGUUCAGUUUUGCCAACUUGCUUGCAGCACUGGGUGAAGUUUGUCUUAUAAU 11 16350 MI0001355 dps-mir-314 Drosophila pseudoobscura miR-314 stem-loop UCGUAACUUGUGUGGCUUCGAAUGUACCUAGUUGAGGAAAACUCCGAAAUGGAUUUUGUUACCUCUGGUAUUCGAGCCAAUAAGUUCGG 11 16351 MI0001356 dps-mir-315 Drosophila pseudoobscura miR-315 stem-loop CACUUAUCUAUUUUUGAUUGUUGCUCAGAAAGCCCUUAUAAUUAACCAGUUGGCUUUCGAGCAAUUAUCAAAGCCAAAUAAGUG 11 16352 MI0001357 dps-mir-316 Drosophila pseudoobscura miR-316 stem-loop AAAUUCUAGUCGAUUUGUCUUUUUCCGCUUACUGGCGUUUUAUUCGAUCAACGACAGGAAAGGGAAAAAGGCGUAUUUACUAUGAGUUU 11 16353 MI0001358 dps-mir-317 Drosophila pseudoobscura miR-317 stem-loop UGCAACUGCCGUUGGGAUACACCCUGUGCUCGCUUUGAAUAUGGUGCAAGCAAGUGAACACAGCUGGUGGUAUCCAAUGGCCGUUCUGCA 11 16354 MI0001359 dps-mir-318 Drosophila pseudoobscura miR-318 stem-loop UUUAUGGGAUGCACCAAGUUCAGUUUUGUCACAUUUCGAGCAUCACUGGGCUUUGUUUAUCUCAUAAG 11 16355 MI0001360 dre-mir-7b Danio rerio miR-7b stem-loop UGAACGCUGGCUUGCUUCUGUGUGGAAGACUUGUGAUUUUGUUGUUGUUAGUUAGAUGAAGUGACAACAAAUCACGGUCUGCCCUACAGCACAGGCCCAGCAUC 12 16356 MI0001361 dre-mir-7a-1 Danio rerio miR-7a-1 stem-loop UGUGGAAGACUAGUGAUUUUGUUGUUGUUUCUUCUGCUUUCUGACAACAAGUCACAGUCUACCUCAGCGAGCGGGCCCU 12 16357 MI0001362 dre-mir-7a-2 Danio rerio miR-7a-2 stem-loop UUUUGGGCAUUAUGGAAGACUAGUGAUUUUGUUGUUGUGACGUCAUCAGUACUGACAACAAGUCACAGUCUGCCUCAGUGACCAGAAUCCACUCGUC 12 16358 MI0001363 dre-mir-10a Danio rerio miR-10a stem-loop UGUCUGUCAUCUAUAUAUACCCUGUAGAUCCGAAUUUGUGUGAAUAUACAGUCGCAAAUUCGUGUCUUGGGGAAUAUGUAGUUGACAUAAACACAACGC 12 16359 MI0001364 dre-mir-10b-1 Danio rerio miR-10b-1 stem-loop GUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGAAAAAAUAACAUUCACAGAUUCGAUUCUAGGGGAGUAUAUGGUC The miR-10b sequence described in [1] is offset by 2 nt with respect to that cloned in mouse (MIR:MI0000221). 12 16360 MI0001365 dre-mir-34 Danio rerio miR-34 stem-loop CUGCUGUGAGUGGUUCUCUGGCAGUGUCUUAGCUGGUUGUUGUGUGGAGUGAGAACGAAGCAAUCAGCAAGUAUACUGCCGCAGAAACUCGUCACCUU 12 16361 MI0001366 dre-mir-181b-1 Danio rerio miR-181b-1 stem-loop CAUGUACGCACCUUCAGUUCUUCAAAGGUCAUAAUCAACAUUCAUUGCUGUCGGUGGGUUUAGUCUUGUAACAGCUCUCUGAACAAUGAAUGUAACUGUGGCCCAGAUU 12 16362 MI0001367 dre-mir-181b-2 Danio rerio miR-181b-2 stem-loop CUAAUGACUGCAAUAAACAUUCAUUGCUGUCGGUGGGUUUCUAAUAGACACAACUCACUGAUCAAUGAAUGCAAACUGCGGUGCAA 12 16363 MI0001368 dre-mir-182 Danio rerio miR-182 stem-loop GUAUUUGGCAAUGGUAGAACUCACACUGGUGAGGUAGUCAGAUCCGGUGGUUCUAGACUUGCCAACUA 12 16364 MI0001369 dre-mir-183 Danio rerio miR-183 stem-loop GACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAAAGCACACUAUCAGUGAAUUACCAAAGGGCCAUAAACAGAGCAGAGAAAGAACCACG 12 16365 MI0001370 dre-mir-187 Danio rerio miR-187 stem-loop UGACCUGUGGCUGGGCCAGGGGCUGCAACACAGGACAUGGGAGCUGUCUCUCACUCCCGCUCGUGUCUUGUGUUGCAGCCAGUGGAACG 12 16366 MI0001371 dre-mir-192 Danio rerio miR-192 stem-loop CUAGGACACAGGGUGAUGACCUAUGAAUUGACAGCCAGUGUUUGCAGUCCAGCUGCCUGUCAGUUCUGUAGGCCACUGCCCUGUU 12 16367 MI0001372 dre-mir-196a-1 Danio rerio miR-196a-1 stem-loop CGCGCGGCUGGUGCGUGGUUUAGGUAGUUUCAUGUUGUUGGGAUUGGCUUCCUGGCUCGACAACAAGAAACUGCCUUGAUUACGUCAGUUCGUCUUCAUCAAGGGC 12 16368 MI0001373 dre-mir-199-1 Danio rerio miR-199-1 stem-loop UCCUGCUCCGUCAUCCCAGUGUUCAGACUACCUGUUCAGGAUCAUACUGGUGUACAGUAGUCUGCACAUUGGUUAGACUGUGCAUGG 12 16369 MI0001374 dre-mir-199-2 Danio rerio miR-199-2 stem-loop GGAGUUUUUGUGGACGCCCGUCCCGCCUGCCCAGUGUUCAGACUACCUGUUCAGGAAUUAGUGUUUGUACAGUAGUCUGCACAUUGGUUAGGCUGG 12 16370 MI0001375 dre-mir-199-3 Danio rerio miR-199-3 stem-loop CCUCCCCCUCGCCUGCCCAGUGUUCAGACUACCUGUUCAUCAUGCUGCAGCUGAACAGUAGUCCGCACAUUGGUUAGGCUGGGCUGGGACACACACAC 12 16371 MI0001376 dre-mir-203a Danio rerio miR-203a stem-loop GUGUUUGGGUCUCUUCUGGUCCCUCUGGUGCAGUGGUUCUUAACAGUUCAACAGUUCUAUCUCAAAAUUGUGAAAUGUUUAGGACCACUUGACCAG 12 16372 MI0001377 dre-mir-204-1 Danio rerio miR-204-1 stem-loop UCAUGUGACCUGUGGACUUCCCUUUGUCAUCCUAUGCCUGGAGUAAUAGAGGGGGCUGGGAAGUCAAAGGGACGCUCAGGCGUCAUCAUUCGC 12 16373 MI0001378 dre-mir-205 Danio rerio miR-205 stem-loop AAACUACUGUGCAUUCUAUCCUUCAUUCCACCGGAGUCUGUGUAGUUGUUCAAUCAGAUUUCAGUGGUGUGAAGUGUAGGAAACACGGA 12 16374 MI0001379 dre-mir-210 Danio rerio miR-210 stem-loop GCAGGUAAGCCACUGACUAACGCACAUUGCGCCUAUUCUCCACUCCACUGUGCGUGUGACAGCGGCUAACCAG Lim et al. cloned this miRNA from D. rerio [1]. The 3' end of the mature sequence was not determined, but was later analysed in a study of many clones in mouse [2]. The most common cloned length is shown here. 12 16375 MI0001380 dre-mir-181a-1 Danio rerio miR-181a-1 stem-loop GUUUGCCUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGAGCUAAAUGGAAAAAAACCAUCGACCGUUGAUUGUACCCUGCGGC 12 16376 MI0001381 dre-mir-214 Danio rerio miR-214 stem-loop UGACUGAGAGCGUUGUCUGUCUGCCUGUCUACACUUGCUGUGCAGAACUUCCUGCACCUGUACAGCAGGCACAGACAGGCAGACAGAUGGCAGCCCGCCU 12 16377 MI0001382 dre-mir-216a-1 Danio rerio miR-216a-1 stem-loop GCUGAUUUUUGGCAUAAUCUCAGCUGGCAACUGUGAGUAGUGUUUUCAUCCCUCUCACAGGCGCUGCUGGGGUUCUGUCACACACAGCA 12 16378 MI0001383 dre-mir-217-1 Danio rerio miR-217-1 stem-loop AUGAGAACUUUCUGAUGUUGGUGAUACUGCAUCAGGAACUGAUUGGAUGAUAUUCAGGAGCCAUCAGUUCCUGAUGCACUCCCAUCAGCAUCGAAAGA 12 16379 MI0001384 dre-mir-219-1 Danio rerio miR-219-1 stem-loop AGGGUCCCAGAGAUUGAUUGUCCAAACGCAAUUCUUGUAACAUAUAAUAUAAAUCCAAGAAUUGUGCCUGGACAUCUGUUGCUGGAGAUUC 12 16380 MI0001385 dre-mir-219-2 Danio rerio miR-219-2 stem-loop UGAUUGUCCAAACGCAAUUCUUGUGAAAUGUCGAGCGAUCAGUCGAGAAUUGUGCCUGGACAUCUGUUGCUGGAGGCUCC 12 16381 MI0001386 dre-mir-220 Danio rerio miR-220 stem-loop GACAGUGUGGCGUUGUAGGGCUCCACAACCGUAUCGGACACUUUGGGAGACGGCACCACACUGAAGGUGUUCAUGAUGCGGUCCGGAAACUCCUCGCGGAUCUUACUGAUG 12 16382 MI0001387 dre-mir-221 Danio rerio miR-221 stem-loop GUCGUGAACCUGGCAUACAAUGUAGAUUUCUGUGUGGUACUAUCUACAGCUACAUUGUCUGCUGGGUUUCAGGCCAGCAGAAUAAUUCUGCUC 12 16383 MI0001388 dre-mir-222 Danio rerio miR-222 stem-loop GCCGGUGGCUUGUUCGGGUGCUCAUGAGAUGCUCAGUAGUCAGUGUAGAUCCUGUGUCACAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUUUUCUGCU 12 16384 MI0001389 dre-mir-223 Danio rerio miR-223 stem-loop CUCUCCUCCUGAUCUAGACUCUUCUCUUAGAGUAUUUGACAGACUGUGGUUGACACUCGAUCUAAAGGGGUGUCAGUUUGUCAAAUACCCCAAGAGAGG 12 16385 MI0001390 cbr-mir-353 Caenorhabditis briggsae miR-353 stem-loop GAAGAUAUGCAAAAUAAAAAGCAUGGGCACAAGUAUCAUGUGUUGGUAUCAUUGUUUCAAGUUAUUUGUUGCUAUGGUAUCGAUAAGCAUGCUACGUGUGAAGUGCGACAA This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the confirmed elegans sequence at 3 positions. 2 16386 MI0001392 cbr-mir-64 Caenorhabditis briggsae miR-64 stem-loop UCAAGAAUCCUCGGCCUCGCCGACCAUGACACUGAAGCGUGUACGGAUGGAAAGUUGAAGCCUUCCGUUCCGCUAGUGUGCCAUGCAACGGCGAGUGCCUUGGCACUUUG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 3 positions. 2 16387 MI0001394 cbr-mir-231 Caenorhabditis briggsae miR-231 stem-loop CUAGCACCUCAAUGUUGUUCUGUCUGUUUCCAUAGCUUAUAUUGUAAGGUACUUAUAAGCUCGUGAACAACAGGCAGGACAACUGGAAGUGGUGUUUUUUUUCA This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions. 2 16388 MI0001395 cbr-mir-356 Caenorhabditis briggsae miR-356 stem-loop CCUCAUCCAACCAAUGUGGAUGAGCAACGCGAACAAAUCCUCUUAUAAGAGAUUUGCCACGCCGCCGCUCACCACACUGGCUUUCAGAAGGUGCCAGGAAUCAGAAGACGAG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at the two terminal positions. 2 16389 MI0001396 cbr-mir-83 Caenorhabditis briggsae miR-83 stem-loop GCAGAAGGCACCACUCGAAAAAACUGAGUUUAUGUGUGUACUUGACGGCGAUCAGAGCAACGAUCUAGCACCAUAUAAAUUCAGUGUUUUCGUGGACAGAGAGCCAAGUUU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions at the 3' end. 2 16390 MI0001397 cbr-mir-246 Caenorhabditis briggsae miR-246 stem-loop GAAAAGUCCUAGUGAUAAAACAGCACCUGGCCAAUAUUAUGUAAUAUCAGAAGCAAAUUGAUUAUUACAUGUAUUGGGUAGGAGCUGUUCAAGCUAUGGUUAAAUGGGU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions. 2 16391 MI0001398 cbr-mir-51 Caenorhabditis briggsae miR-51 stem-loop CGUCAUCGAAUCUCAACGUCAAACGGAUCCGAAGACGUCCAUCUACCCGUAGCUCCUUGCCAUGUUACUGGUAAAAGUGAACAUGGAAGUUGGUCCGGGUACAUGGCCAGUAGGAGUUAUGAAGACGUGUUGAGGUUUCAAGAUU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions. 2 16392 MI0001400 cbr-mir-357 Caenorhabditis briggsae miR-357 stem-loop CUACAUCAGAAGAGACAGCGAAUCCCGGCAAUCACCGUGCAUUUUCAUCUACCAGAGGCACUAAUGAAAAUGCCAGUCAUUGACGGAAUUCGUUGAAUCUGGAAUUAAAGCAU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16393 MI0001401 cbr-mir-253 Caenorhabditis briggsae miR-253 stem-loop AACAUUUUUCGAGUUUCAGUCCUUCUCACACACCUCACUAACACUAACUACAGAUUUCUAGAUGUUAGUAGGCGUUGUGGGAAGGGCGGAGAUGACGAAUACUUUGUGCA This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions. 2 16394 MI0001402 cbr-mir-70 Caenorhabditis briggsae miR-70 stem-loop AAAACGGAUGUAUCUCUAGGAACAGCCAUCAUGUAAGACAUUUCUAACUGAAAGAUGUAAUACGUGAUUGGUGUUCCCAGAGUUUACCGUUUCCUUCUUUUAUUUUUCCAAA This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16395 MI0001403 cbr-mir-358 Caenorhabditis briggsae miR-358 stem-loop ACUCCCCAUUCGGAUUGAUACCCGACUUCCGGAUACCAAAUGUCAUAUCCAACUCGUUUCGUCAAUUGGUAUCCUUAGUCGUGGUCUCAAUCUGUACACGGCGAGAGUGUUGU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16396 MI0001404 cbr-mir-61 Caenorhabditis briggsae miR-61 stem-loop UACUUGAUCGGUGUCUCGAGCCGAGUUAAGGCUAAUAGUCCUUCCGGUGUAUGGUAAUGACUAGAACCUUGACUCUGCUCGAGUUACUGAGCUCUUUGACCCCGCCC This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16397 MI0001405 cbr-mir-360 Caenorhabditis briggsae miR-360 stem-loop UUCCAUAAAAAAGCGCCUAGGGUUUUGUGACCGUUGUUACGGUCAAUUCAUGUCUGACACAAUGACCGUAAUCCCGUUCACAACACCUUGUGUGGCUUGAAUAAUGAAAUU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. 2 16398 MI0001406 cbr-mir-239a Caenorhabditis briggsae miR-239a stem-loop GAGAAUGACGAUCCAAGUUUAUGCGAUUUUUGUACUACAAUUAGGUACUGGACACCAGCAGCGAGUGUAUCCAGAAUCUAUACUAGUACAAAAAUAGCUAACAGGAUUAAGAU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions. 2 16399 MI0001407 cbr-mir-249 Caenorhabditis briggsae miR-249 stem-loop AUUUGUUAUUUUGUGCGCCCUCAAUGCUACUAGCAACGCUCAAAAAUCACUGUACGACAAAUGACUAUAUUUUGUCACAGGAUUUUUGAGUGUUGCUAGUCGGAGAAGG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions. 2 16400 MI0001408 cbr-mir-240 Caenorhabditis briggsae miR-240 stem-loop CGCUGUCUUUAUUUUGAAACUGUUUUCAAAUCGAGAAUUUCGAGGCCUGAAUGCAAGAACCGUUUUGAGCAUACUGGCCUCCAAAUUUUCGCUUUGAAUUUUAGUUACGCGUG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 positions. 2 16401 MI0001409 cbr-mir-254 Caenorhabditis briggsae miR-254 stem-loop CUCCACUCUAUGCGGGUUGCCGUAUACAGAAGCAUCGAUUUUCACACGCCAUGAUGCGCCUGUGCAAAUCUUUUGCAACUGUAUACGGCGAUUUAGCAGACCAUAUUG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16402 MI0001410 cbr-mir-239b Caenorhabditis briggsae miR-239b stem-loop UAGGACAGACAUGCAAUUUUUGUACUGCACAAAAGUACUGACUAUUUCUCAGCGCUUUUGUCCAGUGCAAGAAUGGCAAGAGCUGGUCCAUUUUUUUAGGGAUUAAACAAUU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 1 position. 2 16403 MI0001411 cbr-mir-62 Caenorhabditis briggsae miR-62 stem-loop CCCUUGCAACUCGGCUAUUAUAAGGUGGGUUAGAUCCCAUAUCCUUCCGCUUGAUGGAAAUGAUAUGUAAUCUAGCUUACAGGUCUCUCAACAUCUCCAAGACGGUGCUA This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. 2 16404 MI0001412 cbr-mir-55 Caenorhabditis briggsae miR-55 stem-loop AAAAUUGAAUCGUCACAAAGGGGGACUCGGCGGAAAAUAUGGUGGUAUACUACACAGUGAAUAGAUAUACCCGUAUAUUUUUCUGCCGAGCCCCUCCACGACAUCAAUAAGG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 3 positions. 2 16405 MI0001413 cbr-mir-84 Caenorhabditis briggsae miR-84 stem-loop UUGCUAUAUAUUCAGCCGUACUGUCUGAAAAUAACAUCUGAGGUAGUUUGCAAUGCUGUCGACGUAACUGAAAAGUCAACAUCAUUCCAACUUCCUCGGCUGUUCAAAAGGCUA This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16406 MI0001414 cbr-mir-354 Caenorhabditis briggsae miR-354 stem-loop CCAGAGCCGACUAAGUGCCUUGGUGCGGCUACAGACGGGUAUCCGGCUCGAUGUUCAUACACCGCGACUCUUUCCUUUUACCUUGUUUGUUGCUGCUCCUUUUGGUUUU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. 2 16407 MI0001415 cbr-mir-35 Caenorhabditis briggsae miR-35 stem-loop UAGUCCAGUUCUGGACAUUCGCGGGUUUUUUCCUUCGGUGAUAUUCGAAGAAUCGCUAUCACCGGGUGAAAACUUGCAAGUGUCUUGCUUCGACUGGUCAUUUUGCUUGUAU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16408 MI0001416 cbr-mir-36 Caenorhabditis briggsae miR-36 stem-loop AUUCCAAUUGAAACCUUCGGACCAUUGUGAAUUUUUGCUGCGGUGUUACAACUAACAUCUGUAUCACCGGGUGAAAAUUCGCAAUGGUCCGAUGGGUAUUCAUGUGG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 2 teminal 3' end positions. 2 16409 MI0001418 cbr-mir-38 Caenorhabditis briggsae miR-38 stem-loop AUUCAUGUGGAGCCUGGACCUGUACCGGGUUCUCUUUGUGGUGAUAUGACAACUCAUAACCAUUCCUUAUCACCGGGAGACAACCUGGUAUAGGUCCAGCGACUCUGCUGGAUGG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 4 positions. 2 16410 MI0001419 cbr-mir-39 Caenorhabditis briggsae miR-39 stem-loop AUAUUCCAGAGAUGCAGGGAGCCCAACUGGUUCUCACUGCAGUGAUAAGCUAUGUUACAGUCUAUCACCGGGUGAAAAACGGUUAGGCUCUUUAAGCAUCUCUGUAUCCCCUG This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 5 positions at the 3' end. 2 16411 MI0001420 cbr-mir-40 Caenorhabditis briggsae miR-40 stem-loop CUCUGUAUCCCCUGCCCUCACCCCAGCGGGUUUUCAUCGCAGUGAUAUGACGCAUUCAAACCAUUUCUUAUCACCGGGUGUCAAUCAGCUAGGGUGUGGGCGCGGGUAUCCACAGA This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 3 positions. 2 16412 MI0001421 cbr-mir-41 Caenorhabditis briggsae miR-41 stem-loop UGAAAGCAGGUCCCAAAUGCCUUGGUGGUUUUUCGCCGUAGUGAUACAACAUCGAAGCCAUACGAUAUCACCGGGUGAAAAACUCCCAAGGUCGGGACAUUUUUAUUUGU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. The mature sequence differs from the elegans sequence at 3 positions. 2 16413 MI0001422 cbr-mir-355 Caenorhabditis briggsae miR-355 stem-loop CUACUGAUUAUGAUUAGUCAGCAAUCGGAUGGUUUGUUUUAGCCUGAGCUAUGUGUUAUUGCAUAUUCAUAGCUACUUGCUAAAACAUACCAAUCGAGUUGACUGACAU This miRNA is the predicted homologue of a verified C. elegans miRNA [1]. Its expression has not been verified in C. briggsae. 2 16414 MI0001423 rno-mir-421 Rattus norvegicus miR-421 stem-loop CACACUGUAGGCCUCAUUAAAUGUUUGUUGAAUGAAAAAAUGAAUCAUCAACAGACAUUAAUUGGGCGCCUGCUCUGUG 8 16415 MI0001424 ath-MIR413 Arabidopsis thaliana miR413 stem-loop GAUCCAUAGUUUCUCUUGUUCUGCACAUCCACUAACUUCAGGAACCAUGUCCCAGUUUCAGGUUAGAUCAAGUGGGAAAACAAAUGGAAGAUUGUGGCUAUGCAGAAACUGGAACUAUUCGUC The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16416 MI0001425 ath-MIR414 Arabidopsis thaliana miR414 stem-loop UCAUCAUUAUCAUCAUCAUCAUAUUCAUCUUCAUCAUCAUCGUCAUCAUCAUCAUCAUCAUCGUAUGAGAAGAUAGAGAAGAGUGAGAGUAUGAGAUUUGAGUUGAGA The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16417 MI0001426 ath-MIR415 Arabidopsis thaliana miR415 stem-loop AGAACAGAGCAGAAACAGAACAUAUAUUCUCUGUCUUUUUUUGUGGCAAAAGUAAAUGGCGAGAAGACAACUCUUUUACCAUCGAAUGUUCUUGGUUUUAGCUCUUCUCU The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16418 MI0001427 ath-MIR416 Arabidopsis thaliana miR416 stem-loop CGAAACUGAACCCGGUUUGUACGUAUGGACCGCGUCGUUGGAAUCCAAAAGAACCAGGUUCGUACGUACACUGUUCAUCG The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16419 MI0001428 ath-MIR417 Arabidopsis thaliana miR417 stem-loop AAAUAUAUUCAAAAGUGGUCAAAACACGUCACUAUUUCCUUUAUGUUUUCCCCUUAUUGAUGGAAAUGGUUAAACAUGAAGGUAGUGAAUUUGUUCGAAUAAUAUGUUGAUAUAUUU The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16420 MI0001429 ath-MIR418 Arabidopsis thaliana miR418 stem-loop UUUAAAUUUAGAAUCUAGCGUAAAAAGAAAAUCCGAAUCAGGAACUCUAAUGUGAUGAUGAACUGACCUUAGA The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16421 MI0001430 ath-MIR419 Arabidopsis thaliana miR419 stem-loop AAAUUAUGAAUGCUGAGGAUGUUGUUAUUACGAGCAAUGAGAUGUCUUUUUUUAAAAAAAAAAAUUUGGUUGCUUGCUUGCAAGAGGACAUCUUAGCAUCAAAUUU The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16422 MI0001431 ath-MIR420 Arabidopsis thaliana miR420 stem-loop UUCUAAACUAAUCACGGAAAUGCAAAAAUUGGAUACUACACUAUCAACUUUUUUCUUUUGUUCUCUUUAUCUCGUGAAUUUCCAUUUAAUGAGUUUAGUU The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16423 MI0001433 osa-MIR413 Oryza sativa miR413 stem-loop ACGGCUAGUUUCACUUGUUCUGCACAUGUGGAAAACAGUUAGCACUCUAUCUGAGUCGUAAUCCCAAGCAUUAUUACAGAAAAAUAAAAGUGCAUUACAAAGAAGUCAGACAU The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16424 MI0001434 osa-MIR414 Oryza sativa miR414 stem-loop GUUGCCGCUGCCGUCAUCCUCAUCAUCAUCGUCCUUGCAUGAAACCGCCAGCAAAUCCUUGCGCGGGGGGAGGGGGAAGGGGAGGGGGAGGGGUCGGAGGGGCGGC The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16425 MI0001435 osa-MIR415 Oryza sativa miR415 stem-loop AGAGAGUUUUACAGAGCAGAAACAGAACAGAAGCAGAGCAGCUGUGUAUACACAACACUGCAACUAUCCCUAUCACUGAGGGACAAAGCAGAAACCAGCUGAGCUCUCCUUGGCUGUCUGUACAAGCAAAGCAAAAGCUUCAAG The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16426 MI0001436 osa-MIR416 Oryza sativa miR416 stem-loop GAUGAGGAGUAUGAAUAGAAAGAAUUAGAAAAGCUACGGUGGUUGUUGAGCAGCGCCAAAAAAAACUCUGCUUUGCUCUGUUUCUGUGUUCGUCCGUACACUGUUCAUC The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16427 MI0001437 osa-MIR417 Oryza sativa miR417 stem-loop UUUGGUACAAAUUUGAAUUCUUAAAUCUCUUAUAUUAUGAUAUGAAUGUAGUGAAUUUGUUCCAUG The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16428 MI0001438 osa-MIR418 Oryza sativa miR418 stem-loop CGUUAGCUGUCUGCAAUCUGCCAUUCUUAUCAUCGCACAUUUAAUGUGAUGAUGAAAUGACGCAUUUCUGUCAAGUCUCACC The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16429 MI0001439 osa-MIR419 Oryza sativa miR419 stem-loop UCUUCUCUGUUCUCUGUGAUGAAUGCUGACGAUGUUGUAGAUGUGAACUUUUUUUUUCUCUGUUGUCUAUGAUGAAUGCUUGUUGUCCUGGAGAUAUUGUAGA The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16430 MI0001440 osa-MIR420 Oryza sativa miR420 stem-loop UUCCAACUAAAUUAAUCACGGAAAUGAUCUUUGAAUUGUUAAAAAUACUUCCAAUGCUCAAAUAAUUCCAAGAAAAAUCUUGAAAAUACUUGGACACUCAAAGUACUUAACAAAAUUAUAAUUAGACCAUUUAAUGAUUAAUUUAAUAUGUGGGU The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16431 MI0001441 ath-MIR426 Arabidopsis thaliana miR426 stem-loop GAGGGGGGACAAUUUUUGGAAAUUUGUCCUUACGGGUAGUACUAGAAUACUUGUCCACAUGACGAUUUGAAAUAACCGAAGGACAUAUGAGGAAAAAAUAAAAUUAAACUC miR426 was predicted and validated using procedures described in [1], but the sequence itself was not reported (Takashi Soyano, pers. comm.). The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 1 16432 MI0001442 osa-MIR426 Oryza sativa miR426 stem-loop UCGCAUUUUUGGAAGUUUGUCCUUACGAAAAGGCUAGCAAAAUUUAGUGAGGCAAUGAAUGAAAAGACAUCUAGCGAUACUAAAAUUAAAAUUUGAUAACCCUAAAAUGUGUCAAACUUUGGCAUUUCGUGAAAAUCCUUCAAUGCGA The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 7 16433 MI0001444 hsa-mir-422a Homo sapiens miR-422a stem-loop GAGAGAAGCACUGGACUUAGGGUCAGAAGGCCUGAGUCUCUCUGCUGCAGAUGGGCUCUCUGUCCCUGAGCCAAGCUUUGUCCUCCCUGG miR-422a is an predicted paralogue of miR-422b (MIR:MI0001443), later verified in human [2]. 5 16434 MI0001445 hsa-mir-423 Homo sapiens miR-423 stem-loop AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAACCCGCGC miR-423 (renamed miR-423-3p here) is expressed in human promyelocytic leukemia (HL-60) cells [1]. The level of expression was shown to be up-regulated 48 hours after TPA-induction. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 16435 MI0001446 hsa-mir-424 Homo sapiens miR-424 stem-loop CGAGGGGAUACAGCAGCAAUUCAUGUUUUGAAGUGUUCUAAAUGGUUCAAAACGUGAGGCGCUGCUAUACCCCCUCGUGGGGAAGGUAGAAGGUGGGG This hairpin precursor expresses a 5' arm product, named miR-424, in human promyelocytic leukemia (HL-60) cells [1]. The level of expression of miR-424 was shown to be up-regulated 48 hours after TPA-induction. The sequence is orthologous to the experimentally verified rat miR-322 locus (MIR:MI0000589), which expresses its mature product from the 3' arm of the hairpin. The human miR-424 hairpin does not appear to contain the miR-322 sequence. 5 16436 MI0001447 mmu-mir-425 Mus musculus miR-425 stem-loop AAAGUGCUUUGGAAUGACACGAUCACUCCCGUUGAGUGGGCACCCAAGAAGCCAUCGGGAAUGUCGUGUCCGCCCAGUGCUCUUU Poy et al. identified a mature miRNA from the 3' arm of this hairpin, and named it miR-425 [1]. Landgraf et al. later showed that the 5' product is the predominant one [2]. The 3' product is renamed miR-425* here. 6 16437 MI0001448 hsa-mir-425 Homo sapiens miR-425 stem-loop GAAAGCGCUUUGGAAUGACACGAUCACUCCCGUUGAGUGGGCACCCGAGAAGCCAUCGGGAAUGUCGUGUCCGCCCAGUGCUCUUUC The mature sequences were previously named miR-425-5p and miR-425-3p in [2] and here. Landgraf et al. show that the 5' product is the predominant one [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 16438 MI0001449 xla-mir-427 Xenopus laevis miR-427 stem-loop AGCACCCAAAACGGGGCUCUCUCUUGUGACUGAAUUAUGAUGAGAAAGUGCUUUCUGUUUUGGGCGUU 13 16439 MI0001450 xla-mir-428 Xenopus laevis miR-428 stem-loop CACGUCGGCCUAACUGGAGCCCUGUCUCAUUGCAGCUGUGAGUAAGUGCUCUCUAGUUCGGUUGCUGAGUG 13 16440 MI0001451 xla-mir-429 Xenopus laevis miR-429 stem-loop UGGAUGUCUUACCAGACAUGGUUAGAUCUGGAUGCAUCUGUCUAAUACUGUCUGGUAAUGCCGUCCAU 13 16441 MI0001452 xla-mir-19b Xenopus laevis miR-19b stem-loop GCUCCUGUCAGUUUAGCUGGUUUGCAUCAGCUGGCUACUGUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGC 13 16442 MI0001453 xla-mir-20 Xenopus laevis miR-20 stem-loop GCAGUUCCAAAGUGCUCAUAGUGCAGGUAGUUGUAUUCAUGUUCUACUGUAAUAUGGGCACUUACAGUACUGCU 13 16443 MI0001454 xla-mir-18 Xenopus laevis miR-18 stem-loop CCUUGUGUUAAGGUGCAUCUAGUGCAGUUAGUGACAUAGCGUAGCAUCUACUGCCCUAAAUGCUCCUUUUGGCACAGGG 13 16444 MI0001455 xla-mir-133a Xenopus laevis miR-133a stem-loop CAGUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCACCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGGAUUGCAUUG 13 16445 MI0001456 zma-MIR156d Zea mays miR156d stem-loop AGGCUCUCGAGAGAUUGACAGAAGAGAGUGAGCACACGGCGCGACGAACGACAUAGCAUGUAUGCCGUCCUCGCCGCGUGCUCACUUCUCUUUCUGUCAGCCUCUUUCUCUCGAUGGCU 14 16446 MI0001457 zma-MIR156f Zea mays miR156f stem-loop UGGCUGCUAGAUGGUGUGGCUGACAGAAGAGAGUGAGCACGCAUCGGCCAGACUGCAUCUAUAUACGGCUGCCCCAAAGCGACGGAUCGAUGGAUGCCUAGCCUAGGCCUAGGCGCAGCUGCUGUUGCGUGCUCACUUCUCUUUCUGUCAGCUCUCUCUCUCAUCCU 14 16447 MI0001458 zma-MIR156g Zea mays miR156g stem-loop GGCUGACAGAAGAGAGUGAGCACGCAUCGGCCAGACUGCAUCUAUAUACGGCUGCUCCUGGCGAAUGGAUAGAUGCCAAGGCGCAGCUGCUGUUGCGUGCUCACUUCUCUUUCUGUCAGCU 14 16448 MI0001459 zma-MIR156b Zea mays miR156b stem-loop AGAUGAGUUUUUUGAAGGUUUGACAGAAGAGAGUGAGCACACACGGUGGUUUCUUACCAUGAGUGUCAUGCUAGGAGCUGUGCGUGCUCACCCUCUAUCUGUCAGUCACUCAUCAAGCCCAUCU 14 16449 MI0001460 zma-MIR156c Zea mays miR156c stem-loop GGUGGAGGAGAGGUGAAAGCUGACAGAAGAGAGUGAGCACACAUGGUGCCUUUCUUGCAUGAUGUAUGAUCGAGAGAGUUCAUGCUCGAAGCUAUGCGUGCUCACUUCUCUCUUUGUCAGCCAUUAGAACUCCUCUAUC 14 16450 MI0001461 zma-MIR156e Zea mays miR156e stem-loop CCGGCGGGCGCGCGCGCGGUGACAGAAGAGAGUGAGCACACGGCCGGUGUGACGGCACCGGCGCGGAUGUGCCGUCGCGGCCGCGUGCUCACUGCUCUCUCUGUCAUCCGCUGGCACACCCUCACG 14 16451 MI0001462 zma-MIR156a Zea mays miR156a stem-loop UUCGUUCCGUGGCUAACUGACAGAAGAGAGUGAGCACACAGCGGGCAGACUGCAUCGAUCGAUCUGCAUCCGAGACGGCGCACGUACGAAUGAUGAUGCAGCUGCUGCUGCGUGCUCACUUCUCUCUCUGUCAGUCCUCUAGCUGCUACGGC 14 16452 MI0001463 zma-MIR156h Zea mays miR156h stem-loop CGGGCUCGCGCGCGCGCGGUGACAGAAGAGAGUGAGCACACGGCCGGGCGUGACGGCACGUGCCGUCGCGGCCGCGUGCUCACUGCUCUUUCUGUCAUCCGCUGGUCCGGGCCUC 14 16453 MI0001464 zma-MIR156i Zea mays miR156i stem-loop CGCGGCGGGCGGUGACAGAAGAGAGUGAGCACACGGCCGGGCGGAACGGCACCGGCGGAUGGUGCCGUCGCGGACGCGUGCUCACUGCUCUAUCUGUCAUCCACUCUCUCCCCCGCU 14 16454 MI0001465 zma-MIR160a Zea mays miR160a stem-loop UUGUGUGCGUGCCUGGCUCCCUGUAUGCCACACAUGUAGCGCCCAACCCAGAUGYUAAGGUUGCCUGCUGUGGGUGGCGUGCAAGGGGCCAAGCAUGCAUCCAU 14 16455 MI0001466 zma-MIR160c Zea mays miR160c stem-loop AGGAUGUGCCUGGCUCCCUGUAUGCCACUCAUCUAGAGCAACGACAGCUUGGUAGGGUUGCCUAUAAGAUGGAUGGCGUGCAUGGUGCCAAGCAUAUCUC 14 16456 MI0001467 zma-MIR160d Zea mays miR160d stem-loop GGCCAGGGGCGGGAUCGAUAUGCCUGGCUCCCUGUAUGCCACUCGCAUGGCUGCCAACUCAUCAUGCAUACACUGCUAGCUAGUCGUUGGCUCCACUGCGGAUGGCGUGCGUGGAGCCAAGCAUGACCGAUCAUCUCCUCCU 14 16457 MI0001468 zma-MIR160b Zea mays miR160b stem-loop CGAUCGGCUCGUGUCGUGUGUGCCUGGCUCCCUGUAUGCCACACAUGUAGCCAACCCGUGGCGUGAUUGGAUGCUGUGGGUGGCGUGCAAGGAGCCAAGCAUGCAUAACAGGCCAUGAUCA 14 16458 MI0001469 zma-MIR164a Zea mays miR164a stem-loop CAGUGACAAGGACCACGCUGGAGAAGCAGGGCACGUGCAUGCGCAUACCAUAUAGCUAGACGAUGUUCUCUCUCGCUCCGCUCGACCAAGCUUCAUGUAUGGAUGGGUACGCACGCACGUGUUCUCCUUCUCCAUCGAGGUCUUUCUCACUU 14 16459 MI0001470 zma-MIR164d Zea mays miR164d stem-loop UGAGUGAGAAGGACCACGCUGGAGAAGCAGGGCACGUGCAUGCACAUACGCCAUUCUCGAUCUCUCCUCUCCACCACUACUGCAUCUAGCUAUCUCCAUGGAUGGAUGUACGUAGCUCGGACUGGAUCGAUCGGAGAAGCAAUAAGCUAGCGAGCUCAUGCAUGCUGGCUGUGCACGCACGUGGUCUCCUUCUCCAUCACGGUUCUUUCUCACUUC 14 16460 MI0001471 zma-MIR164b Zea mays miR164b stem-loop UAGACGGUGGCUGUGCGUGGUGGAGAAGCAGGGCACGUGCAUUACCAUCCAAUGCCGCCGGGUGGGUGGGUGGAAUGGAUGGAUGGUUCUUGAUGUGCCCAUCUUCUCCACCGAGCACGAACUGUCUU 14 16461 MI0001472 zma-MIR164c Zea mays miR164c stem-loop UGGCGAGGUGCGCGCGGUGGAGAAGCAGGGCACGUGCAUUCUUUCCGUCGCCGGCCGGCUUGGCAGCGGCCGGCGGCCCGGCUCUCGCAGUCACGCGUACGUCGCCUGAGCGGCGCGCGCGAGAGAGAGAGACACGGCAGGUCGUCGCCGGCGCGGCUAACUGGUGCAGGUGCAGCAGCUAGCUUCUGAAACCCAGCCAGCCAGCCAGCCGGCCGGCCGGCCGAUCGAUGCGUGCAUGUGCCCUUCUUCUCCAUCGGGCACGCCUCGCCU 14 16462 MI0001473 zma-MIR169a Zea mays miR169a stem-loop UAGGCUCGGGGACUAUGGUGCAGCCAAGGAUGACUUGCCGAUCGAUGUGACGCCUCUUGAUCUCGUCGUCGUCAGAUCGUCGCCGAUCAUCGGCAAGUUGUUCUUGGCUACACCGUGGCUCCUGCUCCUG 14 16463 MI0001474 zma-MIR169b Zea mays miR169b stem-loop UAGGCUCGGGGACUACGGUGCAGCCAAGGAUGACUUGCCGAUCUAUCGUCGAUCAACGAGCGACGCCUCUGAUGUCUGAUCUCGACAUCUAUCGUCGUCAGACCAUCAUCAUCUAUCGGCAAGUUGUUCUUGGCUACACCGUGGCUCCUGCUCCUG 14 16464 MI0001475 zma-MIR167a Zea mays miR167a stem-loop UGCUCUUGCGAAUGAGUGAAGCUGCCAGCAUGAUCUAGCUCUGAUUUGGUUGGCACCAUAUUAGCAGGCGUCCACGCACAGCUAGACUAGAGUGGCCUCGCGCGCUCUCGUCUGGUCUGUGUCUCGCUUUGUGCCUGCAAAUCGUUGUUAGAUCAUGCAUGACAGCCUCAUUCCUUCACAAUUCUGGGGC 14 16465 MI0001476 zma-MIR167b Zea mays miR167b stem-loop AGUGCCCAAGAUAAAGGGUGAAGCUGCCAGCAUGAUCUAACGACGGCAUUGCUCUGCUGCUGCAGUGAGGCUUGCGAGUGAUGGUUAGAUCAUGCUGUGACAGUUUCACUCUUUCCCUUUGGGCACA 14 16466 MI0001477 zma-MIR167d Zea mays miR167d stem-loop UGCCCAAGGGAACGAGUGAAGCUGCCAGCAUGAUCUAGCUCUGAGUGAUCACCCGAAAAAGAACAAUAGUUCUAGGUGGUCAUGCCUUGCUAGGUCAUGCUGCUGCAGCCUCACUUCUUCCCGUCGUUGGGCA 14 16467 MI0001478 zma-MIR167c Zea mays miR167c stem-loop UGCCCAAGGGAACGAGUGAAGCUGCCAGCAUGAUCUAGCUCGGAGUGAUCACGCGAGGAGAACAAUAGCUCGAGGUGGUCAUGCCUUGCUAGAUCAUGCUGUGGCAGCCUCACUUCUUCCCGUCCUUGGGCA 14 16468 MI0001479 zma-MIR160e Zea mays miR160e stem-loop AGGGAAUAUGCCUGGCUCCCUGUAUGCCACUCGCACGGCUACCACACCCCGGUGGCCGCUGCGGCUGGCGUGCGAGGUGCCAAGCAUGGCCCCC 14 16469 MI0001480 zma-MIR166a Zea mays miR166a stem-loop UGAGGGGAAUGUUGUCUGGCUCGGGGCCGCCGCCGCCGCUCCUUCCUUCUCUAGUCUCUCUUCUCUCCUAGCAGCUACUCUUCGCUUCCUACUCCUAUCUCGAUCCCUCUCUUCUUCUUCUUCUUCUUCUUCCUCUUCCCCCCUCUCUUGGAUCGAGACCGAGCGGACGGAGACGAGUGGUGUAGAUCUCGGACCAGGCUUCAUUCCCCCCAA 14 16470 MI0001481 zma-MIR162 Zea mays miR162 stem-loop CUGGGCGCAGUGGUUUAUCGAUCUCUUCCUUGCCUUGUGCUGGUCCGGCCGGGAGUGGUGGUUCAAGCGUUUUAUUGUUGCAGCAGCUCGCAAACAACGCGGGAAUCGGUCGAUAAACCUCUGCAUCCAG 14 16471 MI0001482 zma-MIR166h Zea mays miR166h stem-loop GGGGAAUGACGUCCGGUCCGAACGAGCCACGGCUGCUGCUGCGCCGCCGCGGGCUUCGGACCAGGCUUCAUUCCCC 14 16472 MI0001483 zma-MIR166e Zea mays miR166e stem-loop GGGGAAUGUUGUCUGGCUCGAGGUGCAGAAACAUACAGAUCUCAUCGGUCUAGGUUCUUGUCGAUCUCGGACCAGGCUUCAUUCCCC 14 16473 MI0001485 zma-MIR166i Zea mays miR166i stem-loop GGGGAAUGUCGUCUGGCGCGAGACCGUACCAGACGACGUGCUCUCUCGGUCGUCGGACGGUCUCGGACCAGGCUUCAUUCCCC 14 16474 MI0001486 zma-MIR166f Zea mays miR166f stem-loop GGGGAAUGACGUCCGGUCCGAACAAGCCACGGCUGCUGCUGCGCUACCGCCGCGGCUUCGGACCAGGCUUCAUUCCCC 14 16475 MI0001487 zma-MIR166g Zea mays miR166g stem-loop GGGGAAUGUUGUCUGGUUGGAGACCUAACACCRCGAAUUAAUCAUCCAUGCCAUGGAAGCAGCAUAUGCCCGCCUGCAUCUAUCCAUGCAUGAUGGUGGAAGGUUUCGGACCAGGCUUCAUUCCCC 14 16476 MI0001488 zma-MIR166b Zea mays miR166b stem-loop GUGGAAUGUUGUCUGGUUCAAGGUCUUGCUWUCCGAUUUGAGGAUGAUCCAUGCUUGCAUGUGUAGUUUUUUUUGUUCCUCAGAUCUACAAGAUCUCGGACCAGGCUUCAUUCCCC 14 16477 MI0001489 zma-MIR166c Zea mays miR166c stem-loop GGGGAAUGUUGUCUGGCUCGAGGUGCAGAAACACGCAGAUCUCAUCGAGGUCGUCUUGGUUGUUGUUGAUCUCGGACCAGGCUUCAUUCCCC 14 16478 MI0001490 zma-MIR166d Zea mays miR166d stem-loop GUGGAAUGUUGUCUGGUUCAAGGUCUUUUGCUUUGUGAUCCAUCUGUGUAGAGCUUCUAAGUAUUCCUUGGAUCUGCAAGAUCUCGGACCAGGCUUCAUUCCCC 14 16479 MI0001491 zma-MIR171a Zea mays miR171a stem-loop GAUAUUGGCGAGGUUCAAUCAGAUGAUGUAUUUUUCUUAUAUAUAAAUUUGCAUGCAUGAAGGUGUGAAUCCAGUGUCUGAUUGAGCCGCGCCAAUAUC 14 16480 MI0001492 zma-MIR171b Zea mays miR171b stem-loop CGGGAUAUUGGCGCGGUUCAAUCAGAAAGCUUGCGCUCCAGGCCCGAGGGGCUCCACUCUUUGAUUGAGCCGUGCCAAUAUCACG 14 16481 MI0001493 zma-MIR172a Zea mays miR172a stem-loop GCGUGGCAUCAUCAAGAUUCACAACCCAUCAAUCCGAACCACUGAUUUGGAAUGCAUGYAUGAGAAUCUUGAUGAUGCUGCAU 14 16482 MI0001494 zma-MIR172d Zea mays miR172d stem-loop GUGCAGCACCAUCAAGAUUCACAUCCCCAGCUCGAUCUGUGCAUGAUGAGAUGAGAAUCUUGAUGAUGCUGCAU 14 16483 MI0001495 zma-MIR172b Zea mays miR172b stem-loop GUGCAGCACCAUCAAGAUUCACAUCGUCCAACUCAUGCAUCAUGCAUAUAUGCAUCUUCAAUGAUGCGUGCCUCGCAUGUGUGUGUAUAUAUAUAUGAUGAGAUGAGAAUCUUGAUGAUGCUGCAU 14 16484 MI0001496 zma-MIR172c Zea mays miR172c stem-loop GUGCAGCACCACCAAGAUUCACAUCCAACUCUCACGCAUCUUCAGUGAUGCAUGCAUGCUCUGUGAUGUCUCGCAGCAGCUAUAUGCAUAUGUGAUGAGAUGAGAAUCUUGAUGAUGCUGCAU 14 16485 MI0001497 sbi-MIR166d Sorghum bicolor miR166d stem-loop GGGGAAUGUUGUCUGGCUCGAGGUGCAGGAACAUGCAGAUCUCAUCGGUCUAGAUUGUUGUUGAUCUCGGACCAGGCUUCAUUCCCC 15 16486 MI0001498 sbi-MIR166c Sorghum bicolor miR166c stem-loop GGGGAAUGUUGUCUGGUCGGAGACCUAACACCGCGAAUCAUCCAUGGAGCAGCAUGCAUGGUGGUGGAUGGUUUCGGACCAGGCUUCAUUCCCC 15 16487 MI0001499 sbi-MIR166b Sorghum bicolor miR166b stem-loop GGGGAAUGAUGUCCGGUCCGAAGACGCUGUGCGGCGAAAGCGGCGGCGGCUUCGGACCAGGCUUCAUUCCCC 15 16488 MI0001500 sbi-MIR166a Sorghum bicolor miR166a stem-loop GUGGAAUGUUGUCUGGUUCAAGGUCUCGCUUGUGAUUUAAGGAUGAUUUGUGCAUGCGUAAUUUUUAUUCCUUGAAUCUAUGAGAUCUCGGACCAGGCUUCAUUCCCC 15 16489 MI0001501 sbi-MIR172b Sorghum bicolor miR172b stem-loop GCGUGGCAUCAUCAAGAUUCACACACUGCUUGCAAAUGCAUACAUGCAUCUCUGCCGCCUUCUUUGCCUGCCAUUAAUAGCAGUUUUACUACAUGUUUUAGCUGCUGCUGCAUCAUAUAUGCCUCUGUGAAUAUAUAUGUGUAUGUGUGGGAAUCUUGAUGAUGCUGCAU 15 16490 MI0001502 sbi-MIR172c Sorghum bicolor miR172c stem-loop GUGCAGCACCAUCAAGAUUCACAUGGUCCAACUCAUGCAUCUUCAGUGAUGCUCAUGUGAUGGCUCGCAGUUGCUAUAUAUGCAUAUGUGAUGAGAUGAGAAUCUUGAUGAUGCUGCAU 15 16491 MI0001503 sbi-MIR172a Sorghum bicolor miR172a stem-loop GUGCAGCAUCAUCAAGAUUCACAUCCAGCUCAUCCUCGGUGAUAUGCUAUAUACAUAAAUAUAUGCGUAUGUGAUGAGAUGAGAAUCUUGAUGAUGCUGCAU 15 16492 MI0001504 sbi-MIR156a Sorghum bicolor miR156a stem-loop UGACAGAAGAGAGUGAGCACACGGCGCGACGAACGGCAUAAUAUGUAUGUCGUCCUCGCCGCGUGCUCACUUCUCUUUCUGUCA 15 16493 MI0001505 sbi-MIR156c Sorghum bicolor miR156c stem-loop UGACAGAAGAGAGUGAGCACACAUGGUGCCUUUCUUGCAUGAUGAAUGAGUGGAUUCAUGCUCGAAGCUAUGCGUGCUCACUUCUCUCUCUGUCA 15 16494 MI0001506 sbi-MIR156b Sorghum bicolor miR156b stem-loop UGACAGAAGAGAGUGAGCACACACGGUGGUUUCUUAGCAUGAGUGCCAUGUUGGGAGCUGUGCGUGCUCACUCUCUAUCUGUCA 15 16495 MI0001507 sbi-MIR160d Sorghum bicolor miR160d stem-loop UGCCUGGCUCCCUGUAUGCCACUCGCUUAGCUGCCAACAACUCAUACUACGUUGUUAACGACGUUGGCUCUACUGCGGAUGGCGUGCGAGGAGCCAAGCA 15 16496 MI0001508 sbi-MIR160a Sorghum bicolor miR160a stem-loop UGCCUGGCUCCCUGUAUGCCACACAUGUAGCCCAACCCAUAUGCUAAGGUUGCCUGCUGUGGGUGGCGUGCAAGGGGCCAAGCA 15 16497 MI0001509 sbi-MIR160c Sorghum bicolor miR160c stem-loop UGCCUGGCUCCCUGUAUGCCACUCAUCUAGAUCAACAACUACCUAUGGUUGCCUAUGAUGGUUGGCGUGCACGGUGCCAAGCA 15 16498 MI0001510 sbi-MIR160b Sorghum bicolor miR160b stem-loop UGCCUGGCUCCCUGUAUGCCACACAUGUAGCCCAACCCGUGGCGUGAUUGGAUGCUGUGGGUGGCGUGCAAGGAGCCAAGCA 15 16499 MI0001511 sbi-MIR160e Sorghum bicolor miR160e stem-loop UGCCUGGCUCCCUGUAUGCCACUCGCACGGCUACCACCCCAAGAUCAUCGAUCGAUCUCGGUGGCCGCUGCGGCUGGCGUGCGAGGUGCCAAGCA 15 16500 MI0001512 sbi-MIR164 Sorghum bicolor miR164 stem-loop UGGAGAAGCAGGGCACGUGCAUUACCAUCCAAUGCCGCCAAGCUCGAUCCUCCUCUGAGCUUGCUAGCUCCAUCAGCUCGCCAGCCAUGGCUGGAUGGAUGGUUCUUCAUGUGCCCAUCUUCUCCA 15 16501 MI0001513 sbi-MIR167a Sorghum bicolor miR167a stem-loop UGAAGCUGCCAGCAUGAUCUAGCUCUGAGUGAUCACCCGAGAAGAACAAUAGUUCGAGGUGGUCUCGCCUUGCUAGGUCAUGCUGCGGCAGCCUCA 15 16502 MI0001514 sbi-MIR167b Sorghum bicolor miR167b stem-loop UGAAGCUGCCAGCAUGAUCUAACAACGGCAUUGCUCCUCCGUGUAGCGCCCUGUGCUUGCUUUUGCUUGUCUCCAUGGAGAAGACAGCGGCAAAGCUUAGCUUUGCUUCGCUUAGCUUGCUGGCUUUUCGUAUGGGCUGGCGGCGGGUUGCUGCGUGAAGCUUGCAAGUGAUGGUUAGAUCAUGCUGUGACAGUUUCA 15 16503 MI0001515 sbi-MIR169b Sorghum bicolor miR169b stem-loop CAGCCAAGGAUGACUUGCCGGAUAUGUGCAUGCAUAUGUUACAAGGCAGCAUAUGCACCCUGUUACAAGCCUGCCUGUUCUCCGGCAAGUUGUCCUUGGCUA 15 16504 MI0001516 sbi-MIR169a Sorghum bicolor miR169a stem-loop CAGCCAAGGAUGACUUGCCGAUCGAUCGAUGCAAACUCCUCUGAUGUCUGAUCUCAUCAGAUUAUCGUUGUCGGAAAGUUGUUCUUGGCUA 15 16505 MI0001517 gga-mir-20b MI0001517 Gallus gallus miR-20b stem-loop CUAGCAGUAUCAAAGUGCUCAUAGUGCAGGUAGCUUGGCAUUGGACCUACUGUAAUGUGGGCACUUACAGUACUGUUAGAUAAAG 10 16506 MI0001518 hsa-mir-18b Homo sapiens miR-18b stem-loop UGUGUUAAGGUGCAUCUAGUGCAGUUAGUGAAGCAGCUUAGAAUCUACUGCCCUAAAUGCCCCUUCUGGCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 16507 MI0001519 hsa-mir-20b Homo sapiens miR-20b stem-loop AGUACCAAAGUGCUCAUAGUGCAGGUAGUUUUGGCAUGACUCUACUGUAGUAUGGGCACUUCCAGUACU 5 16508 MI0001520 oar-mir-431 Ovis aries miR-431 stem-loop CGUCCUGCGAGGUGUCUUGCAGGCCGUCAUGCAGGCCACACUGACGGAAACGUUGCAGGUCGUCUUGCAGGGCGUCUCGCAAGACGACACA 17 16509 MI0001521 oar-mir-127 Ovis aries miR-127 stem-loop GCUUUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCCUCAUCUGCUUCCUUCGGGUU 17 16510 MI0001522 oar-mir-432 Ovis aries miR-432 stem-loop GCAUGACUCCUCCAAGUCUUGGAGUAGGUCAUUGGGUGGAUCCUUUAUUUCCCUAUGUGGGCCACUGGAUGGCUCCUCCAUGUCUUGGCG 17 16511 MI0001523 oar-mir-136 Ovis aries miR-136 stem-loop UCGGAUGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUACGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCUAUCAU 17 16512 MI0001524 mmu-mir-431 Mus musculus miR-431 stem-loop CGUCCUGCGAGGUGUCUUGCAGGCCGUCAUGCAGGCCACACUGACGGUAACGUUGCAGGUCGUCUUGCAGGGCUUCUCGCAAGACGACAUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 16513 MI0001525 mmu-mir-433 Mus musculus miR-433 stem-loop UGCCCGGGGAGAAGUACGGUGAGCCUGUCAUUAUUCAGAGAGGCUAGAUCCUCUGUGUUGAGAAGGAUCAUGAUGGGCUCCUCGGUGUUCUCCAGGUAGCGGCACCACACCAUGAAGGCAGCCC Landgraf et al. show that the 3' product is the predominant one [2]. The 5' product is renames miR-433* here. 6 16514 MI0001526 mmu-mir-434 Mus musculus miR-434 stem-loop UCGACUCUGGGUUUGAACCAAAGCUCGACUCAUGGUUUGAACCAUUACUUAAUUCGUGGUUUGAACCAUCACUCGACUCCUGGUUCGAACCAUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 16515 MI0001527 dre-mir-430a-1 Danio rerio miR-430a-1 stem-loop CUGCUACUGUUGUCACUAUCGGUGCCCUCACAAAGGCACUGACUUGGAUGCUGCAUGUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUA 12 16516 MI0001528 dre-mir-430b-1 Danio rerio miR-430b-1 stem-loop AUUGAUAGAAACCAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGC 12 16517 MI0001529 dre-mir-430c-1 Danio rerio miR-430c-1 stem-loop UUCAAUCUAAAGCACAUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAG 12 16518 MI0001530 sbi-MIR393 Sorghum bicolor miR393 stem-loop NACNAUGCCUGGAGGAAGCAUCCAAAGGGAUCGCAUUGAUCCGUCNCUCCUUCCAUUCUAUCNUGGGNGGNCGNCNUCUACNAGGACUUCNUUCCCGACGGAUCNUGCNAUCCUUUUGGAGGCUUCCNCUNNACUUACU 15 16519 MI0001531 sbi-MIR394a Sorghum bicolor miR394a stem-loop CUUUACAUACUGAGAGUUCCUUGGCAUUCUGUCCACCUCCUUGCCCAUCGUCAGAUAUAUGUGUUGCUUUUGGAGGUGGACAUACUGCCAAUGGAGCUGUGUAGGCCUCU 15 16520 MI0001532 sbi-MIR394b Sorghum bicolor miR394b stem-loop CUUUACAUACUGAGAGUUCCUUGGCAUUCUGUCCACCUCCUUGGCCCAUCGUCAGAUAUAUGUGUUGCUUUUGGAGGUGGANAUACUGNCAAUGGAGCUGUGUAGGCNUCU 15 16521 MI0001533 sbi-MIR395b Sorghum bicolor miR395b stem-loop GUUAGGUUUGGUGUCCCUAGGAGUUCUCUGCAAGCACUUCACGAGGCAUCGUUUUGAGAGCUUUUGUGAAGUGUUUGGGGGAACUCUUAGUGUCACAAAUCAUUU 15 16522 MI0001534 sbi-MIR395a Sorghum bicolor miR395a stem-loop GGUUGGUUGGUUGUCACCUGGAGUUCUCCACAAACUACUUCAGUAGCAACACACACCCCUAGUUUAAUGCACCGUGUUUGCAUGUUUGUGUGGAGCUGUGUGUGUACAUAGUGAAGUGUUUGGGGGAACUCUGGGUGGCAAUCAGCAAUU 15 16523 MI0001535 sbi-MIR395c Sorghum bicolor miR395c stem-loop GCACUAUUUUGAGAGCUUUUGUGAAGUGUUUGGGGGAACUCUUGAUGCCACUAACCAUUUGCUAGAGGUUGGCCAAGUGUGUGCUACAUGAGCCAAGUGUGUGCUACAUGAAAUGAUUUGAAGACAAAUCACAUUUGGAAAUUAUAUAUCAAGUUUGGUGUCCCCAGGAGUUCUCUGCAAACACUUCACAAAGCACUUUUUUAGAGCU 15 16524 MI0001536 sbi-MIR395d Sorghum bicolor miR395d stem-loop UCAAGUUUGGUGUCCCCCAGGAGUUCUCUGCAAACACUUCACAAAGCACUUUUUUAGAGCUUUUGUGAAGUGUUUGGGGGAACUCUUGGUGCCACUGAUCAUUU 15 16525 MI0001537 sbi-MIR395e Sorghum bicolor miR395e stem-loop AUUAGGUUUGGUGUCCCCGGGAGUUCUCUGCAAGCACUUCACGAGGCACUAUUUUGAGAGCUUUUGUGAAGUGUUUGGGGGAACUCUUGAUGCCACUAACCAUUU 15 16526 MI0001538 sbi-MIR396b Sorghum bicolor miR396b stem-loop AGAUGGCCUUCUUUGUGAUCUUCCACAGCUUUCUUGAACUGCAUCUCUAAGAGGAGCAGCUUGAACUCUCUACCUGCAUGAGCAGGUGCAGUUCAAUAAAGCUGUGGGAAACUGCAGAGAGAGGCCAA 15 16527 MI0001539 sbi-MIR396a Sorghum bicolor miR396a stem-loop ACAUGGCCCUCCUUGCCGUCUUCCACAGCUUUCUUGAACUGCAUGCUGGUAGUGCUGUGUGCAUCCGUUCCAAUAUUCCAAGAGGCAGUUCAAUAAAGCUGUGGGAAAUUGCAGAGAGAGACCAG 15 16528 MI0001540 sbi-MIR396c Sorghum bicolor miR396c stem-loop UUCAAGUCCAUGCCAUGCCUUUCCACAGCUUUCUUGAACUUCUCCUCCUCCUCCUCUCUCUUAGAAGGGUAGCUUUGAACAUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCCAAAGAAGGUCAAGAAAGCUGUGGGAAGAAAUGACAUAACAAGGA 15 16529 MI0001541 sbi-MIR399a Sorghum bicolor miR399a stem-loop UACCGUCCGCCGGCGAAUUACGGGGCAGUUCGUCUUUGGCACAAAGGCACGUCCAGAACUACUCGAUGAGGGUCACUUGAGCUGAACUGAACAUGCGUGCCAAAGGAGAAUUGCCCUGCGAUUCGCCCGUGCAGAAG 15 16530 MI0001542 sbi-MIR399c Sorghum bicolor miR399c stem-loop CAUAUGCUGAGCAUGAAUUACAGGGUACAUCUCCUUUGGCACAGAUGCAUGCAGCAGAAUGCAUAUAUGCAUAUGCGAAACUGUCGAGCGUGCCAAAGGAGAAUUGCCCUGCGAUUCUAGGCUCUGCAAU 15 16531 MI0001543 sbi-MIR399d Sorghum bicolor miR399d stem-loop GUGCAGGCUGAAGACAGUUGUAGGCAGCUCUCCUCUGGCAGGCGGUCAUCGUCGUCGUCAUCGACGGCUGGUUCUGUGUUCAUCCGGAUCCAUCGUGCAGCCGUGCAUGCAUGCAGUAAUAUUCGGUUACAUGCAUGCAUUAUGCACGCACGUACGUCGUCGUCCUGCCAAAGGAGAGUUGCCCUGCGACUGUCUCCAGCUUCCU 15 16532 MI0001544 sbi-MIR399e Sorghum bicolor miR399e stem-loop ACAUGCGGGGCCAUGCAUUACCGGGUGGGUCUCCUCUGGCAGUAACUUGGCUGGUCGCCUGGUCCAUGAUACCUGCGUGCAGACACUGCCAAAGGAGAUUUGCCCAGCAAUGCAGUUUUGAGUCCC 15 16533 MI0001545 sbi-MIR399f Sorghum bicolor miR399f stem-loop CAUAUGCGAGUCGAGGAUUACCGGGCCAUUUCUCCUUGGGCAGAGUAAUUGAAUUUUACUUUGCUGGAUCCGGUUUGCUCUGCCAAAGGAGAUUUGCCCAGCAAUCCACAUUUGUAAUAU 15 16534 MI0001546 sbi-MIR399b Sorghum bicolor miR399b stem-loop UAGCUCAGGGGUGAGAAUCACAGUGCAGCUCUCCUUUUGGCAUGAAGGCUGAGAGAGUCAUGAGCAGUUUUCUGGCCUUUCCCUGCCAAAGGAGAGCUGCCCUGCCAUUCAUUAGCCCUGCAA 15 16535 MI0001547 sbi-MIR399g Sorghum bicolor miR399g stem-loop CCAGAUGUGCACUUGCAUUGCUGGGCAACUUCUCCUUUGGCAGAUGNGCAAUGNGCUCNGACCCUGGGGCUUCUUCCGCGCCUACUGCCAAAGGAAAUUUGCCCCGGAAUUCACCUGCACAGCCA 15 16536 MI0001548 sbi-MIR156d Sorghum bicolor miR156d stem-loop UGGACCUCUGGAGUGAGUGAUGACAGAAGAGAGAGAGCACAACCCAGCACCAGCGAGGAGAAGCCUCGCUUCUGCGAGGGCCGUGUGCUCUCUGCUCUCACUGUCAUCGCCGACAGGCCACCCAA 15 16537 MI0001549 sbi-MIR164b Sorghum bicolor miR164b stem-loop GAGGGGCGAGCAAACCGUGCUGGAGAAGCAGGGCACGUGCUCGUCGUCGCUGCAUGCGUGGUCGUCGUCGCAGCACGUGCGCUCCUUCUCCAACAUGGCUUCUCGCCCCCA 15 16538 MI0001550 sbi-MIR166e Sorghum bicolor miR166e stem-loop CAAGUUGAAGGUUAGGUUAAUGGGGUUGUUGUCUGGUUCAAGGUCGCCACAGCAGACAAAGCCCAUUUUGCUUAGCAUGCAGCAUGGGUUUAUCUCUAUUGAUGAUCGAUCUCGGACCAGGCUUCAAUCCCUUUAACUAGCAUCUGCAUAU 15 16539 MI0001551 sbi-MIR167d Sorghum bicolor miR167d stem-loop GUGGUGCAUCCUCUAGUAGCUGAAGCUGCCAGCAUGAUCUGAUGAGGUGAGGUUUAUUUGCUAGUUGGUCACAGGCUAACAGCAUGAUGGCCCAACAAAUCAACGAUCAGAUCAUGCUGUGCAGUUUCAUCUGCUCGUGGAUGCACAU 15 16540 MI0001552 sbi-MIR167f Sorghum bicolor miR167f stem-loop UCCGGUGCACUAGAGGUGGAUGAAGCUGCCAGCAUGAUCUGAGAAACUAGUGCUUGAUCCUUUUACUGAUUUCCAUCUAGCCUGCAUCUAUAUAUAUACCUUGAUGCAUGAAUCAUGGUCUGAUGAUAGUUAAGCGAGAUCAGAUCGUCUGGCAGUUUCAUCUUCUUAUGGCAGCACAA 15 16541 MI0001553 sbi-MIR167g Sorghum bicolor miR167g stem-loop AUUUGUGCACCUUAAGCAGCUGAAGCUGCCAGCAUGAUCUGAUCUUAAUUUCUUUUACUGGCAAACUUCGGAUGCCUAAGAUCAGAUCGUGCUGCGCAGUUUCACCUGCUAAUUGGAGCACAG 15 16542 MI0001554 sbi-MIR167e Sorghum bicolor miR167e stem-loop AGUGGUGCACCACAAGUUGGUGAAGCUGCCAGCAUGAUCUGAUGUCUUUAUAUAUAUUAAUUACCUCUGAUUUCUCCCUGACUGUUAUGGAUCGAUGAAUUCAGAUAUGAGGGGAAGGAAGAAAGAGGAAUAAUGAGCAUCAGGUCAUGCUGUAGUUUCAUCCGCUGGUGGGAGCACAU 15 16543 MI0001555 sbi-MIR167c Sorghum bicolor miR167c stem-loop NCUUUGNUGGUGUGAGAGGUUGAAGCUGCCAGCAUGAUCUGGUGGCCGGNCCGGCCGGCGUCUCUCAAGUGCGCUCGGAUCGGAGACGCGUCGCCAGAUCAUGUUGCAGCUUCACUCUCUCGCAACCACCAAA 15 16544 MI0001556 sbi-MIR168 Sorghum bicolor miR168 stem-loop GCCGCCGCGCCGCCUCGGGCUCGCUUGGUGCAGAUCGGGACCUGCCGCCGUGCUCGGACGGGACAGAUCCCGCCUUGCACCAAGUGAAUCCGAGCCGGAGCAGCCG 15 16545 MI0001557 sbi-MIR169c Sorghum bicolor miR169c stem-loop UGGCGAGAGCCUGCCUUUGGUAGCCAAGGAUGACUUGCCUACACGGCCUUGCGAGUUCCGGUUGCAUGGCCAGUUCAGUUGGGUUUGUGGGCGGUCACCUUGGCUAGCCUGAGUGGCUCUUGCCUG 15 16546 MI0001558 sbi-MIR169d Sorghum bicolor miR169d stem-loop UGGCGAGAGCCUGCCUUUGGUAGCCAAGGAUGACUUGCCUACAUGGCAUUGCGAGUUCCGGUUGCAUGGCCAGUUCAGCUGAGUUUGUGGGCGGUCACCUUGGGACGGUAUCGAUAAGCUUGAUA 15 16547 MI0001559 sbi-MIR169e Sorghum bicolor miR169e stem-loop AGAGUGGUUGGUAGCUCUGGUAGCCAAGGAUGACUUGCCUGUGUGCCGGCCUCGAUCGAUCUCCCGGCCCUCUCAAGGAUCGAUCAUCGUGCGUGCGUGUCGAUCGAUCGUCGUCGUCGUCGUCACCUCUGGCAGAGAGCGAGACGAUGAUCGAUCGAUUAGCCGCGCGCCUUGGGUUGUUGGGGUGUGGUCGCGGUCUCACAGNCAGUCUCCUUGGCUAGCCCUGACUCACUCUUAUCA 15 16548 MI0001560 sbi-MIR169f Sorghum bicolor miR169f stem-loop CGAUGAGAGCACUGCUCUGGUAGCCAAGGAUGACUUGCCUGUGGCCUCCACUCCACCUGCGGCAGGAGGCUCUUCUUCUGCGCGCGCGUGUGUGUGUGGUUGUCGAUCGCAGGCAGUCUCCUUGGCUAGCCUCAGCGGCUCUCAUCCU 15 16549 MI0001561 sbi-MIR169g Sorghum bicolor miR169g stem-loop GCGAUAAGAGUCUGCCCAGAUAGCCAAGGAUGACUUGCCUGUGGCCUCUUGGCUUGGCUUGAGAGCUUAUUAACUCUGUGCACGUUUAAUUUGCUCUUCUUGUGGCCUCGAUCACAGGCAGUCUCCUUGGCUAGUCCGGGCGGCUCUUAUCU 15 16550 MI0001562 sbi-MIR169h Sorghum bicolor miR169h stem-loop GCGAUAAGAGUCUGCCCAGAUAGCCAAGGAUGACUUGCCUGUGGCCUCUUGGCUUGGCUUGAGAGCUUAUUAACUCUGUGCACGUUUAAUUUGGCUCUUCUUGGGGCCUCGAUCACAGGGCAGUCUCCCUUGGCUAGUCCGGGGCGGGCUCCUUA 15 16551 MI0001563 sbi-MIR169i Sorghum bicolor miR169i stem-loop GAUGGAGAGCCCCCUUUUGCUAGCCAAGAAUGACUUGCCUAUGCAUGCCCUCUGUUGGCAAUUCCUCCAGCCAUGGAGAUUGCACAAGGUGAAUUUUUGCGGCAUAGAUGAUGGAUGCAAUGUGGCUGCAUGGGCAGGUCUUCUUGGCUAGCCAGAGUGCUCUCAUCCA 15 16552 MI0001564 sbi-MIR171b Sorghum bicolor miR171b stem-loop AUGGCCGCCGCGCGCGACGGGGUAUUGGCGCGGUUCAAUUCGAGAGCUCGAGCCCUAGACUAGACGCCAGGGAGAGAGGGGGCUCUGCUCUCUGAUUGAGCCGUGCCAAUAUCACGUCCCGCUUGAAUGGCU 15 16553 MI0001565 sbi-MIR171d Sorghum bicolor miR171d stem-loop NAUAAUGGAAUAGUAGCUAUGAUGUUGGCUCGGCUCACUCAGACCACCUCUCCGAUCCUCAGCUCGUGUCCAUUGCGACAUCGAUCAUGUAUAUAUGUCGCUGGUCGUGGUUUCUGAUUGAGCCGUGCCAAUAUCUCAGUACUCUUCCAUAUAU 15 16554 MI0001566 sbi-MIR171a Sorghum bicolor miR171a stem-loop UUGGUUGGCUGAGAGAGUGCGAUGUUGGCAUGGUUCAAUCAAAUCAUCGCCCGGCAAGGUGACUUAAAUUUUGCGCUUUCGAUCGAUCGAGGUGCAGGGAGGUGUUUCCAGGCACCGUGUUUGAUUGAGCCGUGCCAAUAUCACAACCUUCUCUAGCCUAU 15 16555 MI0001567 sbi-MIR171c Sorghum bicolor miR171c stem-loop AGAACGAGACGACAUGGCAUGGUAUUGACUUGGCUCAUCUCUCAUCCACAGCAAACUUCACAAGUGCCUGAGGUGAGCCGAGCCAAUAUCACUUCAUGUCAUCUAGCGU 15 16556 MI0001568 sbi-MIR172e Sorghum bicolor miR172e stem-loop UCGGAGCCGACUCUCUGCAGGUGCAGCAGCAUCAAGGUUCGCCAGCAGCAAGCGAUCGAUCGAGGCGUGUGUGUGUGAAUCUUGAUGAUGCUGCACCAGCAAUGAGCCGGCCGGC 15 16557 MI0001569 sbi-MIR166f Sorghum bicolor miR166f stem-loop CCUUGGUCAUGGGGGUUUGUGGGGAAUGUUGGCUGGCUCGAGGCAUCCGCGUCCUGGCUUGCAGAUCGUUUUGCCUGCUACCGGAAAGAUCGAGAGGCGUCGGACCAGGCUUCAUUCCUCGCAAACCGGUGCAUCCAUG 15 16558 MI0001570 sbi-MIR171e Sorghum bicolor miR171e stem-loop AGGAGGAAGAAGACGACAUGGCGUGGUAUUGUUUCGGCUCAUGUCCUUCUUGCUUCGAGUCUGUCGUCGGAUUUUGGAUGUGAUGUGAGCCGAACCAAUAUCACUCAUGUAUUCUUCAUUCUGA 15 16559 MI0001571 sbi-MIR172d Sorghum bicolor miR172d stem-loop AAACAGUCGGUGCUUGCAGGUGCAGCACCAUCAAGAUUCACAUCCCCAGCUCGAUCUGUGCAUGAUGAGAUGAGAAUCUUGAUGAUGCUGCAUCAGCAAACACUCACUUAC 15 16560 MI0001572 sbi-MIR159 Sorghum bicolor miR159 stem-loop AGCGGAGCUCCUAUCAUUCCAAUGAAGGGCCCUUUUCAUGGGUGGUUCCGCUGCUCGUUCAUGGUUCCCACUAUCCUAUCUCAUCAUGUAUGUGUGUAUGUACUCUAGAGGGCCCGAGAAGAGAUUCAUGUGGUCGUCAGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAGGAGCUGCACCGUCCCCUUGCUGGCCGCUCUUUGGAUUGAAGGGAGCUCUGCA 15 16561 MI0001573 sbi-MIR319 Sorghum bicolor miR319 stem-loop CUGCCGCCAUGGUUGUGAUAUGGCCGGAUGGAAGAGAGCGUCCUUCAGUCCACUCAGGGGCGGUGCUAGGGUCGAAUUAGCUGCCGACUCAUUCACCCACAUGCCAAGCAAACGGCCAUGGAAACGAGCUAGCUUUGCAGAUGAGUGAAUGAAGCGGGAGGUAAAAGCUUCGAUCUCGCACCAUCUUUGCUUGGACUGAAGGGUGCUCCCUCCUCCCCUCCUUAAUUGUUUACUUUACCCAUGGCGCAG 15 16562 MI0001574 ame-bantam Apis mellifera bantam stem-loop UCGAAAACGAAACUGGUUUUCACAAUGAUUUGACAGAUAGAUUCGAUUCUGAGAUCAUUGUGAAAGCUGAUUUUGUUGAAAAGUCGA 18 16563 MI0001575 ame-mir-1 Apis mellifera miR-1 stem-loop CCGGGCGAUGCUGUUCCGUGCUUCCUUACUUCCCAUAGUGGAUGCGACGUAUGGAAUGUAAAGAAGUAUGGAGCUGCGCCCGG 18 16564 MI0001576 ame-mir-12 Apis mellifera miR-12 stem-loop AAGACAUGGGUGUGAGUAUUACAUCAGGUACUGGUGUGAUAUUCAGACAACCAGUACUUGUGUUAUACUUACGCUCAUGUCUU 18 16565 MI0001577 ame-mir-124 Apis mellifera miR-124 stem-loop UGCUCCUUGCGUUCACUGCGGGCUUCCAUGUGCCAACUUUUCAAAAUUCAUAAGGCACGCGGUGAAUGCCAAGAGCG 18 16566 MI0001578 ame-mir-125 Apis mellifera miR-125 stem-loop GUAAAGCCUGCCGCGUCGCCGGUCCCCUGAGACCCUAACUUGUGACGUCGCGACCGAUAUCUCACAGGCUAGAUUCUCUGGUAUUGGCGAUGAGUGCUGCCUUUUGC 18 16567 MI0001579 ame-mir-133 Apis mellifera miR-133 stem-loop UAAUGUUAAGCUUAGCUGGUUGAACACGGGUCAAAUAUAUCGCACGAUUGACGCAUUUGGUCCCCUUCAACCAGCUGUAGUUGACAUUA 18 16568 MI0001580 ame-mir-184 Apis mellifera miR-184 stem-loop UUCGUGCCCAAAGCCCCUUAUCAUUCUCCUGUCCGGUGUAGAAUUGUUAGACGACUGGACGGAGAACUGAUAAGGGCCCGAGGGUCACAGAA 18 16569 MI0001581 ame-mir-210 Apis mellifera miR-210 stem-loop UGGACCCUAAUGCAGCUGCUGGCCACUGCACAAGAUUAGACAUAAGACUCUUGUGCGUGUGACAGCGGCUAUGAUGGGGUUUCCA 18 16570 MI0001582 ame-mir-219 Apis mellifera miR-219 stem-loop AAUUGAAUGUCUCAGGCAAUGAUUGUCCAAACGCAAUUCUUGUCUAAACGGUACGAAAUCAAGAAUUGUGUGGGGACAUCAGCGCUCGAGGUGCGAUUCAAC 18 16571 MI0001583 ame-mir-263 Apis mellifera miR-263 stem-loop AGCUUGGACUCUGUAAAUGGCACUGGAAGAAUUCACGGGGGAUUUAAGAAACGGGCCCGUGGAGCUCCCGUGUCAUACACAGCGUCCGGCU 18 16572 MI0001584 ame-mir-276 Apis mellifera miR-276 stem-loop UGGUAGAGAUCCAGCAGCGAGGUAUAGAGUUCCUACGUAGUGUUCAGAAAGUAGGAACUUCAUACCGUGCUCUUGGACUUGCCG 18 16573 MI0001585 ame-mir-277 Apis mellifera miR-277 stem-loop GGCAGUUGGGGCUCGUGCCAGAUGCGCGUUUACACGGGCCCUGAAUACUGUAAAUGCACUAUCUGGUACGACAUCUCUCCUGUC 18 16574 MI0001586 ame-mir-278 Apis mellifera miR-278 stem-loop UCACGAGUAGUGUGUCCGGAUGAGGUCUUCAUCGACCGUGAUUUAAUUUCAUAAGGUCGGUGGGACUUUCGUCCGUUUGCAAGACUCGAGGA 18 16575 MI0001587 ame-mir-281 Apis mellifera miR-281 stem-loop CGACGAAAGGCGCGCGCUAUAAAGAGAGCUAUCCAUCGACAGUAUGGUUAUAAUAGACACUGUCAUGGAGUUGCUCUCUUUGUAGACACUGCUAUGUUCAACG 18 16576 MI0001588 ame-mir-282 Apis mellifera miR-282 stem-loop GGACAGAGUAACUUGAUUUAGCCUCUCCUAGGCUUUGUCUGUAUAUAAAGAACGGAGACAUAGCCUAGAAUAGGUUAGGUCAGGGCUCGUUC 18 16577 MI0001589 ame-mir-2-1 Apis mellifera miR-2-1 stem-loop GGCGCGUGUGCACCGCUCACAAAGUGGUUGUGAUAUGCUGAUACGAGCGUUCAUAUCACAGCCAGCUUUGAUGAGCGUGGCGUCGCGUC 18 16578 MI0001590 ame-mir-2-2 Apis mellifera miR-2-2 stem-loop UCGACUGUUCCUCCCAUCAGAGUGGUUGUGAUGUGGUAACUUGGACUCGUAUCACAGCCAGCUUUGAUGAGCGGAACGGUGCGA 18 16579 MI0001591 ame-mir-305 Apis mellifera miR-305 stem-loop GGAGGCUGCAUGUUAAUUGUACUUCAUCAGGUGCUCUGGUGAACUCGAUACCCGGCACCUGUUGGAGCGCAAUUCAUAUGACUGUGCCCU 18 16580 MI0001592 ame-mir-315 Apis mellifera miR-315 stem-loop GCUCUUUAUGCUUUUGAUUGUUGCUCAGAAAGCCUUGAUUAUGAUAUUGGCUUUCGGGCAAUAAUCAUAAUCACGAAAGGGU 18 16581 MI0001593 ame-mir-317 Apis mellifera miR-317 stem-loop GCUCUCGGAGAACAGGGAGCCACUCUGCGUUCACUCGGUGGGUAAUGAAGCGGGUGAACACAGCUGGUGGUAUCUCAGUUUUCUGAGGGC 18 16582 MI0001594 ame-mir-7 Apis mellifera miR-7 stem-loop CGAGCGCCGUUGCAUGGAAGACUAGUGAUUUUGUUGUUCUACUUUCGAUAUAACAAGGAAUCACUAAUCAUCCUACAAAGGCGCUCG 18 16583 MI0001595 ame-mir-8 Apis mellifera miR-8 stem-loop GGAGUAUCUGUUCACAUCUUACCGGGCAGCAUUAGAUUGAAGUUGACCUUCUAAUACUGUCAGGUAAAGAUGUCGUCAGGAUUCC 18 16584 MI0001596 ame-mir-9a Apis mellifera miR-9a stem-loop UGGCGCGGACAUUUUCUUUGGUUAUCUAGCUGUAUGAGUAUUAUUCGACAUCAUAAAGCUAGGUUACCGGAGUUAAGCUCCUCGCCA 18 16585 MI0001597 ame-mir-9b Apis mellifera miR-9b stem-loop UAAUGCUAGUGCUCUUUGCUUUGGUAAUCUAGCUUUAUGAUCCUUAAUUAAAAUCAUAGAGCUAUAUUACCAAAGUAAAGGCAAAAGCUUUG 18 16586 MI0001598 ame-mir-iab-4 Apis mellifera miR-iab-4 stem-loop GUGAAACCCCCUGUACGUAUACUGAAUGUAUCCUGAGUGUAUUUCUGUCCGGUAUACCUUCAGUAUACGUAACAGGAGGCUACAC 18 16587 MI0001599 aga-bantam Anopheles gambiae bantam stem-loop UGUGUGGAUGAAAUGUAAUCACAGAACCGGUUUUCAUUUUCGAUCUGACUUAUUUUUUUCACAAACAAGUGAGAUCACUUUGAAAGCUGAUUUUGUACAAUUAAUUCAACG 19 16588 MI0001600 aga-let-7 Anopheles gambiae let-7 stem-loop GCCUACUCCCGUGUUGAGGUAGUUGGUUGUAUAGUACCGUGGUUCCAAUACUCGACUAUACAAUCCGCUAACUUACCUCGUGGGUAGAGU 19 16589 MI0001601 aga-mir-1 Anopheles gambiae miR-1 stem-loop GAAGCAAAGCUGCGAAAGUUCCAUGCUUCCUUGCAUUCAAUAGUAUGUUUGUAAAACCCUAUGGAAUGUAAAGAAGUAUGGAGCGAUUGGGCUAGUUC 19 16590 MI0001602 aga-mir-10 Anopheles gambiae miR-10 stem-loop GUCGAUUUAUGUUCUACAUCCACCCUGUAGAUCCGAAUUUGUUUGAAUUUAUAUUAAUAACAAAUUCGGUUCUAGAGAGGUUUGUGUGGGGCAUUUGUUAAC 19 16591 MI0001603 aga-mir-100 Anopheles gambiae miR-100 stem-loop GCCCCGUCUGUGGAAACCCGUAGAUCCGAACUUGUGCUGCACUGUACAACUGGACACAAGAACGGAUAUAUGGGAUUCUGUCGACGGUUGGC 19 16592 MI0001604 aga-mir-124 Anopheles gambiae miR-124 stem-loop CGUUUUUCUCCUGGUGUUCACUGUAGGCCUGUAUGUUCUAUUGCGGAUUUCAUAAGGCACGCGGUGAAUGCCAAGAGCGAACG 19 16593 MI0001605 aga-mir-125 Anopheles gambiae miR-125 stem-loop UAUUGUUUCGUUUUUUUGUAUCUGCUGAUUCCCUGAGACCCUAACUUGUGACUAUCGUUGCAAAGUUUCACAAGUUUUGAUCUCCGGUAUUAGCGGUUGAGAUGCAACGGUA 19 16594 MI0001606 aga-mir-133 Anopheles gambiae miR-133 stem-loop UGUUGACGCAAUAUUUUCCCUUUGCGAAUGCAUUUGGUCCCCUUCAACCAGCUGUAGCAGUGAUUGCAAUCAACAGU 19 16595 MI0001607 aga-mir-13b Anopheles gambiae miR-13b stem-loop UGCUCGUGGUCAGGUCGUAAAAAUGGUUGUGCCGUGUCGAUUUAAGAAAAGUUCAUAUCACAGCCAUUUUGACGAGUUUGACCACUCUUGAGCA 19 16596 MI0001608 aga-mir-14 Anopheles gambiae miR-14 stem-loop GCCCGAUAAGCCUGUGGGAGCGAGAUUAAGGCUUGCUGGUUAUCACGUUAAACGUAGUCAGUCUUUUUCUCUCUCCUAUCGGUACUAACGGUGC 19 16597 MI0001609 aga-mir-184 Anopheles gambiae miR-184 stem-loop GGUGCACUCGAACCCUUAUCAUUCUUUCGCCCCGUGUGCUUUCUAACAACUGGACGGAGAACUGAUAAGGGCCCGGGUCACC 19 16598 MI0001610 aga-mir-210 Anopheles gambiae miR-210 stem-loop GAAAUUCAUUGCAGCUGCUGACCACUGCACAAGAUUAGAAUGCGACUCUUGUGCGUGUGACAACGGCUAUUAUGGGUUUU 19 16599 MI0001611 aga-mir-219 Anopheles gambiae miR-219 stem-loop UUUCUAGCUCUGAUUGUCCAAACGCAAUUCUUGUCCUGUGCUGGUUUAGCUACUCAAGAGUUGUGACUGGACAUCCGUGGCUCGGAA 19 16600 MI0001612 aga-mir-263 Anopheles gambiae miR-263 stem-loop CCCUGGUACAUGUAAUGGCACUGGAAGAAUUCACGGGAUUUUUUUCAACAUUCCCGUGUUCUCUUAGUGGCAUACCUAGUACAGGG 19 16601 MI0001613 aga-mir-275 Anopheles gambiae miR-275 stem-loop UGAGCCGUCUAAUGACACGCGCUAAGCAGGAACCGGGACUUGGUACACAUUCGCUAGCAGUCAGGUACCUGAAGUAGCGCGCGUUAUUCGGCUCA 19 16602 MI0001614 aga-mir-276 Anopheles gambiae miR-276 stem-loop GGUGACUGCCAUCAGCGAGGUAUAGAGUUCCUACGGUAAUCGAUUGAAACUUUGUAGGAACUUCAUACCGUGCUCUUGGAUAGCCGUUUACC 19 16603 MI0001615 aga-mir-277 Anopheles gambiae miR-277 stem-loop GUUUUGGGGUACGUGUCAGAGGUGCAUUUACAUCGAACUAUUCCAGUUGAGGUAUUUGUAAAUGCACUAUCUGGUACGACAUUCCAGAAU 19 16604 MI0001616 aga-mir-278 Anopheles gambiae miR-278 stem-loop GGUACGGUACGGACGGACGAUAGUCUUCAACGACCGUUCCGUUUGACACGAGGUCGGUGGGACUUUCGUCCGUUUGUAAGGCC 19 16605 MI0001617 aga-mir-279 Anopheles gambiae miR-279 stem-loop UUCCUAUCAGUGUAAAUGGGUGUGAAUCUAGUGAUUUCACAUGAAUUUUCGAUUGUGACUAGAUCCACACUCAUUAAUGUUGUUUGGAA 19 16606 MI0001618 aga-mir-281 Anopheles gambiae miR-281 stem-loop GCAAUCGAAUAUGAAAAUAAAGAGAGCUAUCCGUCGACAGUAGGGAUAUAAUUCACUGUCAUGGAAUUGCUCUCUUUAUGUACAAUUCGAUAUUCAACGUGC 19 16607 MI0001619 aga-mir-282 Anopheles gambiae miR-282 stem-loop GUAACAGAGCUAAUCUAGCCUCUUCUAGGCUUUGUCUGUACAGUUUCUGCAAACCAGACAUAGCCUGUCAGAGGUUAGGUGAAAUCUGCUAGC 19 16608 MI0001620 aga-mir-283 Anopheles gambiae miR-283 stem-loop UUCGACCGAAAGGUAAAUAUCAGCUGGUAAUUCUAGGCUAUCAAUCCAUCGUGCAUCCCGGGAUUUCAGCUGAUAUCCACUUUUCCGUCGAG 19 16609 MI0001621 aga-mir-2-1 Anopheles gambiae miR-2-1 stem-loop GCGAAAGCGUCACACGGCCUAGCUCAUCAAAGCUGGCUGUGAUAUGAGAUAUCGGAUCGAAAGUGCACCAUUUCACAGCCACUUUGAGAGACAGGACAUGCGUUUGC 19 16610 MI0001622 aga-mir-2-2 Anopheles gambiae miR-2-2 stem-loop GUGACGCAUUGCUCAUCAAAGCUGGCUGUGAUAGCAACUAUCAAAGCAAGCUACAACAACCAAGUUUGAUGACAAUGCAUGGC 19 16611 MI0001623 aga-mir-305 Anopheles gambiae miR-305 stem-loop UUUGUCACAUGUCUAUUGUACUUCAUCAGGUGCUCUGGUGGAUUUGAGAAAACCCGGCACAUGUUGGAGUACACUCUAUGUGCUGACAAG 19 16612 MI0001624 aga-mir-307 Anopheles gambiae miR-307 stem-loop UGGACUCAUUCUCUCGAUCACUCACUCAACCUGGGUGUGAUGCUUUUUUGAAUCAUCACAACCUCCUUGAGUGAGCGACCGCGGAUUGACUAAAACCA 19 16613 MI0001625 aga-mir-308 Anopheles gambiae miR-308 stem-loop GCUUCUCGUGCGAUGUUUCGCAGUAUAUCCCUGUGAGUUUGCUACUUUUCAAUGGUCAAAUCACAGGAGUAUACUGUGAGAUGUUGCCGGUUACUUAGGC 19 16614 MI0001626 aga-mir-315 Anopheles gambiae miR-315 stem-loop UAUAAAAUUUUGAUUGUUGCUCAGAAAGCCGUGUCGAUUAAGCAAUUCGCUUUCGGGCAGUAAUCAAAGUCAAAUA 19 16615 MI0001627 aga-mir-317 Anopheles gambiae miR-317 stem-loop CGUCUCUGCCACUGGGAUACUCCUUGUGCUCGCUGUGCAUAUCGAUUCAAACUAGUGAACACAUCUGGUGGUAUCUCAGUGGCCGGGAUG 19 16616 MI0001628 aga-mir-7 Anopheles gambiae miR-7 stem-loop GGCAAAACAUUGUAUGGAAGACUAGUGAUUUUGUUGUUUGGCUUAUGAUACUAACAAUAAAUCUCUCGUCUUUCUACAAAGUUUGCC 19 16617 MI0001629 aga-mir-79 Anopheles gambiae miR-79 stem-loop GUGCCCUUUUGUCCGCGCUUUGGCGCUUUAGCUGUAUGAUAGAAUUUGAACUAUUUCAUAAAGCUAGAUUACCAAAGCAUAGACGAAUUGGGAC 19 16618 MI0001630 aga-mir-8 Anopheles gambiae miR-8 stem-loop GGGUGUCUGUUCACAUCUUACCGGGCAGCAUUAGAUAUGUUAUCGGAUAUUUCUAAUACUGUCAGGUAAAGAUGUCGUCCGAGCCC 19 16619 MI0001631 aga-mir-9a Anopheles gambiae miR-9a stem-loop GUCAAUGUUCUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUUUAAACGUCAUAAAGCUAGCAUACCGAAGUUAAUAAUUGAC 19 16620 MI0001632 aga-mir-92a Anopheles gambiae miR-92a stem-loop UCAGGACUACGCGUCGGCCGGCUCAAGAGCAAAAUUGUGUUUCAUACUAAUAUUGCACUUGUCCCGGCCUAUGUGUGGUAAGGCCUGAA 19 16621 MI0001633 aga-mir-92b Anopheles gambiae miR-92b stem-loop GGGCUCCGGAUGUAGGACGUGACAGGUGCAUUAUUUGCUGAUUUUCAAUGUCAAAUUGCACUUGUCCCGGCCUGCAGCUUACCGCCC 19 16622 MI0001634 aga-mir-9b Anopheles gambiae miR-9b stem-loop UGCCACUUAUUGGGACUUUGGUGAUUUUAGCUGUAUGUUGAAUGCAUUCCUAACCACAUAUAGCUUUAUCACCAAAAACCUAAUGUGUGUGUA 19 16623 MI0001635 aga-mir-9c Anopheles gambiae miR-9c stem-loop UUUCCGGCUGUAUCUUUGGUAUUCUAGCUGUAGAAUGUUGUUUUCAUUGUAAUAUCUCUAAAGCUUUAGUACCAGAGGUCCAACUGGGAA 19 16624 MI0001636 aga-mir-iab-4 Anopheles gambiae miR-iab-4 stem-loop GUGCCGCUUCAUGAACGUAUACUGAAUGUAUCCUGAGUGCUACUUAUCCGGUAUACCUUCAGUAUACGUAACAAGAGGCGACAC 19 16625 MI0001637 hsa-mir-448 Homo sapiens miR-448 stem-loop GCCGGGAGGUUGAACAUCCUGCAUAGUGCUGCCAGGAAAUCCCUAUUUCAUAUAAGAGGGGGCUGGCUGGUUGCAUAUGUAGGAUGUCCCAUCUCCCAGCCCACUUCGUCA Xie et al. [1] refer to this sequence by the internal identifier MIR64. The sequence is unrelated to C. elegans mir-64 (MIR:MI0000035). 5 16626 MI0001638 mmu-mir-448 Mus musculus miR-448 stem-loop ACGAGGAGGUUGAACAUCCUGCAUAGUGCUGCCAGGAAAUCCCUACUUCAUACUAAGAGGGGGCUGGCUGGUUGCAUAUGUAGGAUGUCCCAUCUCCUGGCCCACUUCGUCA Xie et al. [1] refer to this sequence by the internal identifier MIR64. The sequence is unrelated to C. elegans mir-64 (MIR:MI0000035). 6 16627 MI0001639 rno-mir-448 Rattus norvegicus miR-448 stem-loop ACGGGGAGGUUGAACAUCCUGCAUAGUGCUGCCAGGAAAUCCCUACUUCAUACUAAGAGGGGGCUGGCUGGUUGCAUAUGUAGGAUGUCCCAUCUCCCGGCCCACUUCGUCA Xie et al. [1] refer to this sequence by the internal identifier MIR64. The sequence is unrelated to C. elegans mir-64 (MIR:MI0000035). 8 16628 MI0001640 cfa-mir-448 Canis familiaris miR-448 stem-loop GCAGGGAGGUUGAACAUCCUGCAUAGUGCUGCCAGGAAAUCCCUAUUUUAUACUAAGGGGGCUGGCUGGUUGCAUAUGUAGGAUGUCCCAUCUCCCCGCCCACUUCAUCG Xie et al. [1] refer to this sequence by the internal identifier MIR64. The sequence is unrelated to C. elegans mir-64 (MIR:MI0000035). 20 16629 MI0001641 hsa-mir-429 Homo sapiens miR-429 stem-loop CGCCGGCCGAUGGGCGUCUUACCAGACAUGGUUAGACCUGGCCCUCUGUCUAAUACUGUCUGGUAAAACCGUCCAUCCGCUGC Xie et al. [1] refer to this sequence by the internal identifier MIR201. The sequence is unrelated to mouse mir-201 (MIR:MI0000244). 5 16630 MI0001642 mmu-mir-429 Mus musculus miR-429 stem-loop CCUGCUGAUGGAUGUCUUACCAGACAUGGUUAGAUCUGGAUGCAUCUGUCUAAUACUGUCUGGUAAUGCCGUCCAUCCACGGC Xie et al. [1] refer to this sequence by the internal identifier MIR201. The sequence is unrelated to mouse mir-201 (MIR:MI0000244). 6 16631 MI0001643 rno-mir-429 Rattus norvegicus miR-429 stem-loop UGCCUGCUGAUGGAUGUCUUACCAGACAUGGUUAGAUCUGGAUGUAUCUGUCUAAUACUGUCUGGUAAUGCCGUCCAUCCAUGGC Xie et al. [1] refer to this sequence by the internal identifier MIR201. The sequence is unrelated to mouse mir-201 (MIR:MI0000244). 8 16632 MI0001644 cfa-mir-429 Canis familiaris miR-429 stem-loop AGCCUGCUGAUGGGCGUCUUACCAGACACGGUUAGAUCUGGGUUCUGGUGUCUAAUACUGUCUGGUAAUGCCGUUCAUCCAUGGC Xie et al. [1] refer to this sequence by the internal identifier MIR201. The sequence is unrelated to mouse mir-201 (MIR:MI0000244). 20 16633 MI0001645 mmu-mir-365-2 Mus musculus miR-365-2 stem-loop AGAGUGAUCAAGGACAGCAAGAAAAAUGAGGGACUUUCAGGGGCAGCUGUGUUUCCUGACUCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGUUCUUGCAGUGUGCAUCGGAG Xie et al. [1] refer to this sequence by the internal identifier MIR190. The sequence is unrelated to mammalian mir-190 (MIR:MI0000486). 6 16634 MI0001647 cfa-mir-365-2 Canis familiaris miR-365-2 stem-loop AGAGUGUUCAAGGACAGCAAGAAAAAUGAGGGACUUUCAGGGGCAGCUGUGUUUUCUGACUCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGUUCUUGCAGUGUGCAUCGGG Xie et al. [1] refer to this sequence by the internal identifier MIR190. The sequence is unrelated to mammalian mir-190 (MIR:MI0000486). 20 16635 MI0001648 hsa-mir-449a Homo sapiens miR-449a stem-loop CUGUGUGUGAUGAGCUGGCAGUGUAUUGUUAGCUGGUUGAAUAUGUGAAUGGCAUCGGCUAACAUGCAACUGCUGUCUUAUUGCAUAUACA Xie et al. [1] refer to this sequence by the internal identifier MIR54. The sequence is unrelated to C. elegans mir-54 (MIR:MI0000025). 5 16636 MI0001649 mmu-mir-449a Mus musculus miR-449a stem-loop CUGUGUGUGAUGGCUUGGCAGUGUAUUGUUAGCUGGUUGAGUAUGUGAGCGGCACCAGCUAACAUGCGACUGCUCUCCUAUUGCACACACA Xie et al. [1] refer to this sequence by the internal identifier MIR54. The sequence is unrelated to C. elegans mir-54 (MIR:MI0000025). 6 16637 MI0001650 rno-mir-449a Rattus norvegicus miR-449a stem-loop CUGUGUGCGAUGGGUUGGCAGUGUAUUGUUAGCUGGUUGAGUAUGUAAAAGGCACCAGCUAACAUGCAACUGCUCUCCUAUUGCACAUACA 8 16638 MI0001651 cfa-mir-449 Canis familiaris miR-449 stem-loop CCGUGUGUGAUGGGUUGGCAGUGUAUUGUUAGCUGGUUGAAUAUAUGAAUGGCAUCAGCUAACAUGCAACUGCUAUCUUAUUGCAUAUACA Xie et al. [1] refer to this sequence by the internal identifier MIR54. The sequence is unrelated to C. elegans mir-54 (MIR:MI0000025). 20 16639 MI0001652 hsa-mir-450a-1 Homo sapiens miR-450a-1 stem-loop AAACGAUACUAAACUGUUUUUGCGAUGUGUUCCUAAUAUGCACUAUAAAUAUAUUGGGAACAUUUUGCAUGUAUAGUUUUGUAUCAAUAUA Xie et al. [1] refer to this sequence by the internal identifier MIR238. The sequence is unrelated to C. elegans mir-238 (MIR:MI0000313). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 16640 MI0001653 mmu-mir-450a-1 Mus musculus miR-450a-1 stem-loop GAGAGAUACUGAGCUGUUUUUGCGAUGUGUUCCUAAUAUGUGCUAUAAUUAUAUUGGGAACAUUUUGCAUAAAUAGCUUUGUGUCAAUACA Xie et al. [1] refer to this sequence by the internal identifier MIR238. The sequence is unrelated to C. elegans mir-238 (MIR:MI0000313). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 16641 MI0001654 rno-mir-450a Rattus norvegicus miR-450a stem-loop GAGAGAUGCGGAGCUGUUUUUGCGAUGUGUUCCUAAUGUGUGCUACAAUUAUAUUGGGAACAUUUUGCAUAAAUAGUUUUACAUCGACACA Xie et al. [1] refer to this sequence by the internal identifier MIR238. The sequence is unrelated to C. elegans mir-238 (MIR:MI0000313). 8 16642 MI0001655 cfa-mir-450a Canis familiaris miR-450 stem-loop GAAAGAUGCUGAACUGUUUUUGCGAUGUGUUCCUAAUAUGCAGUAUGAACAUAUUGGGAGCAUUUUGCAUGCAUGGUUUUGUAUCAAUAUA Xie et al. [1] refer to this sequence by the internal identifier MIR238. The sequence is unrelated to C. elegans mir-238 (MIR:MI0000313). 20 16643 MI0001656 rno-mir-365 Rattus norvegicus miR-365 stem-loop ACAGCAAGAAAAAUGAGGGACUUUCAGGGGCAGCUGUGUUUCCUGACUCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGUUCUUGCA Xie et al. [1] refer to this sequence by the internal identifier MIR245. The sequence is unrelated to C. elegans mir-245 (MIR:MI0000321). 8 16644 MI0001657 cfa-mir-365-1 Canis familiaris miR-365-1 stem-loop ACCGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUCCAUUCCACUAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCA Xie et al. [1] refer to this sequence by the internal identifier MIR245. The sequence is unrelated to C. elegans mir-245 (MIR:MI0000321). 20 16645 MI0001669 mghv-mir-M1-1 Mouse gammaherpesvirus 68 miR-M1-1 stem-loop UGGUCGAGGAAGUGGGUCCAACUUUAUCCCUAUAGUGUGAUAGAAAUGGCCGUACUUCCUUUAUA 21 16646 MI0001670 mghv-mir-M1-2 Mouse gammaherpesvirus 68 miR-M1-2 stem-loop GAGAGGGGGAGUGUGUGGUCUGUAGAGAGACAUGAGUUGAUCGGCAGACCCCCUCUCCCCCUCUUU 21 16647 MI0001671 mghv-mir-M1-3 Mouse gammaherpesvirus 68 miR-M1-3 stem-loop GAAGUAGCGAACCUCUGCUCACUGCCCGGGCCCUCCGGGAGGUGAGCAGGAGUUGCGCUUU 21 16648 MI0001672 mghv-mir-M1-4 Mouse gammaherpesvirus 68 miR-M1-4 stem-loop CGAGCCCUGACCAUCGAGGAGCACGUGUUAUUCUAGACCUCUCUUCCAGCUAAGAUAGCAUGUGCCGUCCUCUUUGUUUCCCAAGUCAGUAUUC 21 16649 MI0001673 mghv-mir-M1-5 Mouse gammaherpesvirus 68 miR-M1-5 stem-loop CAGAGUUGAGAUCGGGUCGUCUCCCCCUGGCGGAAGGAGGCAAACCCGAGCUCCUCCUUC 21 16650 MI0001674 mghv-mir-M1-6 Mouse gammaherpesvirus 68 miR-M1-6 stem-loop AACCACCUCCCACAAUUUCAGAGUCUUAGCCAGAUUAUCUGAAACUGUGUGAGGUGGUUUUU 21 16651 MI0001675 mghv-mir-M1-7 Mouse gammaherpesvirus 68 miR-M1-7 stem-loop AAAGGUGGAGGUGCGGUAACCUCCUAAGAUUACUGUUGGGAUAUCGCGCCCACCUUUAUU 21 16652 MI0001676 mghv-mir-M1-8 Mouse gammaherpesvirus 68 miR-M1-8 stem-loop UUUACCAGCACUCACUGGGGGUUUGGUCAGGAGAUCAAGUAGAUCUGACCAACCCUAAGUGAGUUUUUCUU 21 16653 MI0001677 mghv-mir-M1-9 Mouse gammaherpesvirus 68 miR-M1-9 stem-loop UGAGGUUCCCGGCAAAUGUUGGAUAGAUAGGUAACUUCUCACAUUUGCCUGGACCUUUUU 21 16654 MI0001678 hcmv-mir-UL22A Human cytomegalovirus miR-UL22A stem-loop CCUGUCUAACUAGCCUUCCCGUGAGAGUUUAUGAACAUGUAUCUCACCAGAAUGCUAGUUUGUAGAGG 22 16655 MI0001679 hcmv-mir-UL36 Human cytomegalovirus miR-UL36 stem-loop CCACGUCGUUGAAGACACCUGGAAAGAGGACGUUCGCUCGGGCACGUUCUUUCCAGGUGUUUUCAACGUGCGUGG 22 16656 MI0001680 hcmv-mir-UL112 Human cytomegalovirus miR-UL112 stem-loop GACAGCCUCCGGAUCACAUGGUUACUCAGCGUCUGCCAGCCUAAGUGACGGUGAGAUCCAGGCUGUC 22 16657 MI0001681 hcmv-mir-UL148D Human cytomegalovirus miR-UL148D stem-loop AGCAGGUGAGGUUGGGGCGGACAACGUGUUGCGGAUUGUGGCGAGAACGUCGUCCUCCCCUUCUUCACCGCC 22 16658 MI0001682 hcmv-mir-US5-1 Human cytomegalovirus miR-US5-1 stem-loop UGAACGCUUUCGUCGUGUUUUUCAUGCAGCUUUUACAGACCAUGACAAGCCUGACGAGAGCGUUCA 22 16659 MI0001683 hcmv-mir-US5-2 Human cytomegalovirus miR-US5-2 stem-loop GGAGGCUUUCGCCACACCUAUCCUGAAAGCGUUGCAUUCUUUAUGAUAGGUGUGACGAUGUCUUU 22 16660 MI0001684 hcmv-mir-US25-1 Human cytomegalovirus miR-US25-1 stem-loop UGUGAACCGCUCAGUGGCUCGGACCGCCGGCUGUUUCUGCGCACCGGUCCGAACGCUAGGUCGGUUCUCA 22 16661 MI0001685 hcmv-mir-US25-2 Human cytomegalovirus miR-US25-2 stem-loop CGGUUAGCGGUCUGUUCAGGUGGAUGAGGGCUCUUCACGGUCGGGCACUCGGCUGUGCCUGUCAUCCACUUGGAGAGCUCCCGCGGUCCG 22 16662 MI0001686 hcmv-mir-US33 Human cytomegalovirus miR-US33 stem-loop CACGGUUGAUUGUGCCCGGACCGUGGGCGCGACGAAACCCACCGUCACGGUCCGAGCACAUCCAAACGUG The mature miRNA names reflect cloning frequencies from Landgraf et al. [2], and may differ subtly from previous annotations. 22 16663 MI0001687 osa-MIR435 Oryza sativa miR435 stem-loop UUCCACCUUCCCAAAAACUCCCCAGCAGACCUGGAGCGAAAAUUGCCUUGAAUUAGCUUCAGACCUAUAGUGUCGUUGAUAGUUUAGGGACAUGUUUUAUCCGGUAUUGGAGUUGAGGGAUGAAAAUUGGAC 7 16664 MI0001688 osa-MIR437 Oryza sativa miR437 stem-loop CCCUCUGUUUCAUAUUGUAUUGUGUUUUAGUUUUGUUGUAAGUCAAAAUUCUUUUACUUUGACCAAGUUUGUAGUAAAAUAAUUAACAUCUAAAAUACCAAAUAAAUACACUAUUGAGACAUAUUUCUUGGUUGAUUUUUCUAUAAACUUGGUCAAAGUUAGAGAAGUUUGACUUAGGACAAAACUAAACACCUUAUGAUAUGGAACAGAGGG 7 16665 MI0001689 osa-MIR438 Oryza sativa miR438 stem-loop AACGUGUUUUGGGCAAACUUGUUUUCCCACGCGUUAUAGUGAAAACUUUUGGAAUAUGUUUGUUAUGGGAGUAUAUAUUAUUGAUAUUGGAUCUAGAAGCAUAAUUUUAUAUAACGUGUGUUACGGGUGGACAUGGUUUCAAAAGUUUUCACUUUAACGCGUGGGAUAUCAUCUACUUCCUCCGUU 7 16666 MI0001690 osa-MIR390 Oryza sativa miR390 stem-loop GGUAUGGAACAAUCCUUGAAGCUCAGGAGGGAUAGCGCCUCGAAAUCAAACUAGGCGCUAUCUAUCCUGAGCUCCAUGGUUUGUUCUUACC 7 16667 MI0001691 osa-MIR439a Oryza sativa miR439a stem-loop UACCCUGUCGAACUGACGCAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGACAGGGUG 7 16668 MI0001692 osa-MIR439b Oryza sativa miR439b stem-loop UUCCUGUCGAAUUGUGGUUGUUCGAUAGGUACCCCUGUCGAACCGCGGUUGUUCGACAGG 7 16669 MI0001693 osa-MIR439c Oryza sativa miR439c stem-loop UACCCUGUCGAACUGACGCAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGACAGGGUG 7 16670 MI0001694 osa-MIR439d Oryza sativa miR439d stem-loop CCACCUACCCUGUCGAACUCACGUAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGAUAGGGUG 7 16671 MI0001695 osa-MIR439e Oryza sativa miR439e stem-loop CCACCUACCCUGUCGAACUGACGCAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGACAGGGUG 7 16672 MI0001696 osa-MIR439f Oryza sativa miR439f stem-loop ACCUACCCUGUCGAACUGACGCAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGACAGGGUG 7 16673 MI0001697 osa-MIR439g Oryza sativa miR439g stem-loop UCCUGUCGAACUGACGCAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGACAGG 7 16674 MI0001698 osa-MIR439h Oryza sativa miR439h stem-loop ACCACCUACCCUGUCGAACUCACGCAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGACAGGGUG 7 16675 MI0001699 osa-MIR439i Oryza sativa miR439i stem-loop CACCUACCCUGUCGAACUGACGCAGUUCGACAUGUACCUGUCGAACUGUGGUUGUUCGAUAGGUAUCCCUGUCGAACCGCGGUUGUUCGACAGGGUGCUAAAC 7 16676 MI0001700 osa-MIR439j Oryza sativa miR439j stem-loop GCAGGGACAUAUCCAACGGGCAGUGUUCGAUAGGGGCGUGGCUACAGUGACACUACAAUGUUUUUUUCUAUUUUUAAAAUUAUUUAAUCACAUGUCGAACCGCGGUUGUUCGAUAGGUACCCUGU 7 16677 MI0001701 osa-MIR440 Oryza sativa miR440 stem-loop AUUGCUAUUGUUGGUGCUGGGCUCGUCCUGAUCACUAGGAGACUCUGAUCAAGCUAGGCCUAAACUUAUGUAUUAGUGUCUCCUGAUGAUCGGGACAAGGCUAACACCGAUGAGAGCGAU 7 16678 MI0001702 osa-MIR396d Oryza sativa miR396d stem-loop AAAGAUGUGCGGGCAUGCUUUCCACAGGCUUUCUUGAACUGUGAACUCGUGGGGGUGUAUGUGCUCAUGUUGGGAUUGUGGUCGGUGGCCUCCAAUUCUCUGAAAAGAAAGCUGAAUUGUCGAGCUCCCCGUUCUGUCUUUG 7 16679 MI0001703 osa-MIR396e Oryza sativa miR396e stem-loop GCGGGCAUGCUUUCCACAGGCUUUCUUGAACUGUGAACUCGUGGGGGUGUAUGUGCUCAUGUUGGGAUUGUGGUCGGUGGCCUCCAAUUCUCUGAAAAGAAAGCUGAAUUGUCGAGCUCCCCGUUCUGUCUUUGGUCGUCUCUACCUGUUGAUGGUUCAAGAAAGCCCAUGGAAACCAUGCCGC 7 16680 MI0001704 osa-MIR441a Oryza sativa miR441a stem-loop AAAAUAUAUUAAUUGGUACUUUCUCUAUUUAACAAUGUAAGUCAUUUUAGCAUUUCACACAUUCAUAUUGAUCUAGAUUCAUUACCAUCAAUAUAAAUGUGGGAAAUGCUAAAAUGACUUACAUUGUGAAACGGAGGGAGUAGUAAUUCAAAA 7 16681 MI0001705 osa-MIR441b Oryza sativa miR441b stem-loop UUAUCACCACUGACAUACUUCCUCCGUUUCACAAUGUAAGUCAUUUUAGUAAUUUUCAUAUUCAUAUUGAUGUUAAUGAAUCUAGACUCAUGUACCAUCAAUAUAAAUGUGGGAAAUGGUAGAAUGACUUACAUUAUGAAACAUAGGGAGCA 7 16682 MI0001706 osa-MIR441c Oryza sativa miR441c stem-loop UACUUCCUCUGUUUCAUAAUGUAAGUCAUUUUAGCAUUUUUCAUAUUUAUAUUGAUGGUAAUGAAUCUAGAUAGAUAUAUAUGUCUAGAUUCAUUACCAUCAAUAUAAAUGUGGGAAAUGCUAGAAUAACUUACAUUGUGAAACGGAGGAAGUA 7 16683 MI0001707 osa-MIR442 Oryza sativa miR442 stem-loop CACAUAUAUGGAGUAUUAAAUAUAAAUGAAAAAAAUAACUAAUUAUACAGAUGACGUGUAAAUUGCGAGACGAAUCUUUUAAGCCUAAUUGCUCCAUGAUCUGACAAUGUGGUGCUACAGUAAACAUUUGCUAAUGACGGAUUAAUUAGGCUUAAUAAAUUCGUCUCGCAGUUUACAGACGGAUUCUGUAAUUUGUUUUGUUAUUAGUCUACGUUAAAUACUUCAAAUGUGUG 7 16684 MI0001708 osa-MIR443 Oryza sativa miR443 stem-loop CGUCCCAUAAAAACAAACCCAAAACUAGAUGUGAUAUAUCACAAUACAAUAAAUCUGGAUAGGAGUCUAUCCAGAUACUUCUAUCUAGAUUUAUUGUACUGGGAUAUGUCACAUAUAUUCAGUUUUAUAUUUGUUUUUUUUUUGGACG 7 16685 MI0001709 osa-MIR445a Oryza sativa miR445a stem-loop UCACAUUGAAUGUUUGACACUAAUUUGGAGUAUUAAACAUAGACUAAUAAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGCGAGACGAAUUUUUUAAGCCUAAUUAAUCCAUAAUUAUGAAAAGUUUACUGUAGCAUCACAUUGUCAAAUCAUGGUGUAAUUAGACUCAAAAGAUUCGUCUCGCGAAUUAGUCCAAGGUUAUAGAAUAGGUUUUAUAAUUAGUGUAUGUUUAAUACUCUAAAUUAGUGUAUAAACAUCCGAUGUGA 7 16686 MI0001710 osa-MIR445b Oryza sativa miR445b stem-loop GUCCGUGUCACAUCGAAUGUUUGACGCUAAUUUAGAGUAUUAAACAUAGACUAAUAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGCGAGACGAACUUUUUAAGCCUAAUUAAUCCAUAAUUAUGAAAAGUUUACUAAUCAUGGUGUAAUUAGACUCAAAAGAUUCGUCUCGCGAAUUAGUCCAAGGUUAUAGAAUAGGUUUUAUAAUUAAUGUAUGUUUAAUACUCUAAAUUAGUGUAUAAACAUCCGAUGUGACAGGGAC 7 16687 MI0001711 osa-MIR445c Oryza sativa miR445c stem-loop CCGUGUCACAUCGAAUGUUUGACGCUAAUUUGGAGUAUUAAACAUAGACUAAUAAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGCGAGACGAAUUUUUUAAGCCUAAUUAAUCCAUAAUUAUGAAAAGUUUACUAAUCAUGGUGUAAUUAGGCUUAAAAGAUUCGUCUCGUGAAUUAGUCCAAGGUUAUAGAAUAGGUUUUAUAAUUAGUGUAUAUUUAAUACUCUAAAUUAGUGUAUAAACAUCCGAUGUGACAUA 7 16688 MI0001712 osa-MIR445d Oryza sativa miR445d stem-loop UGGCCAAAAUUUAGUCCCUGUCACAUCAGAUGUUAUGACACUAAUUAAAAGUAUUAAACAUAGACUAAUGACAAACCCCAUUCCAUAACCCUGGAUUAAUUCGCGAGAUGAAUCUAUUGAGUCUAAUUAAUCAAUGAUUAGCCUAUGUGAUGCUACACUAAACAUGUGUUAAUUAUGGAUUAAUUAGGCUUAAAAAUUUUGUCUCACGAAUUAGCUCUCAUUUAUGCAAUUAUUAGUUUUGUAAGUAGUUUAUGUUUAAUAUCUAAAUUAGUGUAUAAACAUCCGAUGUGAUAGGGACUAAAGUUGGAUCCA 7 16689 MI0001713 osa-MIR445e Oryza sativa miR445e stem-loop GUCCGUGUCACAUCGAAUGUUUGACGCUAAUUUGGAGUAUUAAACAUAGACUAAUAAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGCGAGACGAAUUUUUUAAGCCUAAUUAAUCCAUAAUUAUGAAAAGUUUACUAAUCAUGGUGUAAUUAGACUCAAAAGAUUCGUCUCGCGAAUUAGUCCAAGGUUAUAGAAUAGGUUUUAUAAUUAGUGUAUGUUUAAUACUCUAAAUUAGUGUAUAAACAUCCGAUGUGACAGGGAC 7 16690 MI0001714 osa-MIR445f Oryza sativa miR445f stem-loop AGAUGGGGCUAAAACUUUUUAGUCCGUGUCACAUCGAAUGUUUGACGCUAAUUUGGAGUAUUAAACAUAGACUAAUAAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGCGGGACGAAUUUUUUAAGCCUAAUUAAUCCAUAAUUAUGAAAAGUUUACUAAUCAUGGUGUAAUUAGACUCAAAAGAUUCGUCUCGCGAAUUAGUCCAAGGUUAUAGAAUAGGUUUUAUAAUUAGUGUAUGUUUAAUACUCUAAAUUAGUGUAUAAACAUCCGAUGUGACAGGGACUUAAAAUAAGUCCCUGUUU 7 16691 MI0001715 osa-MIR445g Oryza sativa miR445g stem-loop UUUUAGUCCGUGUCACAUCGAAUGUUUGACGCUAAUUUGGAGUAUUAAACAUAGACUAAUAAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGCGAGACGAAUUUUUUAAGCCUAAUUAAUCCAUAAUUAUGAAAAGUUUACUAAUCAUGGUGUAAUUAAACUCAAAAGAUUCGUCUUGCGAAUUAGUCCAAGGUUAUAGAAUAUGUUUUAUAAUUAGUGUAUGUUUAAUAUUCUAAAUUAGUGUAUAAACAUCCGAUGUGACAGGGACUUAAA 7 16692 MI0001716 osa-MIR445h Oryza sativa miR445h stem-loop UUUUUAGUCCGUGUCACAUUGAAUGUUUGACACUAAUUUGGAGUAUUAAACAUAGACUAAUAAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGCGAGACGAAUUUUUUAAGCCUAAUUAAUCCAUAAUUAUGAAAAGUUUACUAAUCAUGGUGUAAUUAGACUCAAAAGAUUCGUCUCGCGAAUUAGUCCAAGGUUAUAGAAUAGGUUUUAUAAUUAGUGUAUGUUUAAUACUCUAAAUUAGUGUAUAAACAUCCGAUGUGACAGGGACUUAAAA 7 16693 MI0001717 osa-MIR445i Oryza sativa miR445i stem-loop ACUUUUUAGUCCGUGUCACAUCGAAUGUUUGACGCUAAUUUAGAGUAUUAAAUAUAGACUAAUAAAAAAACUAAUUUCAUAAAUGAAAGCUAAUCUGUGAGAUGAAUUUUUAAGCCUAAUUAAUCCAUAAUUAAAAGAUUCGUCUCGCGAAUUAGUCCAAGGUUAUAGAAUAGGUUUUAUAAUUAGUGUAUGUUUAAUACUUUAAAUUAGUGUAUAAACAUCCGAUGUGACAGGGACUUUAAGU 7 16694 MI0001718 osa-MIR446 Oryza sativa miR446 stem-loop AAAUAUGUACUUCCUUUGUUUCACAGUGUAAGUCAUUAUAAAAUUUCCCACAUUUAUAUUGAUGUUAAUGAAUCUAUAUAGAUAUAUAUGUCUAGAUUUAUUAACAUCAAUAUGAAUAUGGGAAAUGGUAGAAUAACUUACAUUGUGAAACGGAGGGAGUAUAUAGAACUUGAAC 7 16695 MI0001719 osa-MIR444a Oryza sativa miR444a stem-loop AUGCAAUUGGGGGCAGCAAGCUAGAGGUGGCAACUGCAUAAUUUGCAAGAAAUUGUUGGCUGAAGAUCAUACCGAUGAUAUUCUUGCAAGUUAUGCAGUUGCUGCCUCAAGCUUGCUGCCUCCUGUUGCCA 7 16696 MI0001720 dre-mir-429 Danio rerio miR-429 stem-loop CUUGUUGAUGGACGUCUUACCAGACAUGGUUAGAUGUAAUAACUUGUGUCUAAUACUGUCUGGUAAUGCCGUCCAUCACAUG 12 16697 MI0001721 hsa-mir-431 Homo sapiens miR-431 stem-loop UCCUGCUUGUCCUGCGAGGUGUCUUGCAGGCCGUCAUGCAGGCCACACUGACGGUAACGUUGCAGGUCGUCUUGCAGGGCUUCUCGCAAGACGACAUCCUCAUCACCAACGACG 5 16698 MI0001722 rno-mir-431 Rattus norvegicus miR-431 stem-loop UCCUGCGCGUCCUGCGAGGUGUCUUGCAGGCCGUCAUGCAGGCCACACUGACGGUAACGUUGCAGGUCGUCUUGCAGGGCUUCUCGCAAGACGACAUCUUCAUCGCCAACGACG 8 16699 MI0001723 hsa-mir-433 Homo sapiens miR-433 stem-loop CCGGGGAGAAGUACGGUGAGCCUGUCAUUAUUCAGAGAGGCUAGAUCCUCUGUGUUGAGAAGGAUCAUGAUGGGCUCCUCGGUGUUCUCCAGG 5 16700 MI0001724 rno-mir-433 Rattus norvegicus miR-433 stem-loop CCGGGGAGAAGUACGGUGAGCCUGUCAUUAUUCAGAGAGGCUAGAUCCUCUGUGUUGAGAAGGAUCAUGAUGGGCUCCUCGGUGUUCUCCAGG 8 16701 MI0001725 hsa-mir-329-1 Homo sapiens miR-329-1 stem-loop GGUACCUGAAGAGAGGUUUUCUGGGUUUCUGUUUCUUUAAUGAGGACGAAACACACCUGGUUAACCUCUUUUCCAGUAUC 5 16702 MI0001726 hsa-mir-329-2 Homo sapiens miR-329-2 stem-loop GUGGUACCUGAAGAGAGGUUUUCUGGGUUUCUGUUUCUUUAUUGAGGACGAAACACACCUGGUUAACCUCUUUUCCAGUAUCAA 5 16703 MI0001727 hsa-mir-453 Homo sapiens miR-453 stem-loop GCAGGAAUGCUGCGAGCAGUGCCACCUCAUGGUACUCGGAGGGAGGUUGUCCGUGGUGAGUUCGCAUUAUUUAAUGAUGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 16704 MI0001729 hsa-mir-451 Homo sapiens miR-451 stem-loop CUUGGGAAUGGCAAGGAAACCGUUACCAUUACUGAGUUUAGUAAUGGUAAUGGUUCUCUUGCUAUACCCAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 16705 MI0001730 mmu-mir-451 Mus musculus miR-451 stem-loop CUUGGGAAUGGCGAGGAAACCGUUACCAUUACUGAGUUUAGUAAUGGUAACGGUUCUCUUGCUGCUCCCACA 6 16706 MI0001731 rno-mir-451 Rattus norvegicus miR-451 stem-loop UUUGGGAAUGGCGAGGAAACCGUUACCAUUACUGAGUUUAGUAAUGGUAAUGGUUCUCUUGCUGCUCCCACA 8 16707 MI0001732 dre-mir-451 Danio rerio miR-451 stem-loop AGAGGCGGCGAAACCGUUACCAUUACUGAGUUUAGUAAUGGUAAGGGUUCUGCUGCCUUU 12 16708 MI0001733 hsa-mir-452 Homo sapiens miR-452 stem-loop GCUAAGCACUUACAACUGUUUGCAGAGGAAACUGAGACUUUGUAACUAUGUCUCAGUCUCAUCUGCAAAGAAGUAAGUGCUUUGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 16709 MI0001734 mmu-mir-452 Mus musculus miR-452 stem-loop GCUAAGCAGUUACAACUGUUUGCAGAGGAAACUGAGACUUUAUAACUAUGUCUCAGUCUCAUCUGCAAAGAGGUAAGUGCUUUGC 6 16710 MI0001735 hsa-mir-409 Homo sapiens miR-409 stem-loop UGGUACUCGGGGAGAGGUUACCCGAGCAACUUUGCAUCUGGACGACGAAUGUUGCUCGGUGAACCCCUUUUCGGUAUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 16711 MI0001738 mtr-MIR162 Medicago truncatula miR162 stem-loop AGAUGAGGUGAAGUUCGUCACUGGAUGCAGCGGUUCAUCGAUCUGUUCCUGAAUUUUGUUUGUCUCGUAAAACAAACAUGAAUCGGUCGAUAAACCUCUGCAUCCAGCGCUCACUUUCCCCUCU 23 16712 MI0001739 mtr-MIR160 Medicago truncatula miR160 stem-loop AGAUAUAUAUACUAAUUGCGUGCCUGGCUCCCUGUAUGCCAUUUGUAGAGUUCAUCAAGAUGUUGAUGACUUUAAUGAAUGGCGUGCGAGGAGCCAUGCAUGUUGUGUAUAUUUUCUAU 23 16713 MI0001740 mtr-MIR166 Medicago truncatula miR166 stem-loop CAGACAUACGAAGGAGUUCAGGGGAAUGGUGUCUGAUUCGAGACCAUUCGUCACAAGUAAACAGUAGCCUUGAGAAUGAUCUCGGACCAGGCUUCAUUCCCCCUAGCUCAUAGUAUCAUGC 23 16714 MI0001741 mtr-MIR169a Medicago truncatula miR169a stem-loop AAGAGGCAGAGAGAGUAAUGCAGCCAAGGAUGACUUGCCGACAACAUUGGCGAAUGUUCAUGUGAUUUCUGCCUCAUUGUGCCGGCAAGUUGUCCUUGGCUAUGUUAGUCUCUCAUCUUCU 23 16715 MI0001742 mtr-MIR169b Medicago truncatula miR169b stem-loop AAGAGGCAGAGAGAGUAAUGCAGCCAAGGAUGACUUGCCGACAACGUUGGCGAAUGUUCAUGUGAUUUCUGCCUCAUUGUGCCGGCCAGUUGUCCUUGGCUAUGUUAGUCUCUCAUCUUCU 23 16716 MI0001743 mtr-MIR399b Medicago truncatula miR399b stem-loop UCAUAGGGCAUGUCUCUAUUGGUAGGUGAUAUGGUGAUAUUUCAUUUGAAUUAGAGGCUUCAGAAAUUCACUUGCCAAAGGAGAGCUGCCCUGUGAGUGUUUAGCUUAAACA 23 16717 MI0001744 mtr-MIR399d Medicago truncatula miR399d stem-loop UAAAGUAAGCAAAUCAGUCAUAGGGCAUGUCUCUAUUGGCAGGUGAUAUGGUGAUAUUUCAUUUGACUUUAAGGCUCUAAAAAUUCACUUGCCAAAGGAGAGCUGCCCUACGAGUGUUUAGCUUAAACA 23 16718 MI0001745 mtr-MIR393 Medicago truncatula miR393 stem-loop AACUGCAACUUGAGGAGGCAUCCAAAGGGAUCGCAUUGAUCCUAUAAUAUUUCAACUUUAGUCACUUUAAUUUUCUCUCAUAUAAUACUUAAUUGGGAUCAUGCCAUCCCUUUGGAUUUCUCCUUUAGUAGCUAC 23 16719 MI0001746 mtr-MIR395a Medicago truncatula miR395a stem-loop UUUUUGUUGAUUGUUUCUUAGAGUUCCUUUGAACGCUUCAUGCAUGAGAAUAUGUAUUUGGUCUAAUAUCCAUUAGAAAAGAUAGUUCUUCAUCAAUGAAGUGUUUGGGGGAACUCUUGGGUUCAACCAGCACCA 23 16720 MI0001747 mtr-MIR395b Medicago truncatula miR395b stem-loop UACUUGUUGAUUUUCUCUUGGAGUUCCUCUGAAUGCUUCAAACAUGAGACAAUCUUGAUAGAAAUUAUGGAUAGUUCUUGUUCAAUGAAGUAUUUGGGGGAACUCUUGGAAUUGAAUCAACAUA 23 16721 MI0001748 mtr-MIR399c Medicago truncatula miR399c stem-loop GUUCUGCUGUUGAGGAAUGAUAGGGAAAAUCUCUUUUGGCAGAGAGGAGUAAAAAUCUUAAACAGGAAUGUUUCUGGUUUGCCAAAGGAGAUUUGCCCUGCCAUUUUUGACAGCUAUUG 23 16722 MI0001749 mtr-MIR399a Medicago truncatula miR399a stem-loop UCCAAGUUGCAGUUGAAUUACAGGGUGAGUUCUCCAUUGGCAGGUAGCUAGUCACUAUAUGAUAUGCAUUGCAAUCAUUUCUUAGUGUGCAAUCUGCCAAAGGAGAUUUGCCCAGCGAUUCUCCUGCAACUCUA 23 16723 MI0001750 mtr-MIR399e Medicago truncatula miR399e stem-loop UCCAAGUUGCAGUUGAAUUACAGGGUGAGUUCUCCAUUGGCAGGUAGCUAGCCACUAUAUGAUAUGCAUUGCAAUCAUCACUUAGUGUGUAAUCUGCCAAAGGAGAUUUGCCCAGCGAUUCUCAUGCAACUCUA 23 16724 MI0001751 mtr-MIR319 Medicago truncatula miR319 stem-loop UAUUAAGAAAAAUAGUUCAAGAGAGCUCUCUUCAGUCCACUCAUGGAUAGGAAAAGGUUUUGAAUUAGCUGCUGACUCAUUCAUUCAAACACAAUAAGAAGAAGCAUGAUGAAUAUGCUAUAUUGUGAAUGUGUGAAUGAUGCGGGAGCUAAAUUUCAUCUUUCUCUUGUCUUUGCUUGGACUGAAGGGAGCUCCCUUUUGCUGUUUAUAUAUCA 23 16725 MI0001752 mtr-MIR156 Medicago truncatula miR156 stem-loop AGCCAUGAAUCAGUCCGAGAUGACAGAAGAGAGAGAGCACACCCACCUGAUUACAAGUAACAAAAAACUACCAACUAUCAACAUUUUGUCUACUAUGAAGAAAAUCACAUGUCUAGACUAUAGUUACGAAUGGAAGAUACAUUCAAUGAUGUUUAUGAAAAUUUGAGACGGUCGAGGACUAUAGUUACUCUAUCGCAUACAUUUAAUGACAAAAAAAAUUGUGUACUCUUAUUUAUUUUCAAUACAUCUUCAUUCAAUUUCUAUGCAAGAAUCAAAAUGCAGUAUAAAAAAUUGCAUUCAAUAUCAUGGUAAAAAAAUUGUUCAAAAAAAGUAAAUAUCAUGGUAAAAAAAUCAUUAGAUUUUGCAAUAAGUAAGAGUCAAGUUUUACCUUGUGAGGAAUUCCUCCCAACAGAAUCAUGGGAGCUCUUUCUUCUUCUCUCAUUGUGCCCUGCCAGUCUCC 23 16726 MI0001753 mtr-MIR171 Medicago truncatula miR171 stem-loop UGAAUUCCCCUCCGCUUUUUGAUGUUGGCUUGUCUCAAUCAAAUCAAAGUUCUUGAAAUUUGAGUUCUUUAGUCUGAUUGAGUCGUGCCAAUAUCAUAUUAAGCGAUAAAAGUC 23 16727 MI0001754 sof-MIR156 Saccharum officinarum miR156 stem-loop GGUGGAGAAGAGGUGGAGGCUGACAGAAGAGAGUGAGCACACAUGGUGCCUUUCUUGCAUGAUGAACGAUCGAGAGGUUCAUGCUCGAAGCUAUGCGUGCUCACUUCUCUCUCUGUCAGCCGUUAGAACUCUCUCUC 24 16728 MI0001755 sof-MIR396 Saccharum officinarum miR396 stem-loop AGAUGGCCUUCUUUGUGAUCUUCCACAGCUUUCUUGAACUGCAUCUCUAAGAGGAGCAGCUCGAAGCCUCGAACUCUACCUGCAUGAGCAGGUGCAGUUCAAUAAAGCUGUGGGAAACUGCAGAGAGAGGCCAA 24 16729 MI0001756 sof-MIR159a Saccharum officinarum miR159a stem-loop CCUGAUGCUUGGAUUUGAAGCGGAGCUCCUAUCAUUCCAAUGAAGGGCCGUUCUGAAGGGUUGUUCCGCUGCUCGUUCAUGGUUCCCACUAUCCUAUCUCAUCAUGUAUGUGUGUAUGUAUUUUCGAGAGGGAGGAGAGGAGCUAGACUCUCAUGGUGGUCGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAGGAGCUGCACCGUCCCCUUGCUGGCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAUCCAUCCAUCC 24 16730 MI0001757 sof-MIR159b Saccharum officinarum miR159b stem-loop CCUGAUGCUUGGAUUUGAAGCGGAGCUCCUAUCAUUCCAAUGAAGGGCCGUUCUGAAGGGUGGUUCCGCUGCUCGUUCAUGGUUCCCACUAUCCUAUCUCAUCAUGUAUGUGUGUAUGUAUUUUCGGAGAGGGAGGAGAGGAGCUAGACUCUCACGGUGGUCGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAGGAGCUGCACCGUCCCCUUGCUGGCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAACCAUCCAUCC 24 16731 MI0001758 sof-MIR159d Saccharum officinarum miR159d stem-loop CCUGAUGCUUGGAUUUGAAGCGGAGCUCCUAUCAUUCCAAUGAAGGGCCGUUCUGAAGGGUUGUUCCGCUGCUCGUUCAUGGUUCCCACUAUCCUAUCUCAUCAUGUAUGUGUGUAUGUAUUUUCGAGAGGGAGGAGAGGAGCUAGACUCUCAUGGGGGUCGUCUAUGAGAUACGCUUGUGGUUUGCAUGACCGAUGAGCUGCACCGUCCCCUUGCUGGCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAUCCAUCCAUCC 24 16732 MI0001759 sof-MIR159e Saccharum officinarum miR159e stem-loop CUGAUGCUUGGAUUUGAAGCGGAGCUCCUAUCAUUCCAAUGAAGGGCCGUUCUGAAGGGUGGUUCCGCUGCUCGUUCAUGGUUCCCACUAUCCUAUCUCAUCAUGUAUGUGUGUAUGUAUUUUCGAGAGGGAGGAGAGGAGCUAGACUCUCACGGUGGUCGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAAGAGCUGCACCGUCCCCUUGCUGGCCGCUCUUUGGAUUGAAAGGAGCUCUUGCAUCUGAUCCAUCCAUCC 24 16733 MI0001760 sof-MIR159c Saccharum officinarum miR159c stem-loop UGAAGACGACGACGAAGAAGAAGAUGGCGAAGAAAAGUGAUCGAAGAGCUCCCUUCGAUCCAAUCCAGGAGGGGAAGUGGUCGGUUGCAGCUGCCGGUUCAUGGAUGCCUCUCUGGUGCAGCAAUGACUAAUGCUCACCUGCACUUGCAUGGGUGUGCAUGACCCGGGAGAUGAACCCACCAUCAUCUUUCCCUCGUGCUUGGAUUGAAGGGAGCUCCUCUCUCUUUCCUCUCUCUCU 24 16734 MI0001761 sof-MIR167a Saccharum officinarum miR167a stem-loop AGUGGUGCACCACAAGUUGGUGAAGCUGCCAGCAUGAUCUGAUGGUGGUAUAUAUGAAUAUAUGAUGUCUUUACCUCUGAUCUCUCCCUGACUGUCACCGAUCCAUGAAUCCAGGAUGAGGGGAGGGAAGAAAGAGGGAUAAUGAGCAUCAGGUCAUGCUGUAGUUUCAUCUGCUGGUGGGAGCACAU 24 16735 MI0001762 sof-MIR167b Saccharum officinarum miR167b stem-loop AGUGGUGCACCACAAGUUGGUGAAGCUGCCAGCAUGAUCUGAUGGUGGUAUAUAUGAAUAUAUGAUGUCUUUACCUCUGAUCUCUCCCUGACUGUCACGGAUCCAUGAAUCCAGGAUGAGGGGAGGGAAGAAAGAGGGAUAAUGAGCAUCAGGUCAUGCUGUAGUUUCAUCUGCUGGUGGGAGCACAU 24 16736 MI0001763 sof-MIR168a Saccharum officinarum miR168a stem-loop GCCGCCGCGCCGCCUCGGGCUCGCUUGGUGCAGAUCGGGACCCGCCGCCCGGCCGACGGGACGGAUCCCGCCUUGCACCAAGUGAAUCGGAGCCGGCGCAGCCA 24 16737 MI0001764 sof-MIR168b Saccharum officinarum miR168b stem-loop CCGCCCCGCGCCGUCUGGGCUCGCUUGGGCAGAUCGGGACCCGCCGCCCGGCCGACGGGACGGAUCCCGCCUUGCACCAAGUGAAUCGGAGCCGGCGCAGCCA 24 16738 MI0001765 sof-MIR408a Saccharum officinarum miR408a stem-loop AGAAGAUGGGUAUGGUUGGAGACAGGGAUGAGGCAGAGCAUGGGAUGAGGCCAUCAACAAAAUUUCCAAUUUCUGUCCUCCGCUAGGCCGCUACUGCAUUUCUGUUUGCUUGCUCACAAAACGGAGGGAUUUGUGAGAGUUAUCAGGCAGAAAGAACAAAGAAGGUGCCUCCCUGGUGAAGUGGUGAUGGCCUGACCUGAGACGGCUGAGAGCUCAGCUGGUGUCCUGUUGUUGCUUCCUCCCCUGCACUGCCUCUUCCCUGGCUCCCCACCGUUGCCCUUGC 24 16739 MI0001766 sof-MIR408b Saccharum officinarum miR408b stem-loop AGAAGAUGGGUAUGGUUGGAGACAGGGAUGAGGCAGAGCAUGGGAUGGGGCCAUCAACAAAAUUUCCAAUUUCUGUCCUCCGCUAGGCCGCUACUGCAUUUAUGUUUGCUUGCUCACAAAACGGAGGGAUUUGUGAGAGUUAUCAGGCAGAAAGAACAAAGAAGGUGCCUCCCUGGUGAAGUGGUGAUGGCCUGACCUGAGAGGGCUGAGAGCUCAGCUGGUGUCCUGGUGUUGUUGCUUCCUCCCCUGCACUGCCUCUUCCCUGGCUCCCCACCGUUGCCCUUGC 24 16740 MI0001767 sof-MIR408c Saccharum officinarum miR408c stem-loop AGAAGAUGGGUAUGGUUGGAGACAGGGAUGAGGCAGAGCAUGGGAUGGGGCCAUCAACAAAAUUUCCAAUUUCUGUCCUCCGCUAGGCCGCUACUGCAUUUCUGUUUGCUUGCUCACAAAACGGAGGGAUUUGUGAGAGUUAUCAGGCAGAAAGAACAAAGAAGGUGCCUCCCUGGUGAAGUGGUGAUGGCCUGACCUGAGAGGGCUGAGAGCUCAGCUGGUGUCCUGGUGUUGUUGCUUCCUCCCCUGCACUGCCUCUUCCCUGGCUCCCCACCGUUGCCCUUGC 24 16741 MI0001768 sof-MIR408d Saccharum officinarum miR408d stem-loop GGAAGGUAUGUUUGAUUGGAGACAGGGACGAGGCAGAGCAUGGGAUGGGGCCAUCAACAAAAUUUCCAAUUUCCGUUUGCUUGCUCACAAAACGAAGGUGCCUGCCUCCCUGGUGAUGGCCUGACCUGAGAGGGCUGAGAGCUCAGCUGGUGUCCUGGUGUUGUUGCUUCCACCCCUGCACUGCCUCUUCCCUGGCUCCCCACCGUUGCCCUUGC 24 16742 MI0001769 sof-MIR408e Saccharum officinarum miR408e stem-loop AGAAGAUGGGUAUGGUUGGAGACAGGGAUGAGGCAGAGCAUGGGAUGAGGCCAUCAACAAAAUUUCCAAUUUCUGUCCUCCGCUAGGCCGCUACUGCAUUUAUGUUUGCUUGCUCACAAAACGGAGGGAUUUGUGAGAGUUAUCAGGCAGAAAGAACAAAGAAGGUGCCUCCCUGGUGAAGUGGUGAUGGCCUGACCUGAGACGGAUGAGAGCUCAGCUGGUGUCCUGUUGUUGCUUACUUCCCUGCACUGACUCUUCCCUGGCUCCCCACCGUUGCCCUUGC 24 16743 MI0001770 gma-MIR156d Glycine max miR156d stem-loop CUACUUGGUAAUUAAGGUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGAUAUGCAUAUUAUAUAAUAUAUAGCAGGGAACUCAUGAUGAAUUGUGCAUCUUACUCCUUUGUGCUCUCUAUACUUCUGUCAUCACCUUCAGCCUCCAUUUC 25 16744 MI0001771 gma-MIR156e Glycine max miR156e stem-loop AGGAGGUGUUGGUGAUGCUGUUGACAGAAGAUAGAGAGCACUGAUGAUGAAAUGCAUGAAAGGGAAUGGCAUCUCACUCCUUUGUGCUCUCUAGUCUUCUGUCAUCAUCCUUCUCCCUCCCCUC 25 16745 MI0001772 gma-MIR156c Glycine max miR156c stem-loop ACUUGACCACUAGGCUUAUCUCUUUCCGUUUCUGAGCAUGCAUACUCAUUCACAGCAUCAAAAUGCACAGAUCCUGAUGGAGAUUGCACAGGGCAGGUGAUGCUAGAUUGCACCAUACUCAAAUCUGGACUUUGUGAUUGAAGUGUUGACAGAAGAUAGAGAGCACAACCUGAGUCAAAGGAUCC 25 16746 MI0001773 gma-MIR159 Glycine max miR159 stem-loop AAUUAAAGGGGAUUAUGAAGUGGAGCUCCUUGAAGUCCAAUUGAGGAUCUUACUGGGUGAAUUGAGCUGCUUAGCUAUGGAUCCCACAGUUCUACCCAUCAAUAAGUGCUUUUGUGGUAGUCUUGUGGCUUCCAUAUCUGGGGAGCUUCAUUUGCCUUUAUAGUAUUAACCUUCUUUGGAUUGAAGGGAGCUCUACACCCUUCUCUUCUUUUCU 25 16747 MI0001774 gma-MIR160 Glycine max miR160 stem-loop CAUGCAUACAUAUGUGUAUGUGCCUGGCUCCCUGUAUGCCAUUUGUAGAGCUCAUCGAAGCAUCAAUGACCUUUGUGGAUGGCGUAUGAGGAGCCAAGCAUAUUUCAUAUACAUACAUG 25 16748 MI0001775 gma-MIR166a Glycine max miR166a stem-loop ACGGAAGCUUUGUCUUUUGAGGGGAAUGUUGUCUGGCUCGAGGACCCUUCUUCAUCUUGAUCUUGUGUAGACUACUAUGCUUGUGGUCAAGGAAUACAUAGUGUUGUCGGACCAGGCUUCAUUCCCCCCAAUUAUAUGCUUCCAAA 25 16749 MI0001776 gma-MIR166b Glycine max miR166b stem-loop GCUUGCAAAGGUGAGGUUGAGAGGAAUGUUGUCUGGCUCGAGGUCAUGGAGGAGGAGGAGGAGUAGAGUACUGAGAUCAGUGAAAGUUUCCAAUGGAAAUUUACCCUCUUACACAAAAAAAUGAUUCUCGGACCAGGCUUCAUUCCCCCCACCCAACUUUUGCUUUU 25 16750 MI0001777 gma-MIR167a Glycine max miR167a stem-loop GAAGUUCGCAAAGGAAAAAGUGAAGCUGCCAGCAUGAUCUACCUUUGGUUAGAGAGCUCAAGAGUGCUAACCCUGACUAGGUCAUGCUGUGACAGCCUCACUCCUUCCUAUUUGGGGAC 25 16751 MI0001778 gma-MIR167b Glycine max miR167b stem-loop AAGGGUCACAAAGGAAAAAGUGAAGCUGCCAGCAUGAUCUAGCUUUGGUUAGUGGGAGCGAGAUAGUGCUAACCCUCACUAGGUCAUGCUGUGCUAGCCUCACUCCUUCCUAUUUGGAGAC 25 16752 MI0001779 gma-MIR168 Glycine max miR168 stem-loop GGCACGAGGCGGUCUCUAAUUCGCUUGGUGCAGGUCGGGAACCGGUUUUCGCGCGGAAUGGAGGAGCGGUCGCCGGCGCCGAAUUGGAUCCCGCCUUGCAUCAACUGAAUCGGAGGCCGCGGUGAAC 25 16753 MI0001780 gma-MIR172a Glycine max miR172a stem-loop UUAACAGUCGUUAUUUGCGGAUGUAGCAUCAUCAAGAUUCACAUGCAAGCGCAGGUGGUGGGUGGGACUUGAUGCAAUCUAAGUGCUGUGCCAGCCAAGCCAUAGGUCUUUUGGAACUGAGAAUCUUGAUGAUGCUGCAUCAGCCAUAAACGACUUCAC 25 16754 MI0001781 gma-MIR172b Glycine max miR172b stem-loop UUGACAGUCGUUGUUUGCGGAUGUAGCAUCAUCAAGAUUCACAUGCAAAUGAAGGUGGGUGGGACUAUGAUGCAAUCCAAGUGCUCUGCCAAUCCAUCGGUCUUUUUGAUGUGAGAAUCUUGAUGAUGCUGCAUCAGCCAUAAACGGCUUUAA 25 16755 MI0001782 gma-MIR319a Glycine max miR319a stem-loop CGUUGAAGACCCUAAGGUAAGAGAGCUUUCUUCAGUCCACUCAUGGGUGACAGUAAGAUUCAAUUAGCUGCCGACUCAUUCAUCCAAAUGUUGAGUGUAAGCGAAUAAAUAUACUCAGCAGAUGAGUGAAUGAUGCGGGAGACAAAUUGAAUCUUAAGUUUCCUGUACUUGGACUGAAGGGAGCUCCCUUUUCCUUUUGUCUCUUAC 25 16756 MI0001783 gma-MIR319b Glycine max miR319b stem-loop UAAGUCCUAAGCGACGGUAAGAGAGCUUUCUUCAGUCCACUUAUGGGUGACAAUAAGAUUUCAAUUAGCUGCCGACUCAUUCAUCCAAAUGCUGAGUGAAAGCGAAGAAAGAUACUCAGCAAAUGAGUGAAUGAUGCGGGAGACAAAUUGAUUCUUAAGUGUCCUGUACUUGGACUGAAGGGAGCUCCCUUUUUCUUUUGAAUCUUCU 25 16757 MI0001784 gma-MIR156a Glycine max miR156a stem-loop CACACCAGAUUGAGAGAGGCUGACAGAAGAGAGUGAGCACAUGCUAGUGGUAUUUGUAUGAGGGCAUACAAUUGCGGGUGCGUGCUCACUUCUCUAUCUGUCAGCUUCCCAUUCUUUUUUAC 25 16758 MI0001785 gma-MIR396a Glycine max miR396a stem-loop UCAUGGCUCUCUUUGUAUUCUUCCACAGCUUUCUUGAACUGCAUCCAAAGAGUUCCUUUGCAUGCAUGCCAUGGCACUCUUACUCCCAAAUCUUGUUUUGCGGUUCAAUAAAGCUGUGGGAAGAUACAGAUAGGGUCAAC 25 16759 MI0001786 gma-MIR396b Glycine max miR396b stem-loop CUCAAGUCCUGGUCAUGCUUUUCCACAGCUUUCUUGAACUUCUUAUGCAUCUUAUAUCUCUCCACCUCCAGGAUUUUAAGCCCUAGAAGCUCAAGAAAGCUGUGGGAGAAUAUGGCAAUUCAGGCU 25 16760 MI0001787 gma-MIR398a Glycine max miR398a stem-loop CUCGGAGGAGUGAAUCUGAGAACACAAGGCUGGUUUGCACUGCUAUAUCAUCUAUUGGUAUAAGGUGAAUUUACUUUGUGUUCUCAGGUCACCCCUUUGAGCCAACCUGUUGACAU 25 16761 MI0001788 gma-MIR398b Glycine max miR398b stem-loop AGUCCAAAUGGUUUAUCUCAGAGGAGUGGAUCUGAGAACACAAGGCUGGUUUGCACUGCUAUAUUAUGAUCGAUUGGUAUAAGGUGAAUUUACUUUGUGUUCUCAGGUCACCCCUUUGAGCCAACCUGUUGACAU 25 16762 MI0001789 gma-MIR319c Glycine max miR319c stem-loop UUGGGAGGGAAAGAGAGUGAAGGAGCUUCCCUCAGCCCAUUCAUGGAGAUAACGAAAGAUUGGGUUGCUGAAUUAACUGCUAGCUCACACAUUCAUUCAUACAAUAGUAUUCAAUUAGGGUAAUAUUGUGUGAAUGAAGCGGGAGUAUAUAGUAUCUAUAUUGCAACCCUCUUUCUCUGUGCUUGGACUGAAAGGAGCUCCUUCUUUUUCUGCUCCCUCCA 25 16763 MI0001790 gma-MIR156b Glycine max miR156b stem-loop UGAUGUGAGAUAUCUCAUGUUGACAGAAGAGAGAGAGCACAACCCGGGAAUGGCUAAAGGAGUCUUUGCCUUUGUUGGGAGUGUGCCCUCUCUUCCUCUGUCAUCAUCACAUUCACAUGC 25 16764 MI0001791 gma-MIR169 Glycine max miR169 stem-loop AAGAGGAAGAGAGAGUGAUGCAGCCAAGGAUGACUUGCCGGCGUUAUUAUUUGCUCAUGUUCAUGCUCACCGGUUUCCUUGCCGGCAAGUUGUGUUUGGCUAUGUUUUGCUCUCUUCUUCU 25 16765 MI0001792 zma-MIR171d Zea mays miR171d stem-loop AGAAAUGGAAGUGUAACUAUGGUGUUGGCUCGGCUCACUCAGAAGUUGAAGCCGAAUCCAAAUGGUAGCUGCCGGCGUUUCUGAUUGAGCCGUGCCAAUAUCUCAGUACUCUUUCAUGCUG 14 16766 MI0001793 zma-MIR171f Zea mays miR171f stem-loop UUGGUUGUUGGCUGAGAGAGUGCGAUGUUGGCAUGGCUCAAUCAACUCGCCGGCCGCGGGUGGCUUAUAGCUUAAUUCUGCGCAUUCGAUCGAGGUGCGGGCGCAGUGUUUAAUUGAUUGAGCCGUGCCAAUAUCACAACCUUCUCUAGCCUAUA 14 16767 MI0001794 zma-MIR394a Zea mays miR394a stem-loop GGCGCUUACUGAAGAGUUCCUUGGCAUUCUGUCCACCUCCUCUCGCCGAUCUUGCAGAAAGUUUACCAGUUCUGUUGCAUUUUUUUUGGAGGUGGGCAUACUGCCAAUGGAGCUGUGUAGGCCUCC 14 16768 MI0001795 zma-MIR394b Zea mays miR394b stem-loop UGGCGCUUACUGAGAGUUCCUUGGCAUUCUGUCCACCUCCCUUCUUGACGAUCUUGCAGAAAGUUUGCUUUUUUUGUUUGUUUGGAGGUGGGCAUACUGCCAAUGGAGCUGCGUAGGCCUCC 14 16769 MI0001796 zma-MIR395b Zea mays miR395b stem-loop GCAACGUUUUGUGUUACUAGGAGUUCCCUACAAGCACUUCACAAUACCUUGGCUCAAUAAAUUAAAGGCCAGUUGUGAAGUGUUUGGGGGAACUCUUGGUAUCAUGAAGCAUUU 14 16770 MI0001798 zma-MIR395c Zea mays miR395c stem-loop UCUUGGUUGGUUCUCCCUUGGAGUUCCCUGCAAACACUUCACCAGCUAGGCCAUAGUGCCGGCCCUUGCACAAUGUUGUAUCUGAUCACCUAGCUAGUGUGAAGUGUUUGGAGGAACUCUAGGUGUUAUCCAGCAAUG 14 16771 MI0001799 zma-MIR395a Zea mays miR395a stem-loop UAUUGGUUGGUUGUCACCUGGAGUUCUCCUCAAACCACUUCAGUUGCUGCACCUAGCUAGUUUAAUGGCACUGUGCUUGCGUGCAAGCGGCCGGAGCUGUGUGUAGCUAGUGAAGUGUUUGGGGGAACUCUGGGUGUCAAUCAGCAAUU 14 16772 MI0001800 zma-MIR396b Zea mays miR396b stem-loop AGAUGGCCUUCUUUGUGAUCUUCCACAGCUUUCUUGAACUGCAUCUCUCAGAGGAGCGGCAGCUUCAACUCCUCCACCCGCAUCAGCAGGUGCAUGCAGUUCAAUAAAGCUGUGGGAAACUGCAGAGAGAGGCCAG 14 16773 MI0001801 zma-MIR396a Zea mays miR396a stem-loop ACAUGGCCCUCCUUGCCGUCUUCCACAGCUUUCUUGAACUGCAUGCCGCCGGCUGGUGGAUGCUGCGCGCUUGAAUUCCGGUCGAUCCCAAGAGGCGCAGUUCAAUAAAGCUGUGGGAAACUGCAGAGAGAGGCCAC 14 16774 MI0001802 zma-MIR399a Zea mays miR399a stem-loop UGUGAAGAGGGUGAGAAUCACAGUGCGGUUCUCCUCUGGCACGAAGGCUGGCCAGAGCAGCUUAUAUUGCCACCACCCUUCCUUGCCAAAGGAGAAUUGCCCUGCCAUUCACAACCCUGCAAU 14 16775 MI0001803 zma-MIR399c Zea mays miR399c stem-loop UGCUUGCUGAGCAUGAAUUACAGGGUACGUCUCCUUUGGCACAGCAGAAUGCACACAUCAUCAGUCGAGAGAGUAAGCUCGCUGCGUGCUCGCCGGCCUGGGAGCGGAAGUCGCAGGCCAAAUGGCGGCGGUGCAGAUGCAUGAACAGCAGCUGCCGUAUAUAUGCGUGCCAAAGGAGAAUUGCCCUGCGAUUCUAGGCUCAGCGAU 14 16776 MI0001804 zma-MIR399b Zea mays miR399b stem-loop GUAGCUCAGGGUGCGAAUCACAGUGCAGCUCUCCUCUGGCAUGAAGGCUGUGAGAGAGGCAUGACAAUUUCUGGCCUUGCCCUGCCAAAGGAGAGCUGUCCUGCCAUUCAUUAGCCCUGCAA 14 16777 MI0001805 zma-MIR399d Zea mays miR399d stem-loop UCAAGGUGAGAAUCACAGUGUGGCUCUCCUCUGGCAUGAAGGCGCGGCUGAGAGGCACGAACAGUUUCUGGCCUUCCCCUGCCAAUGCCAAAGGAGAGCUGCCCUGCCAUUCGUUAGCCCUGCAA 14 16778 MI0001806 zma-MIR399e Zea mays miR399e stem-loop AUGCCUAAGCUGUCCAGUUUCAGGGCUUCUCUUUCUUGGCAGGGAAGCAUGAGAUGCCAUAGCUCUCUGCUCUCUUCAACCCUCUGCCAAAGGAGAGUUGCCCUGUAACAGGACUCAGCUUAUG 14 16779 MI0001807 zma-MIR399f Zea mays miR399f stem-loop CAGGAUGUGCACCUGCAUUUCUGGGCAACUUCUCCUUUGGCAGAUGCGCGAGAAUGUGCCACUGCUGCCAAAGGAAAUUUGCCCCGGAAUUCAUCUGCACAAGCA 14 16780 MI0001808 zma-MIR156j Zea mays miR156j stem-loop CGAGUGGACCUCGGGAGCGAUGACAGAAGAGAGAGAGCACAACCCAGCACCAGCGAGGAAAAGCCUCGCUUCUGCGAGGGCCGUGUGCUCUCUGCUCUCACUGUCAUCGCCCACAGGCCACCGAA 14 16781 MI0001809 zma-MIR159a Zea mays miR159a stem-loop UCGAUGCUUUGGGUUUGAAGCGGAGCUCCUAUCAUUCCAAUGAAGGGUCGUUCCGAAGGGCUGGUUCCGCUGCUCGUUCAUGGUUCCCACUAUCCUAUCUCAUCAUGUGUAUAUAUGUAAUCCAUGGGGGAGGGUUUCUCUCGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAGGAGCUGCACCGCCCCCUUGCUGGCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAUCCACCCCUCC 14 16782 MI0001810 zma-MIR159b Zea mays miR159b stem-loop UAGACGGUCUGGUCUUAAGGCGGUGCUCCCUUCAAACCAAUAAACGGUCGAUCUGAUGGGUGGUACAGCUGCUCGUUCAUGGUUCCCACUGUCCCAUCUCAUCAGAGAGAGAGAGAGAUGCUUGAGAUGGGCUUGUGGUUUGCAUGACCGAGGAGCUGCACGUCCCCUUCGUUGACCGCUGUUUGGAUUGAAGGGAGCUCUGCAUCUUGGUCCCAAGACUU 14 16783 MI0001811 zma-MIR159c Zea mays miR159c stem-loop AUGAUUAAGAAAGGCGAUCGAAGAGCUCCCUUCGAUCCAAUCCAGGAGGGGAAGUGGUCGGUUGCAGCUGCCGGUUCAUGGAUACCUCUCUGGUGCAGCAAUGGCCGCUGCUCACCUCUGCACUUGCAUGGGUGUGCAUGACCCGGGAGAUGAGCCCGCCAUCAUCUUUCCCUCGUGCUUGGAUUGAAGGGAGCUCCUCUCUGUCUGUCUGUCUGUC 14 16784 MI0001812 zma-MIR159d Zea mays miR159d stem-loop AAGAAGAUGCCGAUCGAUCGAAGAGCUCCCUUCGAUCCAAUCCAGGAGGGAAAGUGGUCGGCUGCAGCUGCCGGUUCAUGGAUACCUCUCUGGUGCAGCAAUGGCCGAGAUGCUCACCUGCACUUGCAUGGGUGUGCAUGACCCGGGAGACGAACCGACCAUCAUCUUUCCCUCGUGCUUGGAUUGAAGGGAGCUCCUCUCUCUCUCUCUCUCUUAU 14 16785 MI0001813 zma-MIR319a Zea mays miR319a stem-loop GGUUCAUGUUUUCUCUGGAAGAGAGCUCUCUUCAGUCCACUCUGAAAUGGCUGUAGGGUUUCAUUAGCUGCCGACUCAUCCAUUCACCUGCCAAGAACCAUGGACAGGUCUGGUCUUGGUAGCCGAGUGGGUGGCGCGGGAGCUAAAAUCAAGCUCUACGCUGUUUGUGGUUGGACUGAAGGGUGCUCCCUUUUGUUUGCUCAAACGCU 14 16786 MI0001814 zma-MIR319c Zea mays miR319c stem-loop GGUUUAUGGCUUCUGUGGAAGAGAGCUCUCUUCAGUCCACUCUAAAAUGGCUGUAGGGUUUCAUUAGCUGCCGACUCAUCCAUUCACCUGCCAAGAACCAUGGGCAAGCGGUAGGUCUGGUCUUGGUAGCCGAGUGGGUGGCGCGGGAGCUAAAAUCAAACUCUACGCUGUUUACGGUUGGACUGAAGGGUGCUCCCUUCAAUUUGCCCAAACACU 14 16787 MI0001815 zma-MIR319b Zea mays miR319b stem-loop GACGACGAUGGCUGGAUGGAAGAGAGCGUCCUUCAGUCCACUCAGGGGCGGUGCUAGGGUCGAAUUAGCUGCCGACUCAUUCACCCACAUGCCAAGCAAACGGCCAUGGAAACCAGCUUUGCAGAUGAGUGAAUGAAGCGGGAGGUAAAAGCUUCGAUCUCGCACCGUCUUUGCUUGGACUGAAGGGUGCUCCCUCCUCCCUCGCUCCUUGUU 14 16788 MI0001816 zma-MIR319d Zea mays miR319d stem-loop UGGUCGCCGGCCGGAUGGAAGAGAGCGUCCUUCAGUCCACUCAGGGGCGGUGCUAGGGUCGGAUUAGCUGCCGACUCAUUCACCCACAUGCCAAGCAAACGGCCAUGGAAACGAGCUUCGCAGAUGAGUGAAUGAAGCGGGAGGUAAAAGCUUCGAUCUCGCACCGUCUUUGCUUGGACUGAAGGGUGCUCCCUCCGAUCCUUUCCUUGUUU 14 16789 MI0001817 zma-MIR166k Zea mays miR166k stem-loop GCAUGCUCGGGUUAGGUCAGGGGGAUUGUUGUCUGGCUCGGGGUCUCCGGUCGAGAUCGAUUCAUAACAUAUACGUACGUGCUUCUAGCCUUGCCGGCGGAGCUAGUCGUUGUCGUCGACCGGAGAUUUCGGACCAGGCUUCAAUCCCUUUGACCAUGCGGCAUUAGG 14 16790 MI0001818 zma-MIR166j Zea mays miR166j stem-loop CAAGUUGAAGAUUAGGUUAAGGGGUUUGUUUGUCUGGUUCAAGGUCGCCACACAGCAGGGAAAACCCAUUUCGCCUUGAAGCAUGCACCAUGAUGGGUGUACCUGUUGGUGAUCUCGGACCAGGCUUCAAUCCCUUUAACUAGCGUCUGCAUAU 14 16791 MI0001819 zma-MIR167e Zea mays miR167e stem-loop UUGGUGUGUCCUCUAGUAGCUGAAGCUGCCAGCAUGAUCUGAGGUGUCCACAGCAUAUAUAUGGAAGCAGCUAGCGAUCAGAUCAUGCUGUGCAGUUUCAUCUGCUCGUGGACGCACAC 14 16792 MI0001820 zma-MIR167f Zea mays miR167f stem-loop CGUGCACCUUAUUAAGCAGCUGAAGCUGCCAGCAUGAUCUGAUCUUUCGUUUACUGGCAACUUUGGAUACCUAAGAUCCAGAUCGUGCUGCGCAGUUUCACCUGCUAAUUGGAGCACAG 14 16793 MI0001821 zma-MIR167g Zea mays miR167g stem-loop AGUGGUGCACCACGAGUUGGUGAAGCUGCCAGCAUGAUCUGGUUAUGAUGGUGGUGGUAUAUGUAAGAUGGAUGUAAUCUAUACUACUACCGGCCCCUGUCACUCUCUCUCUCUCCCCCGUCCCUGACUGUCAUAUAUGGAUCGACGAAUCCAAGAUGAGAGGGGAAGGGAGAGAGAGAGAGGGUAAUUAAUGAGCACCAGGACCAGGUCAUGCUGUAGUUUCAUCUGCUGGUGGCCGCACAU 14 16794 MI0001822 zma-MIR167h Zea mays miR167h stem-loop ACUUUGCUGCUGUGAGAGGUUGAAGCUGCCAGCAUGAUCUGGCUGCUCAGACGCCGGCGGGCGUCUCGAGUGCUCGCUCGAUCGUCGGUGACGCUUGGAUUCACCAGAUCAUGUUGCAGCUUCACUCUCUCGCAGCCAGCAAA 14 16795 MI0001823 zma-MIR167i Zea mays miR167i stem-loop ACUUCGCUGGUGUGAGAGCUUGAAGCUGCCAGCAUGAUCUGGCUACUCAAACGCCGCCGGCCUCCCAAGUGCUCGAUCGGUGGCGCUUCACCAGAUCAUGUUGCAGCUUCACUCUCUCGCAACCAGCGAA 14 16796 MI0001824 zma-MIR168a Zea mays miR168a stem-loop GAAGCCGCGCCGCCUCGGGCUCGCUUGGUGCAGAUCGGGACCCGCCGCCCGGCCGACGGGACGGAUCCCGCCUUGCACCAAGUGAAUCGGAGCCGGCGGAGCGA 14 16797 MI0001825 zma-MIR168b Zea mays miR168b stem-loop UCCGCCGCGCCGUCUCGGGCUCGCUUGGUGCAGAUCGGGACCCGCCGCCCGGCCGACGGGACGGAUCCCGCCUUGCAUCAAGUGAAUCGGAGCCGGCGCAGCGA 14 16798 MI0001826 zma-MIR169c Zea mays miR169c stem-loop AUGAGGUAGAGAACGGGAUGCAGCCAAGGAUGACUUGCCGGCUCCUGGAACCUGGAGGCGUCUCAGCUUGCUGUGCUGUGGCUUAGAACUUAGUCGGCAAGUCUGUCCUUGGCUACACCUAGUUCUCUUCCUCU 14 16799 MI0001827 zma-MIR169f Zea mays miR169f stem-loop ACCAGAGCUGAUUCGUUCAGUAGCCAAGGAUGACUUGCCUAGGUAUAUAUGCAUGGGCUAUGGCUACAUGCCUGAGAGCCAGUCUCUUGUGACGCUGAGCAUGUAUAGUGUAGGCAUGUCUUCCUUGGCUACUCGGAGCGGCUCUAGUCA 14 16800 MI0001828 zma-MIR169g Zea mays miR169g stem-loop CAGAGCUAGCCUGCCUCUGGUAGCCAAGGAUGACUUGCCUACAUGGUCUCGCUAGUUCCGGUUGUUGCAUGCAUGCCACUAUGCCAGUCCUGCUGGGUUUGUGGGCGGUCUCCUUGGCUAGCCUGAGUGGCUCUUGCCUG 14 16801 MI0001829 zma-MIR169h Zea mays miR169h stem-loop CAAUAAGGGCCUGCCUCUGAUAGCCAAGGAUGACUUGCCUAUGUCCUUUGUUUACAAAGGAUCAGAAUUGUGGACCUUUGUGUUGGUUCGUAGGCAGUCUCCUUGGCUAGCCUGAGUGGCCCCUAUUG 14 16802 MI0001830 zma-MIR169i Zea mays miR169i stem-loop GAUGAGAGUGGUAGCUCUGGUAGCCAAGGAUGACUUGCCUGUGUGCUGGCCACGCUCCCCUCAUGCAAGGACCAUCUCGUGUCGACCGACGAGCGAGCGAGCGAUCGAUCGAUGAGAGGAUGACGAAGCUUGGGGUGUACGUUGGUCUCUCACGGGCAGUCUCCUUGGCUAGCCCUGACUCACUCUUACCG 14 16803 MI0001831 zma-MIR169k Zea mays miR169k stem-loop CGAUGAGAGCACUGCUCUGGUAGCCAAGGAUGACUUGCCUGUGGCCUCCAUCAGUCGCAGAGGACGCUGUUCUUCUGCUUGUGGUUGUCGAUCGCAGGCAGUCUCCUUGGCUAGCCCGAGCGGCUCUCAUCCA 14 16804 MI0001832 zma-MIR169j Zea mays miR169j stem-loop GCGAUAAGAGUCUGUCCAGAUAGCCAAGGAUGACUUGCCUGUGGCUUCUUGGCUUGGCUUGGCUCGGGCAAAACCUUGUGCACGUUUUAUUGCUCGCCUCGUGGCCUCGAUCACAGGCAGUCUCCUUGGCUAGUCCGGGCGGGCCCCUUAU 14 16805 MI0001833 zma-MIR169d Zea mays miR169d stem-loop GCAAUAGGGGCCACUCAGGCUAGCCAAGGAGACUGCCUAUGAACCUCUCAAUGGUCCACACAUUCAGGUCCUUUGUAAACAAAGGACAUAGGCAAGUCAUCCUUGGCUAUCAGAGGUAGGCCCUUAUU 14 16806 MI0001834 zma-MIR169e Zea mays miR169e stem-loop GCAAUAGGGGCCACUCAGGCUAGCCAAGGAGACUGCCUACGAACCAACACAAAGGUCCACAAUUCUGAUCCUUUGUAAACAAAGGACAUAGGCAAGUCAUCCUUGGCUAUCAGAGGCAGGCCCUUAUU 14 16807 MI0001835 zma-MIR171c Zea mays miR171c stem-loop GGGGAAUCGAAAACCUACGGGAUAUUGGUGCGGUUCAAUCAGAAAGCUUGCGCUCCAAAGCCCAGGGGCUCCACUCUUUGACUGAGCCGUGCCAAUAUCACGUCCUCGCUUUGCUUGC 14 16808 MI0001836 zma-MIR171j Zea mays miR171j stem-loop AAUGGCCGCGAGCUAGACGGGGUAUUGACGCGGUUCAAUUCGAGAGCUCGAGCCCUAGCAGAGGCCAGGGGGGGUGGGGCUCUGCUCUCUGAUUGAGCCGUGCCAAUAUCACGUCCCACUCGCCCUCGC 14 16809 MI0001837 zma-MIR171e Zea mays miR171e stem-loop AGAAAUGGAAUAGUAGCUAUGAUGUUGGCUCGGCUCACUCAGACGACGUACGCGCGCGAGAUCAUGUGCUAUGCCGCUGCUGUUUCUGAUUGAGCCGUGCCAAUAUCUUAGUACUCUUCCAUGCAU 14 16810 MI0001838 zma-MIR171i Zea mays miR171i stem-loop CUGGUUGGCUGAGAGAGUGCGAUGUUGGCACGGUUCAAUCAAAUCGCCGGCCGGGUUGACUUGUUGAUUGAGCCGUGCCAAUAUCACAACCUUCUCUAGCCUAG 14 16811 MI0001839 zma-MIR171g Zea mays miR171g stem-loop AGAACGAGGCGACAUGGCAUGGUAUUGACUUGGCUCAUCUCUCGCCCACACCAGAAUCCACAAGUGCCGGAGGAGGUGAGCCGAGCCAAUAUCACUUCAUGUCAUCUAGCGU 14 16812 MI0001840 zma-MIR172e Zea mays miR172e stem-loop CAGCCAGCCGGUGAUUUCUGGAGUGGCAUCAUCAAGAUUCACACACUGCAUGCCAACAUAAUGCGCGUGUUCAUGCAUCCAUCGCCGCCGCUGCAUCAUGCAUCAUAUAUAAUAUAUAUAUAUGUGUAUGUGUGGGAAUCUUGAUGAUGCUGCAUUGGAUAUCAAGGGCUAUAU 14 16813 MI0001841 zma-MIR166l Zea mays miR166l stem-loop AAAGAACGGGAGGAGGGUUUCUGGAAUGGAGGCUGGUCCAAGAUCCUUAGGUGUUAAAGCAUUAUAUUGCCUUGUUUCUGGUUUUGUGUUUGAGAUCUCGGACCAGGCUUCAUUCCUCAAACCCACGCUCCCGACAC 14 16814 MI0001842 zma-MIR166m Zea mays miR166m stem-loop UCCUUGGUCUGGGGGUUUGUGGGGAAUGUUGGCUGGCUCGAGGCAUCCGCGUCCUGGCUCGCAGUCGCAGCGCAGAUCGUGUUUUGCCUGCUACCGGCCGGACAGAUCGAGAGGCGUCGGACCAGGCUUCAUUCCUCGCAAACCGGUGCAUCCCCA 14 16815 MI0001843 zma-MIR171k Zea mays miR171k stem-loop GGGAGGAAGAAGACGACAUGGCGUGGUAUUGUUUCGGCUCAUGUCCUUCUUGACUGGAUGUGAUGUGAGCCGAACCAAUAUCACUCAUGUAUUCUUCAUUCUGA 14 16816 MI0001844 zma-MIR171h Zea mays miR171h stem-loop GGGAGGAAGGAGACGACAUGGCGUGGUAUUGUUUCGGCUCAUGUCCUUCUUCGAUCGAGUCUUGCCGUUGGAUUUGGAUGUGAUGUGAGCCGAACCAAUAUCACUCAUGUACUCUUCAUUCCCA 14 16817 MI0001845 zma-MIR393 Zea mays miR393 stem-loop CCAGGAAGCUGGUGGAGGACUCCAAAGGGAUCGCAUUGAUCUAUUCUCACCUGCCGCCUGCUGCAUGCGAUGCGAGUCGACGACAAGAUCAGUGCAAUCCCUUUGGAAUUUUCCACUCGCGCCUUC 14 16818 MI0001846 zma-MIR408 Zea mays miR408 stem-loop GGGGUUGGUUUUGAUUUGGAGACAGGGAUGAGACAGAGCAUGGGAUGGGGCCAUCAACAAAGUGGAGGGACUAGCUUGCGAGGCAGAAAGAAGGUGCCAGUGCCGGUGCCUCCCCGGUGAAACGAUGAUGGGAGUGUUGUUGCUCCCUCCCCUGCACUGCCUCUUCCCUGGCUCCGAUCCCCCACCGUUGC 14 16819 MI0001847 zma-MIR156k Zea mays miR156k stem-loop GGCUUAGGCCCCGAAGAGAUUGACAGAAGAGAGCGAGCACCUGGCGCGGCGACCGGCAUGGAACGCAUGCCGUCCCCGCCGCGUGCUCGCUUCUCUUUCUGUCAGCCUCUCCCUCGUCCUGAG 14 16820 MI0001848 zma-MIR160f Zea mays miR160f stem-loop GAGGUGAAAGAUAGGGAAUAUGCCUGGCUCCCUGUAUGCCGCUCGCAUGGCUACCACCGCCUGUGGUCGUUGCGGCUGGCGUGCGAGGUGCCAGGCAUGUUUUAAUAAUUAUCUCC 14 16821 MI0001849 sbi-MIR399h Sorghum bicolor miR399h stem-loop AGUGUUCAGGGUAAGAAUCACAGUGCGGUUCUCCUCUGGCAUGGAGGCCAACAUAGCAGGCAUUGGAGAAUGCACAGCGCUAUCGCCAUCCCUGCCAAAGGAGAAUUGCCCUGCCAUUCGGUAUAACCCUGG 15 16822 MI0001850 sbi-MIR399i Sorghum bicolor miR399i stem-loop AUGCCUAAGCUGUCCAGUUUCAGGGCUUCUCUUUCUUGGCAGGGAGCAUGAGAAGCCAUAGCUCUGCUCUGUUCUGCCCUCUGCCAAAGGAGAGUUGCCCUGUAACAGGACUCAGCUUAUG 15 16823 MI0001851 sbi-MIR159b Sorghum bicolor miR159b stem-loop UGAAUGAAGAUAUGAAGAAGAAGACGACGACGAUGAAGAAGGCGAAGAAAAGCGAACAAAGAGCUCCCUUCGAUCCAAUCCAGGAGGGGAAGUGGUCGGUUGCAGCUGCCGGUUCAUGGAUGCCUCUCUGGUGCAGCAAUGACUGAUGCUCACCUGCACUUGCAUGGGUGUGCAUGACCCGGGAGAUGAACCCACCAUCAUCUUUCCCUCGUGCUUGGAUUGAAGGGAGCUCCUCUCUCUUUCUCUCUUUCUC 15 16824 MI0001852 sbi-MIR164c Sorghum bicolor miR164c stem-loop UAUGGUGUGUUUGUGCAGGGUGGAGAAGCAGGACACGUGAGCGACCAUCCAGUUUCCAUCGCUGGCUCUCCGCUGCGGGCGCUGCCGUGCGUUGGAUCGUCGUUGGGUGGUCGCUCAUGUGUCCGUCCUCUCCACCGAGCACCGGUACAUCCG 15 16825 MI0001853 sbi-MIR166g Sorghum bicolor miR166g stem-loop UCAUGCUCGGAUUAGGUUAGGGGGAUUGUUGUCUGGCUCGGGGUCUCCGGUCGAGAAUCCUUGGCCUUGCCGGAGUUGUCGUUGACCGGAGAUUUCGGACCAGGCUUCAAUCCCUUUAACCAUGCGGCAUUUAG 15 16826 MI0001854 sbi-MIR171f Sorghum bicolor miR171f stem-loop UGAGAGAAUAAGACGACAUGGCGUGAUGUUGUUUCGGCUCAUGCAUAUCCUUCUUGAGUGUAUCAUCAGGAAAGAGGCGAUGAGCCGAACCAAUAUCACUCAUGUAUUCUUCAUUCAUA 15 16827 MI0001855 sbi-MIR395f Sorghum bicolor miR395f stem-loop ACAAUGUUUGGUGUUACCACGAGUUCCCUUCAAGCACUUCAUGAGGCACCAUUAAAUAACUCUAUUUAAGAUUAGGUGUAAUAUGAAGUGUUUGGGGGAACUCUUGGUGAUACUCAACAUCG 15 16828 MI0001856 sbi-MIR156e Sorghum bicolor miR156e stem-loop CGAUUAGGCCCUGAAGAGAUUGACAGAAGAGAGCGAGCACCCGGCGCGGCGGCCGGCAUGGAGCGCAUGCCGUCCCCGCCGCGUGCUCGCUUCUCUUUCUGUCAGCCUCUCUCUCGUCCUGGG 15 16829 MI0001857 dre-let-7a-1 Danio rerio let-7a-1 stem-loop GACGGUGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACACUGGGAGAUAACUAUACAACCUACUGUCUUUCUCAAAGUC 12 16830 MI0001858 dre-let-7a-2 Danio rerio let-7a-2 stem-loop GCCCCCAGGCUGAGGUAGUAGGUUGUAUAGUUUAGAAUAACAUCACUGGAGAUAACUGUACAACCUCCUAGCUUUCCCUGAGAU 12 16831 MI0001860 dre-let-7a-3 Danio rerio let-7a-3 stem-loop GAGACUGUCGUUUGGGGUGAGGUAGUAGGUUGUAUAGUUUGAGGGUUUAACCCUUGCUGUCAGAUAACUAUACAACUUACUGUCUUUCCCGAAGUGGCCGUAGUGUC 12 16832 MI0001861 dre-let-7a-4 Danio rerio let-7a-4 stem-loop GCGAUGUCUCGGGAUGAGGUAGUAGGUUGUAUAGUUUAGAGUUACAACACGGGAGAUAACUGUACAGCCUCCUAGCUUUCCUCGAGCAGACGC 12 16833 MI0001862 dre-let-7a-5 Danio rerio let-7a-5 stem-loop GUACGUGUUUUUGGUGUCUGGACAAGGUGAGGUAGUAGGUUGUAUAGUUUGGUGGGAGGGAUCAAACCCUGUUCAGGUGAUAACUAUACAGUCUAUUGCCUUCCUUGUGUCACCUAAGGUCUGC 12 16834 MI0001863 dre-let-7a-6 Danio rerio let-7a-6 stem-loop CACAGUGAACCUGUGUGUUUCUUCAAGGUGAGGUAGUAGGUUGUAUAGUUUGUGGGAAGGAUCACAUCCUAUUCAGGUGAUAACUAUACAGUCUAUUGCCUUCCCUGAGAGACACAAUGACCACGAGUG 12 16835 MI0001865 dre-let-7b Danio rerio let-7b stem-loop UCGGACAGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGUUGUGUUUUUGCCCCAUCAGGAGUUAACUAUACAACCUACUGCCUUCCCUGAAGGG 12 16836 MI0001866 dre-let-7c-1 Danio rerio let-7c-1 stem-loop CUGAGAGUGUGUGCAUCCAGGCUGAGGUAGUAGGUUGUAUGGUUUAGAAUUUUGCCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGCUCACAAGCCAG 12 16837 MI0001867 dre-let-7c-2 Danio rerio let-7c-2 stem-loop GUGUGCAUCCAGGCUGAGGUAGUAGGUUGUAUGGUUUCGAAUGACACCAUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGUACAC 12 16838 MI0001868 dre-let-7d-1 Danio rerio let-7d-1 stem-loop UGUGCGUUGCGGUGUGAGGUAGUUGGUUGUAUGGUUUUGCAUAAUAAACAGCCCGGAGUUAACUGUACAACCUUCUAGCUUUCCCUGCGGCUGCACG 12 16839 MI0001870 dre-let-7d-2 Danio rerio let-7d-2 stem-loop CGCUGCAGGCUGAGGUAGUUGGUUGUAUGGUUUUGCAUCAUAAUCAGCCUGGAGUUAACUGUACAACCUUCUAGCUUUCCCUGCGGUG 12 16840 MI0001871 dre-let-7e Danio rerio let-7e stem-loop GCUGUUCUUGGGGCUGAGGUAGUAGAUUGAAUAGUUGUGGAGCCCUGCGCUCUCUCUCUGAGAUAACUAUACAAUCUACUGUCUUUCCUAAGGCGACAGC 12 16841 MI0001872 dre-let-7f Danio rerio let-7f stem-loop UGGUAAUGCUUGUGCAGUGUGAGGUAGUAGAUUGUAUAGUUGUAGGGUAGUGAUUUUAUCCUGUGUAGAAGAUAACUAUACAAUCUAUUGCCUUCCCUGAGGGGCAGAAAUACACA 12 16842 MI0001873 dre-let-7g-1 Danio rerio let-7g-1 stem-loop GGGGGCUGUGGAAUGAGGUAGUAGUUUGUAUAGUUUGGGAUCACACCAGAUCUGGGAGAUAACUAUACAGCCUACUGUCUUUCUCACAGCUGCUCC 12 16843 MI0001874 dre-let-7g-2 Danio rerio let-7g-2 stem-loop GUGGACUGUGGGAUGAGGUAGUAGUUUGUAUAGUUUUAGGAUCACACCAGAUCUGGGAGAUAACUAUACAGUCUACUGUCUUUCCCACGGUUACCGC 12 16844 MI0001875 dre-let-7h Danio rerio let-7h stem-loop GAGUUGGCUGUGUUGUGGUGAGGUAGUAAGUUGUGUUGUUGUUGGGGAUCAGUAUAGUAUGGCCCUUGAAGGAGAUAACUAUACAAUUUACUGCCUUCCAUAAUGCAGACUCUC 12 16845 MI0001876 dre-let-7i Danio rerio let-7i stem-loop GUGUACUGGCUGAGGUAGUAGUUUGUGCUGUUGGUUGGGAUGUGACAUUGCCCGUUAUGGAGAUGACUGCGCAAGCUACUCCCUUGCCAGUGCUG 12 16846 MI0001877 dre-mir-1-2 Danio rerio miR-1-2 stem-loop GCCUACUUGGUGUACAUACUUCUUUAUGUGCCCAUAUGAACAUAUAAAAGCUAUGGAAUGUAAAGAAGUAUGUAUUCUUGGUCAGGU 12 16847 MI0001878 dre-mir-1-1 Danio rerio miR-1-1 stem-loop GCCCAUAUAUCCCGCUUGGUAGACAUACUUCUUUAUAUGCCCAUAUGAACAAGAGCAGCUAUGGAAUGUAAAGAAGUAUGUAUCCCAGGUGAGAGAAAAACGGGGC 12 16848 MI0001879 dre-mir-7a-3 Danio rerio miR-7a-3 stem-loop UGUGUGUGUGUUCUGCCCUCUGCGGAGUGGAAGACUAGUGAUUUUGUUGUGAAAAUGAACAAAAACCAACAACAAACCGCAGUCGUCCUCUCAGCACGGGGCCCACACCUGCAGAGCACA 12 16849 MI0001880 dre-mir-9-1 Danio rerio miR-9-1 stem-loop GGGGUUGGCUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUUAUUCAUUCUUCAUAAAGCUAGAUAACCGAAAGUAACAAGAAUCCC 12 16850 MI0001881 dre-mir-9-2 Danio rerio miR-9-2 stem-loop GCUCUCCUCUGGUGACUUUUGCACUUGGAGGCGUGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUGCUGGCCGUCAUAAAGCUAGAUAACCGAAAGUAAGAGCCGCUUCUAUCAGCAACGUAUGGAGCAUUGC 12 16851 MI0001882 dre-mir-9-4 Danio rerio miR-9-4 stem-loop UGGGUUAGUUUUUCUCUUUGGUUAUCUAGCUGUAUGAGUUUAUGUGAUAUCAUAAAGCUAGAGAACCGAAUGUAUAAACUAAUUCCA 12 16852 MI0001883 dre-mir-9-3 Danio rerio miR-9-3 stem-loop UCAGGGGGUUGGUUUCUCUCUUUGGUUAUCUAGCUGUAUGAGUUAUAACACUGUCAUAAAGCUAGAUAACCGAAAGUAGAAAUAAUUCCCAAAAUCUUUGG 12 16853 MI0001884 dre-mir-9-5 Danio rerio miR-9-5 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUAUUUUGCACUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUGCCUCC 12 16854 MI0001885 dre-mir-9-6 Danio rerio miR-9-6 stem-loop GGAGGUAGUUGCUAUCUUUGGUUAUCUAGCUGUAUGAGUGUUUAUCUGCCUUCAUAAAGCUAGAUAACCGAAAGUAGAAACGUCCUCC 12 16855 MI0001886 dre-mir-9-7 Danio rerio miR-9-7 stem-loop GGGUUAGUUUUUCUCUUUGGUUAUCUAGCUGUAUGAGUUAUGAAAUAUCAUAAAGCUAGAGAACCGAAAGUAGAAACUAUACCU 12 16856 MI0001887 dre-mir-10b-2 Danio rerio miR-10b-2 stem-loop GUAGUCGUCUAUAUGUACCCUGUAGAACCGAAUUUGUGUCCAAAACAUCAAAAUCGCAAAUACGUCUCUACAGGAAUACAUGGGCGACGUAA 12 16857 MI0001888 dre-mir-10c Danio rerio miR-10c stem-loop CCUGUCAUCUAUAUAUACCCUGUAGAUCCGGAUUUGUGUAAACAGACGCACAGUCACAAAUUCGUAUCUAGGGGAGUAUGUAGUUGAUGUAUAGG 12 16858 MI0001889 dre-mir-10d-1 Danio rerio miR-10d-1 stem-loop UGGAAGCUUUGUUCCGUCGUCUAUAUAUACCCUGUAGAACCGAAUGUGUGUUUACACAGCAAAUUCACAGAUUCGGUUUUAGGGGAGUAUAUGGACGAUGCAAAAACGUCUGCUUUCA 12 16859 MI0001890 dre-mir-10d-2 Danio rerio miR-10d-2 stem-loop UGGAAGCUUUGUUCCGUCGUCUAUAUAUACCCUGUAGAACCGAAUGUGUGUUUACACAGCAAAUUCACAGAUUCGGUUUUAGGGGAGUAUAUGGACGAUGCAAAAACGUCUGCUUUCA 12 16860 MI0001891 dre-mir-15a-1 Danio rerio miR-15a-1 stem-loop CCUGUCGGUACUGUAGCAGCACAGAAUGGUUUGUGAGUUAUAACGGGGGUGCAGGCCGUACUGUGCUGCGGCAACAACGACAGG 12 16861 MI0001892 dre-mir-15a-2 Danio rerio miR-15a-2 stem-loop GCCGAGGCUCUCUAGGUGAUGGUGUAGCAGCACAGAAUGGUUUGUGGUGAUACAGAGAUGCAGGCCAUGAUGUGCUGCAGCAUCAAUUCCUGGGACCUACGC 12 16862 MI0001893 dre-mir-15b Danio rerio miR-15b stem-loop GUCUGUCGUCAUCUUUUUAUUUAGCCCUGAGUGCCCUGUAGCAGCACAUCAUGGUUUGUAAGUUAUAAGGGCAAAUUCCGAAUCAUGAUGUGCUGUCACUGGGAGCCUGGGAGUUUCUCCAUUAACAUGACAGC 12 16863 MI0001894 dre-mir-16a Danio rerio miR-16a stem-loop CCUUCCUCGCUUUAGCAGCACGUAAAUAUUGGUGUGUUAUAGUCAAGGCCAACCCCAAUAUUAUGUGUGCUGCUUCAGUAAGGCAGG 12 16864 MI0001895 dre-mir-16b Danio rerio miR-16b stem-loop CCUGAACUUGGCCGUGUGACAGACUGGCUGCCUGGCUGUAGCAGCACGUAAAUAUUGGAGUCAAAGCACUUGCGAAUCCUCCAGUAUUGACCGUGCUGCUGGAGUUAGGCGGGCCGUUUACCGUCUGCGGGGGCCUCGGG 12 16865 MI0001896 dre-mir-16c Danio rerio miR-16c stem-loop GAGGUUGUGUGUGUGUGCGUGUGUUGUCUUGCUUUAGCAGCAUGUAAAUAUUGGAGUUACUCCUUGGCCAAUGCCUCCAAUAUUGCUCGUGCUGCUGAAGCAAGAAGUCACCAAGCAGCACAUGCACGUCAUCCUU 12 16866 MI0001897 dre-mir-17a-1 Danio rerio miR-17a-1 stem-loop GGACUUUCUUGAGUGGACUUGGUUGGUGUCAAUGUAUUGUCAAAGUGCUUACAGUGCAGGUAGUAUUAUGGAAUAUCUACUGCAGUGGAGGCACUUCUAGCAAUACACUUGACCAUUUUAACCUUCCUCCAGGCAUCC 12 16867 MI0001898 dre-mir-17a-2 Danio rerio miR-17a-2 stem-loop GUCACUGUAGUGUCAAAGUGCUUACAGUGCAGGUAGUUCAAUAUAAUCUACUGCAGUGGAGGCACUUCAAGCUUUACCGUGAC 12 16868 MI0001899 dre-mir-20b Danio rerio miR-20b stem-loop GAGUUUGUCCUGGCAGUUCCAAAGUGCUCACAGUGCAGGUAGUGCCAGUGGAUCUACUGCAAUGUCUGCACUUCAAGUAUUGCCGGACGCCUUC 12 16869 MI0001900 dre-mir-18a Danio rerio miR-18a stem-loop GGCUUUGUGCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGACUAGCACCUACUGCCCUAAGUGCUCCUUCUGGCACGAGGGU 12 16870 MI0001901 dre-mir-18b Danio rerio miR-18b stem-loop UACUGCUUAUGCUAAGGUGCAUUUAGUGCAGAUAGUGAAAUAGACUAGCACCUACUGCCCUAAGUGCCCCUUCUGGCAUAAGGGGCU 12 16871 MI0001902 dre-mir-18c Danio rerio miR-18c stem-loop GCCUUCCUGCUAAGGUGCAUCUUGUGUAGUUAGUGAAGUAGUCUAGUAUCUACUGCGCUAGAUGUUCCUUUUGGCAGGAGUAGCU 12 16872 MI0001903 dre-mir-19a Danio rerio miR-19a stem-loop UGGUGCAGUUCUCUGCUAGUUUUGCAUAGUUGCACUACAAGAAAACGGGAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGCUGC 12 16873 MI0001904 dre-mir-19b Danio rerio miR-19b stem-loop GCUGGACCCCCGGUCAGUUUUGCUGGUUUGCAUUCAGCUUUUAAGACUGUGCGCUGUGCAAAUCCAUGCAAAACUGAUUGUGGCAGC 12 16874 MI0001905 dre-mir-19c Danio rerio miR-19c stem-loop UGGAAAAGCCCUGUUAUCUGGGGUGAGUUUUGCAGGAUUGCAUCCGGCUUUAUUACAACAUGCUGUGCAAAUCCAUGCAAAACUCGCUGCGCCAGGGACAAACCA 12 16875 MI0001906 dre-mir-19d Danio rerio miR-19d stem-loop GUUGUGUGGCGGUCAGCUUUGCGGGGUGGGCAGUCAGCCUCCGUGUGGCCGCUGUGCAAACCCAUGCAAAACUGAGCGCUGCGCUAC 12 16876 MI0001907 dre-mir-20a Danio rerio miR-20a stem-loop UCUUAAAUAAAUCUCCUAAUGUUGCAGUUGUGUUAGAGUUUCAGCAGUGCUAAAGUGCUUAUAGUGCAGGUAGUAUUUCUGUCAUCUACUGCAGUGUGAGCACUUGAAGUACUUCUAGCUUAAUGCGUCUGGGAUCCGAAGAUUUCUGCUAGA 12 16877 MI0001908 dre-mir-21-1 Danio rerio miR-21-1 stem-loop UUAUGUGUCUUUAUUGGCGUGGAUAUAAGUCUUUCCCAGUGUGUCAGAUAGCUUAUCAGACUGGUGUUGGCUGUUACAUUCGCCCGGCGACAACAGUCUGUAGGCUGUCUGACAUUUUGGGCAUUUUCUUCUCCGAUUAAAAAUAUGA 12 16878 MI0001909 dre-mir-21-2 Danio rerio miR-21-2 stem-loop AGACAGACAGUAAAAGUGUCCCUUUCUGUCAUGUAGCUUAUCAGACUGGUGUUGGCUUUGAGUUUUUGGCAACAGCAGUCUAAUAGGCUGUCUGACAUUUUGGGCUUAUUCGACGUACGGUUUGUUU 12 16879 MI0001910 dre-mir-22a-1 Danio rerio miR-22a-1 stem-loop GCUGACCUGCAGCAGUUCUUCACUGGCAAGCUUUAUGUCCUUGUGUACCAGCUAAAGCUGCCAGCUGAAGAACUGUUGUGGUUGGC 12 16880 MI0001911 dre-mir-22a-2 Danio rerio miR-22a-2 stem-loop GCUGACCUGCAGCAGUUCUUCACUGGCAAGCUUUAUGUCCUUGUGUACCAGCUAAAGCUGCCAGCUGAAGAACUGUUGUGGUUGGC 12 16881 MI0001912 dre-mir-22b Danio rerio miR-22b stem-loop GUUACUUCACAGUCGUUCUUCACUGGCUAGCUUUAUGUGGCAGCACCUUAAAGCUGCCAGUUGAAGAGCUGUUGUGGGUAAC 12 16882 MI0001913 dre-mir-23a-1 Danio rerio miR-23a-1 stem-loop GCUGUGGCGGGGAGGGUUCCUGGCACCGUGAUUUGGUGGAUAAACAGAAAUGAAAAUCACAUUGCCAGGGAUUUCCACUCCUGCACGGU 12 16883 MI0001915 dre-mir-23a-2 Danio rerio miR-23a-2 stem-loop CUCUUCUGCCGGCCAGGGGAAUUCCUGGCAGAGUGAUUUUUAAACCUAAUGACUGAAUCACAUUGCCAGGGAUUUCCAAUGGCUCGUGUGACUCAGAG 12 16884 MI0001916 dre-mir-23a-3 Danio rerio miR-23a-3 stem-loop CCAGCUGGAGGGAUUCCUGGCAGAGUGAUUUGGGAUUAUAUCAUAAAAUCACAUUGCCAGGGAUUUCCAACCAGCUGU 12 16885 MI0001917 dre-mir-23b Danio rerio miR-23b stem-loop GUGGCUGUGUGGGUUCUUGGCAUGCUGAUUUGUGACUGUAGUAAAAAAAAAUCACAUUGCCAGGGAUUACCACACUACCAC 12 16886 MI0001918 dre-mir-24-4 Danio rerio miR-24-4 stem-loop GAGGGCUGUUCCCACUUGUGCCUGCUAAACUGGUAUCAGUAUGUUGAUUUAGUGCUGGCUCAGUUCAGCAGGAACAGGUGUGAAGUCCUC 12 16887 MI0001919 dre-mir-24-2 Danio rerio miR-24-2 stem-loop GGGCUGGUCUCCUGUGCCUGCUGUGCUGAUAAUCAGUGGACGGCUGUGACUGGCUCAGUUCAGCAGGAACAGGGGCCUGGUC 12 16888 MI0001920 dre-mir-24-3 Danio rerio miR-24-3 stem-loop GCUGAACGGGAGUCAUAUGAGAGAUAGAUGGAGCUGGCCUCCCGUGCCUACUGAGCUGAUUACAGUACUGUGCAAACACUGGCUCAGUUCAGCAGGAACAGGAGUCUGGUCCACAAACUCCACCAAACACUGCUGCUUCAGC 12 16889 MI0001921 dre-mir-24-1 Danio rerio miR-24-1 stem-loop ACCUGAGCUCCGGUGCCUUCUGAGCUGAUAUCAGUUGUAGUAAAUCACUGGCUCAGUUCAGCAGGAACAGGAGUGUGGCC 12 16890 MI0001922 dre-mir-25 Danio rerio miR-25 stem-loop GCCGGCGCUGAGAGGCGGAGACUUGGGCAGCUGCCGUCAUUCCCAGAAGGCAUUGCACUUGUCUCGGUCUGACAGUGGCGGC 12 16891 MI0001923 dre-mir-26a-1 Danio rerio miR-26a-1 stem-loop UUUGGCCUGGUUCAAGUAAUCCAGGAUAGGCUUGUGAUGUCCGGAAAGCCUAUUCGGGAUGACUUGGUUCAGGAAUGA 12 16892 MI0001925 dre-mir-26a-2 Danio rerio miR-26a-2 stem-loop GUGUGGACUUGAGUGCUGGAAGUGGUUGUUCCCUUGUUCAAGUAAUCCAGGAUAGGCUGUCUGUCCUGGAGGCCUAUUCAUGAUUACUUGCACUAGGUGGCAGCCGUUGCCCUUCAUGGAACUCAUGC 12 16893 MI0001926 dre-mir-26a-3 Danio rerio miR-26a-3 stem-loop CUAAGCUGAUACUGAGUCAGUGUGUGGCUGCAACCUGGUUCAAGUAAUCCAGGAUAGGCUUUGUGGACUAGGGUUGGCCUGUUCUUGGUUACUUGCACUGGGUUGCAGCUACUAAACAACUAAGAAGAUCAGAAGAG 12 16894 MI0001927 dre-mir-26b Danio rerio miR-26b stem-loop GCAUUUGGCCUUUGCCUGGUUCAAGUAAUCCAGGAUAGGUUAGUUCCCACUAGUACGGCCUAUUCUUGGUUACUUGUUUCAGGAGGAGGCUACGAGC 12 16895 MI0001928 dre-mir-27a Danio rerio miR-27a stem-loop UCUGGAUAUGAUGUCUGCUGAAGUUUCGUGAGGUGCAGGACUUAGCUCACUCUGUGAACAGAUCUCGGAUAUCCUAUGUUCACAGUGGCUAAGUUCCGCUCCUCUGAGGCCCACACUCGAAAUCAGCCAGG 12 16896 MI0001929 dre-mir-27b Danio rerio miR-27b stem-loop UCUUUUCUAGCAGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGAACUCUUUGUUCACAGUGGCUAAGUUCUGCAUCUGAGGAGAGGA 12 16897 MI0001930 dre-mir-27c Danio rerio miR-27c stem-loop GGUUGUGUGGUGUCAGGACUUAACCCACUUGUGAACAAUGCAUCGAACUUCAAUGUUCACAGUGGUUAAGUUCUGCCGCCCCUAGACC 12 16898 MI0001931 dre-mir-27d Danio rerio miR-27d stem-loop UUCUGAGCGGGUGCAGAGCUUGGCUGAUUGGUGAACGUGCAUGGCUUGUGUUUUUGUUCACAGUGGCUAAGUUCUUCACCCGAAAAGAA 12 16899 MI0001932 dre-mir-27e Danio rerio miR-27e stem-loop GUCAUCACUCGCUCACGGCGCAGAGCUUAGCUAAUCGGUGAGCAUUGAUCCCUUAAGAAAACUGUUCACAGUGGCUAAGUUCAGUGUCUGGAGUGAACGGGAUGAC 12 16900 MI0001933 dre-mir-29b-1 Danio rerio miR-29b-1 stem-loop CUGCUCCUGGAAGCUGAAUUCAGAUGGUGCCAUAGAGUAUUUUAUGGCAUCUAGCACCAUUUGAAAUCAGUGUUCCUGGGCCG 12 16901 MI0001934 dre-mir-29b-2 Danio rerio miR-29b-2 stem-loop UCUCCUCCUGGAAGCUGGUUUCAAGUGGUGUUUUAGAGUGCUGAUCAAAUGAAUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGUGAGA 12 16902 MI0001936 dre-mir-29b-3 Danio rerio miR-29b-3 stem-loop UCUUCCUCCAGAUGCUGGUUUCACAUGGUGGUUUAGAUGUGUUCUACCAAAGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGAGGG 12 16903 MI0001938 dre-mir-29a-1 Danio rerio miR-29a-1 stem-loop UGAAGACCCUCAUCUCUCUCUCUCUCUCCCCACCAAACGAUGACUGAUUUCCUUUGGUGCUUAGAGUCCCAUCUGUCAUCUAGCACCAUUUGAAAUCGGUUAUAAUGACUGGGGAUCAAUUCUUCA 12 16904 MI0001940 dre-mir-30a Danio rerio miR-30a stem-loop GGCUCCUUGCAGUUGUAAACAUUCCCGACUGGAAGUUGUAAUGCAGAAAAUCUCAGCUUUCAGUCUGAUGUUUGCUGCUACUGGUGGCC 12 16905 MI0001941 dre-mir-30b Danio rerio miR-30b stem-loop UUCCAGUGUAGUCGCUGUAAACAUCCUACACUCAGCUGUGAGCUGCAGACGAGGCUGGGCGGAGGGUGUUUGCUGUGACUGUCUGGAG 12 16906 MI0001944 dre-mir-30c Danio rerio miR-30c stem-loop CUUCAGGGAGUGUAAACAUCCUACACUCUCAGCUGGAGCGCAGCCGAGGCCGGGAGUGGGAUGUUUGCGCUCUCUGGCU 12 16907 MI0001946 dre-mir-30d Danio rerio miR-30d stem-loop GUGCUGUAUAUGGGUAUAACUGGUUGUUCAUGCCUGUAAACAUCCCCGACUGGAAGCUGUGCUACGCGGAAAACGAGCUUUCAGUUGGAUGUUUGCUGUCAUCGUCCAGUUCUGUCGCCUUGUAUUAC 12 16908 MI0001950 dre-mir-30e-2 Danio rerio miR-30e-2 stem-loop UACGGGCUACUGUAAACAUCCUUGACUGGAAGCUGGUGCACAUGAUGGAGCUUUCAGUCGGAUGUUUGCAGCAGCCAACU 12 16909 MI0001951 dre-mir-92a-1 Danio rerio miR-92a-1 stem-loop UGGUCCCUUUCUGCGCAGGUUGGGAUUGGUAGCAAUGCUGUGUGUUUUGAAGGUAUUGCACUUGUCCCGGCCUGUAAAGGAUUGU 12 16910 MI0001952 dre-mir-92a-2 Danio rerio miR-92a-2 stem-loop ACAGCAUCCCUUUCUUUGCAGGUUGGGAUCGGCCGCAAUGCUCUGUGCUGGAAGUAUUGCACUUGUCCCGGCCUGUGAAGAGCAUGGGAAAUUGU 12 16911 MI0001953 dre-mir-92b Danio rerio miR-92b stem-loop UCCUACGGGCAGGGAGGUGUGGGAUGUUGUGCAGUGUUGUUCAAUCUCCCGCCAAUAUUGCACUCGUCCCGGCCUCCCUGAC 12 16912 MI0001954 dre-mir-93 Danio rerio miR-93 stem-loop GUGUGUGUUAAAAGUGCUGUUUGUGCAGGUAGUGUGUUUCCUCUACUGUAGGAGCAGCACUUCACAACACACAC 12 16913 MI0001955 dre-mir-96 Danio rerio miR-96 stem-loop GCUGGGCGCUCUUCUUUGCCUGUUUUGGCACUAGCACAUUUUUGCUUUUUUAUAUAUACCUUGAGCAAUUAUGUGUAGUGCCAAUAUGGGACAAGACAGACAUGCUACUUAAAAAAAAAAUCAGC 12 16914 MI0001956 dre-mir-99-1 Danio rerio miR-99-1 stem-loop GCCACUUGUCAUUAACCCGUAGAUCCGAUCUUGUGAUAAGUUUGAUGGCACAAGCUCGAUUCUAUGGGUCUCUGUCUCUGUGGU 12 16915 MI0001957 dre-mir-99-2 Danio rerio miR-99-2 stem-loop CACUUGUCACAAACCCGUAGAUCCGAUCUUGUGGCGUAAUCGGCAACCCAAGCUCGAUUCUGUGGGUCUCUGUCACUGUG 12 16916 MI0001958 dre-mir-100-1 Danio rerio miR-100-1 stem-loop GAAGAGACCUGCCUGCUGACACAAACCCGUAGAUCCGAACUUGUGGUGACUGUCCACACAAGCUUGUAUCUAUAGGUAUCUGUCUGUGUGGCCUUC 12 16917 MI0001959 dre-mir-100-2 Danio rerio miR-100-2 stem-loop AGCUGCCACAAACCCGUAGAUCCGAACUUGUGGUGUCUCUGUGCACAAGCUCGUGUCUAUAGGUAUGUGUCUGCG 12 16918 MI0001960 dre-mir-101a Danio rerio miR-101a stem-loop GGCUGCCCUGGUUCAGUUAUCACAGUGCUGAUGCUGUCCAUCUUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCUGCC 12 16919 MI0001961 dre-mir-101b Danio rerio miR-101b stem-loop GCUCCUCCGUCAUGAAUUGUCCAUUUUCAGUUAUCAUGGUACCGGUGCUGUGUGCCUGUCAAGUACAGUACUAUGAUAACUGAAGAUUGACAAUGCCAAACAUCAGUGGAGU 12 16920 MI0001962 dre-mir-103 Danio rerio miR-103 stem-loop UUGCCCUGGUCUGUCAGCCUCUUUACGGUGCUGCCUUGUGGAAUCUGGAUCAAGCAGCAUUGUACAGGGCUAUGAGAGACCCGGGCCC 12 16921 MI0001963 dre-mir-107 Danio rerio miR-107 stem-loop UCUGUGUGCUCUGAGCUUCUUUACAGUGUUGUCUUGUGGCAUGGAGAUCAAGCAGCAUUGUACAGGGCUAUCACAGCACACUGAACAGC 12 16922 MI0001965 dre-mir-122 Danio rerio miR-122 stem-loop UCCAGAGCUGUGGAGUGUGACAAUGGUGUUUGUAUCAUCUGUCGUCAAACGCCAUUAUCACACUAAAUAGCCACGG 12 16923 MI0001966 dre-mir-124-1 Danio rerio miR-124-1 stem-loop GGCUCUCGCUGUACGUGUUCACAGUGGACCUUGAUUUAUUGUAUUUCAAUUAAGGCACGCGGUGAAUGCCAACAGCACAGCC 12 16924 MI0001967 dre-mir-124-2 Danio rerio miR-124-2 stem-loop CCUGCUUUUCUUCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAGAUGGC 12 16925 MI0001968 dre-mir-124-3 Danio rerio miR-124-3 stem-loop GGCUCUGUGGGAUUUCAGACUCUGGCUUUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCUUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUUUUAACAUCAGCAGGCC 12 16926 MI0001969 dre-mir-124-4 Danio rerio miR-124-4 stem-loop GGUUUUUGCUCUUUGUGUUCACAGUGGACCUUGAUUUAAUUUCAAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAGAAGCC 12 16927 MI0001970 dre-mir-124-5 Danio rerio miR-124-5 stem-loop GGGUUUUGCUCGUGCGUUCUUUUUGAGUUCUCGCUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAAGAAUCUCUCCAGCAACGAGUUUGCGC 12 16928 MI0001971 dre-mir-124-6 Danio rerio miR-124-6 stem-loop GGGUGGUGACACAGGCCCGCCACUCUGCGUGUUCACGGCGGACCUUGAUUUAAUAUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAGGGGUCUUAAAACGACAAACCC 12 16929 MI0001972 dre-mir-125a-1 Danio rerio miR-125a-1 stem-loop GUAUGUCUCUUUGUCCCUGAGACCCUUAACCUGUGAGGUCAAACUAGGUCACAGGUGAGGUCCUCAGGAACAGGGCUGCAUGC 12 16930 MI0001973 dre-mir-125a-2 Danio rerio miR-125a-2 stem-loop GAUCAGUCCAAAUCGAUGUAUGUCUGUGUCCCUGAGACCCUUAACCUGUGAUGUCUUCCAAGGUCACAGGUGAGGUCCUUGGGAACACGGCUGUAUAUGAUGACGUC 12 16931 MI0001975 dre-mir-125b-1 Danio rerio miR-125b-1 stem-loop UUCUGUUGCAGGUUGGCGGUUGGUCUGCAAAUGUGCCUCUCACAAUCCCUGAGACCCUAACUUGUGACGUUUUCCUGUUAUGUGCACGGGUUAGGUUCUUGGGAGCUGAGAGGGGUGCUCUGUCAUCAGCCCGCCGGCGUCGGAA 12 16932 MI0001976 dre-mir-125b-2 Danio rerio miR-125b-2 stem-loop GUGCCCCUCUCCUUCCCUGAGACCCUAACUUGUGACGUUCUGCUUCGAUGUCCACGGGUUGGGUUCUCGGGAGCUGUGAGAGGCAC 12 16933 MI0001977 dre-mir-125b-3 Danio rerio miR-125b-3 stem-loop CCCGUGCGGCCACCGCUGCACUCCUCCUGGUCCCUGAGACCCUAACUUGUGAGCUUUGUGUGCUAAAAAUCACAGGUUAAGCUCUUGGGACCUGGGCAGAGGGCAAAAGCACUGG 12 16934 MI0001978 dre-mir-125c Danio rerio miR-125c stem-loop GCUCUCCUCCUGUUCCCUGAGACCCUAACUCGUGAGGUCUUUUUCCAAAAUCACGGGUCAGGAGCUUGGGAGACAGGUGGAGGGC 12 16935 MI0001979 dre-mir-126 Danio rerio miR-126 stem-loop GAGCCAUUUUAACUGCUUCACAGUCCAUUAUUACUUUUGGUACGCGCUAGGCCAGACUCAAACUCGUACCGUGAGUAAUAAUGCACUGUGGCAGUGGGUUU 12 16936 MI0001980 dre-mir-128-1 Danio rerio miR-128-1 stem-loop UGGAGGAGGAGUGCUGGGAGACGGGGCCGUGGCACUGUAUGAGAUUCAUGUAGGCUUUCUCACAGUGAACCGGUCUCUUUUUCCAGCCCUCACUGACA 12 16937 MI0001981 dre-mir-128-2 Danio rerio miR-128-2 stem-loop UCUGCUCAUGGGUCUGUCAGUAGUAGGACAGGGGGCCGUUUCUACUGUCAGAGAUGCUGCCACUCGUCUCACAGUGAACCGGUCUCUUUUCCUGCUAUUCACUUCUGCAAUAAUAUGAGCAGA 12 16938 MI0001982 dre-mir-129-2 Danio rerio miR-129-2 stem-loop GUCUUUCACGAAUCUUUUUGCGGUCUGGGCUUGCUGUUCUCAACUAUCAAUGGGAAGCCCUUACCCCAAAAAGCAUUUGCGGAGGGC 12 16939 MI0001983 dre-mir-129-1 Danio rerio miR-129-1 stem-loop GUCCUUUUCAGGUCUUUUUGCGGUCUGGGCUUGCUGUUCCUUGAACCAGUAGCCAGGAAGCCCUUACCCCAAAAAGUAUCUGCAGAGGAC 12 16940 MI0001984 dre-mir-130a-1 Danio rerio miR-130a-1 stem-loop UGUCUGUCCAGUGCCCCUUUUAUAUUGUACUACUGAUAACCCAGUUAUUAAAGCAGUGCAAUGUUAAAAGGGCAUUGGCCAGGGA 12 16941 MI0001985 dre-mir-130a-2 Danio rerio miR-130a-2 stem-loop UGUCUGUCCAGUGCCCCUUUUAUAUUGUACUACUGAUAACCCAGUUAUUAAAGCAGUGCAAUGUUAAAAGGGCAUUGGCCAGGGA 12 16942 MI0001986 dre-mir-130b Danio rerio miR-130b stem-loop CUGUUGCCUGACACUCUUUCCCUGUUGCACUACUGUGGGAGCUGCAGCAAAGCAGUGCAAUAAUGAAAGGGCAUCAGUCCACUG 12 16943 MI0001987 dre-mir-130c-1 Danio rerio miR-130c-1 stem-loop GGGAGAGGUCUGUACGGUGAUAUUGACCAUGUUUUGUCCAUUGCCCUUUUUCUGUUGUACUACUGGCCAAUCAGAAGAGCAGUGCAAUAUUAAAAGGGCAUUGGCUGAUAGAACAGAGUCCUUCACCUCUCACCCUCUCCU 12 16944 MI0001988 dre-mir-130c-2 Danio rerio miR-130c-2 stem-loop UUGUUGACCAGGGCCCUUUUUCUGUUGUACUACUGUGCAGUCAGAUGAGCAGUGCAAUAUUAAAAGGGCAUUGGCUGACAA 12 16945 MI0001989 dre-mir-132-1 Danio rerio miR-132-1 stem-loop GUCUCCAUGGCGACCGUGGCAUUAGAUUGUUACUGUAGGAACAGAAUUUUUGGUAACAGUCUACAGCCAUGGUCGCUAGUGGGCA 12 16946 MI0001991 dre-mir-132-2 Danio rerio miR-132-2 stem-loop UCCCUUCCUCUGCUGUCUCCAUGCUGACCGUGGCUUUAGAUUGUUACUGUAGCGUUGGCACGUGGUAACAGUCUACAGCCAUGGUCGCCAAGGGGCAGGUGUUACAGCGACUACUGGGA 12 16947 MI0001992 dre-mir-133a-2 Danio rerio miR-133a-2 stem-loop AAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCAACUGUUUUAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUGUGCAUU 12 16948 MI0001993 dre-mir-133a-1 Danio rerio miR-133a-1 stem-loop CAUCAAACCACAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCACCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCUUUGAUG 12 16949 MI0001994 dre-mir-133b Danio rerio miR-133b stem-loop CACGCCUUGCUGUGGCUGGUCAAAUGGAACCAAGUCAGGUGUUUCUGCGAGGUUUGGUCCCCUUCAACCAGCUACUGCGUCGUG 12 16950 MI0001995 dre-mir-133c Danio rerio miR-133c stem-loop GAAACACGGCUUAGUUGCUGGUAAAACGGAACCAAGUCGGGUGUUUGCGAGAGGUUUGGUCCCUUUCAACCAGCUACUGCGCCGUGAAUUC 12 16951 MI0001996 dre-mir-135c-1 Danio rerio miR-135c-1 stem-loop UGCUGUGUUUUAUGGCUUUCUAUUCCUAUGUGAUUUUCUUCUGCCGUGUCACAUAGGGUUCAAAGCCAUUGGGUACAGAG 12 16952 MI0001997 dre-mir-135c-2 Danio rerio miR-135c-2 stem-loop UGCUGUGUUUUAUGGCUUUCUAUUCCUAUGUGAUUUUCUUCUGCCGUGUCACAUAGGGUUCAAAGCCAUUGGGUACAGAG 12 16953 MI0001998 dre-mir-135c-3 Danio rerio miR-135c-3 stem-loop UGCAGUCUAAAGCAACUCAAAACACUACUGUGCUUUAUGGCUUUCUAUUCCUAUGUGAUUUUGAUAUGAUGUAUCAUGUAGGGUUCAAAGCCAUUAGGUACAGAGUGGCUUAUCAGCAGUGGAUGUA 12 16954 MI0002000 dre-mir-137-1 Danio rerio miR-137-1 stem-loop GGCUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGCUCUCGUUGUUAUUGCUUAAGAAUACGCGUAGUUGAGGAGAGUC 12 16955 MI0002001 dre-mir-137-2 Danio rerio miR-137-2 stem-loop GUUCUGUUGUUUCCCUCUAUAAAGGACUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGCUCUCGUUGUUAUUGCUUAAGAAUACGCGUAGUCGAGGAGAGUCAUGUCGGCGGCGAGAGAGC 12 16956 MI0002002 dre-mir-138 Danio rerio miR-138 stem-loop UGUGUGCUGCAGCUGGUGUUGUGAAUCAGGCCGAUGUCACACGUCAGCGAUAACCCGGCUAUUUCACAACACCAGGGUGGCACCACA 12 16957 MI0002003 dre-mir-140 Danio rerio miR-140 stem-loop GUGUUUGUCUCCUGUGUCCCGUCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACGGGAUGUCUGGAGGUGUCUGC 12 16958 MI0002004 dre-mir-141 Danio rerio miR-141 stem-loop GUCUCUAGGGUACAUCUUACCUGACAGUGCUUGGCUGUUCACUGAUGUUCUAACACUGUCUGGUAACGAUGCACUCUGGUGAC 12 16959 MI0002005 dre-mir-142a Danio rerio miR-142a stem-loop CGUACAGUGCAGUCAUCCAUAAAGUAGAAAGCACUACUAAACCCCUCGCCACAGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGUUG 12 16960 MI0002006 dre-mir-142b Danio rerio miR-142b stem-loop ACAGUGCAGUCACUCAUAAAGUAGACAGCACUACUAAACUUCUCUACACAGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGU 12 16961 MI0002007 dre-mir-143-1 Danio rerio miR-143-1 stem-loop GAUCUACAGUCGUCUGGCCCGCGGUGCAGUGCUGCAUCUCUGGUCAACUGGGAGUCUGAGAUGAAGCACUGUAGCUCGGGAGGACAACACUGUCAGCUC The cloned mature miR-143 sequence always appears to be 22nt in length, modified by the addition of a 3' U residue not found in the genomic sequence [1]. 12 16962 MI0002008 dre-mir-143-2 Danio rerio miR-143-2 stem-loop GAUCUACAGUCGUCUGGCCCGCGGUGCAGUGCUGCAUCUCUGGUCAACUGGGAGUCUGAGAUGAAGCACUGUAGCUCGGGAGGACAACACUGUCAGCUC The cloned mature miR-143 sequence always appears to be 22nt in length, modified by the addition of a 3' U residue not found in the genomic sequence [1]. 12 16963 MI0002009 dre-mir-144 Danio rerio miR-144 stem-loop GCUCUCUAGACAGGAUAUCAUCGUAUACUGUAAGUUCAUUAUUGAGACACUACAGUAUAGAUGAUGUACUAUCCAGGGGGUCAACGAGC 12 16964 MI0002010 dre-mir-145 Danio rerio miR-145 stem-loop UCAGUCUUCAUCAUUUCCUCAUCCCCGGGGUCCAGUUUUCCCAGGAAUCCCUUGGGCAAUCGAAAGGGGGAUUCCUGGAAAUACUGUUCUUGGGGUUGGGGGUGGACUACUGA 12 16965 MI0002012 dre-mir-146a Danio rerio miR-146a stem-loop GAGUUUGUUUUGAGCACUUUUCCCUGAGAACUGAAUUCCAUAGAUGGUGUUCAUGAAAAGUUCAUCUAUGGGCUCAGUUCUUCUGGCAAUCUGUUUAAUGUCUGCUACAAAUUC 12 16966 MI0002013 dre-mir-146b-1 Danio rerio miR-146b-1 stem-loop GCUCUUGGCUUUGAGAACUGAAUUCCAAGGGUGUCUGCUUUAUAUUCAGCCCACGGAGUUCAGUUCUUAAGUUUGGAUGC 12 16967 MI0002014 dre-mir-146b-2 Danio rerio miR-146b-2 stem-loop GCUCUUGGCUUUGAGAACUGAAUUCCAAGGGUGUCUGCUUUAUAUUCAGCCCACGGAGUUCAGUUCUUAAGUUUGGAUGC 12 16968 MI0002015 dre-mir-148 Danio rerio miR-148 stem-loop CUUUCCAAGUAAAGUUCUGUGAUACACUCCGACUCUGAAUGUUUGCAGUCAGUGCAUUACAGAACUUUGUUUUGGGAGU 12 16969 MI0002016 dre-mir-150 Danio rerio miR-150 stem-loop CAUCUCCGUCUCUCCCAAUCCUUGUACCAGUGUCUGAUUUACAGAUGACGCUGGACGGGGUUUGGGGGGGGCUGAGGGA 12 16970 MI0002017 dre-mir-152 Danio rerio miR-152 stem-loop CUGUUCACCUGGCUCAAGUUCUGUGAUACACUCAGACUUUGAAUCAGUGGUAGUCAGUGCAUGACAGAACUUUGGCCCGG 12 16971 MI0002019 dre-mir-153b Danio rerio miR-153b stem-loop GAGCGAUGGAGCGCGGUAGCGAGGUAUUGCACAGCUGUCUGUGUCAUUUUUGUGGUUUGCAGCUAGUAGUCUGGUUCCAGUUGCAUAGUCACAAAAAUGAGCACAGACAGAUGUGACUGCAGCAACGCUGAUGAAACGCUCCAUCGCC 12 16972 MI0002021 dre-mir-153a Danio rerio miR-153a stem-loop GGUUGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUUAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACU 12 16973 MI0002022 dre-mir-153c Danio rerio miR-153c stem-loop GAUGGAGAUCAGUAGGUCCCUGGACGUAGCACACCUCCCAGUGUCAUUUUUGUGAUUUGCAGCUAGUAGUCUGGGUCCAGUUGCAUAGUCACAAAAAUGAUCAUUGGUAGGUGUGAGUGCAGCAGGAGUGAGGCUUACCGGAUCCUCCAUC 12 16974 MI0002023 dre-mir-155 Danio rerio miR-155 stem-loop UGGUGCAGGUUUAAUGCUAAUCGUGAUAGGGGUUUAGUGCUGAUGAACACCUAUGCUGUUAGCAUUAAUCUUGCGCUA 12 16975 MI0002024 dre-mir-181c Danio rerio miR-181c stem-loop GGGUCCUGAUUCACAUUCAUUGCUGUCGGUGGGUUUUAUCUCUUCGACUCGCCGGACAAUGAAUGAGAACUACGGCUC 12 16976 MI0002026 dre-mir-184 Danio rerio miR-184 stem-loop GUCGAACACGUCUCCUUAUCACUUUUCCAGCCCAGCUAUCCAUUUAGUAUUCGUUGGACGGAGAACUGAUAAGGGCAUGUGCCCGAU 12 16977 MI0002027 dre-mir-190 Danio rerio miR-190 stem-loop UCUGGAGGUGAGGUAGACCUGGAAGCCUUUCUGCAGGCCUCUGUUUGAUAUGUUUGAUAUAUUAGGUUGUUAUUCUGUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCCUGCUCUGUCUCCAG 12 16978 MI0002028 dre-mir-462 Danio rerio miR-462 stem-loop GUCUGGAUGGUAACGGAACCCAUAAUGCAGCUGUUUGGUUGAUUGAUUGACAGCUGUCUGUGGAUUCCGUGCCCCUCCUUUCUUGCAGGAGCUCAUUGAGAU 12 16979 MI0002029 dre-mir-193a-1 Danio rerio miR-193a-1 stem-loop GACAUUAAUGUGUUAGAGGUUGGGUCUUUGCGGGCAAGGUGAGUAGUUAAAUUUACUCUCAACUGGCCUACAAAGUCCCAGUUUCUGGCUCAUGUUAUC 12 16980 MI0002030 dre-mir-193a-2 Danio rerio miR-193a-2 stem-loop GAAAGUGUGUCAGAGGCUGGGUCUUUGCGGGCAAGGUGAGUUUUCCUUUUAUUCAACUGGCCUACAAAGUCCCAGUUUUCGGCCCAUGUGACCAUCUC 12 16981 MI0002031 dre-mir-193a-3 Danio rerio miR-193a-3 stem-loop GAAAGUGUGUCAGAGGCUGGGUCUUUGCGGGCAAGGUGAGUUUUCCUUUUAUUCAACUGGCCUACAAAGUCCCAGUUUUCGGCCCAUGUGACCAUCUC 12 16982 MI0002032 dre-mir-193b Danio rerio miR-193b stem-loop GUGAUUUCAGUGACGGGACUUUGGGGGCGAGAUGAGUAUUGAUCUCUAUCCAACUGGCCCGCAAAGUCCCGCUUCUGGGACUCAC 12 16983 MI0002033 dre-mir-194a Danio rerio miR-194a stem-loop UGGUGCUGACUGCUUGUAACAGCAACUCCAUGUGGAAGGUUUGUGUCUUCCAGUGGAGCUGCUGUUGCGUGCAGAUAGUCACCA 12 16984 MI0002034 dre-mir-194b Danio rerio miR-194b stem-loop GCUCGCUGGGUGUAACAGCCGCUCCAUGUGGAAAAUGCAUUCAAGUGCCCAUGGAGAAGCUGUUACCUGCAGAGAGU 12 16985 MI0002035 dre-mir-196a-2 Danio rerio miR-196a-2 stem-loop UCGAGUGGUUUAGGUAGUUUCAUGUUGUUGGGAUUACAUUCAAACUCUGCAACGUGAAACUGUCUUAAUUGCCCCA 12 16986 MI0002036 dre-mir-196b Danio rerio miR-196b stem-loop GUCUGUGAUUUAGGUAGUUUCAAGUUGUUGGGCUGGACGUUUAAUUUCACAGGAACCUGAAACUGCCUGAAUUGCUCCA 12 16987 MI0002037 dre-mir-200a Danio rerio miR-200a stem-loop GGCACUUAGCAGCCAUCUUACCGGACAGUGCUGGACUGUAUAACUGUUUUCUAACACUGUCUGGUAACGAUGUUUGUUGGGUGACC 12 16988 MI0002038 dre-mir-200b Danio rerio miR-200b stem-loop GGUAGUCGUCUCCAUCUUACGAGGCAGCAUUGGAUUUCAUUACUUUUUCUAAUACUGCCUGGUAAUGAUGAUGAUUGCUGCC 12 16989 MI0002039 dre-mir-200c Danio rerio miR-200c stem-loop UGGAUGCCUGGCUCCAUCUUACAAGGCAGUUUUGGAUGUUAUAUCUUCUCUAAUACUGCCUGGUAAUGAUGCAGAUGGUCAUCUA 12 16990 MI0002040 dre-mir-202 Danio rerio miR-202 stem-loop CUGUUCCUUUUUCCUAUGCAUAUACCUCUUUGACAUGCUGCUUUAAAGAGGCAUAGGGCAUGGGAAAAUGGGGCGG 12 16991 MI0002041 dre-mir-203b Danio rerio miR-203b stem-loop UCCUCUUUGGCCGAGUGGUUCUCAACAGUUCAACAGUUCUUUUGAUGAUUGUGAAAUGUUCAGGACCACUUGAUCAGACGAAGGA 12 16992 MI0002042 dre-mir-204-2 Danio rerio miR-204-2 stem-loop GUGUUGCUCUAGUGACCAGUUUGUGACCUCCUGGGUUUCCCUUUGUCAUCCUAUGCCUGCAGUUCCUGAUGAGGCUGGGACAGCAAAGGGAGGUUCAGAUGUCGACCUGUACUACAGUCAAUAC 12 16993 MI0002043 dre-mir-204-3 Danio rerio miR-204-3 stem-loop GUGUUGCUCUAGUGACCAGUUUGUGACCUCCUGGGUUUCCCUUUGUCAUCCUAUGCCUGCAGUUCCUGAUGAGGCUGGGACAGCAAAGGGAGGUUCAGAUGUCGACCUGUACUACAGUCAAUAC 12 16994 MI0002045 dre-mir-206-1 Danio rerio miR-206-1 stem-loop GAAUGUUGCCUCUUGUGAAGACAUGCUUCCUUAUAUGCCCAUAUUAAUGCUCAAGUUAUGGAAUGUAAGGAAGUGUGUGGUUUCAGGGGGAAAUUUGUC 12 16995 MI0002046 dre-mir-206-2 Danio rerio miR-206-2 stem-loop GAGUUGGCUGUUGCUUAUUGAGACGACAUACUUCCUUAUAUCCCCAUAUUCAGAAUUAAUCUAUGGAAUGUAAGGAAGUGUGUGGCUUCAGUGAGAUCUCAUCAUCAUC 12 16996 MI0002047 dre-mir-216a-2 Danio rerio miR-216a-2 stem-loop GCUGAUUUUUGGCAUAAUCUCAGCUGGCAACUGUGAGUAGUGUUUUCAUCCCUCUCACAGGCGCUGCUGGGGUUCUGUCACACACAGCA 12 16997 MI0002048 dre-mir-216b-1 Danio rerio miR-216b-1 stem-loop ACUGACUGGGUAAUCUCUGCAGGCAACUGUGAUGUGAUUACAGUCUCACAUUGACCUGAAGAGGUUGAGCAGUCUGU 12 16998 MI0002049 dre-mir-216b-2 Danio rerio miR-216b-2 stem-loop CUGACUGGGUAAUCUCUGCAGGCAACUGUGAUGUGAUUACAGUCUCACAUUGACCUGAAGAGGUUGUGCAGUCUGU 12 16999 MI0002050 dre-mir-217-2 Danio rerio miR-217-2 stem-loop AUGAGAACUUUCUGAUGUUGGUGAUACUGCAUCAGGAACUGAUUGGAUGAUAUUCAGGAGCCAUCAGUUCCUGAUGCACUCCCAUCAGCAUCGAAAGA 12 17000 MI0002051 dre-mir-218a-1 Danio rerio miR-218a-1 stem-loop CAGCUGUCUCUUGUGCUUGAUCUAACCAUGUGCCGCCGCCUACACAAGCCUCACAUGGUUCCGUCAAGCACCAGGGACCGCUG 12 17001 MI0002052 dre-mir-218a-2 Danio rerio miR-218a-2 stem-loop GCGGGGUUUUCCUUUGUGCUUGAUCUAACCAUGUGGUUGCAGACUCAGACUAAUACAUGGUUCUGUCAAGCACCAUGGAAGGUCUUGC 12 17002 MI0002053 dre-mir-218b Danio rerio miR-218b stem-loop CAGGACACCAUUGUGCUUGAUCUAACCAUGCAGUUCCCUUUCUGUCCAUGGUUGUGCCAAGCACUUUGGAGACUUG 12 17003 MI0002054 dre-mir-219-3 Danio rerio miR-219-3 stem-loop CUUCUCUUUUAAGUUCAUCUGUCUGGUUUGAUACUGACGGUCAGGUGCUGAUUGUCCAAACGCAAUUCUUGUGCUUGUGUGAAACAGGAGUUGUGGAUGGACAUCACGCUCCUGUCUGGUCCUCACAUCUACAGGAUGGGCCAAGUAAAG 12 17004 MI0002059 dre-mir-301a-1 Danio rerio miR-301a-1 stem-loop GCUGUUAACAGGUGCUCUGACUUCAUUGCACUACUGUAUUGGACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCGUCUGAGAGCAGC 12 17005 MI0002060 dre-mir-301a-2 Danio rerio miR-301a-2 stem-loop GCUGUUAACAGGUGCUCUGACUUCAUUGCACUACUGUAUUGGACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCGUCUGAGAGCAGC 12 17006 MI0002061 dre-mir-301b Danio rerio miR-301b stem-loop AAGGUCUGUUGCUUUGACGAUGUUGCACUACUGAACCAUCUAAUCAAGCAGUGCAAUAGUAUUGUCAUUGCAUUCGGCUUU 12 17007 MI0002062 dre-mir-301c Danio rerio miR-301c stem-loop UGAGGUCAGCUGCUCUGACGAUGUUGCACUACUGUACCAUCCAUUCUAGCAGUGCAAUAGUAUUGUCAUAGCAUUUAGCCUCU 12 17008 MI0002063 dre-mir-338-1 Danio rerio miR-338-1 stem-loop GGUUUCUCCCUGCAACAAUCUCCUGAUGCUGCCUGAGUGUUUUUCUUCCACUCCAGCAUCAGUGAUUUUGUUGCCGGAGGUCACC 12 17009 MI0002064 dre-mir-338-2 Danio rerio miR-338-2 stem-loop GGUUUCUCCCUGCAACAAUCUCCUGAUGCUGCCUGAGUGUUUUUCUUCCACUCCAGCAUCAGUGAUUUUGUUGCCGGAGGUCACC 12 17010 MI0002065 dre-mir-338-3 Danio rerio miR-338-3 stem-loop GUGUGUGUGUGUGUUUCUGGUGCCUGCUGAGAACAAUAUCCUGAUGCUGAAUGAGUGUGUUGAAGGAAACUCCAGCAUCAGUGAUUUUGUUGCCAGAGGAGCACUUUGGGCAUCCUGUGUAUAU 12 17011 MI0002066 dre-mir-338-4 Danio rerio miR-338-4 stem-loop GUGUGUGUGUGUGUUUCUGGUGCCUGCUGAGAACAAUAUCCUGAUGCUGAAUGAGUGUGUUGAAGGAAACUCCAGCAUCAGUGAUUUUGUUGCCAGAGGAGCACUUUGGGCAUCCUGUGUAUAU 12 17012 MI0002067 dre-mir-363 Danio rerio miR-363 stem-loop UAAAUGCAAAUAUUUGUCUUGCUGUUUUCGGGUGGAUGACUCUGCAAUUUUAUUAGUGAUGGAAAAACUUCAAUAAAAAUUGCACGGUAUCCAUCUGUAAUCCGCUGGAUUCCAUUACCUGCGUUUG 12 17013 MI0002068 dre-mir-365-1 Danio rerio miR-365-1 stem-loop CCGCAGGGAGAAUGAGGGGCUUUUGGGGGCACUUGUGUUUCAGUUUCACCAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCACUG 12 17014 MI0002069 dre-mir-365-2 Danio rerio miR-365-2 stem-loop AGGCAGCAAGAAAAAUGAGGGACUUUUAGGGGCAGCUGUGUUUUAUUAACCCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCAAUUUUCAGC 12 17015 MI0002070 dre-mir-365-3 Danio rerio miR-365-3 stem-loop AAGUCAGCAAGAAAAGUGAGGGACUUUUAGGGGCAGCUGUGUUAUACUGACCCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCAGUGCUCAAC 12 17016 MI0002071 dre-mir-365-4 Danio rerio miR-365-4 stem-loop AAGUCAGCAAGAAAAGUGAGGGACUUUUAGGGGCAGCUGUGUUAUACUGACCCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCAGUGCUCAAC 12 17017 MI0002072 dre-mir-375-1 Danio rerio miR-375-1 stem-loop UGCACUUGCUUUACGUUGAGCCACACGCACAAUACAUGUGGAUUCAGUUUUGUUCGUUCGGCUCGCGUUAAGCAAGUGCA 12 17018 MI0002073 dre-mir-375-2 Danio rerio miR-375-2 stem-loop UGUACUUGUCUCACGUUGAGCCACACGCACAAUGCCUGCAGAUGAAAGGGUUUUGUUCGUUCGGCUCGCGUUACGCAGAUGCA 12 17019 MI0002074 dre-mir-454a Danio rerio miR-454a stem-loop UUGCAGGUCGUUUAAGAAUUAAUCCUAAUUCUUGGGACCCUAUCAGUAUUGCCUCUGCUGUCCACUGUGUUCAGAGUAGUGCAAUAUUGCUAAUAGGGUUUUAGGUUUUAGGUUGUACCUUCAG 12 17020 MI0002076 dre-mir-454b Danio rerio miR-454b stem-loop GAUAAAUGCAUCUUGCAGGCGAGACCCUAUCAAUAUUGCCUCUGCUUUUCUCACUGUUUAUGGAGUAGUGCAAUAUUGCUUAUAGGGUCUUGACUUUAAGGCUAAUCUGCAAUAUC 12 17021 MI0002077 dre-mir-455 Danio rerio miR-455 stem-loop UCCCUGGUGUGAGGGUAUGUGCCCUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUGCCUCAAGGCCUAGAUCUUC The mir-455 precursor was predicted computationally and a mature product verified in human by Northern blot [2]. The precise sequence termini of the mature form were derived by cloning from human and rat samples (Landgraf and Tuschl, unpublished). 12 17022 MI0002079 dre-mir-430c-2 Danio rerio miR-430c-2 stem-loop CACAUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAG 12 17023 MI0002080 dre-mir-430c-3 Danio rerio miR-430c-3 stem-loop CACAUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAG 12 17024 MI0002081 dre-mir-430c-4 Danio rerio miR-430c-4 stem-loop CACAUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAG 12 17025 MI0002082 dre-mir-430c-5 Danio rerio miR-430c-5 stem-loop CACAUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAG 12 17026 MI0002083 dre-mir-430c-6 Danio rerio miR-430c-6 stem-loop AUUAAGAUCACUACAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17027 MI0002087 dre-mir-430c-7 Danio rerio miR-430c-7 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAU 12 17028 MI0002088 dre-mir-430c-8 Danio rerio miR-430c-8 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17029 MI0002089 dre-mir-430c-9 Danio rerio miR-430c-9 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17030 MI0002090 dre-mir-430c-10 Danio rerio miR-430c-10 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17031 MI0002091 dre-mir-430c-11 Danio rerio miR-430c-11 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17032 MI0002092 dre-mir-430c-12 Danio rerio miR-430c-12 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17033 MI0002093 dre-mir-430c-13 Danio rerio miR-430c-13 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17034 MI0002094 dre-mir-430c-14 Danio rerio miR-430c-14 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17035 MI0002095 dre-mir-430c-15 Danio rerio miR-430c-15 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17036 MI0002096 dre-mir-430c-16 Danio rerio miR-430c-16 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17037 MI0002097 dre-mir-430c-17 Danio rerio miR-430c-17 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17038 MI0002098 dre-mir-430c-18 Danio rerio miR-430c-18 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17039 MI0002099 dre-mir-430c-19 Danio rerio miR-430c-19 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17040 MI0002100 dre-mir-430c-20 Danio rerio miR-430c-20 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17041 MI0002101 dre-mir-430c-21 Danio rerio miR-430c-21 stem-loop AUUAAGAUCACUUCAAACAGGAGCAUUGAUUUGUCCUUUGUUCAUAAGUGCUUCUCUUUGGGGUAGUUUUAAUAAGGACAAG 12 17042 MI0002111 dre-mir-430a-2 Danio rerio miR-430a-2 stem-loop GUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17043 MI0002112 dre-mir-430a-3 Danio rerio miR-430a-3 stem-loop GUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17044 MI0002113 dre-mir-430a-4 Danio rerio miR-430a-4 stem-loop CUAUCGGUACCCUCACAAAAACACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGA 12 17045 MI0002114 dre-mir-430a-5 Danio rerio miR-430a-5 stem-loop GGACAAGGUUUUAAUCUGCUACUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17046 MI0002115 dre-mir-430a-6 Danio rerio miR-430a-6 stem-loop GGACAAGGUUUUAAUCUGCUACUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17047 MI0002116 dre-mir-430a-7 Danio rerio miR-430a-7 stem-loop GGACAAGGUUUUAAUCUGCUACUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17048 MI0002117 dre-mir-430a-8 Danio rerio miR-430a-8 stem-loop GGACAAGGUUUUAAUCUGCUACUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17049 MI0002118 dre-mir-430a-9 Danio rerio miR-430a-9 stem-loop GGACAAGGUUUUAAUCUGCUACUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17050 MI0002119 dre-mir-430a-10 Danio rerio miR-430a-10 stem-loop GGACAAGGUUUUAAUCUGCUACUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17051 MI0002120 dre-mir-430a-11 Danio rerio miR-430a-11 stem-loop GGACAAGGUUUUAAUCUGCUACUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17052 MI0002121 dre-mir-430a-12 Danio rerio miR-430a-12 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17053 MI0002122 dre-mir-430a-13 Danio rerio miR-430a-13 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17054 MI0002123 dre-mir-430a-14 Danio rerio miR-430a-14 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17055 MI0002124 dre-mir-430a-15 Danio rerio miR-430a-15 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17056 MI0002125 dre-mir-430a-16 Danio rerio miR-430a-16 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17057 MI0002126 dre-mir-430a-17 Danio rerio miR-430a-17 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGAC 12 17058 MI0002131 dre-mir-430a-18 Danio rerio miR-430a-18 stem-loop CACCAUUGUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUUAAGUGACAUGUG 12 17059 MI0002132 dre-mir-430a-19 Danio rerio miR-430a-19 stem-loop CACCAUUGUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGGGUAGUUUUAAGUGACAUGUG 12 17060 MI0002133 dre-mir-430a-20 Danio rerio miR-430a-20 stem-loop GGACAAGGUUUUAAUCUGCUGCUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17061 MI0002134 dre-mir-430a-21 Danio rerio miR-430a-21 stem-loop GGACAAGGUUUUAAUCUGCUGCUAUUGUCACUAUCGGUACCCUCACAAAGGCACUGACUUGGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUCU 12 17062 MI0002135 dre-mir-430a-22 Danio rerio miR-430a-22 stem-loop GACAAGAUUUUAGUCUGCCACCAUUGUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAAUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGACCUGUGCUACAAGAGAAUGUUGUC 12 17063 MI0002138 dre-mir-430a-23 Danio rerio miR-430a-23 stem-loop UUUAAAUAAACUAUUACCGUCAGGCUUUCACAAGCCAGCCUCAAAGUUUGUUCUCAAACUUUAAGAAUCUAGUUGGUAAGUGCUAUUUGUUGGGGUAGUUUCAAGUGA 12 17064 MI0002139 dre-mir-430i-1 Danio rerio miR-430i-1 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGCGUAGUUUCAAGUGAC 12 17065 MI0002140 dre-mir-430i-2 Danio rerio miR-430i-2 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGCGUAGUUUCAAGUGAC 12 17066 MI0002141 dre-mir-430i-3 Danio rerio miR-430i-3 stem-loop GUCUCUAUCGGUACCCUCACAAAAGCACUGACUUUGAUGCUGUAUUUGGUAAGUGCUAUUUGUUGGCGUAGUUUCAAGUGAC 12 17067 MI0002142 dre-mir-430b-2 Danio rerio miR-430b-2 stem-loop CAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17068 MI0002143 dre-mir-430b-3 Danio rerio miR-430b-3 stem-loop CAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17069 MI0002144 dre-mir-430b-4 Danio rerio miR-430b-4 stem-loop CAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17070 MI0002146 dre-mir-430b-6 Danio rerio miR-430b-6 stem-loop CAGUUGACGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAGAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17071 MI0002147 dre-mir-430b-7 Danio rerio miR-430b-7 stem-loop CAGUUGACGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAGAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17072 MI0002148 dre-mir-430b-8 Danio rerio miR-430b-8 stem-loop CAGUUGACGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAGAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17073 MI0002149 dre-mir-430b-9 Danio rerio miR-430b-9 stem-loop CAGUUGACGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAGAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17074 MI0002150 dre-mir-430b-10 Danio rerio miR-430b-10 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17075 MI0002151 dre-mir-430b-11 Danio rerio miR-430b-11 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17076 MI0002152 dre-mir-430b-12 Danio rerio miR-430b-12 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17077 MI0002153 dre-mir-430b-13 Danio rerio miR-430b-13 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17078 MI0002154 dre-mir-430b-14 Danio rerio miR-430b-14 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17079 MI0002155 dre-mir-430b-15 Danio rerio miR-430b-15 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17080 MI0002156 dre-mir-430b-16 Danio rerio miR-430b-16 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17081 MI0002157 dre-mir-430b-17 Danio rerio miR-430b-17 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17082 MI0002158 dre-mir-430b-18 Danio rerio miR-430b-18 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17083 MI0002166 dre-mir-430b-5 Danio rerio miR-430b-5 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAAAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17084 MI0002170 dre-mir-430b-19 Danio rerio miR-430b-19 stem-loop CAGUUGACAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAGAGCAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGCUG 12 17085 MI0002171 dre-mir-430b-20 Danio rerio miR-430b-20 stem-loop CAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAUAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUACUG 12 17086 MI0002172 dre-mir-430b-21 Danio rerio miR-430b-21 stem-loop CAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAUAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUACUG 12 17087 MI0002173 dre-mir-430b-22 Danio rerio miR-430b-22 stem-loop CAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGUUG 12 17088 MI0002174 dre-mir-430b-23 Danio rerio miR-430b-23 stem-loop CAGUUGAGGUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAGUUGGGGUAGAUGUUUGUUG 12 17089 MI0002175 dre-mir-430j Danio rerio miR-430j stem-loop CAGUUGAGAUCAACUCUAACUUUAGCAUCUUUCUUUUAAGCAAAGUAGAAAGUGCUAUCAAAUUGGGGUAGAUGUUUGCUG 12 17090 MI0002176 dre-mir-456 Danio rerio miR-456 stem-loop GCUGGUUGUGUGUGCAGGCAUCUUUCCAGUCUACAUGUGGAUCCAGGAGUCUGCAGGCUGGUUAGAUGGUUGUCACGUACCCAGC 12 17091 MI0002177 dre-mir-457a Danio rerio miR-457a stem-loop UGCCUGACAGAAGCAGCACAUCAAUAUUGGCAGCUGCCCUCUCUCUGGGUUGCCAGUAUGGUUUGUGCUGCUCCCGUCAGACA 12 17092 MI0002178 dre-mir-457b Danio rerio miR-457b stem-loop GAAUGUACUAAAGCAGCACAUAAAUACUGGAGGUGAUUGUGGUGUUAUCCAGUAUUGCUGUUCUGCUGUAGUAAGACC 12 17093 MI0002179 dre-mir-458 Danio rerio miR-458 stem-loop GUGCAGAUAGCAGCGCCAUUUACAGAGCUAUAAGCAUCAUAGUUGUCAUAGCUCUUUGAAUGGUACUGCCAUAUGCAC 12 17094 MI0002180 dre-mir-459 Danio rerio miR-459 stem-loop CCUCUUGCUCUCAGUAACAAGGAUUCAUCCUGUUGUGGUACUCAAAUCCAACAGGGAAUCUCUGUUACUGGGGUUAAGGUU 12 17095 MI0002181 dre-mir-460 Danio rerio miR-460 stem-loop CUCCUCGGCUCCUGCAUUGUACACACUGUGCGGAAAACAUGGACAUGCACAGCGCAUACAAUGUGGAUGCUGUGGAG 12 17096 MI0002183 dre-mir-461 Danio rerio miR-461 stem-loop AUUUUGAAAAUCAGGAAUGGGCUAAAUGCCAAUCAAAAUAAAGCAAGUCUUUGGUCCAGACCAGGUAAUACAAAAUAAG 12 17097 MI0002184 ptc-MIR156a Populus trichocarpa miR156a stem-loop AAAGAAAGACUGACAGAAGAGAGUGAGCACACACGAAAGUAUAUGGUAUGAAGGCAUUCCAUUGCAGGGUGUGUGCUCACAUCUCUUCUGUCAGCUUCCAC 26 17098 MI0002185 ptc-MIR156b Populus trichocarpa miR156b stem-loop GUAAGGGAGGUGACAGAAGAGAGUGAGCACACAGGGUACUUUCUUGCAUGACAUCCAUGCUUGAAACUUUGCGUGCUCACUCUCUAUCUGUCACCCCACCA 26 17099 MI0002186 ptc-MIR156c Populus trichocarpa miR156c stem-loop CAUUAGAAACUGACAGAAGAGAGUGAGCACACAGAGGCAUAUUUGUAUAAAUCUAUACCAUUGCUUUUGCGUGCUCACUUCUCAUUCUGUCAGCUUCCAG 26 17100 MI0002187 ptc-MIR156d Populus trichocarpa miR156d stem-loop GUAAGUGAGUUGACAGAAGAGAGUGAGCACACAGGGUACUUUCUUGCAUGACGUUCAUGCUUGAAGCUUUGCGUGCCCACCCUCUAUCUGUCACCCCAUCA 26 17101 MI0002188 ptc-MIR156e Populus trichocarpa miR156e stem-loop CAUUAGAAAUUGACAGAAGAGAGUGAGCACACAGAGGCAUAUUUGUAUAAAAUUAUACCAUUGCUUUUGCGUGCUCAUUUCUCUUUCUGUCACUUCCAGA 26 17102 MI0002189 ptc-MIR156f Populus trichocarpa miR156f stem-loop AGAGAAAGACUGACAGAAGAGAGUGAGCACACACGAAAGCUAAUUGUAUGAAAGCAUACCAUUGCAGGGUGUGUGCUCACUUCUCUUCUGUCAGCUUACAU 26 17103 MI0002190 ptc-MIR156g Populus trichocarpa miR156g stem-loop GGUGAUGUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGAAAUGCAUGGAGCUUAAUUGCAUCUCACUCCUUUGUGCUCUCUAGUCUUCUGUCAUCACCUUCA 26 17104 MI0002191 ptc-MIR156h Populus trichocarpa miR156h stem-loop GGUGAUGCUGUUGACAGAAGAUAGAGAGCACUGACGAUGAAAUGCAUGGAGCUUAAUUGCAUCUCACUCCUUUGUGCUCUCUAGUCUUCUGUCAUCACCUUCA 26 17105 MI0002192 ptc-MIR156i Populus trichocarpa miR156i stem-loop UGUGAUGUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGUUUUGCAGUAGACUCUGGAUCUCACUCCUUUGUGCUCUCUAUGCUUCUGCCAUCACCUUC 26 17106 MI0002193 ptc-MIR156j Populus trichocarpa miR156j stem-loop GGUGAUGUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGAUAUGCAAUGGACUCUGCAUCCCACUCCUUUGUGCUCUCUAUGCUUCUGUCAUCACUUUCA 26 17107 MI0002194 ptc-MIR156k Populus trichocarpa miR156k stem-loop UUAUGCAUGCUGACAGAAGAGAGGGAGCACAACCCUGUAAUAGCUAAAGAGAGUCUUUGCUUUUGUUGGACUGUGCUUUCUCUUCUUCUGUCACCAACCAA 26 17108 MI0002195 ptc-MIR159a Populus trichocarpa miR159a stem-loop GAUUAGGGAGUGGAGCUCCUUGAAGUCCAAUAGAGGUUCUUGCUGGGUAGAUUAAGCUGCUAAGCUAUGGAUCCACAGUCCUAUCUAUCAACUGAAGGAUAGGUUUGCGGCUUGCAUAUCUCAGGAGCUUUAUUGCCUAAUGUUAGAUCCCUUUUUGGAUUGAAGGGAGCUCUAAACCCAUAA 26 17109 MI0002196 ptc-MIR159b Populus trichocarpa miR159b stem-loop GAUUAUGGAGUGGAGCUCCUUGAAGUCCAAUAGAAGCUCCUGCUGGGUAGAUCGAGCUGCUGAGCUAUGAAUCCCACAGCCCUAUCACCAUCAGUCAUUUUGAUGGGCCUGCGGCUUGCAUAUCUCAGGAGCUUUAUUACCUAAUGUUAGAUCUUUUUUUGGAUUGAAGGGAGCUCUAAACCUUUGA 26 17110 MI0002197 ptc-MIR159c Populus trichocarpa miR159c stem-loop GAUUAGGGAGUGGAGCUCCUUGAAGUCCAAUAGAGGUUCUUGCUGGGUAGAUUAAGCUGCUAAGCUAUGGAUCCACAGUCCUAUCUAUCAACCGAAGGAUAGGUUUGCGGCUUGCAUAUCUCAGGAGCUUUAUUGCCUAAUGUUAGAUCCCUUUUUGGAUUGAAGGGAGCUCUAAACCCAUAA 26 17111 MI0002198 ptc-MIR159d Populus trichocarpa miR159d stem-loop UUGUAAAUUUGGGAGCUUUCUUUGGUUCAAAAUGAGGAAAGAAAGUGGGUAUACUCGUCUGCUUGUUCAUGGAUACCUCUGGGUUGCGCAGGAUAUAUUAGUUAGGGCUACAGCUUAAGGGUUUGCAUGGCCAAGGAGACGUUGCCUGCCUUCUCCUUUCGUUUCUUGGAUUGAAGGGAGCUCCUACAUGUAUC 26 17112 MI0002199 ptc-MIR159e Populus trichocarpa miR159e stem-loop ACCAUUAAAUAGGAGCUUGCUCACUCCAGAUCUGAAAGGAGGUGAUAGGAAACCACUUCUGCUACUUCAUGAAUACCCGUGGGUGUGCGCGUAGCCAUGGUGAGCUGCGCAGGCUAAGGGUCUGCAUGUGCUAGGAGAUGUGGUUGCCUUGAUCUUUUUGGUCUUGGGGUGAAGGGAGCUCCUAUAGUCCCA 26 17113 MI0002200 ptc-MIR159f Populus trichocarpa miR159f stem-loop GAGGCUCAAUGGAGCUCUCCCCACUCCAUGCCUGAAAGGAGUUCGAUGGUAGACCAUGGCUGCUAGUUCAUGAAUACCCUUGGGUGCGCAGAAUUAGCAACGGUGCAGGCGAAGUUGCGCAGGCUAAGGGUCUGCAUGACCUAGGAGACGUGGUUACCCUGACCCUUUUUGUAUUGGAGUGAAGGGAGCUCGAUGGUCUUU 26 17114 MI0002201 ptc-MIR160a Populus trichocarpa miR160a stem-loop ACAUGGGUUAUGCCUGGCUCCCUGUAUGCCACAAGCAAAGACCAAUCUUUUGUUUUAGAUUGGCUGUUGCCGGUGGCGUGCGAGGAGCCAAGCAUACUCUCU 26 17115 MI0002202 ptc-MIR160b Populus trichocarpa miR160b stem-loop AUAUUAUAUGUGCCUGGCUCCCUGUAUGCCAUUUGCAGAGCCCAACGGAUCCUCGAUGGCCUCCGUGGAUGGCGUAUGAGGAGCCAUGCAUAUUCGCA 26 17116 MI0002203 ptc-MIR160c Populus trichocarpa miR160c stem-loop AUAUUAUAUGUGCCUGGCUCCCUGUAUGCCAUUUGCAGAGCCCACCGGUUCUUCGAUGGCCUCCGUGGAUGGCGUAUGAGGAGCCAUGCAUAUUCACA 26 17117 MI0002204 ptc-MIR160d Populus trichocarpa miR160d stem-loop AAAUGGGUUAUGCCUGGCUCCCUGUAUGCCACAGCAAAGACCAAUCUCUUCUGUCUUAGAUUGGCUGCUGCCGGUGGCGUGCGAGGAGCCAAGCAUACUCUCU 26 17118 MI0002205 ptc-MIR160e Populus trichocarpa miR160e stem-loop AAGAAUGGCCUGCCUGGCUCCCUGAAUGCCAUCUAGGAAGCUUGUCAAAGAGUGUUGGCAACCUUUCUAUUUGGCAUGAGGGGAGUCGAGCAGGCCAAUU 26 17119 MI0002206 ptc-MIR160f Populus trichocarpa miR160f stem-loop AAGAAUGGUCUGCCUGGCUCCCUGAAUGCCAUCUAGGAAGCUUGUCAAAGAGUGUUGGCAACCUCUCUAACUGGCAUGAGGGGAGUCACGCAGGCCCAAC 26 17120 MI0002207 ptc-MIR160g Populus trichocarpa miR160g stem-loop GGGAUCAAUCUGCCUGGCUCCCUGGAUGCCAACUAAGAAAUUUGUCGAGUGGUCUUGACUCUUCAUAGUUGGCAUCAGAGGAGUCAUGCAGGUCCAAC 26 17121 MI0002208 ptc-MIR160h Populus trichocarpa miR160h stem-loop GAUCCCUGUGUGCCUGGCUCCCUGCAUGCCAUUUGCAUAGCUCAUCAGAACGUCGGUGGCCUUGGUGGAUGGCGUGCAACGAGUCAUGCAUGCUGUGA 26 17122 MI0002209 ptc-MIR162a Populus trichocarpa miR162a stem-loop UGGGAAGACACUGGAGGCAGCGGUUCAUCGAUCUCUUCCUGGCCAAUUUUUUGUUUAGCACGAAAAACAUGAACCGAUCGAUAAACCUCUGCAUCCAGCGCUUCCUU 26 17123 MI0002210 ptc-MIR162b Populus trichocarpa miR162b stem-loop UGAGAAGACACUGGAGGCAGCGGUUCAUCGAUCUUUUCCUGAAGAUUUUUUUGUUUUACACGAACAACACGAACCGAUCGAUAAACCUCUGCAUCCAGUGCUUCCCU 26 17124 MI0002211 ptc-MIR162c Populus trichocarpa miR162c stem-loop UGAGAAGACACUGGAGGCAGCGGUUCAUCGAUCUUUUCCUGAAGAUUUUUUUGUUUUACACGAACAACACGAACCGAUCGAUAAACCUCUGCAUCCAGUGCUUCCCU 26 17125 MI0002212 ptc-MIR164a Populus trichocarpa miR164a stem-loop GGUUCCUUGCUGGAGAAGCAGGGCACGUGCAAAAUCCUGAUGAAGUGCUUACACUUUGCACGCGCUCUUCUUCUCCAACACGGGC 26 17126 MI0002213 ptc-MIR164b Populus trichocarpa miR164b stem-loop GUGAGCAAGAUGGAGAAGCAGGGCACGUGCACUACUAACUCAUGCACACAGAGAGGGAGACGCAUUUCUUGCUGGAGUUACGAGUUACGACUCUUACCUACUAUUGAUUUUGUUAGCUCCAGUGAGUUAGUUAUUCAUGUGCCUGUCUUCCUCAUCAUGAUC 26 17127 MI0002214 ptc-MIR164c Populus trichocarpa miR164c stem-loop UAGCUCUUGCUGGAGAAGCAGGGCACGUGCAAGCUCUCUCCUCAAGCUUUCCUUGCACGUGCUCCCCUUCUCCAACAUGGGU 26 17128 MI0002215 ptc-MIR164d Populus trichocarpa miR164d stem-loop UGGCUCACGCUGGAGAAGCAGGGCACGUGCAAAAUCCUUCUCGGCUUCCAGAUGCUGAUGAAGCACUCUUUGCACGUGCUCCCCUCCUCCAACAUGAGU 26 17129 MI0002216 ptc-MIR164e Populus trichocarpa miR164e stem-loop GUGAGCAAGAUGGAGAAGCAGGGCACGUGCAUUACUAACUCAUGCACACAGAGUGAGAGAGACAUUUCUUGCUGGAGUUAUGACUCUUACCUACUAUAGAUUGUGUUGGCUUCAGCGAGUUAGUUCUUCAUGUGCCUGUCUUCCCCAUCAUGAUC 26 17130 MI0002217 ptc-MIR164f Populus trichocarpa miR164f stem-loop UGAGCCAUGCUGGAGAAGCAGGGCACAUGCUAAAUCUAUCAGCUUGAAAGUCUGAUAGUUUUGCAUGUGCUCUAUCUCUCCAGCUUGGAC 26 17131 MI0002218 ptc-MIR166a Populus trichocarpa miR166a stem-loop UUUCUUUUGAGGGGAAUGUUGUCUGGCUCGAGGUCACUAAUGGGAUCUAUGAUUUUAUCUCAAUUGAUUGAUUUUCUUUUAAAUUCUAGUAAAUUGAAUUGAGAGAUAUCAUGAUCAACUUAUAUUUAAUGAUGUCGGACCAGGCUUCAUUCCCCCCAAUUGUU 26 17132 MI0002219 ptc-MIR166b Populus trichocarpa miR166b stem-loop UAACUGUUGAGGGGAUUGCUGUCUGGUUCGAUGUCAUUCAUGUGAAGCUUUAACAUUAAUGUAGUAUUGAGUGAUUUCGGACCAGGCUUCAUUCCCCCCAACUAUA 26 17133 MI0002220 ptc-MIR166c Populus trichocarpa miR166c stem-loop CUUUUUUUGAGGGGAAUGUUGUCUGGCUCGAGGACUCUUUCUUGAUCAGUCUGAUCAAGUGUUCUAUCUUUAGAUCUAAUAUCUUAGAUCAUGUGUUAGGGUCGUCGGACCAGGCUUCAUUCCCCCCAAUUAUU 26 17134 MI0002221 ptc-MIR166d Populus trichocarpa miR166d stem-loop CGUGAGUUGAGGGGAAUGUUGGCUGGCUCGAAGCUUAAGCAAAGAGUUUUCUCUCAAGAAACAACUGUUAAGGCUUCGGACCAGGCUUCAUUCCCCUCAACCAAU 26 17135 MI0002222 ptc-MIR166e Populus trichocarpa miR166e stem-loop UAACUGUUGAGGGGAUUGUCGUCUGGUUCGAUGUCAUUCAUGAGAAGCUCAAACAUAAACGUAAUAUUGAAUGAUUUCGGACCAGGCUUCAUUCCCCCCAACAAUG 26 17136 MI0002223 ptc-MIR166f Populus trichocarpa miR166f stem-loop GGUGUGUUGAGGGGAAUGUUGGCUGGCUCGAAGCUUAAGCAAAGAGUUUCCUAACAUGAAACAACUGUUAAGGCUUCGGACCAGGCUUCAUUCCCCUCAAACAUA 26 17137 MI0002224 ptc-MIR166g Populus trichocarpa miR166g stem-loop ACACAGUUGAGGGGAAUGCUGUCUGGUUCGAGACCAUUCACCUGAAGAGCACGCAUUCAUCUUUUGAGUGAUCUCGGACCAGGCUUCAUUCCCCCCAACUCAA 26 17138 MI0002225 ptc-MIR166h Populus trichocarpa miR166h stem-loop ACACAGUUGAGGGGAAUGCUGUCUGAUUCGAGACCAUUCACUUUAAGCACACAUUCAUCUUUCGAAUGAUCUCGGACCAGGCUUCAUUCCCCCCAACUCAA 26 17139 MI0002226 ptc-MIR166i Populus trichocarpa miR166i stem-loop UGUCUUUUGAGGGGAAUGUUGUUUGGUUCAAGGCCUGGCCACCCCAUGUCUUGGAAUUUAAAAUAUCAUGUCCUCGGACCAGGCUUCAUUCCCCUCAAUUACU 26 17140 MI0002227 ptc-MIR166j Populus trichocarpa miR166j stem-loop UCUUUUUUGAGGGGAAUGUUGUCUGGCUCGAGGACUUUUUGUUCAUCAAUCUAAUCGAACUUUCUACCUGUAGAUCUAGUAUCUUAUUUAAGAUUGAUCACGUAUUAGGGUUGUCGGACCAGGCUUCAUUCCCCCCAAUCAUU 26 17141 MI0002228 ptc-MIR166k Populus trichocarpa miR166k stem-loop UCUUUUUUGAGGGGAAUGUUGUCUGGCUCGAGGACUUUUUGUUCAUCAAUCUAAUCGAACUUUCUACCUGUAGAUCUAGUAUCUUAUUUAAGAUUGAUCACGUAUUAGGGUUGUCGGACCAGGCUUCAUUCCCCCCAAUCAUU 26 17142 MI0002229 ptc-MIR166l Populus trichocarpa miR166l stem-loop UAACUUUUGUGGUGAAUGUUGUCUGGUUCAAGGCAUGGCCACCACAUCUCUUGGUGAAUAUAUGUCCUCGGACCAGGCUUCAUUCCCCUCAAUUAAU 26 17143 MI0002230 ptc-MIR166m Populus trichocarpa miR166m stem-loop UGAGGAUGUGGGGGAAUGUCGUCUGACUCGAGACAACAGGUAAACUGAAGGAAUGGCCGGAGUUUAAGAGUUCUCUCGGACCAGGCUUCAUUCCCCUCAUCCACA 26 17144 MI0002231 ptc-MIR166n Populus trichocarpa miR166n stem-loop AAGGGGUGUUUGGAAUGAAGUUUGAUCCAAGAUCCUUGUCUCUCCCGUUAACUUAGUCUCUGUUACUGUUAGGUUUUCAUUACUGAGUGUAUUUGCAGCCCCCUUGUCUGAUUUUAGCAUCAUGAGAGUAGGAAGUGCUGGUGAUCAUAGGGUUUGGUUCAAGAUCCAUUUGACUCUUCUCUUUAUAUCUCUCCUGUGUCCUAGCUGGUAAUCUGUAGUAGUCUUAAUUAUCCCUUACUUCUUGUUAAUUUUUAGGUUUGAUCUUGCAAGUAAUUAUAUUUGGAAAAUAUCAUAAAAUGAUCUCGGACCAGGCUUCAUUCCUUACACCUUG 26 17145 MI0002232 ptc-MIR166o Populus trichocarpa miR166o stem-loop AAGGGGUGUUUGGAAUGAAGUUUGAUCCAAGAUCCUUGUCUCUCCCGUUCAUUUAGUAAUGUUACUGCUAGGUUUCGCUAUGUAUUGAUCAGUGUAUACACAGCAGCUACGAGCUAGGCCUUGUGUUUCAGAUUUUAGCUUCAAUAUAGAGUGAGCACUAGUGAUAGAGUUUGAUUCAAGAUCCAUCUCAUGUGUGCUAGCUAGCUUUUAAAUUUUUAAUCAGAUCCCUACUUCCUGUUAAUUCUUAGGUUUUAUCUUGCAAGUUAUUAUAUUUAGUAAACAUCAUGAACUGAUCUCGGACCAGGCUUCAUUCCUUACACCGAA 26 17146 MI0002233 ptc-MIR166p Populus trichocarpa miR166p stem-loop UAAGGUUGAGAGGAACGCUGUCUGGGUCGAGGUCAUGGAGGCCAUGAUUAUACAUAAAUGGCAUUAUCUGAUGACAGCCCAGAUAAUCGAUGCACCUGUCUUGAACCUAAAUGAUUCUCGGACCAGGCUCCAUUCCUUCCAACCAU 26 17147 MI0002234 ptc-MIR166q Populus trichocarpa miR166q stem-loop UUAGGUUGAGAGGAAUGUUGUCUGGCUCGAGGUCAUUGAGGCCAUGAUUAUACAGACAUGGCAUUACCUGAUGACAGCCGAGAAAAUUCAAAGUCUGUGUGUAUCUUGUACCUCGAUGAUUCUCGGACCAGGCUUCAUUCCUUCCAACAAA 26 17148 MI0002235 ptc-MIR167a Populus trichocarpa miR167a stem-loop CACUAGCAGUUGAAGCUGCCAGCAUGAUCUAACUUCCUUGCUUCUUUAUCAAGGAUGGAUUUAGAUCAUGUGGUGGUUUCACCUGUUGA 26 17149 MI0002236 ptc-MIR167b Populus trichocarpa miR167b stem-loop AGGGAAAAAGUGAAGCUGCCAGCAUGAUCUAUCUUUGGUUAGAGAAAGAAAGGACUAACCCUAGCUAGGUCAUGCUGUGACAGCCUCACUCCUUCC 26 17150 MI0002237 ptc-MIR167c Populus trichocarpa miR167c stem-loop CACUAGCAGUUGAAGCUGCCAGCAUGAUCUAAAUUAACCUCCUUCUUUAUCAAGGAUGGAUUAGAUCAUGUGGUAGUUUCACCUGCUGA 26 17151 MI0002238 ptc-MIR167d Populus trichocarpa miR167d stem-loop AGGGAAAAGGUGAAGCUGCCAGCAUGAUCUAUCUUUGGUUAGAGAAGGAUAGAAGCGAAAGAACUAACCCUAGCUAGGUCAUGCUCUGACAGCCUCACUCCUUCC 26 17152 MI0002239 ptc-MIR167e Populus trichocarpa miR167e stem-loop CACUAGUAGUUGAAGCUGCCAGCAUGAUCUGAACUUUCCUUAAUUUUCCUAUACGGGAAAGACUAGAUCAUGUGGUAGUUUCAUCUAUUGA 26 17153 MI0002240 ptc-MIR167f Populus trichocarpa miR167f stem-loop CUCUAUCAGUUGAAGCUGCCAGCAUGAUCUUAGCCUUCCUCCUUUGUUGAGGAAAGAAACAGAUCAUGUGGCAGUUUCACCUGUUGU 26 17154 MI0002241 ptc-MIR167g Populus trichocarpa miR167g stem-loop CACUAUCAGUUGAAGCUGCCAGCAUGAUCUUAACCUCCCUCCUUUGUCGAGGAAAGAACAGAUCAUGUGGCAGUUUCACCUGAAGU 26 17155 MI0002242 ptc-MIR167h Populus trichocarpa miR167h stem-loop CGCUAUUAGUUGAAGCUGCCAACAUGAUCUGAGCUUUCCUUAAUUUUCCUAUACAGGAAAGACUAGAUCAUGUGGCAGUUUCACCUAUUGA 26 17156 MI0002243 ptc-MIR168a Populus trichocarpa miR168a stem-loop GGUCUCUGAUUCGCUUGGUGCAGGUCGGGAACUGAUUCGGCGAUUUGAUUGCCAGAUGGCUCGACAUGACUGGUUGUUGUGGAAAAAGAAAAGGAAGGAAACAGGAAAAAAAACAAAGAAUAGCGAAUUGGAUCCCGCCUUGCAUCAACUGAAUCGGAGG 26 17157 MI0002244 ptc-MIR168b Populus trichocarpa miR168b stem-loop GGUCUCUAAUUCGCUUGGUGCAGGUCGGGAACUGAUUCGGCGAUUUGAUUGCCAGAUGGCUAAACACGAUUGGCUGUGAGGCAAAUUAUAAAAAGAAAGAGAAUUGGAUCCCGCCUUGCAUCAACUGAAUCGGAGA 26 17158 MI0002245 ptc-MIR169a Populus trichocarpa miR169a stem-loop AAGUGGUAUGCAGCCAAGGAUGACUUGCCGACUUAACUGAUCUGUAUAAAUUAAUGCAUGUGUAGUCAAAAUUACUACUACUAUAUAUUAAUCUGAUCUGUGACCACAAAUUAACUAACUACUAGCUAGUAAUUAGUUGGCAAGUUGUCCAUGGCUACAUGCUGC 26 17159 MI0002246 ptc-MIR169aa Populus trichocarpa miR169aa stem-loop GUAGAGAUCGAGCCAAGAAUGACUUGUCGGCAGGCUAGCAAUUGCUACGUAUAGAGCAAUAUGUAUGCUAGAAUGAGUAUUCCGCCAGGUCGUUCUUGGCUCAACUUUG 26 17160 MI0002247 ptc-MIR169ab Populus trichocarpa miR169ab stem-loop CUUGUUUGGUAGCCAAGGACGACUUGCCCACCACCAUCUCAGUUGGGUCCAAUAUAUUACUGGGCACCUUCCAUUUGGUUUUGGGCAAGCACCUUGGCUAGCUGACA 26 17161 MI0002248 ptc-MIR169ac Populus trichocarpa miR169ac stem-loop UCUUGUUUGUAGCCAAGGACGACUUGCCCACAAUAUGUAUCGUGAGCGUUUCCAAUUUGCAACCUCAUACUUGGUUUGUUUUGGGCAGUCUCCUUGGCUAUGCAGAU 26 17162 MI0002249 ptc-MIR169ad Populus trichocarpa miR169ad stem-loop GAUGUUCGGUAGCCAAGGACGACUUGCCCACACUAUGAGACAAGUGGUUAGAAUUAGCAACUUCUUAAUUGGUUAUGGGAAGUCUCCUUGGCUAUGCUGAC 26 17163 MI0002250 ptc-MIR169ae Populus trichocarpa miR169ae stem-loop CUUGUUUGGUAGCCAAGGACGACUUGCCCACCACCAUCUUAGUUGGGUCCAAUAUAUUACUGGGCACCUUCCAUUUGGUUUUGGGCAAGCACCUUGGCUAGCUGACA 26 17164 MI0002251 ptc-MIR169af Populus trichocarpa miR169af stem-loop CCUGUUUGGUAGCCAAGGACGACUUGCCCACCACCAUCUUAGUUGGGUCCAGUAUAUUACUGGGCACCUUCCAUUUGGUUUUGGGCAAGCACCUUGGCUAGCUGACA 26 17165 MI0002252 ptc-MIR169b Populus trichocarpa miR169b stem-loop AAGAUUGAUGCAGCCAAGGAUGACUUGCCGACGACUCGUUUUUGCUUUCAUCAAUAUACGCAUAAUUAAGAAGAGAUGAAUCCGUUGGCAGGUUGUUCUUGGCUACAUUUUUC 26 17166 MI0002253 ptc-MIR169c Populus trichocarpa miR169c stem-loop AAGUUUGAUGCAGCCAAGGAUGACUUGCCGACGACUCAAUUUUUGCUUCCAUAUGGUAGAAGAGAUGAAUAGGUUGGCAGGUUUUCCUUGGCUACAUUUUCC 26 17167 MI0002254 ptc-MIR169d Populus trichocarpa miR169d stem-loop GAGUCGAAUGCAGCCAAGGAUGACUUGCCGGCAUUUCCUCCUAAGUAGCGAGCCCGGCAAGGCUUCUAUUUGGCACGCCCGGCCGGCGGGUUGUCCUUGGCUAUAUUUGGU 26 17168 MI0002255 ptc-MIR169e Populus trichocarpa miR169e stem-loop UAUCGUGGCGCAGCCAAGGAUGACUUGCCGGCAAGCUCCUCACACGUAUUUUGUUUCGAGUUUCAUUGAUGGCAUUGCUAGAUAGAUAUAUAUGAUUUCGUAAUUCAAACUUUUGGGCCAUUGUCUGGUUGAAAUGAUCGGCAAGCUGUCCUUGGCUAUGUCUCUA 26 17169 MI0002256 ptc-MIR169f Populus trichocarpa miR169f stem-loop UUAUGUGGUGCAGCCAAGGAUGACUUGCCGGAAUAAGCUAUGAUCAAUAGCUAUAGCUAUGGUAUUUUUCAUCCUAGGUUUGGCUAUAUAUAUAUAUAUAUAUAGCCAGUUAAUUGCUAUAAAUCUCAGCACAUUUAUGUUUUAUAUGUCUGCACACAGACACACACAUCAUUGAAUGUUGAUGUUCCACCUCCUAUGAUCAGUAGUCAAUCGGCAAGUCAUCUCUGGCUACUCAACUC 26 17170 MI0002257 ptc-MIR169g Populus trichocarpa miR169g stem-loop GAGUAGAAUGCAGCCAAGGAUGACUUGCCGGCAUUUCCUCCUAGGUAGCUAGCAAGCCUUCUAUUUGGCAUGCCUGUCCGGCAGGUUGUCCUUGGCUAAAUUUUGU 26 17171 MI0002258 ptc-MIR169h Populus trichocarpa miR169h stem-loop GAGUGUAAUUCAGCCAAGGAUGACUUGCCGGCAGCACGGGAUCUCAGAGCUUAAUAACUAGAAGAUCAAGGCUGUCAUUACUUUUCCGGCCGGCAAGUUGCCCUUGGCUACAUUGUAC 26 17172 MI0002259 ptc-MIR169i Populus trichocarpa miR169i stem-loop UCUUGUUUGGUAGCCAAGGAUGACUUGCCUGCUCCAUUGUAGGAGGUUUCCGAAAAAAUGCAGACAUGUAUAAUUUCGAAACCCCUGUUUCGUUUCAGGCAGUCUCCUUGGCUAACUUGACUG 26 17173 MI0002260 ptc-MIR169j Populus trichocarpa miR169j stem-loop UCUUGUUUGAUAGCCAAGGAUGACUUGCCUGCUACUUGCAAGAGUUUCUGCAAAGAGAUCAGAACCAAAUAUGCAUGGAAUUAUAUGUAAUGAAACUCUUGUUUGAUUGCCAGGCAGUCUCCUUGGCUAGCCUGACA 26 17174 MI0002261 ptc-MIR169k Populus trichocarpa miR169k stem-loop UCUUGUUUGGUAGCCAAGGAUGACUUGCCUGUAGCCUCCCUCGGAUUCAUGAACACGAGCAUUUAUGUGGUGCUCAAAAGAAAAGGAGAGAAUGAUCCCAGCUGGCAGCGACAAGGUCAAUCCAUUGAAGUAGCGAGAAGCAGGUGAUUUAUAGCUAGAAUCCACAAGAGGUUCCCAGCAAGUGUCCUUGGCUAACGAGACGG 26 17175 MI0002262 ptc-MIR169l Populus trichocarpa miR169l stem-loop UCUUGUUUGAUAGCCAAGGAUGACUUGCCUGCUACAUACAAGAGAUCAUUAUGCAUAAAUAGAACGAAAUAUGUACAUGGUAUUAAUUAAUGCAGUGAAAACUCUUGUUUGGUUGCCAGGCAGUCUCCUUGGCUAAGCUGACA 26 17176 MI0002263 ptc-MIR169m Populus trichocarpa miR169m stem-loop UCUUGUUUGGUAGCCAAGGAUGACUUGCCUGCUCCCUUCAAGGAGGUUUCAUGAAAUGCAGACAUGAUCUCUCGAAACCCCUGUUGGGUUUCAGGCGGUCUCCUUGGCUAACUUGACAG 26 17177 MI0002264 ptc-MIR169n Populus trichocarpa miR169n stem-loop AGAGUGGAUUUGAGCCAAGGAUGACUUGCCGCAGAUGCAUGGUCCUUGCUGCUGAUCACAUACCAAGGGGGGUUUUGGGUGGCAAGCAUCCUUGGUUCUCCUUCGCU 26 17178 MI0002265 ptc-MIR169o Populus trichocarpa miR169o stem-loop CCUUGCGUGGAAGCCAAGGAUGACUUGCCUGAGAAUUUUAGGAAGGUUUCUAUAUGAAAGCUUUUUAUUAGUUUUGCAGGAAGUCAACCUUGGCUUUCCUAUAG 26 17179 MI0002266 ptc-MIR169p Populus trichocarpa miR169p stem-loop CCUUGCGUGGAAGCCAAGGAUGACUUGCCUGAGAAUUUUAGGAAGGUUUCUAUAUGAAAGCUUUUUAUUAGUUUUGCAGGAAGUCAACCUUGGCUUUCCUAUAG 26 17180 MI0002267 ptc-MIR169q Populus trichocarpa miR169q stem-loop UCUUGUUAGUUAGCCAAGGACGACUUGCCUGUUCCUAGCAAUUUGGGAUUUGCCCUGGACUAAGAGGCAGGACCCUCAUUCCGGGUUUCAGGCAGUCUCCUUGGCUAGGUUGACA 26 17181 MI0002268 ptc-MIR169r Populus trichocarpa miR169r stem-loop GAGGGUUUGGUAGCCAAGGAUGACUUGCCUAUUUCCUCCAUAAGGCUUUAAAAAGCAUGAAAUGUGGUUUAGAGCUCAAUUGAAGGGUUCAUAGGCAGUCUACUUUGGUUAUCCUAGCU 26 17182 MI0002269 ptc-MIR169s Populus trichocarpa miR169s stem-loop AGAGUGUGAUUCAGCCAAGGAUGACUUGCCGGCAGCAGGUAAGAGCAAAGCUCCGUUUUUGGAAGUUCAAGGAUAUCUUAACUUUUCCGGCCGGCAAGCUGUCCUUGGCUACAUUGUACU 26 17183 MI0002270 ptc-MIR169t Populus trichocarpa miR169t stem-loop CUAGAGUCCGAGCCAAGAAUGACUUGCCGGCAGGCUAGCAUUUGCUAGCUACAGGGCAAGAUGUAUGCUAAAGUGACAUUCCGCCAGGUUGUUCUUGGCUCUACUUUG 26 17184 MI0002271 ptc-MIR169u Populus trichocarpa miR169u stem-loop GAGGGUUGGGUAGCCAAGGACGACUUGCCUAUUUCCUCCAUGGGGUCCUGAAAAGAAUGAAAUACUGUCGUUCAGAGCUCAUUGGUAGGGUUCAUAGGCAGUCUCCUUUGGCUAUCCUAACU 26 17185 MI0002272 ptc-MIR169v Populus trichocarpa miR169v stem-loop CGUGUUUGGUAGCCAAGGAUGACUUGCCCACUCCAUUGAAAGAGUUUUUCAAGCAUAUGGUAGUGUAGAACUUUUCUUUGGUUCUGGGCAGUCAUCUUGGCUAUGCUGAC 26 17186 MI0002273 ptc-MIR169w Populus trichocarpa miR169w stem-loop CGUGUUUGGUAGCCAAGGAUGACUUGCCCACUCUAUGGAAAGAGUUCUCAAGCACACGGCAGAGAGGACCCUUACUUCGGCUCUGGGCAGUCACCUUGGCUAUGCUGAC 26 17187 MI0002274 ptc-MIR169x Populus trichocarpa miR169x stem-loop UGCUGUUUUCUAGCCAAGGAUGACUUGCUCGUUAGCCCUUGAAAGAUGUUUCAAAUUUAGGCUGCAUAUGCUCAGAACCUUUUUCUGGCUUCAGGCAAUCAUCUUGGCUAAAUGACAG 26 17188 MI0002275 ptc-MIR169y Populus trichocarpa miR169y stem-loop UCUUGUUUAGUAGCCAUGGAUGAAUUGCCUGCUUCCAAAAUGAGGUGUCAAGCCGAGAUAAACAUACAAGUUUGAUCCCUCAUUGGGGUUCCCAGGCAGUCAUCAGCUUGGCUAACUUGACAG 26 17189 MI0002276 ptc-MIR169z Populus trichocarpa miR169z stem-loop UAGUAGAAUGCAGCCAAGAAUGAUUUGCCGGCGCCGGCCAGCACUUGUUGCAAAGCAACUAAGCAAGGGCUUCAAAUGUUUUUGGCACCCCGGCAAGUUGUUCUUGGCUACAUUUGGA 26 17190 MI0002277 ptc-MIR171a Populus trichocarpa miR171a stem-loop UCAGAGAAAACGGGAUAUUGGUACGGUUCAAUCAGAAAGUAAUGCUCCCAAAAGUAUAGAGUACUAUUGUUUGAUUGAGCCGUGCCAAUAUCACGUACACUCAU 26 17191 MI0002278 ptc-MIR171b Populus trichocarpa miR171b stem-loop UUAUAUAUAACGAGAUAUUGGUGCGGUUCAAUCAGAUAGUAAUGCUCCAUAAGCAUAGAGCUCUAUUGUUUGAUUGAGCCGUGCCAAUAUCACGUAUAUGUUG 26 17192 MI0002279 ptc-MIR171c Populus trichocarpa miR171c stem-loop AAAAGAAAGCGAUGUUGGUGAGGUUCAAUCCGAAGACGGAUUUACACGUGAAAGUAAUUGUAAAAUACGAUCUCAGAUUGAGCCGCGCCAAUAUCACUUUCUCA 26 17193 MI0002280 ptc-MIR171d Populus trichocarpa miR171d stem-loop AAAAGAAAGCGAUGUUGGUGAGGUUCAAUCCGAAGACAGAUUUACACGAGUGAAAGUAAAAUCCGAUCUCAGAUUGAGCCGCGCCAAUAUCACUUUUCAG 26 17194 MI0002281 ptc-MIR171e Populus trichocarpa miR171e stem-loop GUGGAAAUUUGAUGUUGGCAGAGCUCAAUCAAAUCAAAGCACUCAAUGGUUGGGUUCUUUCAUCUGAUUGAGCCGUGCCAAUAUCGCAUUAAAU 26 17195 MI0002282 ptc-MIR171f Populus trichocarpa miR171f stem-loop GUGUCAUUGCGAUGUUGGCCCGGUUCACUCAGAGAAAAGACACCAUUUUUUUUCAAGAAGAUCAUCAAAGCUUGAAAGAAUAAUGGUGGUCGGUCGUCUCUGAUUGAGCCGUGCCAAUAUCUUAGUGCUC 26 17196 MI0002283 ptc-MIR171g Populus trichocarpa miR171g stem-loop GAAAGUGGGGGAUGUUGGGAUGGCUCAAUCAUGUCAAAUCUCCCAAAUUAUGAUGUUGGGUCUUUUAAUCUGAUUGAGCCGUGCCAAUAUCACACUUCUU 26 17197 MI0002284 ptc-MIR171h Populus trichocarpa miR171h stem-loop GAAAGUGGGGGAUGUUGGGAUGGCUCAAUCAUAUCAAAUCUCCCAAACUAUGAUGUUGGGUCGUUUAAUCUGAUUGAGCCGUGCCAAUAUCACACUAACU 26 17198 MI0002285 ptc-MIR171i Populus trichocarpa miR171i stem-loop GAGUGACUAUGAUAUUGGCCUGGUUCACUCAGAUCACGACUUCAGAGCAAAGUGUCUUUCUUCUUCUUCUUCUUCUUCUUGUUUUAUGUUCGUUUGAUUUGAUUGAGCCGUGCCAAUAUCUCAGUACUC 26 17199 MI0002286 ptc-MIR171j Populus trichocarpa miR171j stem-loop CUAACUCAAGAUAUUGGCACAGUUCAUCCUCACAGUGGCCUUGAUGAAUGAUUCAAAUCUAUGGUUGGAUUGAGCCGCGCCAAUACUGUGUGCCA 26 17200 MI0002287 ptc-MIR172a Populus trichocarpa miR172a stem-loop UUGUUUGCAGGUGCAGCAUCAUCAAGAUUCACAUUCAAAUAGAUGUACCGAAGCUAUACAGCUAUGUAGCUAGCUAGCAAUGUAUAAUCAUUGUAGGUGAGAAUCUUGAUGAUGCUGCAUCAGCCAUAA 26 17201 MI0002288 ptc-MIR172b Populus trichocarpa miR172b stem-loop UUGUUUGCGGGUGGAGCAUCAUCAAGAUUCACAUGCAAAUGCACGGCCGGUGAUGUUAAGAGUUAAAUCUUUCUUUGUUUCUGUUCAUCUGCCAAAGUUCUUUGGAAGUGAGAAUCUUGAUGAUGCUGCAUCGGCAAUAA 26 17202 MI0002289 ptc-MIR172c Populus trichocarpa miR172c stem-loop UUGUUUGCAGGUGCAGCAUCAUCAAGAUUCACAUUCAAACAGAUGUACGGCAGCUAGCUAGCUAGAUAGAUAGACAGCAAUGUAUUUCUUUGAAGGUGAGAAUCUUGAUGAUGCUGCAUCAGCCAUAA 26 17203 MI0002290 ptc-MIR172d Populus trichocarpa miR172d stem-loop GCAUUGGCGGAUGCGGCAUCAUCAAGAUUCACAAGCUUUAAGGCUUGAGUGAGAGGGGUGGCAUACGGUCACCUCCUUUAGCAAGCUUUAAGGCUUGAGUGAGAGGGGUGGCAUACGGUCACCUCCUUUAGUCCAAAGGGUCCUUUUUUAUGGGAAUCUUGAUGAUGCUGCAUCGGCAAAUA 26 17204 MI0002291 ptc-MIR172e Populus trichocarpa miR172e stem-loop AUAUUGGCCGAUGCGGCAGCAUCAAGAUUCACAAACUUUAAGGCUUGAGUUGGGGUGGUACACGGUCACCUCCUUUACUCGAAAGGUUCCUUAAUUUCUGAUGGGAAUCUUGAUGAUGCUGCAUCGGCAAAUA 26 17205 MI0002292 ptc-MIR172f Populus trichocarpa miR172f stem-loop UUGUUUGCGGGUGCUGCAUCACCAAGAUUCACAUGCAAAUGCAUGGCCGAUGAUAUAUGUUAGAAAUUUUUUUUAUAUAAAAAAGAUAUCUUUCUUUCUUUCUGAUCAUCUGCCAAAGUUCUUUGGAAGUGAGAAUCUUGAUGAUGCUGCAUCGGCAAUAA 26 17206 MI0002293 ptc-MIR172g Populus trichocarpa miR172g stem-loop CUGUUUGCCUAUGGAGCAUCAUCAAGAUUCACAAGCUUUAUUAGGGCUAGUGUGUGGUGAUGAUGGUGGCUUUUGGUGGUCCCUUUUUUUCAAUCCAAUAGCCCUUUGAAUUGGGAAUCUUGAUGAUGCUGCAGCGGCAAUAA 26 17207 MI0002294 ptc-MIR172h Populus trichocarpa miR172h stem-loop CUGUUUGCCGAUGGAGCACCAUCAAGAUUCACAAACUUUAUUAGGGCUAAUAAGUGGUGAUGAUGGUGGCUUUUGGUGGUCCCUUCGUUUCAACCCAAUAGCCAUUUGAAUUGGGAAUCUUGAUGAUGCUGCAGCGGCAAUAA 26 17208 MI0002295 ptc-MIR172i Populus trichocarpa miR172i stem-loop AUGUGGUGAAGGCAGCAAGUCGCGGGUUGUUGUUGGCGAAAUGGUUCUGUUGGUUGAAUGGAAGAGUAGCUGAAGGAACAGUUUUGGUCGAAGAAGAGAAUCCUGAUGAUGCUGCAACACAGAGC 26 17209 MI0002296 ptc-MIR319a Populus trichocarpa miR319a stem-loop UAAUAGCUAAGAGAGCUUUCUUCAGUCCACUCAUGGGUGGUAGUAGGAUUUAAUUAGCUGCCGACUCAUUCAUCCAAAUACUGAGUUAAAGGACAAGGAGAUUACCCAGUAAAUGAGUGAAUGAUGCGGGAGACAAAUUGAAUCCUAAGCUUCCUGUACUUGGACUGAAGGGAGCUCCCUUUCCUUUU 26 17210 MI0002297 ptc-MIR319b Populus trichocarpa miR319b stem-loop UAAUAGAUAAGAGAGCUUUUUUCGGUCCACUUAUAGAUAGUAAUAUGAUUUAAUUAGUUACCGACUCAUUCAUCCAAAUACUGAGUUAUGAGCUAAGAUUACCCAGUAAAUGAAUGAGUGAUGCGGGAGACAAAUUAAAUCUUAAACUUCCUAUCAUUGGACUGAAGGGAGCUCCCUUUACUGUU 26 17211 MI0002298 ptc-MIR319c Populus trichocarpa miR319c stem-loop AAUGGUUUAAGAGAGCUUUCUUCAGUCCACUCAUGGACGGGCGAAGGGUUUGGAUUAGCUGCCGACUCAUUCAUUCAAACACAGUAGAAAUUAAGGGAGCAGUAUGGCUGCUAUUGUGAAUGUGUGAAUGAUGCGGGAGAUAAAUUUCAUCCUUUUCUUCUCUGUGCUUGGACUGAAGGGAGCUCCCUUUAAUCGU 26 17212 MI0002299 ptc-MIR319d Populus trichocarpa miR319d stem-loop AAUGGUUUAACAGAGCUUCCUUCAGUCCACUCAUGGACGGGCGAAGGGUUUGGAUUAGCUGCCGACUCAUUCAUUCAAACACAGUAGACAAGGAGUGGCAGCGGCUGCUAUUGUGAAUGUGUGAAUGACGCGGGAGAUUAAUUUCAUCCUUUUCUUCUCUGUGCUUGGACUGAAGGGAGCUCCCUUUAAUUGU 26 17213 MI0002300 ptc-MIR319e Populus trichocarpa miR319e stem-loop GGAGGGGCUGAGGUGCUCCUUUUAGUCCAAUACGGAGGGCUGAGAAGCGGCUAGAGCUGCCAUCUCAUGCAUUUAGGCAAUGCUUAACAUUUGACGAAGAGAGGUUAAGCUUGGCCACUUGCAUGGUGUGGGAGCAACUCCUUCCGCAUGCUUUGCUCGCCCAUUGGACUGAAGGGAGCUCCUGGUUUUACC 26 17214 MI0002301 ptc-MIR319f Populus trichocarpa miR319f stem-loop UAAUGGUGGGAGAGAGCUUCCUUCAGCCCACUCAUGGAUAGGAGAAAGGGGUUGAAUUAGCUGCCGACUCAUUCAUUCAAGCACCAGUAGAAAAAGGGGAAUGGAUAUUCUUUUGCUACUGUGAUUGUGUGAAUGAUGCGGGAGAUAAUUUUACAUCCCCUCUUUUUCUGUGCUUGGACUGAAGGGAGCUCCUUCCUUCUAU 26 17215 MI0002302 ptc-MIR319g Populus trichocarpa miR319g stem-loop UAAUCGUGGGAGAGAGCUUCUUUCAGCCCACUCGUGGAUAGGACAAAGGGGUUGAACUAGCUGCCGACUCAUUCAUUCAAGCACUAGUAGAAAAAAAGGCGAACGGUGUUUCUUUUGCUACUGUGAUUGUGUGAAUGAUGCGGGAGAUAAUUUUCCAUCCUCUCCUUUUCUGUGCUUGGACUGAAGGGAGCUCCUUCCUUCUCU 26 17216 MI0002303 ptc-MIR319h Populus trichocarpa miR319h stem-loop UUGUAGGGGCUAAAGUGCUCCUUUUAGUCCAAUAAGGAGGGCUGAGAAGCGGCUAGAGCUGCCAUCUCAUGCAUUUAGGCAAUGCUUAACAUUUGGCAAAGAGGUUUAAGCUUGGCCAGGUGCAUGGUGUGGGAGCAACUCCUUCCGCAUGCUUUGUUCGCCCAUUGGACUGAAGGGAGCUCCUGGUUUUACCAC 26 17217 MI0002304 ptc-MIR319i Populus trichocarpa miR319i stem-loop GUGCAGAAAUGGAGGUUCCUUCCAGCCUCAAGCAUCUUUAAGAUGGUGGCGAUGUCUAUUUUGGGCUGAAGGGAGCUCCCAAUUCUUCU 26 17218 MI0002305 ptc-MIR390a Populus trichocarpa miR390a stem-loop AGAAUCUGUUAAGCUCAGGAGGGAUAGCGCCAUGAGCAUGACAAAGUCUAUGUUUGAGUUAAUCUCAACAAAAUCAAUCCAGUCAUCAGUGGCGCUAUCUAUCCUGAGUUCUAUGGGUU 26 17219 MI0002306 ptc-MIR390b Populus trichocarpa miR390b stem-loop AGAAUCUGUUAAGCUCAGGAGGGAUAGCGCCCUAAGGAUAAUCAUGGGCUCUUUUUAUGUGGUUUUUGAUUCUCAGUGGCGCUAUCCAUCCUGAGUUUCAUUGCUU 26 17220 MI0002307 ptc-MIR390c Populus trichocarpa miR390c stem-loop AGGAUCUGUUAAGCUCAGGAGGGAUAGCGCCAUGAGCUGAUGAUAAGUUGAUGUUUGAUGGGUUAAUCUCAACAUAAUCAAUCUAGUCAUUAGUGGCGCUAUCUAUCCUGAGUUCUAUAGGUU 26 17221 MI0002308 ptc-MIR390d Populus trichocarpa miR390d stem-loop AGAAUCUGUUAAGCUCAGGAGGGAUAGCGCCCUAAGGAUAACCAUGGGCUCUUUUUAUUUGGUUUUUGACUAUCAGUGGCGCUAUCCAUCCUGAGUUUUACUGGUU 26 17222 MI0002309 ptc-MIR393a Populus trichocarpa miR393a stem-loop AGAGGAGGCAUCCAAAGGGAUCGCAUUGAUCCCAAGUGUCUGUCCCCCAUAAUUUUGGAUCAUGCUAUCCCUUUGGAUUCCUCCU 26 17223 MI0002310 ptc-MIR393b Populus trichocarpa miR393b stem-loop AGAGGAGGCAUCCAAAGGGAUCGCAUUGAUCCCGAGUGUCCCUGGCCAUAAUUUUGGAUCAUGCUAUCCCUUUGGAUUCCUCCU 26 17224 MI0002311 ptc-MIR393c Populus trichocarpa miR393c stem-loop GCUGGAGUGUUCCAAAGGGAUCGCAUUGAUCUAAUGACUCUCGAUGUCUAAAUCAUAUUAAUGUUUAGUUUUUUCGUUGGAUCAUGCGAUCCCUUAGGAAUUUUCCA 26 17225 MI0002312 ptc-MIR393d Populus trichocarpa miR393d stem-loop GUUGGAGUGUUCCAAAGGGAUCGCAUUGAUCUAAUGACUUUUGAUGUCUAUAUGAUGUUAAUGUUUAGUCAUUUCAUUGGAUCAUGCGAUCCCUUAGGAAUUUUCCA 26 17226 MI0002313 ptc-MIR394a Populus trichocarpa miR394a stem-loop ACAGAGUUUUUUGGCAUUCUGUCCACCUCCAUCUGUAGAAACUACAAGUUGUUCUACUUUCUGGAGGUGGGCAUACUGCCAACUGAGCUC 26 17227 MI0002314 ptc-MIR394b Populus trichocarpa miR394b stem-loop ACAGAGUUUAUUGGCAUUCUGUCCACCUCCUAUCUUUAGAAAUUAGAAUAUCUCUUUCAUAUGGAGGUGGGCAUACUGCCAACCGAGCUC 26 17228 MI0002315 ptc-MIR395a Populus trichocarpa miR395a stem-loop GGUCACCCUGAGUUCCUCCUAGCUUCUUCAGUACCCGUGGAAAGCUAAUGCUACAAUUAUCUUGAGCUGGUAAGACUGGCAGGUGUCAGAUGUGGAUGUGUUAAAGGUAAUAUUAUUGAUUAUUUACGGCGCCAUUCAAGUAUUUGUUCUACUGUUAGAGGAUUUAAUCAAGUAUAUGUGGUAUUACUCCUGAUUUGCUGAAGGGUUUGGAGGAACUCUAGGUGCU 26 17229 MI0002316 ptc-MIR395b Populus trichocarpa miR395b stem-loop GUGUCCCCUAGAGUUCCCUUGAGCACUUCACUGGGACCCUUCAGACCGAAAGAGUAUUAUCUUUCCCACUGAAGUGUUUGGGGGAACUCCUGGUGUCA 26 17230 MI0002317 ptc-MIR395c Populus trichocarpa miR395c stem-loop GUGUCCCCUAGAGUUCCUCUGAGCACUUCAUUGGGAAUCUUCGAUUAAAUGAAAGAGUAUUAUCAUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCA 26 17231 MI0002318 ptc-MIR395d Populus trichocarpa miR395d stem-loop GUGUCCCCUAGAGUUCCUCUGAGCACUUCACUGGGAAUUUCCGAUCAAAUGAAAGAGUAUUAUCAUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCA 26 17232 MI0002319 ptc-MIR395e Populus trichocarpa miR395e stem-loop CUGUCCCCCGGAGUUUCCCUGACCACUUCACUGGGGCUAUAAUUCUACUCUUCGUGUUUAAGGGUAGAGGCAACCCUUCCUCACUGAAGUGUUUGGGGGAACUCUGGGUGGCA 26 17233 MI0002320 ptc-MIR395f Populus trichocarpa miR395f stem-loop CUGUCCCCCGGAGUUUCCCUGACCACUUCACUGGGGCUAUAAUUCUACUCCUCGUGUUUAAGGGUAGAGGCAACCCUUCCUCACUGAAGUGUUUGGGGGAACUCUGGGAGGCA 26 17234 MI0002321 ptc-MIR395g Populus trichocarpa miR395g stem-loop GUGUCCCCUAGAGUUCCUCUGAGCACUUCAUUGGGGAUCUUCCAUCGACCUGAAAGAGUAUUAUCAUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCA 26 17235 MI0002322 ptc-MIR395h Populus trichocarpa miR395h stem-loop GUGUCCCCUAGAGUUCCUCUGAGCACUUCAUUGGGGAUCUUCCAUCGACCUGAAAGAGUAUUAUCAUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCA 26 17236 MI0002323 ptc-MIR395i Populus trichocarpa miR395i stem-loop GUGUCCCCUAGAGUUCCUCUGAGCACUUCAAUGGGGAUCUUCCAUCGACCUGAAAGAGUAUUAUCAUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCA 26 17237 MI0002324 ptc-MIR395j Populus trichocarpa miR395j stem-loop GUGUCCCCUAGAGUUCCUCUGAGCACUUCAAUGGGGAUCUUCCAUCGACCUGAAAGAGUAUUAUCAUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCA 26 17238 MI0002325 ptc-MIR396a Populus trichocarpa miR396a stem-loop CUUGGUAUUCUUCCACAGCUUUCUUGAACUGCACCUAUUUGAAUAUUGUUGUUGAUGUUGCCGUGCAUGUACAUAUGACAUUGUAUUUUUGUUGCGGUUCAAUAAAGCUGUGGGAAGAUACAA 26 17239 MI0002326 ptc-MIR396b Populus trichocarpa miR396b stem-loop CUUUGUAUUCUUCCACAGCUUUCUUGAACUGCACCUAUUAGAUUAAUGUUGAUGUUGUUGUGCGAUAUGCCAUGACCAUAUGACAUUGUAUUCAUUUUUGCUGCGGUUCAAUAAAGCUGUGGGAAGAUACAA 26 17240 MI0002327 ptc-MIR396c Populus trichocarpa miR396c stem-loop UGCCAUGUUUUUCCACAGCUUUCUUGAACUUCCUAGAGCCUAGAGGUGCUGCUAGCUAUACAUAUAACUUAAGAAGUUCAAGAAAGCCGUGGAAUAGCAUGA 26 17241 MI0002328 ptc-MIR396d Populus trichocarpa miR396d stem-loop GGUCAUGCUUUUCCACAGCUUUCUUGAACUUCCUUGCCAUGCUUAACUUGUGUGUGUGUGUGUGUGUGUGUGUAGAUCACUAUAUAUCUGUAUAGUUAUACACAUUUAGCUAGCUAGCACCAUGGAAGCUCAAGAAAGCCGUGGGAGAACAUGG 26 17242 MI0002329 ptc-MIR396e Populus trichocarpa miR396e stem-loop GGUCAUGCUUUUCCACAGCUUUCUUGAACUUCUUUGCCUUGCUUAAUCUGUGUAUAUAUAGAUCACUACAUGUACAGCUCCUAUAUAUAUAAAUAUAUGUAUGUAUAGCGCCAUGGAAGCUCAAGAAAGCUGUGGGAGAACAUGG 26 17243 MI0002330 ptc-MIR396f Populus trichocarpa miR396f stem-loop CUUGGUGAUUUUCCACGGCUUUCUUGAACUGUAUAUAUUAUCAAUGGCUUUUUACAAGACUGGAAGAUGGUUUCCAUGGAGAAGAAUUGUCACAAAAACAGUUCAAGAAAGCCCUGAAAAAUUAUUU 26 17244 MI0002331 ptc-MIR396g Populus trichocarpa miR396g stem-loop UUGCAUGCUUUUCCACGGCUUUCUUGAACUUGGCACUCAAGAGACAUGAGAGUAAAGGGCUAGGCUUUCUUUUCUAUUCCUUUCGUUCUUUGAAAUUUUCCUGUUCAAAGAAUCCAUACAUAUCAGUCUCUUUAGUACAAAGCUCAAGAAAGCCGUGGGAAAAUAUGA 26 17245 MI0002332 ptc-MIR397a Populus trichocarpa miR397a stem-loop UGGAGAACCAUCAUUGAGUGCAGCGUUGAUGAAAUCCUCCAUUUUGUGCUAUUAAACUGUUACCAACCCUUUAUGGGGCAUGGCAUCAUUUCACCAGCGCUGCAUUCAAUCAUGUUUUUC 26 17246 MI0002333 ptc-MIR397b Populus trichocarpa miR397b stem-loop UAAUUAUACACCAUUGAGUGCAGCGUUGAUGAAAUUCUCUUGUUAGCUUACUUAGCUAUUUUCUCACGAUGGCGUGGAAUCAUUUCACCAGCGCUGCAUUCAACCAUGUUUUUC 26 17247 MI0002334 ptc-MIR397c Populus trichocarpa miR397c stem-loop CAAGUUUAGUUCAUUGAGUGGAGCUUUGAUGACAAUUUGUUUUAAAAGCUCUACUGUAUUCGAACAAUAUG 26 17248 MI0002335 ptc-MIR398a Populus trichocarpa miR398a stem-loop GUACACCCCAGAGGAGUGGCUCCAGAGAACACAGGGGGUUGGUUUUCUAGCUGUAAGCUACAAGAUGGACAAAGCACUCUGUGUUCUCAGGUCACCCCUUUGGGGCACC 26 17249 MI0002336 ptc-MIR398b Populus trichocarpa miR398b stem-loop AGGGUUCCGACAGGAGCGGCCUUGGGUCACAUGUGGCGGCAUCCAAUGUACUUCAUGUGUUCUCAGGUCGCCCCUGCCGGGCUUC 26 17250 MI0002337 ptc-MIR398c Populus trichocarpa miR398c stem-loop AGGAUUCCUACAGGAGCGACCUGAAAUCACAUGUGGGCUGCACCCUCCUGGGUUAUCUUGAGCAACAUGUGUUCUCAGGUCGCCCCUGCCGGGCUUU 26 17251 MI0002338 ptc-MIR399a Populus trichocarpa miR399a stem-loop GCAAUAAUUACCGGGCAAUUACUCCUUUGGCAGCUGGCCACUCAACGGCGGCAGGUGAUCAAAUUCACCAAUGCAAACAAGUAAGCUCGCUGCCAAAGGAGAUUUGCCCCGCAAUUCAUC 26 17252 MI0002339 ptc-MIR399b Populus trichocarpa miR399b stem-loop GGUGCAGUUGCAUUACAGGGCAAGCUUCCAUUGGCAUGCAGCCACUAAGACACGCAAUAUCUAACACUUGAUGCAUUCCUGUAGAGUGCGGCGCCAUGCCAAAGGAGAUUUGCCCGGCAAUUCUUC 26 17253 MI0002340 ptc-MIR399c Populus trichocarpa miR399c stem-loop GGUGCAGUUGCAUUACAGGGCAAGCUUCCAUUGGCAUGCAGCCACUAAGACACGCAAUAUCUAACACUUGAUGCAUUCCUGUAGAGUGCGGCGCCAUGCCAAAGGAGAUUUGCCCGGCAAUUCUUC 26 17254 MI0002341 ptc-MIR399d Populus trichocarpa miR399d stem-loop GGAUGCAUUACUGGGCAAUUCUUCUGUUGGCAGCUGGUGACUCAUACUGCACUAGCUGAGAUUAAGCAGCAAGAGUUUGCUCACUGCCAAAGAAGAUUUGCCCCGCAAUUCCUU 26 17255 MI0002342 ptc-MIR399e Populus trichocarpa miR399e stem-loop GGAUGCAUUACUGGGCAAUUCUUCUGUUGGCAGUUGGUGACUCAUACUGCACUAGCUGAGAUUAAGCAGCAAGAGUUUGCUCACUGCCAAAGAAGAUUUGCCCCGCAAUUCAUU 26 17256 MI0002343 ptc-MIR399f Populus trichocarpa miR399f stem-loop UAAAGAAUAACAGGGCUUUAUCCUCCUUUGGCAAACAGAACAUGGAAAUAAAUGCCUGCAUAUUUCUGUUUUGCCAAAGGAGAAUUGCCCUGCCAUUCGAU 26 17257 MI0002344 ptc-MIR399g Populus trichocarpa miR399g stem-loop UGAUGAAUAACUGUGCAAUUCUCCUUUGGCAGACGUAUAUGGCGUUCGGACACCAACUUUGGACUGCCAAAGGAGAAUUGCCCUGCCAUUCAAC 26 17258 MI0002345 ptc-MIR399h Populus trichocarpa miR399h stem-loop AAACCAGUUGCAGGGCACCUCUCUUCCUUGGCAGACAGUACUAAUGGUGCCUAUAGCUUCAAGCUGAGAGGGUAUGCGAGAAUCUUGAUCCCAAUAUAGGCUUGCCAAAGGAGAGUUUCCCUGUGACCGUUU 26 17259 MI0002346 ptc-MIR399i Populus trichocarpa miR399i stem-loop AAACCAGUUGUAGGGUACCUCUUACUUGGCAAGCAAUGGUGAUUGUUGCAAACAUUGCAGAAUUUGAUCUCGGUGUCUUGCCAAAGGAGAGUUGCCCUAUGACUGUUU 26 17260 MI0002347 ptc-MIR399j Populus trichocarpa miR399j stem-loop UGCAUUACAGGGCAAGACCUCCAUUGGCAGGCAGCCACUAAAGCAUGCAUUUAAAUUAUGCGUUCUUUUAAGUGUGCCCUCUGCCAAAGGAGAUUUGUCCGGCAAAUCUUCU 26 17261 MI0002348 ptc-MIR399k Populus trichocarpa miR399k stem-loop GGAGCAUUGCUGAGCAAAUUUCCUUUGGCAGAUACCAUAAGUAACAAGAGCUUAUGUUGUUCAUUUGCCAAAGGAGAUUUGCUCACCAAUUCCA 26 17262 MI0002349 ptc-MIR399l Populus trichocarpa miR399l stem-loop AACUAGUUAAAUGGCUUCUCUUCUUUGGCAGGUGAUGGUAUAGAUUACAACUUAUAGCUUUAAUCUAGUAUUCAGUUACCCGCCAAAGGAGAGUUGCCCUCUAACUUCC 26 17263 MI0002350 ptc-MIR403a Populus trichocarpa miR403a stem-loop AGGCAUAUUUCAGGUUUGUGCAUGAAUCUAAUAUAGCUAAAAAAAUCCCAUCAAACACAAAUUAAAAUACUAGAUAGCAAUCAGCACUAGUUUAGUAUAGUAUUAGAUUCACGCACAAACUCGUAAUCUGUC 26 17264 MI0002351 ptc-MIR403b Populus trichocarpa miR403b stem-loop ACUCAUAUCUCUAGUUUGUUCGUGGAUCUGACGCCAUCACAACCGUUCAUUUCACGACCAUCCAAUGGCGUUAGAUUCACGCACAAACUCGCGAUCUGUC 26 17265 MI0002352 ptc-MIR408 Populus trichocarpa miR408 stem-loop AGAGACAGAUGAAGACGGGGAACAGGCAGAGCAUGGAUGGAGCUACUAACAGAAGUACUUGUUUUGGCUCUACCCAUGCACUGCCUCUUCCCUGGCUUGUGGCUC 26 17266 MI0002354 ptc-MIR472a Populus trichocarpa miR472a stem-loop UUAUCGGGUGGGUGAGCGGGGAAGAUAACUUUGGUUUUUGAGAUAGUACUUGUUAUUUUCCCUACUCCACCCAUCCCAUAG 26 17267 MI0002355 ptc-MIR472b Populus trichocarpa miR472b stem-loop UUACUGGAUGGGUGAGUGGGGAAGAUAACUAAGCUCUGUUUGUUAUUUUCCCAACUCCACCCAUCCCAUAG 26 17268 MI0002356 ptc-MIR473a Populus trichocarpa miR473a stem-loop AUUGUUCACUCUCCCUCAAGGCUUCCAACGCAAUAACCAGCUACGUACAUGUAACUGUGUUACGGCUGCAGGCUUGAGGCCUUUGGGGGAGAGUGGUCAA 26 17269 MI0002357 ptc-MIR473b Populus trichocarpa miR473b stem-loop UGCUCGCUCUCCCUCAGGGCUUCCAACGCAGUAAGCAGGUACGUGCAUGUCAGCAUAUUCUCGCUGCAGGCUCGAGGUCUUUGGUGAGAGUAGUGAUCAA 26 17270 MI0002358 ptc-MIR474a Populus trichocarpa miR474a stem-loop UCCAAAAGUUGCUGGGUUUGGCUGGGCAGGCGGACCCAAUGCUAUUGGGUUCAGCAGGACCCAACACUUCUUUCCUUCUCUUCUAUCACCAGCACCCUUUGAAA 26 17271 MI0002359 ptc-MIR474b Populus trichocarpa miR474b stem-loop UUCAAAAGUUGUUGGGUUUGGCUGGGCAGCCAGAUCCAGUGCUAUUGGGUCCUGUUAGACAACGCUAUUUGGUCUUGUCAAGCUAGAUCCAACAUUACUUUUUGACU 26 17272 MI0002360 ptc-MIR474c Populus trichocarpa miR474c stem-loop GACAGUAAAGCUACAUCCAAUAGUCCUGGAUUCUGGUCAAUAAGUGCAAAAGCUGUUGGGUUUGGCUGGGCAGCU 26 17273 MI0002361 ptc-MIR475a Populus trichocarpa miR475a stem-loop CAUCUUGAUCAAUGGCCAUUGUAAGAGUAGAAGGAUCCAUGAAGCAAUAACUCUCUUUGCUAAAAUGUGUGAUAAAACAUUGACUCCUGGUAUUUCACUCUUACAGUGCCCAUUGAUUAAGAUG 26 17274 MI0002362 ptc-MIR475b Populus trichocarpa miR475b stem-loop AUCUUGAUCAAUGGCCAUUGUAAGAGUAGAAGGAUCCAUGAAGCAAUAACUCUCUUUGCUGAAAUGUGCGACCAAAUAGACUCUUGAUAUUUCAUUCUUACAGUGCCCAUUGAUUAAGAU 26 17275 MI0002363 ptc-MIR475c Populus trichocarpa miR475c stem-loop UAACAUCUUGAACAAUGGCCAUUGUAAGAGUAAGUGGUCCAUGAGUCAAUAACUCUCUUUGCAGAAAUGCAUGACAAAGCAUUGACUCCUAUUUCACCCUUACAAUGUCCAUUGAUUAAGAGGUU 26 17276 MI0002364 ptc-MIR475d Populus trichocarpa miR475d stem-loop AUAACAUCCUGAUCAAUGGCCAUUGUAAGAGUAGAAGGAUCCAUGAAGCAAAACAUUGACUCCUGAUAUUCCACUCUUACAGAGUCCAUUGAUUAAGAUGUUA 26 17277 MI0002365 ptc-MIR476a Populus trichocarpa miR476a stem-loop UUAAGCUAGUAAUCCUUCUUUGCAAAGUCAUUUAUUAUUUUUCCUUCAAUUACUAUAAUCAAUGACUUUGCAAAGAUAGAUUUACUAGCUAAAUCU 26 17278 MI0002366 ptc-MIR476b Populus trichocarpa miR476b stem-loop GCUAGUAAUUCUUCUUUGCAAAAUCAUUAAUUAUCCUAGCUCUAAUUACUAUAAUUAAUGGCUUUGCAAAGAUAGAUUUACUAGCUAAAUCUU 26 17279 MI0002367 ptc-MIR476c Populus trichocarpa miR476c stem-loop GCUAGUAAUUCUUCUUUGCAAAAUCAUUAAUUAUCCUAGCUCUAAUUACUAUAAUUAAUGGCUUUGCAAAGAUAGAUUUACUAGCUAAAUCUU 26 17280 MI0002368 ptc-MIR477a Populus trichocarpa miR477a stem-loop CAAUCUCCCUCAGAGGCUUCCAAUAUCUCAGUUUAUAGUAAUUGCUUCAAAUAACGAGAAUGUUGGAUGCCUUUGGGGGAGAUUG 26 17281 MI0002369 ptc-MIR477b Populus trichocarpa miR477b stem-loop CAAUCUCCCUCAGAGGCUUCCAAUAUCUCAGUUUAUAGUAAUUGCUUCAAAUAAUGAGAAUGUUGGAUGCCUUUGGGUGAGAUUG 26 17282 MI0002370 ptc-MIR478a Populus trichocarpa miR478a stem-loop CUCCCUUUUAGGGUUAAAACGUCAACAUUUUAGACGAGUCUCUUAUUUUUAGGGACUGGUGUUAUUUUUUGACGUGUCUUCUAUUUUUAGGGACUG 26 17283 MI0002371 ptc-MIR478b Populus trichocarpa miR478b stem-loop UCUCCCUUUUAGGGUUAAAACGUCAACAUUUUAGACGAGUCUCCUAUUUUUAGGGACUGGUGUUAUUUUUUGACGUGUCUUCUAUUUUUAGGGACC 26 17284 MI0002372 ptc-MIR478c Populus trichocarpa miR478c stem-loop UCUCCUUUUUAGGGUUAAAUGUCAAUAUUUUAGACGAGUUUUCUAUUUUUAGGGUCUGGUGUUAUUUUUUGACGUGUCUUCUAUUUUUAGGGACC 26 17285 MI0002373 ptc-MIR478d Populus trichocarpa miR478d stem-loop AUCCUAAUCUAUAAGUCUCCUAUUUUUAGAGAUGGACGUUAACUUUUUUGUGAAUAGCCUAGUUGACGUGUCUUCUAUUUUUAGGAACCAAGAAUG 26 17286 MI0002374 ptc-MIR478e Populus trichocarpa miR478e stem-loop GAGUCUUCUAUCUUUAAGAACGGACAUCAUAUUUCUCGUGAAUGGUCUAAUUGACGAGUCUUCUAUUUUUAGGGAUAGACACUAG 26 17287 MI0002375 ptc-MIR478f Populus trichocarpa miR478f stem-loop AAGUAUCUUAUUUUUAGGAGCCGAUGUCAUUUUUUUGACAUGUCUUCUAUUUUUAGGGACCGA 26 17288 MI0002376 ptc-MIR478h Populus trichocarpa miR478h stem-loop UCUCCUUUUUAGGGACAAACGUCAAUAUUUUAGACGAGUCUCCUAAUUUUUAGGGACUGGUGUCAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17289 MI0002377 ptc-MIR478i Populus trichocarpa miR478i stem-loop AGUCUCCUAAUUUUUAGGGACUGAUGUUAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17290 MI0002378 ptc-MIR478j Populus trichocarpa miR478j stem-loop AGUCUCCUAAUUUUUAGGGACUGAUGUUAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17291 MI0002379 ptc-MIR478k Populus trichocarpa miR478k stem-loop AGUCUCCUAAUUUUUAGGGACUGAUGUUAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17292 MI0002380 ptc-MIR478l Populus trichocarpa miR478l stem-loop AGUCUCCUAAUUUUUAGGGACUGAUGUUAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17293 MI0002381 ptc-MIR478m Populus trichocarpa miR478m stem-loop AGUCUCCUAAUUUUUAGGGACUGAUGUUAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17294 MI0002382 ptc-MIR478n Populus trichocarpa miR478n stem-loop AGUCUCCUAAUUUUUAGGGACUGAUGUUAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17295 MI0002383 ptc-MIR478o Populus trichocarpa miR478o stem-loop UCUCCUUUUUAGGAAUAAACGUUAAUAUUUUAGACGAGUCUCCUAAAUUUUAGGGACUGAUGUCAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17296 MI0002384 ptc-MIR478p Populus trichocarpa miR478p stem-loop UCUCCUUUUUUGGGACAAACGUUAAUAUUUUAGACGAGUCUCCUAAUUUUUAGGGACUAAUGUCAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17297 MI0002385 ptc-MIR478q Populus trichocarpa miR478q stem-loop UCUCCUUUUUAGGGAUAAACGUUAAUGUUUUAGACGAGUCUCCUAAAUUUUAGGGACUAAUGUCAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17298 MI0002386 ptc-MIR478r Populus trichocarpa miR478r stem-loop AGUCUCCUAGUUUGAGGGACUGAUAUCAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17299 MI0002387 ptc-MIR478s Populus trichocarpa miR478s stem-loop UCUCAUUUUUAGGGAUAAACGUUAAUGUUUUAGACGAGUCUCCUAAAUUUUAGGGACUAAUGUCAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17300 MI0002388 ptc-MIR478u Populus trichocarpa miR478u stem-loop UCUCCUUUUUAGGGAUAAACGUUAAUAUUUUAGACGAGUCUCCUAAUUUUUAGGGACUGAUGUCAUUUUUAACGUGUCUCCUAUUUUUAGGGACC 26 17301 MI0002389 ptc-MIR479 Populus trichocarpa miR479 stem-loop GGUGUGAUAUUGGUCCGGCUCAUCUUCUGUGCAUAAGCAUCUGAAGUUCUUCACUCAUGAAGACGAGCCGAAUCAAUAUCACUCU 26 17302 MI0002390 ptc-MIR480a Populus trichocarpa miR480a stem-loop UAAUAUGUUUGGGGUUGAUCCUUGUUUAGUUAUAAUAGACCCACACCUGACUGCUUAGAAUUAUUUGUUAUCGCAUAUCCGACUACAUUAUUGACGUUGAAAAACAGAGAACUACUACAUCAUUGACGUUGAACCAUAAA 26 17303 MI0002391 ptc-MIR480b Populus trichocarpa miR480b stem-loop UAAUAUGUUUGGGGUUGAUCCUUGUUUAGUUAUAAUAGACCCACACCUGACUGCUUAGAAUUAUUUGUUAUCGCCUAUCCGACUACAUUAUUGACGUUGAAAAACAGAGAACUACUACAUCAUUGAUGUUGAACCAUAAA 26 17304 MI0002392 ptc-MIR481a Populus trichocarpa miR481a stem-loop GAAGGUUAAGUGUGUUGGGGUAGUGGAGAUGGUCAAAGAUGUUAGAGAAUAAUAUAAAUCAUAUCCUAGGACCUCACUUAACAGCUUAAGCUA 26 17305 MI0002393 ptc-MIR481b Populus trichocarpa miR481b stem-loop AUCCUAGGACCUCACUUAACAGCUUAAGCUAUUGGGUUGAGAUGGUUCUUUGACAUGAUAUCAGAGCCUUGAUAACCAAGUGGUCUCGAGUUUGAAUCUCAUCAUCCUCAUUUAUUUGAUAAAAAAUACUUAAAGGGGUGUGUUAGAGAAUAAUAUAAAUCAUAUUCUGGAACCUCACCUAACAGCUUAAGCUAUUGGGUUGAAAUGAUUCUUUGACAUU 26 17306 MI0002394 ptc-MIR481c Populus trichocarpa miR481c stem-loop AUCCUAGGACCUCACUUAACAGCUUAAGCUUUUGGGUUGAGAUGAUUCUUUGACAUGAUAUCAGAGCUUUGAUGACCAAGCGGUCACGAGUUCGAAUCUCACCAUCCCCAUUUAUUUGAUAAAAUUAAGCACAAGGUAAUGUGAGUCUGUGCAAGUUUCAAGCCCAAAGAGCUUUCACUUGAGGGGGUGUGUUAG 26 17307 MI0002395 ptc-MIR481d Populus trichocarpa miR481d stem-loop GGCAGUCAAAGAGGGGGCAAGGAAAGGGGAGAAUUAUGUUACUGUCACUUGGCUGUUAUUCGUAGAACUAGAAUGACAUUGAGGGUGUUAGAGAAUAAUAUAAAUCAUAUUCUAAGACCUCACCUAACAGCUUAAGCUAUU 26 17308 MI0002396 ptc-MIR481e Populus trichocarpa miR481e stem-loop AUCCUAGGACCUCACCUAACAGCUUAAGCUAUUGGGUUGAGAUGAUUCUUUGACAUGGUAUCAGAGCCUUGAUGACCAAGUGGUCACGAGUUCGAAUCUCACCACUCCUAUUUAUUUGAUAAAAAUCAAGCACAAGGUAAUGUGGGCCUAUGCAAGUUUCAAGCCCAAAGAGCUUUCACUUGAGGGGGUGUAUUAG 26 17309 MI0002397 ptc-MIR482 Populus trichocarpa miR482 stem-loop UCUUUGGAGAUGGGAGAGUAUGCAAGAAGGAAAAAUUCAUGAUUUAAUAUUCUUUCUUGCCUACUCCUCCCAUUCCAUCUG 26 17310 MI0002398 mmu-mir-463 Mus musculus miR-463 stem-loop CUUUACCUAAUUUGUUGUCCAUCAUGUAAAACAUAAAUGAUGAUAGACACCAUAUAAGGUAGAGGAAGGUUCACU Yu et al. cloned a product from the 5' arm of this precursor, and named it miR-463 [1]. Landgraf et al. later show that the 3' product is the predominant one [2]. The 5' miRNA is renamed miR-463* here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 17311 MI0002399 mmu-mir-464 Mus musculus miR-464 stem-loop ACCUUGUUAUGGGGGUCUGGGGUAAGGAGUGGUCAUCAGGGGGUACUACCAAGUUUAUUCUGUGAGAUAGA 6 17312 MI0002400 mmu-mir-465a Mus musculus miR-465a stem-loop GCCCUAUUUAGAAUGGCACUGAUGUGAUAAAAUAAAAAAUUGAUCAGGGCCUUUCUAAGUAGAGUAAGGCUUAC Yu et al. identified a mature miRNA product from the 5' arm of this precursor, renamed miR-465a-5p here [1]. Watanabe et al. later reported a 3' miRNA product [2]. 6 17313 MI0002401 mmu-mir-466a Mus musculus miR-466a stem-loop UAUAUGUGUUUAUGUGUGUGUACAUGUACAUAUGUGAAUAUGAUAUCCAUAUACAUACACGCACACAUAAGAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 6 17314 MI0002402 mmu-mir-467a Mus musculus miR-467a stem-loop CUGUGUGCGUAAGUGCCUGCAUGUAUAUGCGUGUAUAUUUUAUGCAUAUACAUACACACACCUACACACACAU The sequence of miR-467 is of low complexity. The sequence maps exactly to several genomic positions, and many more with 1 or 2 substitutions. Confidence in this miRNA might therefore be reduced. Landgraf et al. show that the 5' mature miRNA is the predominant one, in contrast with previous annotations [3]. The 3' miRNA is renamed miR-467* here. 6 17315 MI0002403 mmu-mir-468 Mus musculus miR-468 stem-loop AUAAGAAACUUGGCGUGUCGUGACUGAUGUACUGAUAAGAAACUCAGUGUGAUAUGACUGAUGUGCGUGUGUCUGUCU 6 17316 MI0002404 mmu-mir-469 Mus musculus miR-469 stem-loop CGCGGUGCCUCUUUCAUUGAUCUUGGUGUCCUCAAAUUGAAAGCCAAGGAAGAGGUGGGGGGCGUGGUAGCCUU 6 17317 MI0002405 mmu-mir-470 Mus musculus miR-470 stem-loop CAGUGCUCUUCUUGGACUGGCACUGGUGAGUUAAACUAAAUACAACCAGUACCUUUCUGAGAAGAGUAAAGCUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 17318 MI0002406 mmu-mir-471 Mus musculus miR-471 stem-loop GUGCUUUACGUAGUAUAGUGCUUUUCACAUUAAACAAAAAGUGAAAGGUGCCAUACUAUGUAUAGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 17319 MI0002407 ath-MIR447a Arabidopsis thaliana miR447a stem-loop CAUUCUUAAUAUAUAAUACUACUUUUUCAUCCAUUAAACCCCUUACAAUGUCGAGUAAACGAAGCAUCUGUCCCCUGGUAUUGUCUUCGAGCUUGGUGUUUUUUUCUAGCCAACUCCAAGUUCUCGAGUUGAUCAUUGUUUGUAUUCUUGAGACAUUAUUUGGGGACGAGAUGUUUUGUUGACUCGAUAUAAGAAGGGGCUUUAUGGAAGAAAUUGUAGUAUUAUAUAUCGAGAGUG 1 17320 MI0002408 ath-MIR447b Arabidopsis thaliana miR447b stem-loop CAUUCUUAAUAUACAAUACUACUUUUUCAUCCAUUAAUCCCCUUACAAUGUCGAGUAAACGAAGCAUCUGUCCCCUGGUAUUGUCUUCGAGCUUGGUGUGUUUUUCUAGCCAGCCCCAAGUUCUCGAGUUGAUCAUUGUUUGUAUUCUGACACAUUAUUUGGGGACGAGAUGUUUUGUUGACUCGAUAUAAGAAGGGGCUUUAUGGAAGAAAUUGUAGUAUUAUAUAUUGAGAAUG 1 17321 MI0002409 ath-MIR447c Arabidopsis thaliana miR447c stem-loop CAUUCUUAAUAUACAAUACUUCUUUUUCAUGCAUUAAGCCCCUUACAAUGUCGAGUAAACAAAGCAUGUGUCCGCUAAUAUUGUCUUCGAGCUUGGUAUUUUUGUAUUCUGAUACGGUAUUUGGGGACGACAUCUUUUGUUGACUCGAUAUAAGAAGGGGGUUUGUGGAAGAAAUUGUAGUAUUAUAUAUCAAGAAUG 1 17322 MI0002410 ssc-mir-105-1 Sus scrofa miR-105-1 stem-loop UGUGCAUCGUAGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA 27 17323 MI0002411 ssc-mir-105-2 Sus scrofa miR-105-2 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUUGGUGGCUGCUUAUGCACCACGGAUGUUUGAGCAUGUGCUAUGGUGUCUA 27 17324 MI0002412 ssc-mir-106a Sus scrofa miR-106a stem-loop CCUUGGCCGUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG 27 17325 MI0002413 ssc-mir-122 Sus scrofa miR-122 stem-loop CCUUAGCAGAGCUGUGGAGUGUGACAAUGGUGUUUGUGUCCAAACUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGUUAGGC 27 17326 MI0002414 ssc-mir-125b Sus scrofa miR-125b stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA 27 17327 MI0002415 ssc-mir-135-1 Sus scrofa miR-135-1 stem-loop AGGCCUCGCUGUUCUCUAUGGCUUUUUAUUCCUAUGUGAUUCUACUGCUCAUUCAUAUAGGGAUUGGAGCCGUGGCGCACGGCGGGGACA 27 17328 MI0002416 ssc-mir-135-2 Sus scrofa miR-135-2 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA 27 17329 MI0002417 ssc-mir-145 Sus scrofa miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUGAGAUGGGGAUUCCUGUAAAUACUGUUCUUGAGGUCAUGG 27 17330 MI0002418 ssc-mir-148a Sus scrofa miR-148a stem-loop GAGGCAAAGUUCUGAGACACUCCGACUCUGAAUAUGAUAGAAGUCAGUGCACUACAGAACUUUGUCUC 27 17331 MI0002419 ssc-mir-15b Sus scrofa miR-15b stem-loop UUGAGGCCUUAAAGUACUGCCGCAGCACAUCAUGGUUUACAUACUACAAUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU 27 17332 MI0002420 ssc-mir-181b Sus scrofa miR-181b stem-loop AUGGCUGCACUCAACAUUCAUUGCUGUCGGUGGGUUUGAGUCUGAAUCAACUCACUGAUCAAUGAAUGCAAACUGCGGACCAAACA 27 17333 MI0002421 ssc-mir-184 Sus scrofa miR-184 stem-loop CCAGUCACAUCCCCUUAUCACUUUUCCAGCCAGCUUUGUGACUCUAAAUGUUGGACGGAGAACUGAUAAGGGUAGGUGAUUGA 27 17334 MI0002422 ssc-mir-19a Sus scrofa miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC 27 17335 MI0002423 ssc-mir-20 Sus scrofa miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC 27 17336 MI0002424 ssc-mir-216 Sus scrofa miR-216 stem-loop GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCCCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUUGCCCU 27 17337 MI0002425 ssc-mir-217 Sus scrofa miR-217 stem-loop AUAAUUAUUACAGAGUUUUUGAUGUCGCAGAUACUGCAUCAGGAACUGAUUGGAUAAGAAUUGGUCACCAUCAGUUCUUAAUGCAUUGCCUUCAGCAUCUAAACAAG 27 17338 MI0002426 ssc-mir-224 Sus scrofa miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAAGGUUUUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC 27 17339 MI0002427 ssc-mir-23a Sus scrofa miR-23a stem-loop CGGCUGGGGUUCCUGGGGAUGGGAUUUGCUGCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAAUCGACC 27 17340 MI0002428 ssc-mir-24 Sus scrofa miR-24 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGAUUUGUGCAGACUGGCUCAGUUCAGCAGGAACAGG 27 17341 MI0002429 ssc-mir-26a Sus scrofa miR-26a stem-loop GGCUGUGGCUGGAUUCAAGUAAUCCAGGAUAGGCUGUUUCCAUCUGUGAGGCCUAUUCUUGAUUACUUGUUUCUGGAGGCAGCU 27 17342 MI0002430 ssc-mir-28 Sus scrofa miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACACUCUAUUGAGUUGCCUUUCUGUCUUCCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU 27 17343 MI0002431 ssc-mir-29b Sus scrofa miR-29b stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAAAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG 27 17344 MI0002432 ssc-mir-301 Sus scrofa miR-301 stem-loop GCUAACAAAUGCUCUGACUUUAUUGCACUACUGUACUUUACAGCUACCAGUCCAAUAGUAUUGUCAAAGCAUCUGAGAGCAG 27 17345 MI0002433 ssc-mir-323 Sus scrofa miR-323 stem-loop UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCGUUCGCUUUAUUUAUGGCGCACAUUACACGGUCGACCUCUUUGCGGUAUCUAAUC 27 17346 MI0002434 ssc-mir-326 Sus scrofa miR-326 stem-loop UCUGUCUGUUGGGCUGGAGGCAGGGCCUUUGUGCAGGCGGGUUGUGCUCAGAUCGCCUCUGGGCCCUUCCUCCAGCCCAGAGGCGGAUUCA 27 17347 MI0002435 ssc-mir-7 Sus scrofa miR-7 stem-loop UGGAUGUUGGUCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG 27 17348 MI0002436 ssc-mir-95 Sus scrofa miR-95 stem-loop AACACAGUGGGCGCUCAAUAAAUGUUUGUUGAAUUGAGAUGCGUUAAAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG 27 17349 MI0002437 ssc-mir-140 Sus scrofa miR-140 stem-loop CCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGG 27 17350 MI0002438 ssc-mir-181c Sus scrofa miR-181c stem-loop CAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACCCCGAGGCCUGGA 27 17351 MI0002439 ssc-mir-183 Sus scrofa miR-183 stem-loop CUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCGGUCAGUGAAUUACCGAAGGGCCAUAAACAG 27 17352 MI0002440 ssc-mir-205 Sus scrofa miR-205 stem-loop CUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGCUCAGGAG 27 17353 MI0002441 ssc-mir-214 Sus scrofa miR-214 stem-loop GGCCUGGCUGGACGGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU 27 17354 MI0002442 ssc-mir-27a Sus scrofa miR-27a stem-loop UGGCCUGGGGAGCAGGGCUUAGCUGCUUGUGAGCAGGUCCACAGCAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCUGGA 27 17355 MI0002443 ssc-mir-32 Sus scrofa miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAGUGCAAUUUAGUGUGUGUGAUAUUUUC 27 17356 MI0002444 ssc-mir-325 Sus scrofa miR-325 stem-loop AGUGCUUGGUUCCUAGUAGGUGUUCAGUAAGUGUUUGUGACAUAAUUCGUUUAUUGAGCACCUCCUAUCAAUCAAGCACUGUGCUAGGUUCUGG 27 17357 MI0002445 ssc-let-7c Sus scrofa let-7c stem-loop UGUGUGCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCGUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGCACACU 27 17358 MI0002446 ssc-let-7f Sus scrofa let-7f stem-loop UGUGGGAUGAGGUAGUAGAUUGUAUAGUUUUAGGGUCAUACCCCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCCCACG 27 17359 MI0002447 ssc-let-7i Sus scrofa let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUAG 27 17360 MI0002448 ssc-mir-103 Sus scrofa miR-103 stem-loop CUUACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCACUGAG 27 17361 MI0002449 ssc-mir-107 Sus scrofa miR-107 stem-loop UUCUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGAGAGC 27 17362 MI0002450 ssc-mir-124a Sus scrofa miR-124a stem-loop AGGCCUCUCUCUCCGUGUUCACAGCGGACCUUGAGUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAAUGGGGCUG 27 17363 MI0002451 ssc-mir-128 Sus scrofa miR-128 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC 27 17364 MI0002452 ssc-mir-136 Sus scrofa miR-136 stem-loop UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUACGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU 27 17365 MI0002453 ssc-mir-139 Sus scrofa miR-139 stem-loop GUGUAUUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCAGGCCAUGUUGGAGUAAC 27 17366 MI0002454 ssc-mir-153 Sus scrofa miR-153 stem-loop AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG 27 17367 MI0002455 ssc-mir-18 Sus scrofa miR-18 stem-loop GUGCUUUUUGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCAUAAGAAGUUAUGU 27 17368 MI0002456 ssc-mir-186 Sus scrofa miR-186 stem-loop UGCUUAUAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUAUGAUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUG 27 17369 MI0002457 ssc-mir-196 Sus scrofa miR-196 stem-loop UUGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUAUCGUCGAGGGC 27 17370 MI0002458 ssc-mir-204 Sus scrofa miR-204 stem-loop GGCUACAGUCCUUCUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC 27 17371 MI0002459 ssc-mir-21 Sus scrofa miR-21 stem-loop UGUACCACCUUGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACAGCAGUCGAUGGGCUGUCUGACAUUUUGGUAUC 27 17372 MI0002460 ssc-mir-29c Sus scrofa miR-29c stem-loop AUCUCUUACACAGGCUGACCGAUUUCUCCUGGUGUUCAGAGUCUGUUUUUGUCUAGCACCAUUUGAAAUCGGUUAUGAUGUANGGGGA 27 17373 MI0002461 ssc-mir-30c Sus scrofa miR-30c stem-loop GACAGAUACUGUAAACAUCCUACACUCUCAGCUGUGGAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUCUCUGCCUU 27 17374 MI0002462 ssc-mir-9-1 Sus scrofa miR-9-1 stem-loop CGGGGUUGGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGGUGUGGAGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAAUAACCCCA 27 17375 MI0002463 ssc-mir-9-2 Sus scrofa miR-9-2 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA 27 17376 MI0002464 hsa-mir-412 Homo sapiens miR-412 stem-loop CUGGGGUACGGGGAUGGAUGGUCGACCAGUUGGAAAGUAAUUGUUUCUAAUGUACUUCACCUGGUCCACUAGCCGUCCGUAUCCGCUGCAG 5 17377 MI0002465 hsa-mir-410 Homo sapiens miR-410 stem-loop GGUACCUGAGAAGAGGUUGUCUGUGAUGAGUUCGCUUUUAUUAAUGACGAAUAUAACACAGAUGGCCUGUUUUCAGUACC 5 17378 MI0002466 hsa-mir-376b Homo sapiens miR-376b stem-loop CAGUCCUUCUUUGGUAUUUAAAACGUGGAUAUUCCUUCUAUGUUUACGUGAUUCCUGGUUAAUCAUAGAGGAAAAUCCAUGUUUUCAGUAUCAAAUGCUG The mature miR-376b products have been shown to be modified by A to I edits [2]. 5 17379 MI0002467 hsa-mir-483 Homo sapiens miR-483 stem-loop GAGGGGGAAGACGGGAGGAAAGAAGGGAGUGGUUCCAUCACGCCUCCUCACUCCUCUCCUCCCGUCUUCUCCUCUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 17380 MI0002468 hsa-mir-484 Homo sapiens miR-484 stem-loop AGCCUCGUCAGGCUCAGUCCCCUCCCGAUAAACCCCUAAAUAGGGACUUUCCCGGGGGGUGACCCUGGCUUUUUUGGCG 5 17381 MI0002469 hsa-mir-485 Homo sapiens miR-485 stem-loop ACUUGGAGAGAGGCUGGCCGUGAUGAAUUCGAUUCAUCAAAGCGAGUCAUACACGGCUCUCCUCUCUUUUAGU 5 17382 MI0002470 hsa-mir-486 Homo sapiens miR-486 stem-loop GCAUCCUGUACUGAGCUGCCCCGAGGCCCUUCAUGCUGCCCAGCUCGGGGCAGCUCAGUACAGGAUAC 5 17383 MI0002471 hsa-mir-487a Homo sapiens miR-487a stem-loop GGUACUUGAAGAGUGGUUAUCCCUGCUGUGUUCGCUUAAUUUAUGACGAAUCAUACAGGGACAUCCAGUUUUUCAGUAUC 5 17384 MI0002472 kshv-mir-K12-10a Kaposi sarcoma-associated herpesvirus miR-K12-10a stem-loop CUGGAGGCUUGGGGCGAUACCACCACUCGUUUGUCUGUUGGCGAUUAGUGUUGUCCCCCCGAGUGGCCAG Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. Cai et al. define the likely miRNA primary transcripts [4]. 16 17385 MI0002473 kshv-mir-K12-10b Kaposi sarcoma-associated herpesvirus miR-K12-10b stem-loop CUGGAGGCUUGGGGCGAUACCACCACUCGUUUGUCUGUUGGCGAUUGGUGUUGUCCCCCCGAGUGGCCAG Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. Cai et al. define the likely miRNA primary transcripts [3]. 16 17386 MI0002474 kshv-mir-K12-11 Kaposi sarcoma-associated herpesvirus miR-K12-11 stem-loop CGCUUUGGUCACAGCUUAAACAUUUCUAGGGCGGUGUUAUGAUCCUUAAUGCUUAGCCUGUGUCCGAUGCG Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Pfeffer et al. [1]. The names were corrected in release 7.0. In addition, Samols et al. incorrectly named this sequence miR-6 [2]. Cai et al. define the likely miRNA primary transcripts [3]. 16 17387 MI0002475 kshv-mir-K12-1 Kaposi sarcoma-associated herpesvirus miR-K12-1 stem-loop CGAUUACAGGAAACUGGGUGUAAGCUGUACAUAAUCCCCGGCAGCACCUGUUUCCUGCAACCCUCGU Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. Cai et al. define the likely miRNA primary transcripts [4]. 16 17388 MI0002476 kshv-miR-K12-2 Kaposi sarcoma-associated herpesvirus miR-K12-2 stem-loop GGGUCUACUUCGCUAACUGUAGUCCGGGUCGAUCUGAGCCAUUGAAGCAAGCUUCCAGAUCUUCCAGGGCUAGAGCUGCCGCGGUGACACC Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. [1]. The names were corrected in release 7.0. Cai et al. define the likely miRNA primary transcripts [2]. 16 17389 MI0002477 kshv-mir-K12-9 Kaposi sarcoma-associated herpesvirus miR-K12-9 stem-loop GGGUCUACCCAGCUGCGUAAACCCCGCUGCGUAAACACAGCUGGGUAUACGCAGCUGCGUAAACCC Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. Cai et al. define the likely miRNA primary transcripts [4]. 16 17390 MI0002478 kshv-mir-K12-8 Kaposi sarcoma-associated herpesvirus miR-K12-8 stem-loop CGCGCACUCCCUCACUAACGCCCCGCUUUUGUCUGUUGGAAGCAGCUAGGCGCGACUGAGAGAGCACGCG Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. Cai et al. define the likely miRNA primary transcripts [4]. 16 17391 MI0002479 kshv-mir-K12-7 Kaposi sarcoma-associated herpesvirus miR-K12-7 stem-loop GCGUUGAGCGCCACCGGACGGGGAUUUAUGCUGUAUCUUACUACCAUGAUCCCAUGUUGCUGGCGCUCACGG Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. Cai et al. define the likely miRNA primary transcripts [4]. 16 17392 MI0002480 kshv-mir-K12-6 Kaposi sarcoma-associated herpesvirus miR-K12-6 stem-loop CUUGUCCAGCAGCACCUAAUCCAUCGGCGGUCGGGCUGAUGGUUUUCGGGCUGUUGAGCGAG Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. In addition, Samols et al. incorrectly named this sequence miR-5 [3]. Cai et al. define the likely miRNA primary transcripts [4]. 16 17393 MI0002481 kshv-mir-K12-5 Kaposi sarcoma-associated herpesvirus miR-K12-5 stem-loop UGACCUAGGUAGUCCCUGGUGCCCUAAGGGUCUACAUCAAGCACUUAGGAUGCCUGGAACUUGCCGGUCA Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. In addition, Samols et al. incorrectly named this sequence miR-4 [3]. Cai et al. define the likely miRNA primary transcripts [4]. 16 17394 MI0002482 kshv-mir-K12-4 Kaposi sarcoma-associated herpesvirus miR-K12-4 stem-loop AUAACUAGCUAAACCGCAGUACUCUAGGGCAUUCAUUUGUUACAUAGAAUACUGAGGCCUAGCUGAUUAU Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. In addition, Samols et al. incorrectly named this sequence miR-3 [3]. Cai et al. define the likely miRNA primary transcripts [4]. 16 17395 MI0002483 kshv-mir-K12-3 Kaposi sarcoma-associated herpesvirus miR-K12-3 stem-loop GGCUAUCACAUUCUGAGGACGGCAGCGACGUGUGUCUAACGUCAACGUCGCGGUCACAGAAUGUGACACC Please note that the names of KSHV miRNAs in release 6.0 did not correctly relate to those published in Cai et al. and Pfeffer et al. [1,2]. The names were corrected in release 7.0. In addition, Samols et al. incorrectly named this sequence miR-2 [3]. Cai et al. define the likely miRNA primary transcripts [4]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. The ends of the miRNA may be offset with respect to previous annotations. 16 17396 MI0002484 mml-mir-200c Macaca mulatta miR-200c stem-loop CCCUCGUCUUACCCAGCAGUGUUUGGGUGCGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17397 MI0002485 mml-mir-141 Macaca mulatta miR-141 stem-loop UGGCCGGCCCUGGGUCCAUCUUCCAGUACAGUGUUGGAUGGUCUAAUUGUGAAGCUCCUAACACUGUCUGGUAAAGAUGGCCCCCGGGUCGGUUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17398 MI0002486 ggo-mir-200c Gorilla gorilla miR-200c stem-loop CCUCGUCUUACCCAGCAGUGUUUGGGUGCGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17399 MI0002487 ggo-mir-141 Gorilla gorilla miR-141 stem-loop CGGCCGGCCCUGGGUCCAUCUUCCAGUACAGUGUUGGAUGGUCUAAUUGUGAAGCUCCUAACACUGUCUGGUAAAGAUGGCCCCCGGGUGGGUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17400 MI0002488 ppy-mir-200c Pongo pygmaeus miR-200c stem-loop CCCUCGUCUUACCCAGCAGUGUUUGGGUGCGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17401 MI0002489 ppy-mir-141 Pongo pygmaeus miR-141 stem-loop UGGCCGGCCCUGGGUUCAUCUUCCAGUACAGUGUUGGAUGGUCUAAUUGUGAAGCUCCUAACACUGUCUGGUAAAGAUGGCCCCCGGGUGGGUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17402 MI0002490 ppa-mir-141 Pan paniscus miR-141 stem-loop UGGCCGGCCCUGGGUCCAUCUUCCAGUACAGUGUUGGAUGGUCUAAUUGUGAAGCUCCUAACACUGUCUGGUAAAGAUGCCCCCGGGGUGGGUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17403 MI0002491 ggo-mir-15b Gorilla gorilla miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUGCUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17404 MI0002492 age-mir-15b Ateles geoffroyi miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17405 MI0002493 ppa-mir-15b Pan paniscus miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUGCUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17406 MI0002494 ppy-mir-15b Pongo pygmaeus miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUGCUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17407 MI0002495 ptr-mir-15b Pan troglodytes miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUGCUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17408 MI0002496 mml-mir-15b Macaca mulatta miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17409 MI0002497 lla-mir-15b Lagothrix lagotricha miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17410 MI0002498 mne-mir-15b Macaca nemestrina miR-15b stem-loop UUGAGGCCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17411 MI0002499 ptr-mir-23b Pan troglodytes miR-23b stem-loop CUCAGGUGCUCUGGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAACCACGACCUUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17412 MI0002500 ppy-mir-23b Pongo pygmaeus miR-23b stem-loop CUCAGGUGCUCUGGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAACCACGACCUUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17413 MI0002501 ppa-mir-23b Pan paniscus miR-23b stem-loop CUCAGGUGCUCUGGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAACCACGACCUUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17414 MI0002502 mml-mir-30b Macaca mulatta miR-30b stem-loop ACCAAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACUUGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17415 MI0002503 ptr-mir-30b Pan troglodytes miR-30b stem-loop ACCAAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACUUGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17416 MI0002504 ggo-mir-30b Gorilla gorilla miR-30b stem-loop ACCAAGUUCCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACUUGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17417 MI0002505 lla-mir-30b Lagothrix lagotricha miR-30b stem-loop ACCGAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGAGAGGUGGAUGUUUACUUCAGCUGACUUGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17418 MI0002506 mne-mir-30b Macaca nemestrina miR-30b stem-loop ACCAAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACUUGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17419 MI0002507 age-mir-30b Ateles geoffroyi miR-30b stem-loop ACCGAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGAGAGGUGGAUGUUUACUUCAGCUGACUUGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17420 MI0002508 ppa-mir-30b Pan paniscus miR-30b stem-loop ACCAAGUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACUUGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17421 MI0002509 ggo-mir-125b-1 Gorilla gorilla miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17422 MI0002510 age-mir-125b-1 Ateles geoffroyi miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17423 MI0002511 ppa-mir-125b Pan paniscus miR-125b stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUAACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUAAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17424 MI0002512 ppy-mir-125b-1 Pongo pygmaeus miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17425 MI0002513 ptr-mir-125b-1 Pan troglodytes miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17426 MI0002514 mml-mir-125b-1 Macaca mulatta miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17427 MI0002515 sla-mir-125b Saguinus labiatus miR-125b stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17428 MI0002516 lla-mir-125b-1 Lagothrix lagotricha miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17429 MI0002517 mne-mir-125b-1 Macaca nemestrina miR-125b-1 stem-loop UGCGCUCCUCUCAGUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGUGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17430 MI0002518 mml-mir-128a Macaca mulatta miR-128a stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17431 MI0002519 ptr-mir-128 Pan troglodytes miR-128 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17432 MI0002520 ppy-mir-128 Pongo pygmaeus miR-128 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17433 MI0002521 sla-mir-128 Saguinus labiatus miR-128 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17434 MI0002522 age-mir-128 Ateles geoffroyi miR-128 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17435 MI0002523 ppa-mir-128 Pan paniscus miR-128 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17436 MI0002524 mml-mir-130a Macaca mulatta miR-130a stem-loop UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUACUGUCUGCACCUGUCACUAGCAGUGCAAUGUUAAAAGGGCAUUGGCCCCCCAGUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17437 MI0002525 ggo-mir-130a Gorilla gorilla miR-130a stem-loop UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUACUGUCUGCACCUGUCACUAGCAGUGCAAUGUUAAAAGGGCAUUGGCCGUGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17438 MI0002526 mne-mir-130a Macaca nemestrina miR-130a stem-loop UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUACUGUCUGCACCUGUCACUAGCAGUGCAAUGUUAAAAGGGCAUUGGCCGUGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17439 MI0002527 ppa-mir-130a Pan paniscus miR-130a stem-loop UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUACUGUCUGCACCUGUCACUAGCAGUGCAAUGUUAAAAGGGCAUUGGCCGUGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17440 MI0002528 ggo-mir-133a Gorilla gorilla miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17441 MI0002529 age-mir-133a Ateles geoffroyi miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17442 MI0002530 ppa-mir-133a Pan paniscus miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17443 MI0002531 ppy-mir-133a Pongo pygmaeus miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17444 MI0002532 ptr-mir-133a Pan troglodytes miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17445 MI0002533 mml-mir-133a Macaca mulatta miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17446 MI0002534 sla-mir-133a Saguinus labiatus miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17447 MI0002535 lla-mir-133a Lagothrix lagotricha miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17448 MI0002536 mne-mir-133a Macaca nemestrina miR-133a stem-loop ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17449 MI0002537 lla-mir-135-1 Lagothrix lagotricha miR-135-1 stem-loop AGGCCUCGCUGUUCUCUAUGGCUUUUUAUUCCUAUGUGAUUCUACUGCUCACUCAUAUAGGGAUUGGAGCCGUGGCGCACGGCGGGGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17450 MI0002538 age-mir-135-1 Ateles geoffroyi miR-135-1 stem-loop AGGCCUCGCUGUUCUCUAUGGCUUUUUAUUCCUAUGUGAUUCUACUGCUCACUCAUAUAGGGAUUGGAGCCGUGGCGCACGGCGGGGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17451 MI0002539 ppa-mir-135-1 Pan paniscus miR-135-1 stem-loop AGGCCUCGCUGUUCUCUAUGGCUUUUUAUUCCUAUGUGAUUCUACUGCUCACUCAUAUAGGGAUUGGAGCCGUGGCGCACGGCGGGGACG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17452 MI0002540 mml-mir-135a-2 Macaca mulatta miR-135a-2 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17453 MI0002541 ptr-mir-135 Pan troglodytes miR-135 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17454 MI0002542 ggo-mir-135 Gorilla gorilla miR-135 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17455 MI0002543 ppy-mir-135 Pongo pygmaeus miR-135 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17456 MI0002544 lla-mir-135-2 Lagothrix lagotricha miR-135-2 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGCACCACAUAAUGUAAAAUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17457 MI0002545 age-mir-135-2 Ateles geoffroyi miR-135-2 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17458 MI0002546 ppa-mir-135-2 Pan paniscus miR-135-2 stem-loop AGAUAAAUUCACUCUAGUGCUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17459 MI0002547 ptr-mir-140 Pan troglodytes miR-140 stem-loop UGUGUCUCUCUCUGUGUCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACCGGGGCACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17460 MI0002548 mne-mir-140 Macaca nemestrina miR-140 stem-loop UGUGUCUCUCUCUGUGUCCUGCCAGUGGUUCUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACCGGGGCACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17461 MI0002549 ptr-mir-143 Pan troglodytes miR-143 stem-loop GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUUUUCUGCAGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17462 MI0002550 ggo-mir-143 Gorilla gorilla miR-143 stem-loop GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUGUUCUGCAGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17463 MI0002551 ppy-mir-143 Pongo pygmaeus miR-143 stem-loop GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUGUUCUGCAGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17464 MI0002552 lla-mir-143 Lagothrix lagotricha miR-143 stem-loop GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUGUUCUGCAGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17465 MI0002553 ppa-mir-143 Pan paniscus miR-143 stem-loop GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUUUUCUGCAGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17466 MI0002554 ptr-mir-144 Pan troglodytes miR-144 stem-loop UGGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGCGAUGAGACACUACAGUAUAGAUGAUGUACUAGUCCGGGCACCCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17467 MI0002555 ppy-mir-144 Pongo pygmaeus miR-144 stem-loop UGGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGCGAUGAGACACUACAGUAUAGAUGAUGUACUAGUCUGGGCACCCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17468 MI0002556 mne-mir-144 Macaca nemestrina miR-144 stem-loop UGGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGUGAUGAGACACUACAGUAUAGAUGAUGUACUAGUCCGGGCACCCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17469 MI0002557 ppa-mir-144 Pan paniscus miR-144 stem-loop UGGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGCGAUGAGACACUACAGUAUAGAUGAUGUACUACUCCGGGCACCCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17470 MI0002558 mml-mir-145 Macaca mulatta miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAAAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17471 MI0002559 ptr-mir-145 Pan troglodytes miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17472 MI0002560 ggo-mir-145 Gorilla gorilla miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17473 MI0002561 ppy-mir-145 Pongo pygmaeus miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17474 MI0002562 mne-mir-145 Macaca nemestrina miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAAAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17475 MI0002563 mml-mir-153-1 Macaca mulatta miR-153-1 stem-loop CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAUUCUCACUCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGCAGGUGUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17476 MI0002564 ppy-mir-153 Pongo pygmaeus miR-153 stem-loop CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAUUCUCACUCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGCAGGUGUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17477 MI0002565 mne-mir-153-1 Macaca nemestrina miR-153-1 stem-loop CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAUUCUCACUCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGCAGGUGUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17478 MI0002566 mml-mir-153-2 Macaca mulatta miR-153-2 stem-loop AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17479 MI0002567 ggo-mir-153 Gorilla gorilla miR-153 stem-loop AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17480 MI0002568 mne-mir-153-2 Macaca nemestrina miR-153-2 stem-loop AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGGAAACUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17481 MI0002569 ptr-mir-9 Pan troglodytes miR-9 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17482 MI0002570 ggo-mir-9 Gorilla gorilla miR-9 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17483 MI0002571 lla-mir-9 Lagothrix lagotricha miR-9 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17484 MI0002572 mne-mir-9 Macaca nemestrina miR-9 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17485 MI0002573 age-mir-9 Ateles geoffroyi miR-9 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17486 MI0002574 ggo-mir-125b-2 Gorilla gorilla miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17487 MI0002575 age-mir-125b-2 Ateles geoffroyi miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17488 MI0002576 lca-mir-125b Lemur catta miR-125b stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17489 MI0002577 ppy-mir-125b-2 Pongo pygmaeus miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17490 MI0002578 ptr-mir-125b-2 Pan troglodytes miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17491 MI0002579 mml-mir-125b-2 Macaca mulatta miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17492 MI0002580 lla-mir-125b-2 Lagothrix lagotricha miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17493 MI0002581 mne-mir-125b-2 Macaca nemestrina miR-125b-2 stem-loop ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17494 MI0002582 mml-mir-127 Macaca mulatta miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCCUCAUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17495 MI0002583 ptr-mir-127 Pan troglodytes miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCAUCAUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17496 MI0002584 ppy-mir-127 Pongo pygmaeus miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCAUCAUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17497 MI0002585 sla-mir-127 Saguinus labiatus miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCAUCAUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17498 MI0002586 lla-mir-127 Lagothrix lagotricha miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCAUCAUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17499 MI0002587 mne-mir-127 Macaca nemestrina miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCCUCAUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17500 MI0002588 age-mir-127 Ateles geoffroyi miR-127 stem-loop UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCAUCAUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17501 MI0002589 ggo-mir-134 Gorilla gorilla miR-134 stem-loop UAGGGUGUGUGACUGGUUGACCAGAGGGGCAUGCACUGUGUUCACCCUGUGGGCCACCUAGUCACCAACCCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17502 MI0002590 ppy-mir-134 Pongo pygmaeus miR-134 stem-loop CAGGGUGUGUGACUGGUUGACCAGAGGGGCAUGCACUGUGUUCACCCUGUGGGCCACCUAGUCACCAACCCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17503 MI0002591 mne-mir-134 Macaca nemestrina miR-134 stem-loop CAGGGUGUGUGACUGGUUGACCAGAGGGGCAUGCACUGUGUUCACCCUGUGGGCCACCUAGUCACCAACCCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17504 MI0002592 ppa-mir-134 Pan paniscus miR-134 stem-loop CAGGGUGUGUGACUGGUUGACCAGAGGGGCAUGCACUGUGUUCACCCUGUGGGCCACCUAGUCACCAACCCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17505 MI0002593 ptr-mir-136 Pan troglodytes miR-136 stem-loop UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17506 MI0002594 ggo-mir-136 Gorilla gorilla miR-136 stem-loop UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17507 MI0002595 ppy-mir-136 Pongo pygmaeus miR-136 stem-loop UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17508 MI0002596 ppa-mir-136 Pan paniscus miR-136 stem-loop UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17509 MI0002597 ptr-mir-154 Pan troglodytes miR-154 stem-loop GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17510 MI0002598 ggo-mir-154 Gorilla gorilla miR-154 stem-loop GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17511 MI0002599 ppy-mir-154 Pongo pygmaeus miR-154 stem-loop GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17512 MI0002600 mne-mir-154 Macaca nemestrina miR-154 stem-loop GAGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17513 MI0002601 ppa-mir-154 Pan paniscus miR-154 stem-loop GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17514 MI0002602 ptr-mir-184 Pan troglodytes miR-184 stem-loop CCAGUCACGUCCCCUUAUCACUUUUCCAGCCCAGCUUUGUGACUGUAAGUGUUGGACGGAGAACUGAUAAGGGUAGGUGAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17515 MI0002603 ppy-mir-184 Pongo pygmaeus miR-184 stem-loop CCAGUCACGUCCCCUUAUCACUUUUCCAGCCCAGCUUUGUGACUGUAAGUGUUGGACGGAGAACUGAUAAGGGUAGGUGAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17516 MI0002604 mne-mir-184 Macaca nemestrina miR-184 stem-loop UCAGUCACGUCCCCUUAUCACUUUUCCAGCCCAGCUUUAUGACUGUAAGUGUUGGACGGAGAACUGAUAAGGGUAGGUGAUUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17517 MI0002605 ptr-mir-186 Pan troglodytes miR-186 stem-loop UGCUUGUAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUGGUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUGAGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17518 MI0002606 ggo-mir-186 Gorilla gorilla miR-186 stem-loop UGCUUGUAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUGGUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUGAGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17519 MI0002607 ppa-mir-186 Pan paniscus miR-186 stem-loop UGCUUGUAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUGGUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUGAGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17520 MI0002608 mml-mir-188 Macaca mulatta miR-188 stem-loop UGCUCCCUCUCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUUUAUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGAUGGUGAGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17521 MI0002609 ptr-mir-188 Pan troglodytes miR-188 stem-loop UGCUCCCUCUCUCACAUCCCUUGCAUGGUGGAGGGUGAACUUUCUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGAUGGCGAGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17522 MI0002610 ppy-mir-188 Pongo pygmaeus miR-188 stem-loop UGCUCCCUCUCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUUUCUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGAUGGCGAGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17523 MI0002611 mne-mir-188 Macaca nemestrina miR-188 stem-loop UGCUCCCUCUCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUUUAUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGAUGGUGAGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17524 MI0002612 ppa-mir-188 Pan paniscus miR-188 stem-loop UGCUCCCUCUCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUUUCUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGAUGGCGAGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17525 MI0002613 mml-mir-190a Macaca mulatta miR-190a stem-loop UGCAGGCCUCUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCUUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17526 MI0002614 ptr-mir-190 Pan troglodytes miR-190 stem-loop UGCAGGCCUCUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCUUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17527 MI0002615 ggo-mir-190 Gorilla gorilla miR-190 stem-loop UGCAGGCCUCUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCUUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17528 MI0002616 ppa-mir-190 Pan paniscus miR-190 stem-loop UGCAGGCCUCUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUUAAUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCUUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17529 MI0002617 ggo-mir-195 Gorilla gorilla miR-195 stem-loop AGCUUCCUGGGCUCUAGCAGCACAGAAAUAUUGGCACAGGGAAGCGAGUCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUGGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17530 MI0002618 ppa-mir-195 Pan paniscus miR-195 stem-loop AGCUUCCCUGGCUCUAGCAGCACAGAAAUAUUGGCACAGGGAAGCGAGUCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUGGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17531 MI0002619 ppy-mir-206 Pongo pygmaeus miR-206 stem-loop UGCUUCCCGAGGCCACAUGCUUCUUUAUAUCCCCAUAUGGAUUACUUUGCUAUGGAAUGUAAGGAAGUGUGUGGUUUCGGCAAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17532 MI0002620 mne-mir-206 Macaca nemestrina miR-206 stem-loop UGCUUCCCGAGGCCACAUGCUUCUUUAUAUCCCCAUAUGGAUUACUUUGCUAUGGAAUGUAAGGAAGUGUGUGGUUUCGGCAAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17533 MI0002621 mml-mir-21 Macaca mulatta miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17534 MI0002622 ptr-mir-21 Pan troglodytes miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17535 MI0002623 ggo-mir-21 Gorilla gorilla miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17536 MI0002624 ppy-mir-21 Pongo pygmaeus miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17537 MI0002625 mne-mir-21 Macaca nemestrina miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17538 MI0002626 age-mir-21 Ateles geoffroyi miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17539 MI0002627 ppa-mir-21 Pan paniscus miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17540 MI0002628 age-mir-22 Ateles geoffroyi miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17541 MI0002629 ppa-mir-22 Pan paniscus miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17542 MI0002630 lca-mir-22 Lemur catta miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17543 MI0002631 mml-mir-22 Macaca mulatta miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17544 MI0002632 ppy-mir-22 Pongo pygmaeus miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17545 MI0002633 ptr-mir-22 Pan troglodytes miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17546 MI0002634 sla-mir-22 Saguinus labiatus miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCCGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17547 MI0002635 lla-mir-22 Lagothrix lagotricha miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17548 MI0002636 mne-mir-22 Macaca nemestrina miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17549 MI0002637 mml-mir-24-1 Macaca mulatta miR-24/miR-189 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACACACUGGCUCAGUUCAGCAGGAACAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17550 MI0002638 ppy-mir-24-1 Pongo pygmaeus miR-24/miR-189 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACACACUGGCUCAGUUCAGCAGGAACAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17551 MI0002639 mne-mir-24-1 Macaca nemestrina miR-24/miR-189 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACACACUGGCUCAGUUCAGCAGGAACAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17552 MI0002640 ppa-mir-24-1 Pan paniscus miR-24/miR-189 stem-loop CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACACACUGGCUCAGUUCAGCAGGAACAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17553 MI0002641 ptr-mir-26a Pan troglodytes miR-26a stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17554 MI0002642 ggo-mir-26a Gorilla gorilla miR-26a stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17555 MI0002643 ppy-mir-26a Pongo pygmaeus miR-26a stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17556 MI0002644 lla-mir-26a Lagothrix lagotricha miR-26a stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17557 MI0002645 mne-mir-26a Macaca nemestrina miR-26a stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGAUUACUUGCACGGGGACGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17558 MI0002646 mml-mir-26a-1 Macaca mulatta miR-26a-1 stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17559 MI0002647 ppa-mir-26a Pan paniscus miR-26a stem-loop GUGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17560 MI0002648 age-mir-28 Ateles geoffroyi miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUGCCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17561 MI0002649 mml-mir-28 Macaca mulatta miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUUCCUUUGUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17562 MI0002650 ptr-mir-28 Pan troglodytes miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUACCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17563 MI0002651 ggo-mir-28 Gorilla gorilla miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUACCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17564 MI0002652 ppy-mir-28 Pongo pygmaeus miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUACCUUUCUGAUUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17565 MI0002653 mne-mir-28 Macaca nemestrina miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUUCCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17566 MI0002654 sla-mir-28 Saguinus labiatus miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUGCCUUUCUAACUUUCCCACUAGAUUGUAAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17567 MI0002655 lla-mir-28 Lagothrix lagotricha miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUGCCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17568 MI0002656 ppa-mir-28 Pan paniscus miR-28 stem-loop GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAGUUACCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCACU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17569 MI0002657 ggo-mir-29a Gorilla gorilla miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17570 MI0002658 age-mir-29a Ateles geoffroyi miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17571 MI0002659 ppa-mir-29a Pan paniscus miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17572 MI0002660 ppy-mir-29a Pongo pygmaeus miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17573 MI0002661 ptr-mir-29a Pan troglodytes miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17574 MI0002662 mml-mir-29a Macaca mulatta miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17575 MI0002663 sla-mir-29a Saguinus labiatus miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17576 MI0002664 lla-mir-29a Lagothrix lagotricha miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17577 MI0002665 mne-mir-29a Macaca nemestrina miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17578 MI0002666 mml-mir-30a Macaca mulatta miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCAUAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17579 MI0002667 ptr-mir-30a Pan troglodytes miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17580 MI0002668 ggo-mir-30a Gorilla gorilla miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17581 MI0002669 ppy-mir-30a Pongo pygmaeus miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17582 MI0002670 ppa-mir-30a Pan paniscus miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17583 MI0002671 mml-mir-31 Macaca mulatta miR-31 stem-loop GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17584 MI0002672 ptr-mir-31 Pan troglodytes miR-31 stem-loop GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17585 MI0002673 ggo-mir-31 Gorilla gorilla miR-31 stem-loop GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17586 MI0002674 ppy-mir-31 Pongo pygmaeus miR-31 stem-loop GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17587 MI0002675 mne-mir-31 Macaca nemestrina miR-31 stem-loop GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17588 MI0002676 ppa-mir-31 Pan paniscus miR-31 stem-loop GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17589 MI0002677 mml-mir-32 Macaca mulatta miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17590 MI0002678 ptr-mir-32 Pan troglodytes miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17591 MI0002679 ggo-mir-32 Gorilla gorilla miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17592 MI0002680 ppy-mir-32 Pongo pygmaeus miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17593 MI0002681 sla-mir-32 Saguinus labiatus miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17594 MI0002682 mne-mir-32 Macaca nemestrina miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17595 MI0002683 ppa-mir-32 Pan paniscus miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17596 MI0002684 mml-mir-33a Macaca mulatta miR-33a stem-loop CUGCGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGUGGUACCCAUGCAAUGUUUCCACAGUGCAUUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17597 MI0002685 ptr-mir-33 Pan troglodytes miR-33 stem-loop CUGUGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGUGGUACCCAUGCAAUGUUUCCACAGUGCAUCACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17598 MI0002686 ggo-mir-33 Gorilla gorilla miR-33 stem-loop CUGUGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGUGGUACCCAUGCAAUGUUUCCACAGUGCAUCACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17599 MI0002687 ppy-mir-33 Pongo pygmaeus miR-33 stem-loop CUGCGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGUGGUACCCAUGCAAUGUUUCCACAGUGCAUCACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17600 MI0002688 mne-mir-33 Macaca nemestrina miR-33 stem-loop CUGCGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGUGGUACCCAUGCAAUGUUUCCACAGUGCAUUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17601 MI0002689 ppa-mir-33 Pan paniscus miR-33 stem-loop CUGUGGUGCAUUGUAGUUGCAUUGCAUGUUCUGGUGGUACCCAUGCAAUGUUUCCACAGUGCAUCACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17602 MI0002690 ptr-mir-95 Pan troglodytes miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17603 MI0002691 ggo-mir-95 Gorilla gorilla miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17604 MI0002692 ppy-mir-95 Pongo pygmaeus miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17605 MI0002693 sla-mir-95 Saguinus labiatus miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17606 MI0002694 lla-mir-95 Lagothrix lagotricha miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17607 MI0002695 ppa-mir-95 Pan paniscus miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCAUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17608 MI0002696 mml-mir-98 Macaca mulatta miR-98 stem-loop GUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17609 MI0002697 ptr-mir-98 Pan troglodytes miR-98 stem-loop AGGAUUCUGCUCAUGCCAGGGUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCCCUGGUGUGUGGCAUAUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17610 MI0002698 ggo-mir-98 Gorilla gorilla miR-98 stem-loop GUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17611 MI0002699 ppy-mir-98 Pongo pygmaeus miR-98 stem-loop GUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17612 MI0002700 age-mir-98 Ateles geoffroyi miR-98 stem-loop GUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17613 MI0002701 ppa-mir-98 Pan paniscus miR-98 stem-loop GUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17614 MI0002702 mml-mir-99a Macaca mulatta miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17615 MI0002703 ptr-mir-99a Pan troglodytes miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17616 MI0002704 ggo-mir-99a Gorilla gorilla miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17617 MI0002705 ppy-mir-99a Pongo pygmaeus miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUAAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17618 MI0002706 lla-mir-99a Lagothrix lagotricha miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17619 MI0002707 mne-mir-99a Macaca nemestrina miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17620 MI0002708 ppa-mir-99a Pan paniscus miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17621 MI0002709 ggo-mir-100 Gorilla gorilla miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACAAGCUUGUAUCUAUAGGUAUGUGUCUGUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17622 MI0002710 age-mir-100 Ateles geoffroyi miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUGUUAGUCUGCACAAGCUUGUGUCUAUAGGUAUGUGUCUGUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17623 MI0002711 ppa-mir-100 Pan paniscus miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACAAGCUUGUAUCUAUAGGUAUGUGUCUGUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17624 MI0002712 ppy-mir-100 Pongo pygmaeus miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACAAGCUUGUAUCUAUAGGUAUGUGUCUGUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17625 MI0002713 ptr-mir-100 Pan troglodytes miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACAAGCUUGUAUCUAUAGGUAUGUGUCUGUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17626 MI0002714 mml-mir-100 Macaca mulatta miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACAAGCUUGUGUCUAUAGGUAUGUGUCUUUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17627 MI0002715 sla-mir-100 Saguinus labiatus miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUGUUAAUGUGCACAAGCUUGUGUCUAUAGGUAUGUGUCUGUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17628 MI0002716 lla-mir-100 Lagothrix lagotricha miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUGUUAGUCUGCACAAGCUUGUGUCUAUAGGUAUGUGUCUGUUAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17629 MI0002717 ggo-mir-101 Gorilla gorilla miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17630 MI0002718 sla-mir-101 Saguinus labiatus miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17631 MI0002719 age-mir-101 Ateles geoffroyi miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCUAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17632 MI0002720 ppa-mir-101 Pan paniscus miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17633 MI0002721 ppy-mir-101 Pongo pygmaeus miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCUAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17634 MI0002722 ptr-mir-101 Pan troglodytes miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17635 MI0002723 mml-mir-101-1 Macaca mulatta miR-101-1 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17636 MI0002724 lla-mir-101 Lagothrix lagotricha miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17637 MI0002725 mne-mir-101 Macaca nemestrina miR-101 stem-loop UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17638 MI0002726 ppy-mir-29b-1 Pongo pygmaeus miR-29b-1 stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17639 MI0002727 ptr-mir-29b-1 Pan troglodytes miR-29b-1 stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17640 MI0002728 ggo-mir-29b-1 Gorilla gorilla miR-29b-1 stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17641 MI0002729 lla-mir-29b Lagothrix lagotricha miR-29b stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17642 MI0002730 age-mir-29b Ateles geoffroyi miR-29b stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17643 MI0002731 ppa-mir-29b-1 Pan paniscus miR-29b-1 stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17644 MI0002732 ptr-mir-29b-2 Pan troglodytes miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17645 MI0002733 ggo-mir-29b-2 Gorilla gorilla miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17646 MI0002734 ppy-mir-29b-2 Pongo pygmaeus miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17647 MI0002735 sla-mir-29b Saguinus labiatus miR-29b stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17648 MI0002736 mne-mir-29b Macaca nemestrina miR-29b stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17649 MI0002737 ppa-mir-29b-2 Pan paniscus miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17650 MI0002738 age-mir-103 Ateles geoffroyi miR-103 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17651 MI0002739 ggo-mir-103 Gorilla gorilla miR-103 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17652 MI0002740 ppa-mir-103 Pan paniscus miR-103 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17653 MI0002741 ppy-mir-103 Pongo pygmaeus miR-103 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17654 MI0002742 ptr-mir-103 Pan troglodytes miR-103 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17655 MI0002743 mml-mir-103-1 Macaca mulatta miR-103-1 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17656 MI0002744 lla-mir-103 Lagothrix lagotricha miR-103 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17657 MI0002745 mne-mir-103 Macaca nemestrina miR-103 stem-loop UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17658 MI0002746 ppy-mir-105 Pongo pygmaeus miR-105 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17659 MI0002747 ggo-mir-105 Gorilla gorilla miR-105 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17660 MI0002748 ppa-mir-105 Pan paniscus miR-105 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17661 MI0002749 ptr-mir-105 Pan troglodytes miR-105 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUUAUGCACCACGGAUGUUUGAGCAUGUGCUAUGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17662 MI0002750 mml-mir-105-1 Macaca mulatta miR-105-1 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17663 MI0002751 sla-mir-105 Saguinus labiatus miR-105 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17664 MI0002752 lla-mir-105 Lagothrix lagotricha miR-105 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17665 MI0002753 mne-mir-105 Macaca nemestrina miR-105 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17666 MI0002754 mml-mir-107 Macaca mulatta miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17667 MI0002755 ptr-mir-107 Pan troglodytes miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17668 MI0002756 ggo-mir-107 Gorilla gorilla miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17669 MI0002757 ppy-mir-107 Pongo pygmaeus miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17670 MI0002758 lla-mir-107 Lagothrix lagotricha miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17671 MI0002759 mne-mir-107 Macaca nemestrina miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17672 MI0002760 ppa-mir-107 Pan paniscus miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17673 MI0002761 ggo-mir-124a Gorilla gorilla miR-124a stem-loop AUCAAGAUUAGAGGCUCUGCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17674 MI0002762 age-mir-124a Ateles geoffroyi miR-124a stem-loop AUCAAGAUCAGAGGCUCUGCCCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17675 MI0002763 ppa-mir-124a Pan paniscus miR-124a stem-loop AUCAAGAUUAGAGGCUCUGCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17676 MI0002764 ppy-mir-124a Pongo pygmaeus miR-124a stem-loop AUCAAGAUUAGAGGCUCUGCCCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17677 MI0002765 ptr-mir-124a Pan troglodytes miR-124a stem-loop AUCAAGAUUAGAGGCUCUGCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17678 MI0002766 mml-mir-124a-1 Macaca mulatta miR-124a-1 stem-loop AUCAAGAUCAGAGGCUCUGCCCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACUUGAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17679 MI0002767 lla-mir-124a Lagothrix lagotricha miR-124a stem-loop AUCAAGAUCAGAGGCUCUGCCCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUACGACUGCACUUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17680 MI0002768 lla-mir-139 Lagothrix lagotricha miR-139 stem-loop GUGUAUUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17681 MI0002769 ppa-mir-139 Pan paniscus miR-139 stem-loop GUGUAUUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17682 MI0002770 ptr-mir-147 Pan troglodytes miR-147 stem-loop AAUCUAAAGAAAACAUUUCUGCACACACACCAGACUAUGGAAGCCAGUGUGUGGAAAUGCUUCUGCUAGAUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17683 MI0002771 ppy-mir-147 Pongo pygmaeus miR-147 stem-loop AAUCUAAAGAAAACAUUUCUGCACACACACCAGACUAUGGAAGCCAGUGUGUGGAAAUGCUUCUGCUAGAUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17684 MI0002772 sla-mir-147 Saguinus labiatus miR-147 stem-loop AAUCUAAAGAAAACAUUUCUGCACACACACCAGACUAUUGAAGCCAGUGUGUGGAAAUGCUUCUGCCACAUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17685 MI0002773 mne-mir-147 Macaca nemestrina miR-147 stem-loop AAUCUAAAGAAAACAUUUCUGCACACACACCAGACUAUUGAAGCCAGUGUGUGGAAAUGCUUCUGCUACAUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17686 MI0002774 ppa-mir-147 Pan paniscus miR-147 stem-loop AAUCUAAAGAAAACAUUUCUGCACACACACCAGACUAUGGAAGCCAGUGUGUGGAAAUGCUUCUGCUAGAUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17687 MI0002775 ggo-mir-7-1 Gorilla gorilla miR-7-1 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17688 MI0002776 ppy-mir-7-1 Pongo pygmaeus miR-7-1 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17689 MI0002777 sla-mir-7 Saguinus labiatus miR-7 stem-loop UUGGAUAUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAAUUAAAUCGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17690 MI0002778 lla-mir-7 Lagothrix lagotricha miR-7 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17691 MI0002779 mne-mir-7-1 Macaca nemestrina miR-7-1 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUUGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17692 MI0002780 ppa-mir-7-1 Pan paniscus miR-7-1 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17693 MI0002781 ggo-mir-7-2 Gorilla gorilla miR-7-2 stem-loop CUGCAUACAGAGUGGACCGGCUGGCCCCAUCUGGAAGACUAGUGAUUUUGUUGUUGUCUUACUGCGCUCAACAACAAAUCCCAGUCUGCCUAAUGGUGCCAGCCAUCGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17694 MI0002782 ppy-mir-7-2 Pongo pygmaeus miR-7-2 stem-loop CUGGAUACAGAGUGGACCGGCUGGCCCCGUCUGGAAGACUAGUGAUUUUGUUGUUGUCUUACUGCGCUCAACAACAAAUCCCAGUCUGCCUAAUGGUGCCAGCCAUCGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17695 MI0002783 mne-mir-7-2 Macaca nemestrina miR-7-2 stem-loop CUGGAUACAGAGUGAAGUGGCUGGCCCCGUCUGGAAGACUAGUGAUUUUGUUGUUGUCUUACUGCGCUCAACAACGAAUCCCAGUCUGCCGAAUGGUGCCAGCCAUUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17696 MI0002784 ppa-mir-7-2 Pan paniscus miR-7-2 stem-loop CUGGAUACAGAGCGGACCAGCUGGCCCCAUCUGGAAGACUAGUGAUUUUGUUGUUGUCUUACUGCGCUCAACAACAAAUCCCAGUCUACCUAAUGGUGCCAGCCAUCACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17697 MI0002785 ptr-mir-7 Pan troglodytes miR-7 stem-loop AGAUUAGAGUGGCUGUGGUCUAGUGCUGUGUGGAAGACUAGUGAUUUUGUUGUUCUGAUGUACUACGACAACAAGUCACAGCCGGCCUCAUAGCGCAGACUCCCUUCGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17698 MI0002786 ggo-mir-7-3 Gorilla gorilla miR-7-3 stem-loop AGACUGGAGUGGCUGUGGUCUAGUGCUGUGUGGAAGACUAGUGAUUUUGUUGUUCUGAUGUACUACGACAACAAGUCACAGCCGGCCUCACAGCGCAGACUCCCUUCGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17699 MI0002787 ppa-mir-7-3 Pan paniscus miR-7-3 stem-loop AGAUUAGAGUGGCUGUGGUCUAGUGCUGUGUGGAAGACUAGUGAUUUUGUUGUUCUGAUGUACUACGACAACAAGUCACAGCCGGCCUCAUAGCGCAGACUCCCUUCGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17700 MI0002788 ggo-mir-10a Gorilla gorilla miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17701 MI0002789 ppy-mir-10a Pongo pygmaeus miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCCGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUUUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17702 MI0002790 sla-mir-10a Saguinus labiatus miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17703 MI0002791 age-mir-10a Ateles geoffroyi miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17704 MI0002792 ppa-mir-10a Pan paniscus miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACACAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUACACACUCCGCUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17705 MI0002793 ggo-mir-10b Gorilla gorilla miR-10b stem-loop CCAGACAUUGUAACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUAUCCAUAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17706 MI0002794 mne-mir-10b Macaca nemestrina miR-10b stem-loop CAGAGGUUGUAACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUAUCCAUAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17707 MI0002795 ppa-mir-10b Pan paniscus miR-10b stem-loop CCAGAGGUUGUAACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUAUCCGUAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17708 MI0002796 ggo-mir-34a Gorilla gorilla miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGGGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17709 MI0002797 age-mir-34a Ateles geoffroyi miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGUGCAAUAGUGAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGGGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17710 MI0002798 ppa-mir-34a Pan paniscus miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGCCCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17711 MI0002799 ppy-mir-34a Pongo pygmaeus miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGGGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17712 MI0002800 ptr-mir-34a Pan troglodytes miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGGGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17713 MI0002801 mml-mir-34a Macaca mulatta miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUACACAUUGUGGGGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17714 MI0002802 sla-mir-34a Saguinus labiatus miR-34a stem-loop GGCCGGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUGAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGGGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17715 MI0002803 lla-mir-34a Lagothrix lagotricha miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUGAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGGGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17716 MI0002804 mne-mir-34a Macaca nemestrina miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUACACAUUGUGGGGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17717 MI0002805 ggo-mir-181a-2 Gorilla gorilla mir-181a-2 stem-loop AGAAGGGCUAUCAGGCCAGGCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACUGACCGUUGACUGUACCUUGGGGUCCUUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17718 MI0002806 ppa-mir-181a-2 Pan paniscus mir-181a-2 stem-loop AGAAGGGCUAUCAGGCCAGCCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACUGACCGUUGACUGUACCUUGGGGUCCUUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17719 MI0002807 ptr-mir-181a-2 Pan troglodytes mir-181a-2 stem-loop AGAAGGGCUAUCAGGCCAGCCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACUGACCGUUGACUGUACCUUGGGGUCCUUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17720 MI0002808 mml-mir-181a-2 Macaca mulatta mir-181a-2 stem-loop AGAAGGGCUAUCAGGCCAGCCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACUGACCGUUGACUGUACCUCGGGGUCCUUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17721 MI0002809 sla-mir-181a-2 Saguinus labiatus mir-181a-2 stem-loop AGAAGGGCUACCAGGCCAACCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGACUUGAAAAAAAACCACUGACCGUUGACUGUACCUUGGGGUCCUUA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17722 MI0002810 mne-mir-181a-2 Macaca nemestrina mir-181a-2 stem-loop AGAAGGGCUAUCAGGCCAGCCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACUGACCGUUGACUGUACCUCGGGGUCCCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17723 MI0002811 mml-mir-181c Macaca mulatta miR-181c stem-loop CGGAGAAUUUGCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACCCUGAGACCUGGACUUGCCAUCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17724 MI0002812 ptr-mir-181c Pan troglodytes miR-181c stem-loop CGGAAAAUUUGCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACCCUGAGGCCUGGAAUUGCCAUCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17725 MI0002813 ggo-mir-181c Gorilla gorilla miR-181c stem-loop CGGAAAAUUUGCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACCCUGAGGCCUGGAAUUGCCAUCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17726 MI0002814 ppa-mir-181c Pan paniscus miR-181c stem-loop CGGAAAAUUUGCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACCCUGAGGCCUGGAAUUGCCAUCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17727 MI0002815 mml-mir-182 Macaca mulatta miR-182 stem-loop CACAGCUGCUUGCCUCCCCCUGUUUUUGGCAAUGGUAGAACUCACACUGGUGAGGUAAUGGGAUCCGGUGGUUCUAGACUUGCCAACUACGGGGCGAGGGCUCAGCCGGCAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17728 MI0002816 ppy-mir-182 Pongo pygmaeus miR-182 stem-loop CACAGCUGCUUGCCUUCCCCCGUUUUUGGCAAUGGUAGAACUCACACUGGUGAGGUAACAGGAUCCGGUGGUUCUAGACUUGCCAACUAUGGGGCGAGGACUCAGCCGGCAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17729 MI0002817 ggo-mir-187 Gorilla gorilla miR-187 stem-loop GGUCGGGCUCACCAUGACACAGUGUGAGACCUCGGGCUACAACACAGGACCCGGGCGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCCGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17730 MI0002818 ppy-mir-187 Pongo pygmaeus miR-187 stem-loop GGUUGGGCUCACCAUGACACAGUGUGAGACCUCGGGCUACAACAUAGGACCCGGGCGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCCGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17731 MI0002819 mne-mir-187 Macaca nemestrina miR-187 stem-loop GGUCAGGCUCACUAUGACACAGUGUGAGACCUCGGGCUACAACACAGGACCCGGGUGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCCGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17732 MI0002820 ppa-mir-187 Pan paniscus miR-187 stem-loop GGUCGGGCUCACCAUGACACAGUGUGAGACCUCGGGCUACAACACAGGACCCGGGCGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCCGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17733 MI0002821 mml-mir-196a-1 Macaca mulatta miR-196a-1 stem-loop GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAACACAACAACAUUAAACCACCCGAUUCAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17734 MI0002822 ggo-mir-196-1 Gorilla gorilla miR-196-1 stem-loop GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAACACAACAACAUUAAACCACCCGAUUCAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17735 MI0002823 ppy-mir-196-1 Pongo pygmaeus miR-196-1 stem-loop GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAACACAACAACAUUAAACCACCCGAUUCAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17736 MI0002824 ptr-mir-196 Pan troglodytes miR-196 stem-loop UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17737 MI0002825 ggo-mir-196-2 Gorilla gorilla miR-196-2 stem-loop UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17738 MI0002826 ppy-mir-196-2 Pongo pygmaeus miR-196-2 stem-loop UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17739 MI0002827 lla-mir-196 Lagothrix lagotricha miR-196 stem-loop UGCUUGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17740 MI0002828 age-mir-196 Ateles geoffroyi miR-196 stem-loop UGCUUGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17741 MI0002829 ppa-mir-196 Pan paniscus miR-196 stem-loop UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17742 MI0002830 ggo-mir-199a Gorilla gorilla miR-199a stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17743 MI0002831 ppa-mir-199a Pan paniscus miR-199a stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17744 MI0002832 ppy-mir-199a Pongo pygmaeus miR-199a stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17745 MI0002833 ptr-mir-199a Pan troglodytes miR-199a stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17746 MI0002834 mml-mir-199a-1 Macaca mulatta miR-199a-1 stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17747 MI0002835 sla-mir-199a Saguinus labiatus miR-199a stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17748 MI0002836 lla-mir-199a Lagothrix lagotricha miR-199a stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17749 MI0002837 mne-mir-199a Macaca nemestrina miR-199a stem-loop AGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAGAGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17750 MI0002838 ptr-mir-204 Pan troglodytes miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17751 MI0002839 ggo-mir-204 Gorilla gorilla miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17752 MI0002840 ppy-mir-204 Pongo pygmaeus miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17753 MI0002841 sla-mir-204 Saguinus labiatus miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17754 MI0002842 mne-mir-204 Macaca nemestrina miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17755 MI0002843 ppa-mir-204 Pan paniscus miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17756 MI0002844 ggo-mir-205 Gorilla gorilla miR-205 stem-loop AAAGAUCCUCAGACAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17757 MI0002845 age-mir-205 Ateles geoffroyi miR-205 stem-loop AAAGAUCCUCGGGCAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUCAGGAGGCAUGGAGCUGACG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17758 MI0002846 ppa-mir-205 Pan paniscus miR-205 stem-loop AAAGAUCCUCAGACAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17759 MI0002847 ptr-mir-205 Pan troglodytes miR-205 stem-loop AAAGAUCCUCAGACAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCUGACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17760 MI0002848 lla-mir-205 Lagothrix lagotricha miR-205 stem-loop AAAGAUCCUCGGGCAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCUGACG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17761 MI0002849 mne-mir-205 Macaca nemestrina miR-205 stem-loop AAAGAUCCUCAGGCAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCUGACG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17762 MI0002850 mml-mir-211 Macaca mulatta miR-211 stem-loop UCACUGGCCAUGUGACUUGUGGGCUUCCCUUUGUCAUCCUUUGCCUAGGGCUCUGAGCAGGGCAGGGACAGCAAAGGGGUGCUCAGUUGUCACUUCCCACAGCACAGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17763 MI0002851 ppy-mir-211 Pongo pygmaeus miR-211 stem-loop UCACCCAGCCAUGUGACUUGUGGACUUCCCUUUGUCAUCCUUCGCCUAGGGCUCUGAGCAGGGCAGGGACAGCAAAGGGGUGCUCAGUUGUCACUUCCCACAGCACGGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17764 MI0002852 mne-mir-211 Macaca nemestrina miR-211 stem-loop UCACUGGCCAUGUGACUUGUGGGCUUCCCUUUGUCAUCCUUCGCCUAGGGCUCUGAGCAGGGCAGGGACAGCAAAGGGGUGCUCAGUUGUCACUUCCCACAGCACAGAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17765 MI0002853 ggo-mir-214 Gorilla gorilla miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17766 MI0002854 age-mir-214 Ateles geoffroyi miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17767 MI0002855 ppa-mir-214 Pan paniscus miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17768 MI0002856 ppy-mir-214 Pongo pygmaeus miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17769 MI0002857 ptr-mir-214 Pan troglodytes miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17770 MI0002858 mml-mir-214 Macaca mulatta miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17771 MI0002859 sla-mir-214 Saguinus labiatus miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17772 MI0002860 mne-mir-214 Macaca nemestrina miR-214 stem-loop GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17773 MI0002861 lca-mir-216 Lemur catta miR-216 stem-loop GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUAGCCCUCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17774 MI0002862 ptr-mir-216 Pan troglodytes miR-216 stem-loop GAUGGCUGUGAGUUGGCUUAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAAACUAAACAGAGCAAUUUCCUAGCCCUCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17775 MI0002863 ggo-mir-216 Gorilla gorilla miR-216 stem-loop GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUAGCCCUCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17776 MI0002864 ppy-mir-216 Pongo pygmaeus miR-216 stem-loop GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUUGCCCUCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17777 MI0002865 ppa-mir-216 Pan paniscus miR-216 stem-loop GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUCCUAGCCCUCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17778 MI0002866 ggo-mir-217 Gorilla gorilla miR-217 stem-loop AGUAUAAUUAUUACAUAGUUUUUGAUGUCGCAGAUACUGCAUCAGGAACUGAUUGGAUAAGAAUCAGUCACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAAACAAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17779 MI0002867 ppa-mir-217 Pan paniscus miR-217 stem-loop AGUAUAAUUAUUACAUAGUUUUUGAUGUCGCAGAUACUGCAUCAGGAACUGAUUGGAUAAGAAUCAGUCACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAAACAAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17780 MI0002868 ggo-mir-218 Gorilla gorilla miR-218 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17781 MI0002869 age-mir-218 Ateles geoffroyi miR-218 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17782 MI0002870 ppa-mir-218-1 Pan paniscus miR-218-1 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17783 MI0002871 lca-mir-218 Lemur catta miR-218 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCCAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17784 MI0002872 ppy-mir-218-1 Pongo pygmaeus miR-218-1 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17785 MI0002873 ptr-mir-218-1 Pan troglodytes miR-218-1 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17786 MI0002874 sla-mir-218-1 Saguinus labiatus miR-218-1 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17787 MI0002875 lla-mir-218-1 Lagothrix lagotricha miR-218-1 stem-loop GUGAUAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17788 MI0002876 mne-mir-218-1 Macaca nemestrina miR-218-1 stem-loop GUGACAAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17789 MI0002877 ppa-mir-218-2 Pan paniscus miR-218-2 stem-loop GACCAGUCGCUGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17790 MI0002878 ppy-mir-218-2 Pongo pygmaeus miR-218-2 stem-loop GACCAGUCGCUGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17791 MI0002879 ptr-mir-218-2 Pan troglodytes miR-218-2 stem-loop GACCAGUCGCUGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17792 MI0002880 mml-mir-218-2 Macaca mulatta miR-218-2 stem-loop GACCAGUCGCUGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17793 MI0002881 sla-mir-218-2 Saguinus labiatus miR-218-2 stem-loop GACCAGUCGCUGCGGAGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17794 MI0002882 lla-mir-218-2 Lagothrix lagotricha miR-218-2 stem-loop GACCAGUCGCUGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17795 MI0002883 mne-mir-218-2 Macaca nemestrina miR-218-2 stem-loop GACCAGUCGCUGCGGGGCUUUCCUUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCCUGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17796 MI0002884 mml-mir-219-1 Macaca mulatta miR-219-1 stem-loop CCGCCCCGGGCCGCGGCUCCUGAUUGUCCAAACGCAAUUCUCGAGUCUAUGGCUCUGGCCGAGAGUUGAGUCUGGACGUCCCGAGCCGCCGCCCCCAAACCUCGAGGGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17797 MI0002885 ggo-mir-219 Gorilla gorilla miR-219 stem-loop CCGCCCCGGGCCGCGGCUCCUGAUUGUCCAAACGCAAUUCUCGAGUCUAUGGCUCCGGCCGAGAGUUGAGUCUGGACGUCCCGAGCCGCCGCCCCCAAACCUCGAGCGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17798 MI0002886 ppy-mir-219 Pongo pygmaeus miR-219 stem-loop CCGCCCCGGGCCGCGGCUCCUGAUUGUCCAAACGCAAUUCUCGAGUCUAUGGCCCCGGCCGAGAGUUGAGUCUGGACGUCCCGAGCCGCCGCCCCCAAACCUCGAGCGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17799 MI0002887 mml-mir-220a Macaca mulatta miR-220a stem-loop GACAGCGUGGCAUUGUAGGGCUCCACCACCAUGUCUGACACUUUGGGUGAGAGCACCACGCUGAAGGUGUUCAUAAUGUGGUCUGGGAACUCCUUGUGGAUCUUACUGAUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17800 MI0002888 ptr-mir-220 Pan troglodytes miR-220 stem-loop GACAGCAUGGCAUUGUAGGGCUCCACACCGUAUCUGACACUUUGGGCGAGGGCACCAUGCUGAAGGUGUUCAUGAUGCAGUCUGGGAACUCCUCACGGAUCUUACUGAUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17801 MI0002889 ggo-mir-220 Gorilla gorilla miR-220 stem-loop GACAGCGUGGCAUUGUAGGGCUCCACACCGUGUCUGACACUUUGGGCGAGGGCACCAUGCUGAAGGUGUUCAUGAUGUGAUCUGGGAACUCCUCACGGAUCUUACUGAUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17802 MI0002890 mne-mir-220 Macaca nemestrina miR-220 stem-loop GACAGCGUGGCAUUGUAGGCUCCACCACCAUGUCUGACACUUUGGGUGAGAGCACCACGCUGAAGGUGUUCAUAAUGUGGUCUGGGAACUCCUUGUGGAUCUUACUGAUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17803 MI0002891 ppa-mir-220 Pan paniscus miR-220 stem-loop GACAGCAUGGCAUUGUAGGGCUCCACACCGUAUCUGACACUUUGGGCGAGGGCACCAUGCUGAAGGUGUUCAUGAUGCAGUCUGGGAACUCCUCACGGAUCUUACUGAUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17804 MI0002892 mml-mir-221 Macaca mulatta miR-221 stem-loop UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUCGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAACAUGUUCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17805 MI0002893 ggo-mir-221 Gorilla gorilla miR-221 stem-loop UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUCGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAACAUGUUCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17806 MI0002894 ppy-mir-221 Pongo pygmaeus miR-221 stem-loop UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUCGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAACAUGUUCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17807 MI0002895 ppa-mir-221 Pan paniscus miR-221 stem-loop UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUCGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAACAUGUUCUC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17808 MI0002896 age-mir-222 Ateles geoffroyi miR-222 stem-loop UCUGCCGGAAGGUGUGGGUACCCUCAGUGGCUCAGUAGCCAGUGUAGAUCCUGUCUUUUGUAAUCAGUAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUCUUUUAGCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17809 MI0002897 mml-mir-223 Macaca mulatta miR-223 stem-loop CCCGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCCGUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGCGGCAUAUGCUUACCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17810 MI0002898 ptr-mir-223 Pan troglodytes miR-223 stem-loop CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCCAUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGCGGCACAUGCUUACCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17811 MI0002899 ggo-mir-223 Gorilla gorilla miR-223 stem-loop CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCCAUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGCGGCACAUGCUUACCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17812 MI0002900 ppy-mir-223 Pongo pygmaeus miR-223 stem-loop CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCUGAGUUAGACACUCCGUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGCGGCACAUGCUUACCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17813 MI0002901 sla-mir-223 Saguinus labiatus miR-223 stem-loop CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCCGUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGCGACACAUGCUUAGCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17814 MI0002902 ppa-mir-223 Pan paniscus miR-223 stem-loop CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCUGAGUUGGACACUCCAUGUGGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGCGGCACAUGCUUACCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17815 MI0002903 mml-mir-224 Macaca mulatta miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17816 MI0002904 ptr-mir-224 Pan troglodytes miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17817 MI0002905 ggo-mir-224 Gorilla gorilla miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17818 MI0002906 ppy-mir-224 Pongo pygmaeus miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17819 MI0002907 mne-mir-224 Macaca nemestrina miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17820 MI0002908 ppa-mir-224 Pan paniscus miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17821 MI0002909 ptr-mir-197 Pan troglodytes miR-197 stem-loop GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGCAUGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17822 MI0002910 ppy-mir-197 Pongo pygmaeus miR-197 stem-loop GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGCAUGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17823 MI0002911 mne-mir-197 Macaca nemestrina miR-197 stem-loop GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCGGCAUGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17824 MI0002912 age-mir-197 Ateles geoffroyi miR-197 stem-loop GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGCAUGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17825 MI0002913 ppa-mir-197 Pan paniscus miR-197 stem-loop GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGCAUGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17826 MI0002914 ggo-mir-198 Gorilla gorilla miR-198 stem-loop UCAUUGGUCCAGAGGGGAGAUAGGUUCCUGUGAUUUUUCCUUCUUCUCUAUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17827 MI0002915 age-mir-198 Ateles geoffroyi miR-198 stem-loop UCACUGGUCCAGAGGGGAGCUAGGUACCUGUGAUUUUUCCUUCUUUUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17828 MI0002916 ppa-mir-198 Pan paniscus miR-198 stem-loop UCAUUGGUCCAGAGGGGAGAUAGGUUCCUGUGAUUUUUCCUUCUUCUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17829 MI0002917 ppy-mir-198 Pongo pygmaeus miR-198 stem-loop UCAUUGGUCCAGAGGGGAGAUAGGUUCCUGUGAUUUUUCCUUCUUCUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17830 MI0002918 ptr-mir-198 Pan troglodytes miR-198 stem-loop UCAUUGGUCCAGAGGGGAGAUAGGUUCCUGUGAUUUUUCCUUCUUCUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17831 MI0002919 mml-mir-198 Macaca mulatta miR-198 stem-loop UCAUUGGUCCAGAGGGGAAAUAGGUUCCUGUGAUUUUUCCUUCUUCUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17832 MI0002920 sla-mir-198 Saguinus labiatus miR-198 stem-loop UCAUUGGUCCAGAGGGGAGCUCGAUACCUGUGAUUUUUCCUUCUUUUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17833 MI0002921 lla-mir-198 Lagothrix lagotricha miR-198 stem-loop UCACUGGUCCAGAAGGGAGCUAGGUACUUGUGAUUUUUCCUUCUUUUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17834 MI0002922 mne-mir-198 Macaca nemestrina miR-198 stem-loop UCAUUGGUCCAGAGGGGAAAUAGGUUCCUGUGAUUUUUCCUUCUUCUCUGUAGAAUAAAUGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17835 MI0002923 ptr-mir-30c Pan troglodytes miR-30c stem-loop AGAUACUGUAAACAUCCUACACUCUCAGCUGUGGAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUUUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17836 MI0002924 lla-mir-30c Lagothrix lagotricha miR-30c stem-loop AGAUACUGUAAACAUCCUACACUCUCAGCUGUGGAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUUUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17837 MI0002925 mne-mir-30c Macaca nemestrina miR-30c stem-loop AGAUACUGUAAACAUCCUACACUCUCAGCUGUGGAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUUUCU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17838 MI0002926 ptr-mir-30d Pan troglodytes miR-30d stem-loop GUUGUUGUAAACAUCCCCGACUGGAAGCUGUAAGACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17839 MI0002927 ggo-mir-30d Gorilla gorilla miR-30d stem-loop GUUGUUGUAAACAUCCCCGACUGGAAGCUGUAAGACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17840 MI0002928 mne-mir-30d Macaca nemestrina miR-30d stem-loop GUUGUUGUAAACAUCCCCGACUGGAAGCUGUAAGACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17841 MI0002929 ppa-mir-30d Pan paniscus miR-30d stem-loop GUUGUUGUAAACAUCCCCGACUGGAAGCUGUAAGACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17842 MI0002930 ppa-mir-1 Pan paniscus miR-1 stem-loop ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAUAUGAACAUACAAUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUUGGUAGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17843 MI0002931 mml-mir-181a-1 Macaca mulatta miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUACUCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17844 MI0002932 mml-mir-181b-1 Macaca mulatta miR-181b-1 stem-loop CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUAGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17845 MI0002933 ptr-mir-181a-1 Pan troglodytes miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUACUCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17846 MI0002934 ptr-mir-181b Pan troglodytes miR-181b stem-loop CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17847 MI0002935 ppy-mir-181a-1 Pongo pygmaeus miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUACUCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17848 MI0002936 ppy-mir-181b Pongo pygmaeus miR-181b stem-loop CCUGUGCAGAGAUUAUUGUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17849 MI0002937 ggo-mir-181a-1 Gorilla gorilla miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUUCUCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17850 MI0002938 ggo-mir-181b Gorilla gorilla miR-181b stem-loop CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17851 MI0002939 lla-mir-181a-1 Lagothrix lagotricha miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUACUCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17852 MI0002940 lla-mir-181b Lagothrix lagotricha miR-181b stem-loop CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17853 MI0002941 mne-mir-181a-1 Macaca nemestrina miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUACUCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17854 MI0002942 mne-mir-181b Macaca nemestrina miR-181b stem-loop CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUAGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17855 MI0002943 ppa-mir-181a-1 Pan paniscus miR-181a-1 stem-loop UGAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUACUCCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17856 MI0002944 ppa-mir-181b Pan paniscus miR-181b stem-loop CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCGCUU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17857 MI0002945 age-mir-15a Ateles geoffroyi miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17858 MI0002946 age-mir-16 Ateles geoffroyi miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17859 MI0002947 ggo-mir-15a Gorilla gorilla miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17860 MI0002948 ggo-mir-16 Gorilla gorilla miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17861 MI0002949 mne-mir-15a Macaca nemestrina miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17862 MI0002950 mne-mir-16 Macaca nemestrina miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17863 MI0002951 sla-mir-15a Saguinus labiatus miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17864 MI0002952 sla-mir-16 Saguinus labiatus miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17865 MI0002953 ppa-mir-15a Pan paniscus miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17866 MI0002954 ppa-mir-16 Pan paniscus miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17867 MI0002955 lca-mir-15a Lemur catta miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17868 MI0002956 lca-mir-16 Lemur catta miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGUGUUAAGAUUCUAAAAUUAUCUCUAAGUAUUAACUGUGCCG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17869 MI0002957 mml-mir-15a Macaca mulatta miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17870 MI0002958 mml-mir-16-1 Macaca mulatta miR-16-1 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17871 MI0002959 ppy-mir-15a Pongo pygmaeus miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17872 MI0002960 ppy-mir-16 Pongo pygmaeus miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17873 MI0002961 ptr-mir-15a Pan troglodytes miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17874 MI0002962 ptr-mir-16 Pan troglodytes miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17875 MI0002963 lla-mir-15a Lagothrix lagotricha miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17876 MI0002964 lla-mir-16 Lagothrix lagotricha miR-16 stem-loop GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCGCUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17877 MI0002965 ggo-mir-17 Gorilla gorilla miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17878 MI0002966 ggo-mir-18 Gorilla gorilla miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17879 MI0002967 ggo-mir-19a Gorilla gorilla miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17880 MI0002968 ggo-mir-20 Gorilla gorilla miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17881 MI0002969 ggo-mir-19b-1 Gorilla gorilla miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17882 MI0002970 ggo-mir-92-1 Gorilla gorilla miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17883 MI0002971 lca-mir-17 Lemur catta miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17884 MI0002972 lca-mir-18 Lemur catta miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17885 MI0002973 lca-mir-19a Lemur catta miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17886 MI0002974 lca-mir-20 Lemur catta miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUCAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17887 MI0002975 lca-mir-19b-1 Lemur catta miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUAAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17888 MI0002976 lca-mir-92-1 Lemur catta miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17889 MI0002977 age-mir-17 Ateles geoffroyi miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17890 MI0002978 age-mir-18 Ateles geoffroyi miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17891 MI0002979 age-mir-19a Ateles geoffroyi miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGCAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17892 MI0002980 age-mir-20 Ateles geoffroyi miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17893 MI0002981 age-mir-19b-1 Ateles geoffroyi miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17894 MI0002982 age-mir-92-1 Ateles geoffroyi miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17895 MI0002983 ppa-mir-17 Pan paniscus miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17896 MI0002984 ppa-mir-18 Pan paniscus miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17897 MI0002985 ppa-mir-19a Pan paniscus miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17898 MI0002986 ppa-mir-20 Pan paniscus miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17899 MI0002987 ppa-mir-19b-1 Pan paniscus miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17900 MI0002988 ppa-mir-92-1 Pan paniscus miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17901 MI0002989 ppy-mir-17 Pongo pygmaeus miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUACGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17902 MI0002990 ppy-mir-18 Pongo pygmaeus miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17903 MI0002991 ppy-mir-19a Pongo pygmaeus miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17904 MI0002992 ppy-mir-20 Pongo pygmaeus miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17905 MI0002993 ppy-mir-19b-1 Pongo pygmaeus miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17906 MI0002994 ppy-mir-92-1 Pongo pygmaeus miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17907 MI0002995 ptr-mir-17 Pan troglodytes miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17908 MI0002996 ptr-mir-18 Pan troglodytes miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17909 MI0002997 ptr-mir-19a Pan troglodytes miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17910 MI0002998 ptr-mir-20 Pan troglodytes miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17911 MI0002999 ptr-mir-19b-1 Pan troglodytes miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17912 MI0003000 ptr-mir-92-1 Pan troglodytes miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17913 MI0003001 mml-mir-17 Macaca mulatta miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17914 MI0003002 mml-mir-18 Macaca mulatta miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17915 MI0003003 mml-mir-19a Macaca mulatta miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17916 MI0003004 mml-mir-20a Macaca mulatta miR-20a stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17917 MI0003005 mml-mir-19b-1 Macaca mulatta miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17918 MI0003006 mml-mir-92a-1 Macaca mulatta miR-92a-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [2]. The expression of this mature miRNA was validated by Miska et al [1]. 32 17919 MI0003007 sla-mir-17 Saguinus labiatus miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17920 MI0003008 sla-mir-18 Saguinus labiatus miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17921 MI0003009 sla-mir-19a Saguinus labiatus miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17922 MI0003010 sla-mir-20 Saguinus labiatus miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17923 MI0003011 sla-mir-19b-1 Saguinus labiatus miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17924 MI0003012 sla-mir-92-1 Saguinus labiatus miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17925 MI0003013 lla-mir-17 Lagothrix lagotricha miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17926 MI0003014 lla-mir-18 Lagothrix lagotricha miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17927 MI0003015 lla-mir-19a Lagothrix lagotricha miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGCAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17928 MI0003016 lla-mir-20 Lagothrix lagotricha miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17929 MI0003017 lla-mir-19b-1 Lagothrix lagotricha miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17930 MI0003018 lla-mir-92-1 Lagothrix lagotricha miR-92-1 stem-loop CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17931 MI0003019 mne-mir-17 Macaca nemestrina miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17932 MI0003020 mne-mir-18 Macaca nemestrina miR-18 stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17933 MI0003021 mne-mir-19a Macaca nemestrina miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAGGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17934 MI0003022 mne-mir-20 Macaca nemestrina miR-20 stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17935 MI0003023 mne-mir-19b-1 Macaca nemestrina miR-19b-1 stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17936 MI0003024 mml-mir-194-1 Macaca mulatta miR-194-1 stem-loop AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGUACCAAUUUCCAGUGGAGAUGCUGUUACUUUUGAUGGUUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17937 MI0003025 mml-mir-215 Macaca mulatta miR-215 stem-loop AUCAUUAAGAAAUGGUAUACAGGAAAAUGACCUAUGAAUUGACAGACACUAUAGCUGAGUUUGUCUGUCAUUUCUUUAGGCCAAUAUUCUGUAUGACUGUGCUACUUCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17938 MI0003026 ptr-mir-194 Pan troglodytes miR-194 stem-loop AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGUACCAAUUUCCAGUGGAGAUGCUGUUACUUUUGAUGGUUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17939 MI0003027 ptr-mir-215 Pan troglodytes miR-215 stem-loop AUCAUUCAGAAAUGGUAUACGGGAAAAUGACCUAUGAAUUGACAGACAAUAUAGCUGAGUUUGUCUGUCAUUUCUUUAGGCCAAUAUUCUGUAUGACUGUGCUACUUCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17940 MI0003028 ppy-mir-194 Pongo pygmaeus miR-194 stem-loop AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGUACCAAUUUCCAGUGGAGAUGUUGUUACUUUUGAUGGUUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17941 MI0003029 ppy-mir-215 Pongo pygmaeus miR-215 stem-loop AUCAUUCAGAAAUGGUAUACAGGAAAAUGACCUAUGAAUUGACAGACAAUACAGCUGAGUUUGUCUGUCAUUUCUUUAGGCCAAUAUUCUGUACAACUGUGCUACUUCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17942 MI0003030 ggo-mir-194 Gorilla gorilla miR-194 stem-loop AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGUACCAAUUUCCAGUGGAGAUGCUGUUACUUUUGAUGGUUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17943 MI0003031 ggo-mir-215 Gorilla gorilla miR-215 stem-loop AUCAUUCAGAAAUGGUAUACGGGAAAAUGACCUAUGAAUUGACAGACAAUAUAGCUGAGUUUGUCUGUCAUUUCUUUAGACCAAUAUUCUGUAUGACUGUGCUACUUCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17944 MI0003032 mne-mir-194 Macaca nemestrina miR-194 stem-loop AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGUACCAAUUUCCAGUGGAGAUGCUGUUACUUUUGAUGGUUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17945 MI0003033 mne-mir-215 Macaca nemestrina miR-215 stem-loop AUCAUUAAGAAAUGGUAUACAGGAAAAUGACCUAUGAAUUGACAGACACUAUAGCUGAGUUUGUCUGUCAUUUCUUUAGGCCAAUAUUCUGUAUGACUGUGCUACUUCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17946 MI0003034 age-mir-194 Ateles geoffroyi miR-194 stem-loop AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGUACCAAUUUCCAGUGGAGAUGCUGUUACUUUUGAUGGUUACCAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17947 MI0003035 ggo-mir-23a Gorilla gorilla miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17948 MI0003036 ggo-mir-27a Gorilla gorilla miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17949 MI0003037 ggo-mir-24 Gorilla gorilla miR-24 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGGUUUGUGUACACUGGCUCAGUUCAGCAGGAACAGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17950 MI0003038 age-mir-23a Ateles geoffroyi miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUGCCUAUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17951 MI0003039 age-mir-27a Ateles geoffroyi miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUUCACUCCAAGUCAUGUUCACAGUGGCUAAGUUCCGCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17952 MI0003040 ppa-mir-23a Pan paniscus miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17953 MI0003041 ppa-mir-27a Pan paniscus miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17954 MI0003042 ppa-mir-24-2 Pan paniscus miR-24-2 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGGUUUGUGUACACUGGCUCAGUUCAGCAGGAACAGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17955 MI0003043 lca-mir-23a Lemur catta miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUACCUAUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17956 MI0003044 lca-mir-27a Lemur catta miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAAUCAUGUUCACAGUGGCUAAGUUCCGCCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 17957 MI0003045 ppy-mir-23a Pongo pygmaeus miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17958 MI0003046 ppy-mir-27a Pongo pygmaeus miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUUGUGUUCACAGUGGCUAAGUUCCGCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17959 MI0003047 ppy-mir-24-2 Pongo pygmaeus miR-24-2 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGGUUUGUGUACACUGGCUCAGUUCAGCAGGAACAGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17960 MI0003048 ptr-mir-23a Pan troglodytes miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17961 MI0003049 ptr-mir-27a Pan troglodytes miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17962 MI0003050 ptr-mir-24 Pan troglodytes miR-24 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGGUUUGUGUACACUGGCUCAGUUCAGCAGGAACAGGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17963 MI0003051 mml-mir-23a Macaca mulatta miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17964 MI0003052 mml-mir-27a Macaca mulatta miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17965 MI0003053 mml-mir-24-2 Macaca mulatta miR-24-2 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGGUUUGUGCACACUGGCUCAGUUCAGCAGGAACAGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17966 MI0003054 sla-mir-23a Saguinus labiatus miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUGCCUAUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17967 MI0003055 sla-mir-27a Saguinus labiatus miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUUCACUCCAAGUCAUGUUCACAGUGGCUAAGUUCCGCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17968 MI0003056 mne-mir-23a Macaca nemestrina miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17969 MI0003057 mne-mir-27a Macaca nemestrina miR-27a stem-loop CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17970 MI0003058 mne-mir-24-2 Macaca nemestrina miR-24-2 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGGUUUGUGCACACUGGCUCAGUUCAGCAGGAACAGGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17971 MI0003059 ggo-mir-106b Gorilla gorilla miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17972 MI0003060 ggo-mir-93 Gorilla gorilla miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCCGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17973 MI0003061 ggo-mir-25 Gorilla gorilla miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 17974 MI0003062 age-mir-106b Ateles geoffroyi miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17975 MI0003063 age-mir-93 Ateles geoffroyi miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCUGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 17976 MI0003064 ppa-mir-106b Pan paniscus miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17977 MI0003065 ppa-mir-93 Pan paniscus miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCCGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17978 MI0003066 ppa-mir-25 Pan paniscus miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 17979 MI0003067 ppy-mir-106b Pongo pygmaeus miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17980 MI0003068 ppy-mir-93 Pongo pygmaeus miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCCGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17981 MI0003069 ppy-mir-25 Pongo pygmaeus miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 17982 MI0003070 ptr-mir-106b Pan troglodytes miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17983 MI0003071 ptr-mir-93 Pan troglodytes miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCCGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17984 MI0003072 ptr-mir-25 Pan troglodytes miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGCUGAGACGCGCCCGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. The assembled chimp genome sequence forces a single deletion in the 3' region of the chimp mature miRNA with respect to the human and rodent sequences. 37 17985 MI0003073 mml-mir-106b Macaca mulatta miR-106b stem-loop CCUGCUGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17986 MI0003074 mml-mir-93 Macaca mulatta miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUAACCGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17987 MI0003075 mml-mir-25 Macaca mulatta miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17988 MI0003076 sla-mir-106b Saguinus labiatus miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17989 MI0003077 sla-mir-93 Saguinus labiatus miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCCAACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 17990 MI0003078 lla-mir-106b Lagothrix lagotricha miR-106b stem-loop CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGUGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17991 MI0003079 lla-mir-93 Lagothrix lagotricha miR-93 stem-loop CUCGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCUGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17992 MI0003080 lla-mir-25 Lagothrix lagotricha miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 17993 MI0003081 mne-mir-106b Macaca nemestrina miR-106b stem-loop CCUGCUGGGGCUAAAGUGCUGACAGUGCAGAUAGUGGUCCUCUCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17994 MI0003082 mne-mir-93 Macaca nemestrina miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUAACCGACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCAG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17995 MI0003083 mne-mir-25 Macaca nemestrina miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 17996 MI0003084 mml-mir-183 Macaca mulatta miR-183 stem-loop CCGCAGAACGUGACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCGGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17997 MI0003085 mml-mir-96 Macaca mulatta miR-96 stem-loop UGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 17998 MI0003086 ptr-mir-183 Pan troglodytes miR-183 stem-loop CCGCAGAGUGUGACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCAGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 17999 MI0003087 ptr-mir-96 Pan troglodytes miR-96 stem-loop UGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 18000 MI0003088 ggo-mir-183 Gorilla gorilla miR-183 stem-loop CCGCAGAGUGUGACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCAGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 18001 MI0003089 ggo-mir-96 Gorilla gorilla miR-96 stem-loop UGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 18002 MI0003090 sla-mir-183 Saguinus labiatus miR-183 stem-loop CCGCAGAACGUGACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCGGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCUCGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 18003 MI0003091 sla-mir-96 Saguinus labiatus miR-96 stem-loop UGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 18004 MI0003092 mne-mir-183 Macaca nemestrina miR-183 stem-loop CCGCAGAACGUGACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCGGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 18005 MI0003093 mne-mir-96 Macaca nemestrina miR-96 stem-loop UGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 18006 MI0003094 ppa-mir-183 Pan paniscus miR-183 stem-loop CCGCAGAGUGUGACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCAGUCAGUGAAUUACCGAAGGGCCAUAAACAGAGCAGAGACAGAUCCACGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 18007 MI0003095 ppa-mir-96 Pan paniscus miR-96 stem-loop UGGCCGAUUUUGGCACUAGCACAUUUUUGCUUGUGUCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 18008 MI0003096 ggo-mir-106a Gorilla gorilla miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 18009 MI0003097 ggo-mir-19b-2 Gorilla gorilla miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 18010 MI0003098 ggo-mir-92-2 Gorilla gorilla miR-92-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 29 18011 MI0003099 age-mir-106a Ateles geoffroyi miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 18012 MI0003100 age-mir-19b-2 Ateles geoffroyi miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUACAUGUAUAUAUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUCAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 18013 MI0003101 age-mir-92-2 Ateles geoffroyi miR-92-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 28 18014 MI0003102 ppa-mir-106a Pan paniscus miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 18015 MI0003103 ppa-mir-19b-2 Pan paniscus miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 18016 MI0003104 ppa-mir-92-2 Pan paniscus miR-92-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 34 18017 MI0003105 lca-mir-19b-2 Lemur catta miR-19b-2 stem-loop AUACUGCUACUCACGAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUACAUAAGGCUGUGCAAAUCCAUGCAAAACUGAUCGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 18018 MI0003106 lca-mir-92-2 Lemur catta miR-92-2 stem-loop UCAUCCGUGGGUGGGGAUUUGUUGCAUUACUUGUGUUAUAUGUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 31 18019 MI0003107 mml-mir-106a Macaca mulatta miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 18020 MI0003108 mml-mir-19b-2 Macaca mulatta miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 32 18021 MI0003109 ppy-mir-106a Pongo pygmaeus miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 18022 MI0003110 ppy-mir-19b-2 Pongo pygmaeus miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 18023 MI0003111 ppy-mir-92-2 Pongo pygmaeus miR-92-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 35 18024 MI0003112 ptr-mir-106a Pan troglodytes miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 18025 MI0003113 ptr-mir-19b-2 Pan troglodytes miR-19b-2 stem-loop GACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 18026 MI0003114 ptr-mir-92-2 Pan troglodytes miR-92-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCCACAAAAGUAUUGCACUUGUCCCGGCCUGUGAGAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 37 18027 MI0003115 sla-mir-106a Saguinus labiatus miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 18028 MI0003116 sla-mir-19b-2 Saguinus labiatus miR-19b-2 stem-loop ACAUUGCUACUUACAGUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUACAUGUAUAUAUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 18029 MI0003117 sla-mir-92-2 Saguinus labiatus miR-92-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 36 18030 MI0003118 lla-mir-19b-2 Lagothrix lagotricha miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUACAUGUAUAUAUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUCAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 18031 MI0003119 lla-mir-92-2 Lagothrix lagotricha miR-92-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 30 18032 MI0003120 mne-mir-106a Macaca nemestrina miR-106a stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 18033 MI0003121 mne-mir-19b-2 Macaca nemestrina miR-19b-2 stem-loop ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAUAAUGU Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 18034 MI0003122 mne-mir-92 Macaca nemestrina miR-92 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA Berezikov et al. used primers designed from human miRNA gene flanking sequence to amplify miRNA precursor regions in primates [1]. The expression of the mature miRNA was not validated. 33 18035 MI0003123 hsa-mir-488 Homo sapiens miR-488 stem-loop GAGAAUCAUCUCUCCCAGAUAAUGGCACUCUCAAACAAGUUUCCAAAUUGUUUGAAAGGCUAUUUCUUGGUCAGAUGACUCUC Bentwich et al. identified a product from the 5' arm of this precursor, and named it miR-488 [1]. Landgraf et al. show that the 3' product is the predominant one [2]. The 5' product is therefore renamed miR-488*. miR-488 cloned in [2] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 18036 MI0003124 hsa-mir-489 Homo sapiens miR-489 stem-loop GUGGCAGCUUGGUGGUCGUAUGUGUGACGCCAUUUACUUGAACCUUUAGGAGUGACAUCACAUAUACGGCAGCUAAACUGCUAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18037 MI0003125 hsa-mir-490 Homo sapiens miR-490 stem-loop UGGAGGCCUUGCUGGUUUGGAAAGUUCAUUGUUCGACACCAUGGAUCUCCAGGUGGGUCAAGUUUAGAGAUGCACCAACCUGGAGGACUCCAUGCUGUUGAGCUGUUCACAAGCAGCGGACACUUCCA 5 18038 MI0003126 hsa-mir-491 Homo sapiens miR-491 stem-loop UUGACUUAGCUGGGUAGUGGGGAACCCUUCCAUGAGGAGUAGAACACUCCUUAUGCAAGAUUCCCUUCUACCUGGCUGGGUUGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18039 MI0003127 hsa-mir-511-1 Homo sapiens miR-511-1 stem-loop CAAUAGACACCCAUCGUGUCUUUUGCUCUGCAGUCAGUAAAUAUUUUUUUGUGAAUGUGUAGCAAAAGACAGAAUGGUGGUCCAUUG 5 18040 MI0003128 hsa-mir-511-2 Homo sapiens miR-511-2 stem-loop CAAUAGACACCCAUCGUGUCUUUUGCUCUGCAGUCAGUAAAUAUUUUUUUGUGAAUGUGUAGCAAAAGACAGAAUGGUGGUCCAUUG 5 18041 MI0003129 hsa-mir-146b Homo sapiens miR-146b stem-loop CCUGGCACUGAGAACUGAAUUCCAUAGGCUGUGAGCUCUAGCAAUGCCCUGUGGACUCAGUUCUGGUGCCCGG 5 18042 MI0003130 hsa-mir-202 Homo sapiens miR-202 stem-loop CGCCUCAGAGCCGCCCGCCGUUCCUUUUUCCUAUGCAUAUACUUCUUUGAGGAUCUGGCCUAAAGAGGUAUAGGGCAUGGGAAAACGGGGCGGUCGGGUCCUCCCCAGCG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18043 MI0003131 hsa-mir-492 Homo sapiens miR-492 stem-loop CAACUACAGCCACUACUACAGGACCAUCGAGGACCUGCGGGACAAGAUUCUUGGUGCCACCAUUGAGAACGCCAGGAUUGUCCUGCAGAUCAACAAUGCUCAACUGGCUGCAGAUG 5 18044 MI0003132 hsa-mir-493 Homo sapiens miR-493 stem-loop CUGGCCUCCAGGGCUUUGUACAUGGUAGGCUUUCAUUCAUUCGUUUGCACAUUCGGUGAAGGUCUACUGUGUGCCAGGCCCUGUGCCAG The mature miRNA sequences were named miR-493-5p and miR-493-3p in [1,2] and here. Landgraf et al. showed that the 3' product is the predominant one [3]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 18045 MI0003133 hsa-mir-432 Homo sapiens miR-432 stem-loop UGACUCCUCCAGGUCUUGGAGUAGGUCAUUGGGUGGAUCCUCUAUUUCCUUACGUGGGCCACUGGAUGGCUCCUCCAUGUCUUGGAGUAGAUCA 5 18046 MI0003134 hsa-mir-494 Homo sapiens miR-494 stem-loop GAUACUCGAAGGAGAGGUUGUCCGUGUUGUCUUCUCUUUAUUUAUGAUGAAACAUACACGGGAAACCUCUUUUUUAGUAUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 18047 MI0003135 hsa-mir-495 Homo sapiens miR-495 stem-loop UGGUACCUGAAAAGAAGUUGCCCAUGUUAUUUUCGCUUUAUAUGUGACGAAACAAACAUGGUGCACUUCUUUUUCGGUAUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18048 MI0003136 hsa-mir-496 Homo sapiens miR-496 stem-loop CCCAAGUCAGGUACUCGAAUGGAGGUUGUCCAUGGUGUGUUCAUUUUAUUUAUGAUGAGUAUUACAUGGCCAAUCUCCUUUCGGUACUCAAUUCUUCUUGGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. miR-496 cloned in [2] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 18049 MI0003137 hsa-mir-193b Homo sapiens miR-193b stem-loop GUGGUCUCAGAAUCGGGGUUUUGAGGGCGAGAUGAGUUUAUGUUUUAUCCAACUGGCCCUCAAAGUCCCGCUUUUGGGGUCAU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 5 18050 MI0003138 hsa-mir-497 Homo sapiens miR-497 stem-loop CCACCCCGGUCCUGCUCCCGCCCCAGCAGCACACUGUGGUUUGUACGGCACUGUGGCCACGUCCAAACCACACUGUGGUGUUAGAGCGAGGGUGGGGGAGGCACCGCCGAGG 5 18051 MI0003139 hsa-mir-181d Homo sapiens miR-181d stem-loop GUCCCCUCCCCUAGGCCACAGCCGAGGUCACAAUCAACAUUCAUUGUUGUCGGUGGGUUGUGAGGACUGAGGCCAGACCCACCGGGGGAUGAAUGUCACUGUGGCUGGGCCAGACACGGCUUAAGGGGAAUGGGGAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18052 MI0003140 hsa-mir-512-1 Homo sapiens miR-512-1 stem-loop UCUCAGUCUGUGGCACUCAGCCUUGAGGGCACUUUCUGGUGCCAGAAUGAAAGUGCUGUCAUAGCUGAGGUCCAAUGACUGAGG 5 18053 MI0003141 hsa-mir-512-2 Homo sapiens miR-512-2 stem-loop GGUACUUCUCAGUCUGUGGCACUCAGCCUUGAGGGCACUUUCUGGUGCCAGAAUGAAAGUGCUGUCAUAGCUGAGGUCCAAUGACUGAGGCGAGCACC 5 18054 MI0003142 hsa-mir-498 Homo sapiens miR-498 stem-loop AACCCUCCUUGGGAAGUGAAGCUCAGGCUGUGAUUUCAAGCCAGGGGGCGUUUUUCUAUAACUGGAUGAAAAGCACCUCCAGAGCUUGAAGCUCACAGUUUGAGAGCAAUCGUCUAAGGAAGUU 5 18055 MI0003143 hsa-mir-520e Homo sapiens miR-520e stem-loop UCUCCUGCUGUGACCCUCAAGAUGGAAGCAGUUUCUGUUGUCUGAAAGGAAAGAAAGUGCUUCCUUUUUGAGGGUUACUGUUUGAGA 5 18056 MI0003144 hsa-mir-515-1 Homo sapiens miR-515-1 stem-loop UCUCAUGCAGUCAUUCUCCAAAAGAAAGCACUUUCUGUUGUCUGAAAGCAGAGUGCCUUCUUUUGGAGCGUUACUGUUUGAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18057 MI0003145 hsa-mir-519e Homo sapiens miR-519e stem-loop UCUCAUGCAGUCAUUCUCCAAAAGGGAGCACUUUCUGUUUGAAAGAAAACAAAGUGCCUCCUUUUAGAGUGUUACUGUUUGAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18058 MI0003146 hsa-mir-520f Homo sapiens miR-520f stem-loop UCUCAGGCUGUGACCCUCUAAAGGGAAGCGCUUUCUGUGGUCAGAAAGAAAAGCAAGUGCUUCCUUUUAGAGGGUUACCGUUUGGGA 5 18059 MI0003147 hsa-mir-515-2 Homo sapiens miR-515-2 stem-loop UCUCAUGCAGUCAUUCUCCAAAAGAAAGCACUUUCUGUUGUCUGAAAGCAGAGUGCCUUCUUUUGGAGCGUUACUGUUUGAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18060 MI0003148 hsa-mir-519c Homo sapiens miR-519c stem-loop UCUCAGCCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAAAGUGCAUCUUUUUAGAGGAUUACAGUUUGAGA The 5' arm of this precursor expresses a product related to miR-526 (previously named miR-526c here). Landgraf et al. confirm mature miRNA expression from both arms of the precursor [2], leading to the -5p, -3p designations. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18061 MI0003149 hsa-mir-520a Homo sapiens miR-520a stem-loop CUCAGGCUGUGACCCUCCAGAGGGAAGUACUUUCUGUUGUCUGAGAGAAAAGAAAGUGCUUCCCUUUGGACUGUUUCGGUUUGAG 5 18062 MI0003150 hsa-mir-526b Homo sapiens miR-526b stem-loop UCAGGCUGUGACCCUCUUGAGGGAAGCACUUUCUGUUGUCUGAAAGAAGAGAAAGUGCUUCCUUUUAGAGGCUUACUGUCUGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18063 MI0003151 hsa-mir-519b Homo sapiens miR-519b stem-loop CAUGCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAAAGUGCAUCCUUUUAGAGGUUUACUGUUUG The 5' arm of this precursor expresses a product related to miR-526 (previously named miR-526c here). Landgraf et al. confirm mature miRNA expression from both arms of the precursor [2], leading to the -5p, -3p designations. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18064 MI0003152 hsa-mir-525 Homo sapiens miR-525 stem-loop CUCAAGCUGUGACUCUCCAGAGGGAUGCACUUUCUCUUAUGUGAAAAAAAAGAAGGCGCUUCCCUUUAGAGCGUUACGGUUUGGG The mature products were previously named miR-525 and miR-525* in [1] and here. Landgraf et al. show that both products are significantly expressed, prompting a renaming to miR-525-5p and miR-525-3p [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18065 MI0003153 hsa-mir-523 Homo sapiens miR-523 stem-loop UCUCAUGCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAACGCGCUUCCCUAUAGAGGGUUACCCUUUGAGA The 5' arm of this precursor expresses a product related to miR-526 (previously named miR-526c here and in [1]). Landgraf et al. show that the 3' product is the predominant one [2]. The 5' product is renamed miR-523* here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18066 MI0003154 hsa-mir-518f Homo sapiens miR-518f stem-loop UCUCAUGCUGUGACCCUCUAGAGGGAAGCACUUUCUCUUGUCUAAAAGAAAAGAAAGCGCUUCUCUUUAGAGGAUUACUCUUUGAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18067 MI0003155 hsa-mir-520b Homo sapiens miR-520b stem-loop CCCUCUACAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAAAGUGCUUCCUUUUAGAGGG 5 18068 MI0003156 hsa-mir-518b Homo sapiens miR-518b stem-loop UCAUGCUGUGGCCCUCCAGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAACAAAGCGCUCCCCUUUAGAGGUUUACGGUUUGA 5 18069 MI0003157 hsa-mir-526a-1 Homo sapiens miR-526a-1 stem-loop CUCAGGCUGUGACCCUCUAGAGGGAAGCACUUUCUGUUGCUUGAAAGAAGAGAAAGCGCUUCCUUUUAGAGGAUUACUCUUUGAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18070 MI0003158 hsa-mir-520c Homo sapiens miR-520c stem-loop UCUCAGGCUGUCGUCCUCUAGAGGGAAGCACUUUCUGUUGUCUGAAAGAAAAGAAAGUGCUUCCUUUUAGAGGGUUACCGUUUGAGA The 5' arm of this precursor expresses a product related to miR-526 (previously named miR-526c here). Landgraf et al. confirm mature miRNA expression from both arms of the precursor [2], leading to the -5p, -3p designations. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18071 MI0003159 hsa-mir-518c Homo sapiens miR-518c stem-loop GCGAGAAGAUCUCAUGCUGUGACUCUCUGGAGGGAAGCACUUUCUGUUGUCUGAAAGAAAACAAAGCGCUUCUCUUUAGAGUGUUACGGUUUGAGAAAAGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18072 MI0003160 hsa-mir-524 Homo sapiens miR-524 stem-loop UCUCAUGCUGUGACCCUACAAAGGGAAGCACUUUCUCUUGUCCAAAGGAAAAGAAGGCGCUUCCCUUUGGAGUGUUACGGUUUGAGA 5 18073 MI0003161 hsa-mir-517a Homo sapiens miR-517a stem-loop UCUCAGGCAGUGACCCUCUAGAUGGAAGCACUGUCUGUUGUAUAAAAGAAAAGAUCGUGCAUCCCUUUAGAGUGUUACUGUUUGAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18074 MI0003162 hsa-mir-519d Homo sapiens miR-519d stem-loop UCCCAUGCUGUGACCCUCCAAAGGGAAGCGCUUUCUGUUUGUUUUCUCUUAAACAAAGUGCCUCCCUUUAGAGUGUUACCGUUUGGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18075 MI0003163 hsa-mir-521-2 Homo sapiens miR-521-2 stem-loop UCUCGGGCUGUGACUCUCCAAAGGGAAGAAUUUUCUCUUGUCUAAAAGAAAAGAACGCACUUCCCUUUAGAGUGUUACCGUGUGAGA 5 18076 MI0003164 hsa-mir-520d Homo sapiens miR-520d stem-loop UCUCAAGCUGUGAGUCUACAAAGGGAAGCCCUUUCUGUUGUCUAAAAGAAAAGAAAGUGCUUCUCUUUGGUGGGUUACGGUUUGAGA The mature products were previously named miR-520d and miR-520d* here and in [1]. Landgraf et al. show that both products may be significantly expressed [2]. They are therefore renamed miR-520d-5p and miR-520d-3p. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18077 MI0003165 hsa-mir-517b Homo sapiens miR-517b stem-loop GUGACCCUCUAGAUGGAAGCACUGUCUGUUGUCUAAGAAAAGAUCGUGCAUCCCUUUAGAGUGUUAC 5 18078 MI0003166 hsa-mir-520g Homo sapiens miR-520g stem-loop UCCCAUGCUGUGACCCUCUAGAGGAAGCACUUUCUGUUUGUUGUCUGAGAAAAAACAAAGUGCUUCCCUUUAGAGUGUUACCGUUUGGGA 5 18079 MI0003167 hsa-mir-516b-2 Homo sapiens miR-516b-2 stem-loop UCUCAUGAUGUGACCAUCUGGAGGUAAGAAGCACUUUGUGUUUUGUGAAAGAAAGUGCUUCCUUUCAGAGGGUUACUCUUUGAGA 5 18080 MI0003168 hsa-mir-526a-2 Homo sapiens miR-526a-2 stem-loop GUGACCCUCUAGAGGGAAGCACUUUCUGUUGAAAGAAAAGAACAUGCAUCCUUUCAGAGGGUUAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18081 MI0003169 hsa-mir-518e Homo sapiens miR-518e stem-loop UCUCAGGCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUUGGCUAAAAGAAAAGAAAGCGCUUCCCUUCAGAGUGUUAACGCUUUGAGA The 5' arm of this precursor expresses a product related to miR-526 (previously named miR-526c here and in [1]). Landgraf et al. show that the 3' product is the predominant one [2], so the 5' product is renamed miR-518e*. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18082 MI0003170 hsa-mir-518a-1 Homo sapiens miR-518a stem-loop UCUCAAGCUGUGACUGCAAAGGGAAGCCCUUUCUGUUGUCUGAAAGAAGAGAAAGCGCUUCCCUUUGCUGGAUUACGGUUUGAGA The 5' mature product was previously named miR-527 in [1] and here. Landgraf et al. showed that products from both arms are approximately equally expressed [2]. miR-527 is renamed miR-518a-5p here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. miR-518a-5p cloned in [2] has a 1 nt 3' extension (A), which is incompatible with the genome sequence. 5 18083 MI0003171 hsa-mir-518d Homo sapiens miR-518d stem-loop UCCCAUGCUGUGACCCUCUAGAGGGAAGCACUUUCUGUUGUCUGAAAGAAACCAAAGCGCUUCCCUUUGGAGCGUUACGGUUUGAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18084 MI0003172 hsa-mir-516b-1 Homo sapiens miR-516b-1 stem-loop UCUCAGGCUGUGACCAUCUGGAGGUAAGAAGCACUUUCUGUUUUGUGAAAGAAAAGAAAGUGCUUCCUUUCAGAGGGUUACUCUUUGAGA 5 18085 MI0003173 hsa-mir-518a-2 Homo sapiens miR-518a-2 stem-loop UCUCAAGCUGUGGGUCUGCAAAGGGAAGCCCUUUCUGUUGUCUAAAAGAAGAGAAAGCGCUUCCCUUUGCUGGAUUACGGUUUGAGA The 5' mature product was previously named miR-527 in [1] and here. Landgraf et al. showed that products from both arms are approximately equally expressed [2]. miR-527 is renamed miR-518a-5p here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. miR-518a-5p cloned in [2] has a 1 nt 3' extension (A), which is incompatible with the genome sequence. 5 18086 MI0003174 hsa-mir-517c Homo sapiens miR-517c stem-loop GAAGAUCUCAGGCAGUGACCCUCUAGAUGGAAGCACUGUCUGUUGUCUAAGAAAAGAUCGUGCAUCCUUUUAGAGUGUUACUGUUUGAGAAAAUC 5 18087 MI0003175 hsa-mir-520h Homo sapiens miR-520h stem-loop UCCCAUGCUGUGACCCUCUAGAGGAAGCACUUUCUGUUUGUUGUCUGAGAAAAAACAAAGUGCUUCCCUUUAGAGUUACUGUUUGGGA 5 18088 MI0003176 hsa-mir-521-1 Homo sapiens miR-521-1 stem-loop UCUCAGGCUGUGACCCUCCAAAGGGAAGAACUUUCUGUUGUCUAAAAGAAAAGAACGCACUUCCCUUUAGAGUGUUACCGUGUGAGA 5 18089 MI0003177 hsa-mir-522 Homo sapiens miR-522 stem-loop UCUCAGGCUGUGUCCCUCUAGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAAAAUGGUUCCCUUUAGAGUGUUACGCUUUGAGA The 5' arm of this precursor expresses a product related to miR-526 (previously named miR-526c here and in [1]). Landgraf et al. show that the 3' product is the predominant one [2], so the 5' product is renamed miR-522*. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18090 MI0003178 hsa-mir-519a-1 Homo sapiens miR-519a stem-loop CUCAGGCUGUGACACUCUAGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAGGAAAGUGCAUCCUUUUAGAGUGUUACUGUUUGAG The 5' arm of this precursor expresses a product related to miR-526 (previously named miR-526c here and in [1]). Landgraf et al. show that the 3' product is the predominant one [2]. The 5' product is renamed miR-519a* here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18091 MI0003179 hsa-mir-527 Homo sapiens miR-527 stem-loop UCUCAAGCUGUGACUGCAAAGGGAAGCCCUUUCUGUUGUCUAAAAGAAAAGAAAGUGCUUCCCUUUGGUGAAUUACGGUUUGAGA miR-527 cloned in [2] has a 1 nt 3' extension (A), which is incompatible with the genome sequence. 5 18092 MI0003180 hsa-mir-516a-1 Homo sapiens miR-516a-1 stem-loop UCUCAGGCUGUGACCUUCUCGAGGAAAGAAGCACUUUCUGUUGUCUGAAAGAAAAGAAAGUGCUUCCUUUCAGAGGGUUACGGUUUGAGA 5 18093 MI0003181 hsa-mir-516a-2 Homo sapiens miR-516a-2 stem-loop UCUCAGGUUGUGACCUUCUCGAGGAAAGAAGCACUUUCUGUUGUCUGAAAGAAAAGAAAGUGCUUCCUUUCAGAGGGUUACGGUUUGAGA 5 18094 MI0003182 hsa-mir-519a-2 Homo sapiens miR-519a-2 stem-loop UCUCAGGCUGUGUCCCUCUACAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAGGAAAGUGCAUCCUUUUAGAGUGUUACUGUUUGAGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18095 MI0003183 hsa-mir-499 Homo sapiens miR-499 stem-loop GCCCUGUCCCCUGUGCCUUGGGCGGGCGGCUGUUAAGACUUGCAGUGAUGUUUAACUCCUCUCCACGUGAACAUCACAGCAAGUCUGUGCUGCUUCCCGUCCCUACGCUGCCUGGGCAGGGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18096 MI0003184 hsa-mir-500 Homo sapiens miR-500 stem-loop GCUCCCCCUCUCUAAUCCUUGCUACCUGGGUGAGAGUGCUGUCUGAAUGCAAUGCACCUGGGCAAGGAUUCUGAGAGCGAGAGC Bentwich et al. identified a mature product from the 3' arm of this precursor, and named it miR-500 [1]. Landgraf et al. later showed that the 5' product was the predominant one [2]. The 3' product is therefore renamed miR-500*. 5 18097 MI0003185 hsa-mir-501 Homo sapiens miR-501 stem-loop GCUCUUCCUCUCUAAUCCUUUGUCCCUGGGUGAGAGUGCUUUCUGAAUGCAAUGCACCCGGGCAAGGAUUCUGAGAGGGUGAGC 5 18098 MI0003186 hsa-mir-502 Homo sapiens miR-502 stem-loop UGCUCCCCCUCUCUAAUCCUUGCUAUCUGGGUGCUAGUGCUGGCUCAAUGCAAUGCACCUGGGCAAGGAUUCAGAGAGGGGGAGCU Extensive cloning studies suggest that the 3' product may be the predominant one [2]. 5 18099 MI0003187 hsa-mir-450a-2 Homo sapiens miR-450a-2 stem-loop CCAAAGAAAGAUGCUAAACUAUUUUUGCGAUGUGUUCCUAAUAUGUAAUAUAAAUGUAUUGGGGACAUUUUGCAUUCAUAGUUUUGUAUCAAUAAUAUGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18100 MI0003188 hsa-mir-503 Homo sapiens miR-503 stem-loop UGCCCUAGCAGCGGGAACAGUUCUGCAGUGAGCGAUCGGUGCUCUGGGGUAUUGUUUCCGCUGCCAGGGUA 5 18101 MI0003189 hsa-mir-504 Homo sapiens miR-504 stem-loop GCUGCUGUUGGGAGACCCUGGUCUGCACUCUAUCUGUAUUCUUACUGAAGGGAGUGCAGGGCAGGGUUUCCCAUACAGAGGGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18102 MI0003190 hsa-mir-505 Homo sapiens miR-505 stem-loop GAUGCACCCAGUGGGGGAGCCAGGAAGUAUUGAUGUUUCUGCCAGUUUAGCGUCAACACUUGCUGGUUUCCUCUCUGGAGCAUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18103 MI0003191 hsa-mir-513a-1 Homo sapiens miR-513a-1 stem-loop GGGAUGCCACAUUCAGCCAUUCAGCGUACAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUUCUGAGAAGGGUAAUGUACAGCAUGCACUGCAUAUGUGGUGUCCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18104 MI0003192 hsa-mir-513a-2 Homo sapiens miR-513a-2 stem-loop GGAUGCCACAUUCAGCCAUUCAGUGUGCAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUUCUGAGAAGGGUAAUGUACAGCAUGCACUGCAUAUGUGGUGUCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18105 MI0003193 hsa-mir-506 Homo sapiens miR-506 stem-loop GCCACCACCAUCAGCCAUACUAUGUGUAGUGCCUUAUUCAGGAAGGUGUUACUUAAUAGAUUAAUAUUUGUAAGGCACCCUUCUGAGUAGAGUAAUGUGCAACAUGGACAACAUUUGUGGUGGC 5 18106 MI0003194 hsa-mir-507 Homo sapiens miR-507 stem-loop GUGCUGUGUGUAGUGCUUCACUUCAAGAAGUGCCAUGCAUGUGUCUAGAAAUAUGUUUUGCACCUUUUGGAGUGAAAUAAUGCACAACAGAUAC 5 18107 MI0003195 hsa-mir-508 Homo sapiens miR-508 stem-loop CCACCUUCAGCUGAGUGUAGUGCCCUACUCCAGAGGGCGUCACUCAUGUAAACUAAAACAUGAUUGUAGCCUUUUGGAGUAGAGUAAUACACAUCACGUAACGCAUAUUUGGUGG 5 18108 MI0003196 hsa-mir-509-1 Homo sapiens miR-509-1 stem-loop CAUGCUGUGUGUGGUACCCUACUGCAGACAGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUGGGUAGAGUACUGCAUGACACAUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The cloned miR-509-5p sequence from [3] includes a 1 nt extension at the 3' end (A), which is incompatible with the genome sequence. 5 18109 MI0003197 hsa-mir-510 Homo sapiens miR-510 stem-loop GUGGUGUCCUACUCAGGAGAGUGGCAAUCACAUGUAAUUAGGUGUGAUUGAAACCUCUAAGAGUGGAGUAACAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18110 MI0003198 hsa-mir-514-1 Homo sapiens miR-514-1 stem-loop AACAUGUUGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAAUUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCAUGACACGUACG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18111 MI0003199 hsa-mir-514-2 Homo sapiens miR-514-2 stem-loop GUUGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAACUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCAUGACAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18112 MI0003200 hsa-mir-514-3 Homo sapiens miR-514-3 stem-loop GUUGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAACUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCAUGACAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18113 MI0003201 osa-MIR528 Oryza sativa miR528 stem-loop AGUGGAAGGGGCAUGCAGAGGAGCAGGAGAUUCAGUUUGAAGCUGGACUUCACUUUUGCCUCUCUCUCCUGUGCUUGCCUCUUCCAUU 7 18114 MI0003202 osa-MIR529a Oryza sativa miR529a stem-loop GAAGAAGAGAGAGAGUACAGCCUUAGUUCAGAUCACAUAUGACUAUCUUUUGCGAGUCUGAUCGAUACUCUGAUGAAGGCUGUACCCUCUCUCUUCUUC 7 18115 MI0003203 osa-MIR530 Oryza sativa miR530 stem-loop UGCAUUUGCACCUGCACCUACAGAGAGGAAGAUGAAGCAGCAAGCUAGCAAUACGUGCUUGAUCGCUAUACGCUAGCUUCUUGCACACAAUGUUGUUCCUGGUCUCUUCCUGAUCCCUAGGUGCAGAGGCAGAUGCAACUAUGUCAUAGA 7 18116 MI0003204 osa-MIR531 Oryza sativa miR531 stem-loop GGCGCCGCCGAGCCUUGCUCGCCGGGGCUGCGUGCCGCCAUAGCUGGCGCGCAUCCCCGUCGAGCGUUGCUCGACGGUGCC 7 18117 MI0003205 hsa-mir-532 Homo sapiens miR-532 stem-loop CGACUUGCUUUCUCUCCUCCAUGCCUUGAGUGUAGGACCGUUGGCAUCUUAAUUACCCUCCCACACCCAAGGCUUGCAAAAAAGCGAGCCU 5 18118 MI0003206 mmu-mir-532 Mus musculus miR-532 stem-loop CAGAUUUGCUUUUUCUCUUCCAUGCCUUGAGUGUAGGACCGUUGACAUCUUAAUUACCCUCCCACACCCAAGGCUUGCAGGAGAGCAAGCCUUCUC 6 18119 MI0003207 fru-let-7h Fugu rubripes let-7h stem-loop UGUGGUGAGGUAGUAAGUUGUGUUGUUGUAGGGGAAGAUUGUGCACCCUGUUCAGGAGAUAACUAUACAACUUACUGCCUUCCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18120 MI0003208 tni-let-7h Tetraodon nigroviridis let-7h stem-loop AAUUGGCUUUGCUGUGGUGAGGUAGUAAGUUGUGUUGUUGUUGGGGAUCAAGAUUGUGCACCCUGUCAAGGAGAUAACUAUACAACUUACUGCCUUCCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18121 MI0003209 fru-mir-223 Fugu rubripes miR-223 stem-loop CACUUAGUGUAUUUGACAAGCUGUUCUUGACACUCUUUAUACGCGAGUGUCAGUUUGUCAAAUACCCCAAGUGAGGUGUCACUUGUCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18122 MI0003210 tni-mir-223 Tetraodon nigroviridis miR-223 stem-loop CAGGCCCUUCACUUAGUGUAUUUGACAAGCUGUGUUUGACACUCUGUAUCUGCGAGUGUCAGUUUGUCAAAUACCCCAAGUGAGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18123 MI0003211 fru-mir-124-3 Fugu rubripes miR-124-3 stem-loop GGUUUGAGCUCUUUGUGUUCACAGUGGACCUUGAUUUAAUUUCAAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAGAAGCC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18124 MI0003212 tni-mir-124-3 Tetraodon nigroviridis miR-124-3 stem-loop GGUUUGAGCUCUUUGUGUUCACAGUGGACCUUGAUUUAAUUUCAAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAGAA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18125 MI0003213 fru-let-7e Fugu rubripes let-7e stem-loop GCUGUCCUUGGGGUUGAGGUAGUAGAUUGAAUAGUUGUGGGGUUGUGUGACCUCUUAGUGAGAUAACUAUACAAUCUACUGUCUUUCCUAAGGAGACAGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18126 MI0003214 tni-let-7e Tetraodon nigroviridis let-7e stem-loop GCUGUCCUUGGGGCUGAGGUAGUAGAUUGAAUAGUUGUGGGGUUGUGUGACCUCUAUGUGAGAUAACUAUACAAUCUACUGUCUUUCCCAAGGAGACAGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18127 MI0003215 fru-mir-219-2 Fugu rubripes miR-219-2 stem-loop UCGGAGCUGAUUGUCCAAACGCAAUUCUUGCGUCUGCCUUUGUGAAACCAGGAGUUGUGGAUGGACAUCACGCCCCUGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18128 MI0003216 tni-mir-219-2 Tetraodon nigroviridis miR-219-2 stem-loop UCGGAGCUGAUUGUCCAAACGCAAUUCUUGCGUCUGCCUUUGUGAAACCAGGAGUUGUGGAUGGACAUCACGCCCCUGAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18129 MI0003217 fru-mir-101a Fugu rubripes miR-101a stem-loop UGCCCUGGUUCAGUUAUCACAGUGCUGAUGCUGUCCCCAUCGAAGGUACAGUACUGUGAUAACUGAAGGAUGGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18130 MI0003218 tni-mir-101a Tetraodon nigroviridis miR-101a stem-loop UGCCCUGGUUCAGUUAUCACAGUGCUGAUGCUGUCCCCAUCGAAGGUACAGUACUGUGAUAACUGAAGGAUGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18131 MI0003219 fru-mir-222 Fugu rubripes miR-222 stem-loop UCAGUUGCUCAGUAGGCAGUGUAGAUCCUGUGUAGCAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18132 MI0003220 tni-mir-222 Tetraodon nigroviridis miR-222 stem-loop CAGUUGCUCAGUAGGCAGUGUAGAUCCUGUGUAGCAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18133 MI0003221 fru-mir-221 Fugu rubripes miR-221 stem-loop CCUGAACCUGGCAUACAAUGUAGAUUUCUGUGUGCUUGGAUUCUACAGCUACAUUGUCUGCUGGGUUUCCGGAUAGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18134 MI0003222 tni-mir-221 Tetraodon nigroviridis miR-221 stem-loop CCUGAACCUGGCAUACAAUGUAGAUUUCUGUGUGCUUGGAUUCUACAGCUACAUUGUCUGCUGGGUUUC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18135 MI0003223 fru-mir-142a Fugu rubripes miR-142a stem-loop ACAGUGCAGUCAUCCAUAAAGUAGAAAGCACUACUAAACUCUUUGCCACAGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18136 MI0003224 tni-mir-142a Tetraodon nigroviridis miR-142a stem-loop GUACAGUGCAGUCAUCCAUAAAGUAGAAAGCACUACUAAACUCUUCGCCACAGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGUUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18137 MI0003225 fru-mir-9-1 Fugu rubripes miR-9-1 stem-loop GGGGUUGUCUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGACGUACAAUCUUCAUAAAGCUAGAUAACCGAAAGUAACAAGAAUCCC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18138 MI0003226 tni-mir-9-1 Tetraodon nigroviridis miR-9-1 stem-loop CAGAGGGGUUGUCUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGACGUACAAUCUUCAUAAAGCUAGAUAACCGAAAGUAACAAGAAUCCCAUUA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18139 MI0003227 fru-mir-23a-2 Fugu rubripes miR-23a-2 stem-loop AGCUGGAGGGAUUCCUGGCAGAGUGAUUUGGCUGUGAUGUAAUGUAAAUCACAUUGCCAGGGAUUUCCAACCAGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18140 MI0003228 tni-mir-23a-2 Tetraodon nigroviridis miR-23a-2 stem-loop AGCUGGAGGGAUUCCUGGCAGAGUGAUUUGGCUGUGAUGUAAUGUAAAUCACAUUGCCAGGGAUUUCCAACCAGCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18141 MI0003229 fru-mir-25 Fugu rubripes miR-25 stem-loop GCUGGUGUUGAGAGGCGGAGACUUGGGCAAUUGCCGGCCAUCACAGAGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18142 MI0003230 tni-mir-25 Tetraodon nigroviridis miR-25 stem-loop GCUGGUGUUGAGAGGCGGAGACUUGGGCAAUUGCCGGCCAUCACAGAGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18143 MI0003231 fru-mir-17-1 Fugu rubripes miR-17-1 stem-loop GUCUGUGUAUUGCCAAAGUGCUUACAGUGCAGGUAGUUCUAUGUGACACCUACUGCAAUGGAGGCACUUACAGCAGUACUCUUGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18144 MI0003232 tni-mir-17-1 Tetraodon nigroviridis miR-17-1 stem-loop GUCUGUGUAUUGCCAAAGUGCUUACAGUGCAGGUAGUACUAUGUAACACCUACUGCAAUGGAGGCACUUACAGCAGUACUCUUGAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18145 MI0003233 fru-mir-18 Fugu rubripes miR-18 stem-loop UUGUGCUAAGGUGCAUCUAGUGCAGAUAGUGAAAUAGACUAGCACCUACUGCCCUAAGUGCUCCUUCUGGCAUAAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18146 MI0003234 tni-mir-18 Tetraodon nigroviridis miR-18 stem-loop UUGUGCUAAGGUGCAUCUAGUGCAGAUAGUGAAAUAGACUAGCACCUACUGCCCUAAGUGCUCCUUCUGGCAUAAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18147 MI0003235 fru-mir-19a Fugu rubripes miR-19a stem-loop GCAGUUCUCUGCUAGUUUUGCAUAGUUGCACUACAAGAAUAGAGGAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18148 MI0003236 tni-mir-19a Tetraodon nigroviridis miR-19a stem-loop GCAGUUCUCUGCUAGUUUUGCAUAGUUGCACUACAAGAAUAGAGGAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18149 MI0003237 fru-mir-19b Fugu rubripes miR-19b stem-loop GUCAGUUUUGCUGGUUUGCAUCCAGCUUUGUUACCGCGCUGUGCAAAUCCAUGCAAAACUGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18150 MI0003238 tni-mir-19b Tetraodon nigroviridis miR-19b stem-loop CAAUCAUCGUUUGGUCAGUUUUGCUGGUUUGCAUUCAGCUUUGUUGCUGUGCUGUGCAAAUCCAUGCAAAACUGACU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18151 MI0003239 fru-mir-92-2 Fugu rubripes miR-92-2 stem-loop CAGGUGGGGAUCAGUAGCAAUGCUGUGCACUGGAAGGUAUUGCACUUGUCCCGGCCUGUGUAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18152 MI0003240 tni-mir-92-2 Tetraodon nigroviridis miR-92-2 stem-loop CUUCCCAUACAGGUGGGGAUGAGUAGCAAUGCUGUGUACUAGGAGGUAUUGCACUUGUCCCGGCCUGUGUAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18153 MI0003241 fru-mir-184 Fugu rubripes miR-184 stem-loop CGCUCACAUCUCCUUAUCACUUUUCCAGCCCAGCUAUAGGUUUUGAAUCCGUUGGACGGAGAACUGAUAAGGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18154 MI0003242 tni-mir-184 Tetraodon nigroviridis miR-184 stem-loop CGCUCACAUCUCCUUAUCACUUUUCCAGCCCAGCUAUAGCUUCUGAAUCCGUUGGACGGAGAACUGAUAAGGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18155 MI0003243 dre-mir-184-2 Danio rerio miR-184-2 stem-loop CACAUCUCCUUAUCACUUUUCCAGCCCAGCUAACGAUGGUGAAUCCGUUGGACGGAGAACUGAUAAGGGCAUGUGGCUG This zebrafish miRNA sequence is predicted based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication). 12 18156 MI0003244 fru-let-7a-3 Fugu rubripes let-7a-3 stem-loop CAAGGUGAGGUAGUAGGUUGUAUAGUUUGUGGGAUGGCUUGGAUCCUACUCAGAUGAUAACUAUACAGUCUAUUACCUUCCUUGAGAGGUACAAUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18157 MI0003245 tni-let-7a-3 Tetraodon nigroviridis let-7a-3 stem-loop CAAGGUGAGGUAGUAGGUUGUAUAGUUUGUGGGAUGGCUUGGAUCCUACUCAGAUUAUAACUAUACAGUCUAUUACCUUCCUUGAGAGGUACAAUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18158 MI0003246 fru-mir-187 Fugu rubripes miR-187 stem-loop GUGGCCAUUUGGCCGGGCCAGGGGCUGCAACACAGGACAUGGGUCAUGCCUCUGCCCACCGCUCGUGUCUUGUGUUGCAGCCAGUGGAGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18159 MI0003247 tni-mir-187 Tetraodon nigroviridis miR-187 stem-loop GGCUGCAACACAGGACAUGGGUCUUGCCUCUGCCCGCCGCUCGUGUCUUGUGUUGCAGCCAGUGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18160 MI0003248 fru-mir-137 Fugu rubripes miR-137 stem-loop CUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUCACGUUGUUAUUGCUUAAGAAUACGCGUAGUUGAGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18161 MI0003249 tni-mir-137 Tetraodon nigroviridis miR-137 stem-loop UCGACCACGGGUAUUCUUGGGUUGAUAAUACAGAUGUGGAUGUUAUUGCUUGAGAAUACGCGUAGUCGAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18162 MI0003251 tni-mir-204b Tetraodon nigroviridis miR-204b stem-loop AUGUGACCUAUGGACUUCCCUUUGUUAUCCUAUGCCUGGACUCAAAAAAGGGGCUGGGAGGGCAAAGGGUUGCCCAGUUGUCAUAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18163 MI0003252 fru-mir-458 Fugu rubripes miR-458 stem-loop UGCAGACAGCAGCGCCAUUUUCAGAGCUAUCAGUCAACGUGGUCAUAGCUCUUUAAAUGGUACUGCUGUAGGCAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18164 MI0003253 tni-mir-458 Tetraodon nigroviridis miR-458 stem-loop GUGCAGACGGCAGCGCCAUUUUCAGAGCUAUCAGUGCCAGCGGGUCAUAGCUCUUUAAAUGGUUCUGCUGUAGGCAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18165 MI0003254 fru-mir-489 Fugu rubripes miR-489 stem-loop CUUCUGAUACUGGUGGUGGCUUGGUGGUCGUAUGCAUGACGUCAUUUACUUCGAUGAUUGGAGUGACAUCAUAUGUACGGCUGCUAAACUGCUACAAGAGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18166 MI0003255 tni-mir-489 Tetraodon nigroviridis miR-489 stem-loop UGGUGGUGGCCUGGUGGUCGUAUGCAUGACGUCAUUUACUUCGAUGAUUGGAGUGACAUCAUAUGUACGGCUGCUAAACCGCUACAAGAGAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18167 MI0003256 dre-mir-489 Danio rerio miR-489 stem-loop ACUGACUUGAGUGGUGGCCUGGUGGUCGUAUGUAUGACGUCAUUUACUUCAAAGUUUGGAGUGACAUCAUAUGUACGGCUGCUAAACUGCUACAUGGCUCAUCA miR-489 was predicted in zebrafish based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication), and later verified experimentally [1]. 12 18168 MI0003257 fru-mir-192 Fugu rubripes miR-192 stem-loop UGGGACGUGAGGUGAUGACCUAUGAAUUGACAGCCAGUAACUGGAGCCUCUGCCUGUCAGUUCUGUAGGCCACUGCUACGUU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18169 MI0003258 tni-mir-192 Tetraodon nigroviridis miR-192 stem-loop CACGAGGUGAUGACCUAUGAAUUGACAGCCAGUAACUGGAGCCUCUGCCUGUCAGUUCUGUAGGCCACUGCUGCGUCCGUCCC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18170 MI0003259 fru-mir-194 Fugu rubripes miR-194 stem-loop CGCUGGAUGUAACAGCAACUCCAUGUGGAAGCUGUAUGUGAGUUCCAGUGGAAGUGCUGUUACCUGCAGAGA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18171 MI0003260 tni-mir-194 Tetraodon nigroviridis miR-194 stem-loop GCGCGCUGGAUGUAACAGCAACUCCAUGUGGAAGCUGUAUGUGUGUUCCAGUGGAAGUGCUGUUACCUGCAGAGAUCCACC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18172 MI0003261 fru-mir-142b Fugu rubripes miR-142b stem-loop ACAGUGCUGUCACCCAUAAAGUAGAAAGCACUACUAAACUAUUCUACACAGUGUAGUGUUUCCUACUUUAUGGAUGAGUGCACUGU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18173 MI0003262 tni-mir-142b Tetraodon nigroviridis miR-142b stem-loop ACAGUGCUGUCACCCAUAAAGUAGAAAGCACUACUAAACGUCUUUACACAGUGUAGUGUUUCCUACUUUAUGGAUGAGUGCACUGU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18174 MI0003263 fru-mir-30b Fugu rubripes miR-30b stem-loop UUCCGGCUCAGUUGGUGUAAACAUCCUACACUCAGCUGUGAUCCUUUGCGGCAGAGGCUGAGAGAAGGUUGUUUACUUGAACUGGCUGGA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18175 MI0003264 tni-mir-30b Tetraodon nigroviridis miR-30b stem-loop AGAUGGUGUAAACAUCCUACACUCAGCUGUGAUCUUUUGCCGCAGAGGCUGAGAGAAGGUUGUUUACUUGAACUGGCUGGA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18176 MI0003265 fru-mir-30d Fugu rubripes miR-30d stem-loop UGCACAUGGCAGUUUGAGGCUGUAAACAUCCCCGACUGGAAGCUGUCACUCAGAAGAGCUUUCAGUCUGAUGUUUACCACCUCCGACCGCCUCCUGCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18177 MI0003266 tni-mir-30d Tetraodon nigroviridis miR-30d stem-loop UGGCAGUUUGAGGCUGUAAACAUCCCCGACUGGAAGCUGUCACUCAGCAGAGCUUUCAGUCUGAUGUUUACCCCCUCCGACCGCCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18178 MI0003267 fru-mir-27b Fugu rubripes miR-27b stem-loop AGGCACAGAGCUUAGCUGAUUGGUGAACAGUGAUUGAUUUCCUCUUUGUUCACAGUGGCUAAGUUCUGCACCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18179 MI0003268 tni-mir-27b Tetraodon nigroviridis miR-27b stem-loop AGGCACAGAGCUUAGCUGAUUGGUGAACAGUGAUUGAUUUCCUCUUUGUUCACAGUGGCUAAGUUCUGCACCUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18180 MI0003269 fru-mir-23b Fugu rubripes miR-23b stem-loop GGCUGUGAGGGUUCCUGGCGUGCUGAUUUGUGACUUAUGAUAAAAUCACAUUGCCAGGGAUUACCACACAGCC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18181 MI0003270 tni-mir-23b Tetraodon nigroviridis miR-23b stem-loop GGCUGUGAGGGUUCCUGGCGUGCUGAUUUGUGACCUAUGAUAAAAUCACAUUGCCAGGGAUUACCACACCGCC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18182 MI0003271 fru-mir-196a-2 Fugu rubripes miR-196a-2 stem-loop UCGAGUGGUUUAGGUAGUUUCAUGUUGUUGGGGUCCAUUUCAAACUCUGCAACAUGAAACUGUCUUAAUUGCCCCA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18183 MI0003272 tni-mir-196a-2 Tetraodon nigroviridis miR-196a-2 stem-loop UCGAGUGGUUUAGGUAGUUUCAUGUUGUUGGGGUCCAUUUCAAACUCUGCAACAUGAAACUGUCUUAAUUGCCCCA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18184 MI0003273 fru-mir-126 Fugu rubripes miR-126 stem-loop CGGCCCAUUAUUACUUUUGGUACGCGCUAUGCCACUCUCAACUCGUACCGUGAGUAAUAAUGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18185 MI0003274 tni-mir-126 Tetraodon nigroviridis miR-126 stem-loop CGGCCCAUUAUUACUUUUGGUACGCGCUAUGCCACUCUCAACUCGUACCGUGAGUAAUAAUGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18186 MI0003275 fru-mir-199-3 Fugu rubripes miR-199-3 stem-loop CUCCCCGUCCUGCCUGCCCAGUGUUCAGACUACCUGUUCAUCAGACUAAAGCUGAACAGUAGUCUGCACAUUGGUUAAGCUGGGUUGGGACACACACGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18187 MI0003276 tni-mir-199-3 Tetraodon nigroviridis miR-199-3 stem-loop CCCCACCCUGCCUGCCCAGUGUUCAGACUACCUGUUCAUCAGACUCAAGCUGAACAGUAGUCUGCACAUUGGUUAUGCAGAGUUGGGACACACAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18188 MI0003277 fru-mir-148 Fugu rubripes miR-148 stem-loop CUUUCCAAAUAAAGUUCUGUGAUACACUUAGACUCUAGUUCCUCGCAGUCAGUGCAUUACAGAACUUUGUUUUGGGAGU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18189 MI0003278 tni-mir-148 Tetraodon nigroviridis miR-148 stem-loop AAAUAAAGUUCUGUGAUACACUUCGACUCUGAUUCCUCGCAGUCAGUGCAUUACAGAACUUUGUUU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18190 MI0003279 fru-mir-10b-1 Fugu rubripes miR-10b-1 stem-loop AUAUAUACCCUGUAGAACCGAAUUUGUGUGAUGGCGUCAAAGUCACAGAUUCGAUUCUAGGGGAGUAUAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18191 MI0003280 tni-mir-10b-2 Tetraodon nigroviridis miR-10b-2 stem-loop AUAUAUACCCUGUAGAACCGAAUUUGUGUGAUCAAGUCACAGUCACAGAUUCGAUUCUAGGGGAGUAUAU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18192 MI0003281 fru-mir-205 Fugu rubripes miR-205 stem-loop UGUGUUCUAUCCUUCAUUCCACCGGAGUCUGUAUGUGUAUUUAACCAGAUUUCAGUGGUGUGAAGUGUAAGAGACAUGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18193 MI0003282 tni-mir-205 Tetraodon nigroviridis miR-205 stem-loop UAUCCUUCAUUCCACCGGAGUCUGUAACUGUUUUUAACCAGAUUUCAGUGGUGUGAAGUGUAAGAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18194 MI0003283 fru-mir-365 Fugu rubripes miR-365 stem-loop CAGCAAGAAAAGUGAGGGACUUUUAGGGGCAGCUGUGUUUUAUUAACCCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCAAUUGUCAAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18195 MI0003284 tni-mir-365 Tetraodon nigroviridis miR-365 stem-loop CAGCAAGAAAAGUGAGGGACUUUUAGGGGCAGCUGUGUUUUAUUAACCCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCAAUUGUC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18196 MI0003285 fru-mir-193 Fugu rubripes miR-193 stem-loop UGUGUCAGAAGCUGGGUCUUUGCGGGCAAGGUGAGUCCUCAGUUUGUUCAACUGGCCUACAAAGUCCCAGUCUCUGGCUCACGUAACC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18197 MI0003286 tni-mir-193 Tetraodon nigroviridis miR-193 stem-loop CAGAAGCUGGGUCUUUGCGGGCAAGGUGAGUCCUCAGUUUGUUCAACUGGCCUACAAAGUCCCAGUGUCUGGCUCACGUGACC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18198 MI0003287 fru-mir-124-1 Fugu rubripes miR-124-1 stem-loop GGUUGUGUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCUUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18199 MI0003288 tni-mir-124-1 Tetraodon nigroviridis miR-124-1 stem-loop CUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCUUACAAUUAAGGCACGCGGUGAAUGCCAAGAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18200 MI0003289 fru-mir-217 Fugu rubripes miR-217 stem-loop AUGAAGAGCCUUCUUGAUGCGGAUGAUACUGCAUCAGGAACUGAUUGGCUGAUGCUUUUUACCCAACAGUACCUGAUGCAUUGCCUUCAGCAUUGAAAGA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18201 MI0003290 tni-mir-217 Tetraodon nigroviridis miR-217 stem-loop UCUUGAUGUGGAUGAUACUGCAUCAGGAACUGAUUGGCUGAUGCUUAGUACCCAACAGUACCUGAUGCAUUGCCUUCAGCAUUGAAAGA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18202 MI0003291 fru-mir-216a Fugu rubripes miR-216a stem-loop UUGGUAAAAUCUCAGCUGGCAACUGUGAGUCGUUCACUAGCUGCUCUCACAAUGGCCUCUGGGAUUAUGCUAA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18203 MI0003292 tni-mir-216a Tetraodon nigroviridis miR-216a stem-loop UUGGUGAAAUCUCAGCUGGCAACUGUGAGUCGUUCACUAGCUGCUCUCACAAUGGCCUCUGGGAUUAUGCUAA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18204 MI0003293 fru-mir-216b Fugu rubripes miR-216b stem-loop UGACUGUUUAAUCUCUGCAGGCAACUGUGAUGGUGUUUUAUAUUCUCACAAUCACCUGGAGAGAUUCUGCAGUUUAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18205 MI0003294 tni-mir-216b Tetraodon nigroviridis miR-216b stem-loop UGACUGUUUAAUCUCUGCAGGCAACUGUGAUGGUGAUUUUUAUUCUCACAAUCACCUGGAGAGAUUCUGCAGUUUAU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18206 MI0003295 fru-let-7i Fugu rubripes let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUUGGGUUGUGACACUGCCCGCUAUGGAGAUGACUGCGCAAGCUACUGCCUUGCUA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18207 MI0003296 tni-let-7i Tetraodon nigroviridis let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUUGGGUUGUGACACUGCCCGCUAUGGAGAUGACUGCGCAAGCUACUGCCUUGCUA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18208 MI0003297 fru-mir-10b-2 Fugu rubripes miR-10b-2 stem-loop GUUGUCUAUAUGUACCCUGUAGAACCGAAUUUGUGUGAGUUCCAGACAGUCGCAAGUACGUCUCUACAGGAAUACAUGGGCAAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18209 MI0003298 tni-mir-10b-1 Tetraodon nigroviridis miR-10b-1 stem-loop GUUGUCUAUAUGUACCCUGUAGAACCGAAUUUGUGUGAGUUCAGACAGUCACAAGUACGUCUCUACAGGAAUACAUGGGCAAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18210 MI0003299 fru-mir-196a-1 Fugu rubripes miR-196a-1 stem-loop AGCUGGAGCGUGGUUUAGGUAGUUUCAUGUUGUUGGGGAUGGCUUCCUGGCUCGGCAACAAGAAACUGCCUUGAUUACGUCAGUU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18211 MI0003300 tni-mir-196a-1 Tetraodon nigroviridis miR-196a-1 stem-loop AGCUGGAGCGUGGUUUAGGUAGUUUCAUGUUGUUGGGGAUGGCUUCCUGGCUCGGCAACAAGAAACUGCCUUGAUUACGUCAGUUCGUCUUCAUCAAGGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18212 MI0003301 fru-mir-429 Fugu rubripes miR-429 stem-loop CCUGUUGAUAGGCGUCUUACCAGACAUGGUUAGAUGUAAUUAUUGUUGUCUAAUACUGUCUGGUAAUGCCGUCCAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18213 MI0003302 tni-mir-429 Tetraodon nigroviridis miR-429 stem-loop AGCCUGUUGAUAGGCGUCUUACCAGACAUGGUUAGAUGUAAUUAUUGUUGUCUAAUACUGUCUGGUAAUGCCGUCCAUUAAAUGGCA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18214 MI0003303 fru-mir-200a Fugu rubripes miR-200a stem-loop UCUCAGGAUCCAUCUUACCCGACAGUGCUGGAUUGUACUACUGUUGUUCUAACACUGUCUGGUAACGAUGUUUUCUGGGUGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18215 MI0003304 tni-mir-200a Tetraodon nigroviridis miR-200a stem-loop CAUCUUACCUGACAGUGCUGGAUUAUACUACUGUUGUUCUAACACUGUCUGGUAACGAUGUU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18216 MI0003305 fru-mir-200b Fugu rubripes miR-200b stem-loop GGUGAUUAUCUCCAUCUUACGAGGCAGCAUUGGAUAUCAUCACUUUCUCUAAUACUGCCUGGUAAUGAUGAUGAUCG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18217 MI0003306 tni-mir-200b Tetraodon nigroviridis miR-200b stem-loop CCAUCUUACGAGGCAGCAUUGGAUAGCAUCACUUUUUCUAAUACUGCCUGGUAAUGAUGAUGAUCGUCGUCUGCAGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18218 MI0003307 fru-mir-218b Fugu rubripes miR-218b stem-loop CAGGACCCCAUUGUGCUUGAUCUAACCAUGCAGUGCAUCGUGUGUCCAUGGUUGUGCCAAGCACCUUGGAGGCUUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18219 MI0003308 tni-mir-218b Tetraodon nigroviridis miR-218b stem-loop CAGGACCCCAUUGUGCUUGAUCUAACCAUGCAGUGCGUCCUGUGUCCAUGGUUGUGCCAAGCACCUUGGAGGCUUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18220 MI0003309 fru-mir-301 Fugu rubripes miR-301 stem-loop CAGCUGCUUUGACAAUGUUGCACUACUGUACCAUCCAUUCUAGCAGUGCAAUAGUAUUGUCAUAGCAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18221 MI0003310 tni-mir-301 Tetraodon nigroviridis miR-301 stem-loop AGGUCAGCUGCUCUGACAAUGUUGCACUACUGUACCAUCCAUUCUAGCAGUGCAAUAGUAUUGUCAUAGCAUUUGGCCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18222 MI0003311 fru-mir-130 Fugu rubripes miR-130 stem-loop UGUUGUUGUCCUCUGCCCUUUUUCUGUUGCACCACUGGACACUGAGAUGAGCAGUGCAAUAUUAAAAGGGCAUUGGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18223 MI0003312 tni-mir-130 Tetraodon nigroviridis miR-130 stem-loop UGUUGUCCUCUGCCCUUUUUCUGUUGCACCACUGGACACUGAGAUGAGCAGUGCAAUAUUAAAAGGGCAUUGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18224 MI0003313 fru-let-7a-2 Fugu rubripes let-7a-2 stem-loop GGGUGAGGUAGUAGGUUGUAUAGUUUUAGGGUUAUACCCUUCCUGUCAGAUAACUAUACAACUUACUGUCUUUCCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18225 MI0003314 tni-let-7a-2 Tetraodon nigroviridis let-7a-2 stem-loop GUCCUUUGGGGUGAGGUAGUAGGUUGUAUAGUUUUAGGGUUAUACCCUUCCUGUCAGAUAACUAUACAACUUACUGUCUUUCCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18226 MI0003315 fru-mir-122 Fugu rubripes miR-122 stem-loop AGCUAUGGAGUGUGACAAUGGUGUUUGUUUCCUUUCUUUCAAACGCCAUUAUCACACUAAAUAGCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18227 MI0003316 tni-mir-122 Tetraodon nigroviridis miR-122 stem-loop AGCUGUGGAGUGUGACAAUGGUGUUUGUGUCCUUUCUUUCAAACGCCAUUAUCACACUAAAUAGCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18228 MI0003317 fru-mir-218a-1 Fugu rubripes miR-218a-1 stem-loop CGGCUGUCUCUUGUGCUUGAUCUAACCAUGUGGCCCCGCCUAUUGUGACAUCACAUGGUUCCGUCAAGCGCCAGGGACCGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18229 MI0003318 tni-mir-218a-1 Tetraodon nigroviridis miR-218a-1 stem-loop CGGCUGUCUCUUGUGCUUGAUCUAACCAUGUGGCCCCGCCUAUUGUGAAAUCACAUGGUUCCGUCAAGCGCCAGGGACCGCUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18230 MI0003319 fru-let-7d Fugu rubripes let-7d stem-loop UGUGCUCUGCAGUGUGAGGUAGUUGGUUGUAUGGUUUCGCAUAAUAAACAGCACGGAGAUAACUGUACAACCUUCUAGCUUUCCCUGCGGAGUCAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18231 MI0003320 tni-let-7d Tetraodon nigroviridis let-7d stem-loop UGUGCUCUGCAGUGUGAGGUAGUUGGUUGUAUGGUUUCGCAUAAUAAACAGCACGGAGAUAACUGUACAACCUUCUAGCUUUCCCUGCGGAGUCAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18232 MI0003321 fru-mir-9-2 Fugu rubripes miR-9-2 stem-loop GUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUUCUGCUCGUCAUAAAGCUAGAUAACCGAAAGUAAAAAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18233 MI0003322 tni-mir-9-2 Tetraodon nigroviridis miR-9-2 stem-loop GUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUUCUGCUCGUCAUAAAGCUAGAUAACCGAAAGUAAAAAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18234 MI0003323 fru-mir-460 Fugu rubripes miR-460 stem-loop CAGUUCCUGCAUUGUACACACUGUGCAAAUCAUUUCUGGAAGCACAGCGCAUACAAUGUGGAUGCUGUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18235 MI0003324 tni-mir-460 Tetraodon nigroviridis miR-460 stem-loop CAGUUCCUGCAUUGUACACACUGUGCAAAUCAAUUCUGGAAGCACAGCGCAUACAAUGUGGAUGCUGUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18236 MI0003325 fru-mir-21 Fugu rubripes miR-21 stem-loop UGUCAAAUAGCUUAUCAGACUGGUGUUGGCUGUUAAGAUUGCAAGGCGACAACAGUCUGUAGGCUGUCUGACA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18237 MI0003326 tni-mir-21 Tetraodon nigroviridis miR-21 stem-loop AUUGUCGUCUUUACAUCUGUCACUCUCGGCCUGUCAAAUAGCUUAUCAGACUGGUGUUGGCUGUUAAGAUUGCAAGGCGACAACAGUCUGAAGGCUGUCUGACAUUUCGGGCUCUUUCAUCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18238 MI0003327 fru-mir-153b Fugu rubripes miR-153b stem-loop CAUCUCCCAGUGUCAUUUUUGUGGUUUGCAGCUAGUACUCUGGCUCCAGUUGCAUAGUCACAAAAAUGAGCAUUGGCAGGUGUGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18239 MI0003328 tni-mir-153b Tetraodon nigroviridis miR-153b stem-loop CAUCUCCCAGUGUCAUUUUUGUGGUUUGCAGCUAGUACUCUGGCUCCAGUUGCAUAGUCACAAAAAUGAGCAUUGGCAGGUGUGAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18240 MI0003329 fru-mir-199-2 Fugu rubripes miR-199-2 stem-loop CCGCCUGCCCAGUGUUCAGACUACCUGUUCAGGAAGUAGUGGUUGUACAGUAGUCUGCACAUUGGUUAGGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18241 MI0003330 tni-mir-199-2 Tetraodon nigroviridis miR-199-2 stem-loop CCGCCUGCCCAGUGUUCAGACUACCUGUUCAGGAAGUAGUGGUUGUACAGUAGUCUGCACAUUGGUUAGGCUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18242 MI0003331 fru-mir-181b-1 Fugu rubripes miR-181b-1 stem-loop AAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUUAACUGUAUGGAAGAGCUCACUGAACGAUGAAUGCAACUGUGUCCCAGAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18243 MI0003332 tni-mir-181b-1 Tetraodon nigroviridis miR-181b-1 stem-loop AAAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUUAACUGUAUGGAAGAGCUCACUGAACGAUGAAUGCAACUGUGUCCCAGAU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18244 MI0003333 fru-mir-181a-1 Fugu rubripes miR-181a-1 stem-loop GCUCGCCCCGGUGAACAUUCAACGCUGUCGGUGAGUUUGAGCUAAAUUGGAAAAACCAUCGACCGUUGAUUGUACCCCGUGGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18245 MI0003334 tni-mir-181a-1 Tetraodon nigroviridis miR-213 stem-loop GCUCGCCCCGGUGAACAUUCAACGCUGUCGGUGAGUUUGAGCCAAAUUGGAAAAACCAUCGACCGUUGAUUGUACCCCGUGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18246 MI0003335 fru-mir-338 Fugu rubripes miR-338 stem-loop GGAUUCUCCCUGCAACAACAUCCUGGUGCUGCCUGAGUCACUUUCACAAACUCCAGCAUCAGUGAUUUUGUUGCGGGGGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18247 MI0003336 tni-mir-338 Tetraodon nigroviridis miR-338 stem-loop GGAUUCUCCCUGCAACAACAUCCUGGUGCUGCCUGAGUCACUUUCACAAACUCCAGCAUCAGUGAUUUUGUUGCGGGGGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18248 MI0003337 fru-mir-7 Fugu rubripes miR-7 stem-loop CCCUGUCUGCUGCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGUUAGAUCAACUGACAACAAAUCACAGUCUGCCAAACAGCACAGGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18249 MI0003338 tni-mir-7 Tetraodon nigroviridis miR-7 stem-loop UGGAAGACUAGUGAUUUUGUUGUUUGGUGUCAAAAUUGACAACAAAUCAUUGUCUUCCUCACUGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18250 MI0003339 fru-mir-153a Fugu rubripes miR-153a stem-loop CCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18251 MI0003340 tni-mir-153a Tetraodon nigroviridis miR-153a stem-loop CCAGUGUCAUUUUUUGUGAUGUUGCAGCUAGUAAUAUAAGCCAAGUUGCAUAGUCACAAAAGUGAUCAUUGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18252 MI0003341 fru-let-7j Fugu rubripes let-7j stem-loop GUCUGAGGUAGUUUUUUGUACAGUUUGAGGGUCUGUGAUUCUGCCCCAUACAGGAGCUAACUGUACAAGUGACUGCCUUGCC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18253 MI0003342 tni-let-7j Tetraodon nigroviridis let-7j stem-loop GUCUGAGGUAGUUUUUUGUACAGUUUGAGGGUCUGUGAUUCUGCCCCAUACAGGAGCUAACUGUACAAGUGACUGCCUUGCC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18254 MI0003343 dre-let-7j Danio rerio let-7j stem-loop GGUUGAGGUAGUUGUUUGUACAGUUUUUAGGGUCUGUUAUUCUGCCCUGUUAAGGAGCUAACUGUACAGACUACUGCCUUGCC This zebrafish miRNA sequence is predicted based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication). 12 18255 MI0003344 fru-let-7b Fugu rubripes let-7b stem-loop CAGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGUUGUGAUUUUGCCCCAUCAGGAGCUAACUAUACAACCUACUGCCUUCCCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18256 MI0003345 tni-let-7b Tetraodon nigroviridis let-7b stem-loop CAGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGUUGUGAUUUUGCCCCAUCAGGAGCUAACUAUACAACCUACUGCCUUCCCUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18257 MI0003346 fru-mir-128-2 Fugu rubripes miR-128-2 stem-loop GAAGAGGGGGCCGUUACACUGUCAGAGAUGUAGUCUGAGGGUCUCACAGUGAACCGGUCUCUUUUCCUGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18258 MI0003347 tni-mir-128-2 Tetraodon nigroviridis miR-128-2 stem-loop GAGGAGGGGGCCGUUACACUGUCAGAGAUGUAGUCUGAGGGUCUCACAGUGAACCGGUCUCUUUUCCUGCUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18259 MI0003348 fru-mir-144 Fugu rubripes miR-144 stem-loop CCUGGACAGGAUAUCAUCUAAUACUGUAAGUUUAUUAAAGAGACACUACAGUAUAGAUGAUGUACUAUCCAGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18260 MI0003349 tni-mir-144 Tetraodon nigroviridis miR-144 stem-loop CCCUGGACAGGAUAUCAUCUUAUACUGUAAGUUUAAUAAAGUGACACUACAGUAUAGAUGAUGUACUAUCCAGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18261 MI0003350 fru-mir-30c Fugu rubripes miR-30c stem-loop UCAGGAAGUGUAAACAUCCUACACUCUCGGCGUCCGCCCCCUGGUGGCCGGGGGUGGGACUGUUUGCACUGCCUGACU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18262 MI0003351 tni-mir-30c Tetraodon nigroviridis miR-30c stem-loop UUCAGGGAGUGUAAACAUCCUACACUCUCGGCGUCCGCCCCCUGGUGGCCGGGGGUGGGACUGUUUGCACUGCCUGGCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18263 MI0003352 fru-mir-140 Fugu rubripes miR-140 stem-loop GUCAGUGGUUUUACCCUAUGGUAGGUGACAUCAUGCUGUUCUACCACAGGGUAGAACCACGGACGGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18264 MI0003353 tni-mir-140 Tetraodon nigroviridis miR-140 stem-loop GUCAGUGGUUUUACCCUAUGGUAGGUGACAUCAUGCUGUUCUACCACAGGGUAGAACCACGGACGGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18265 MI0003354 fru-mir-124-2 Fugu rubripes miR-124-2 stem-loop CUGGUCUCUCCUCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18266 MI0003355 tni-mir-124-2 Tetraodon nigroviridis miR-124-2 stem-loop GCCUCUCCUCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18267 MI0003356 fru-mir-214 Fugu rubripes miR-214 stem-loop CAGGAUGAGACUGUUGUGGUGUGUCUGCCUGUCUACACUUGCUGUGCAGACCUUCUGCUCCUGUACAGCAGGCACAGACAGGCAGACAGAUGGCAGCCC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18268 MI0003357 tni-mir-214 Tetraodon nigroviridis miR-214 stem-loop GUGGUGUGUCUGCCUGUCUACACUUGCUGUGCAGACCUUCUGCUCCUGUACAGCAGGCACAGACAGGCAGACAGAUGGCAGCCCCACU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18269 MI0003358 fru-mir-199-1 Fugu rubripes miR-199-1 stem-loop UCCUGCUCCGUCAUCCCAGUGUUCAGACUACCUGUUCAGGAUUUUACUGGUGUACAGUAGUCUGCACAUUGGUUAGACAGUGCAUGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18270 MI0003359 tni-mir-199-1 Tetraodon nigroviridis miR-199-1 stem-loop CCGGCUCCGUCCACCCAGUGUUCAGACUACCUGUUCAUUGUCAUACUGGUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCACGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18271 MI0003360 fru-mir-455 Fugu rubripes miR-455 stem-loop CCCUGGUGUGAGGGUAUGUGCCCUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUGCCUCAUGG 38 18272 MI0003361 tni-mir-455 Tetraodon nigroviridis miR-455 stem-loop CCCUGAUGUGAGGGUAUGUGCCCUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUUCCUCAAGG 39 18273 MI0003362 fru-mir-135b Fugu rubripes miR-135b stem-loop AUGCCCAGUGCACUGUAUGGCUUUUUAUUCCUAUCUGACUGUACUGAUAGUUCAUAUAGGGAUGGAAGCCAUGCACUGCGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18274 MI0003363 tni-mir-135b Tetraodon nigroviridis miR-135b stem-loop GCCCAGUGCGCUGUAUGGCUUUUUAUUCCUAUCUGACUGUACUGAGAGUUCAUAUAGGGAUGGAAGCCAUGCACCGCGCUGGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18275 MI0003364 dre-mir-135b Danio rerio miR-135b stem-loop CUCUUUGCCCCGUAUGGCUUUUUAUUCCUAUCUGAGAAUUGCUCAGGACUCAUAUAGGGAUGGAAGCCAUGCAGGGCUGGGG This zebrafish miRNA sequence is predicted based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication). 12 18276 MI0003365 fru-mir-196b Fugu rubripes miR-196b stem-loop UGUGAUAUAGGUAGUUUCAAGUUGUUGGGCUGAACUCUUGUGAUCACAGGAACCUGAAACUGCCUGAGU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18277 MI0003366 tni-mir-196b Tetraodon nigroviridis miR-196b stem-loop UGUGAUGUAGGUAGUUUCAAGUUGUUGGGCUAAACUUUGGUGAUCACAGGAACCUGAAACUGCCCGAUU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18278 MI0003367 fru-mir-129-1 Fugu rubripes miR-129-1 stem-loop GUCCUUCACGAAUCUUUUUGCGGUCUGGGCUUGCUGUUCUUUACUGGUAAUCUGGGAAGCCCUUACCCCAAAAAGCAUUUGCGGAGGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18279 MI0003368 tni-mir-129-1 Tetraodon nigroviridis miR-129-1 stem-loop GUCCUUCACGAAUCUUUUUGCGGUCUGGGCUUGCUGUUCUCUGCUCACCCGGAAGCCCUUACCCCAAAAAGCAUUUGCGGGGGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18280 MI0003369 fru-mir-26 Fugu rubripes miR-26 stem-loop AGGCCUCGGCCUGGUUCAAGUAAUCCAGGAUAGGCUGGUUAACCCUGCACGGCCUAUUCUUGAUUACUUGUGUCAGGAAGUGGCCGUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18281 MI0003370 tni-mir-26 Tetraodon nigroviridis miR-26 stem-loop GCGUUAGGCCUCGGCCUGGUUCAAGUAAUCCAGGAUAGGCUGGUUAACCCUGCACGGCCUAUUCUUGAUUACUUGUGUCAGGAAGUGGCCGCCAGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18282 MI0003371 fru-mir-101b Fugu rubripes miR-101b stem-loop UGAACUGUCCAUUUUCAGUUAUCAUGGUACCGCUGCUGUGUCCCUCUCAAGUACAGUACUAUGAUAACUGAAGAUUGGCAGUGCCAUC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18283 MI0003372 tni-mir-101b Tetraodon nigroviridis miR-101b stem-loop UGAACUGUCCAUUUUCGGUUAUCAUGGUACCGCUGCUGUGUCCCUCUCAAGUACAGUACUAUGAUAACUGAAGAUUGGCAGUGCCAUC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18284 MI0003373 fru-mir-9-4 Fugu rubripes miR-9-4 stem-loop GGGUUAGUUUUUAUCUUUGGUUAUCUAGCUGUAUGAGUUUAUGUAAUAUCAUAAAGCUAGAGAACCGAAUGUAUAAACUAAUUCC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18285 MI0003374 tni-mir-9-4 Tetraodon nigroviridis miR-9-4 stem-loop GGGUUAGUUUUUAUCUUUGGUUAUCUAGCUGUAUGAGUUUAUGUAAUAUCAUAAAGCUAGAGAACCGAAUGUACAAACUAAUUCC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18286 MI0003375 fru-mir-181b-2 Fugu rubripes miR-181b-2 stem-loop GCUCGCAAUAAACAUUCAUUGCUGUCGGUGGGUUUCUAUGGCAAUAGCUCACUGACCAAUGAAUGAAGACUGCGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18287 MI0003376 tni-mir-181b-2 Tetraodon nigroviridis miR-181b-2 stem-loop GCUCGCAAUAAACAUUCAUUGCUGUCGGUGGGUUUCCAUGGCAAUAGCUCGCUGACCAAUGAAUGAAGACUGCGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18288 MI0003377 fru-mir-103 Fugu rubripes miR-103 stem-loop CUCUCCGCUUUUAGCCUCUUUACAGUGCUGCCUUGUCUAAUCAUGUUCAAGCAGCAUUGUACAGGGCUAUGACAGCGUAGAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18289 MI0003378 tni-mir-103 Tetraodon nigroviridis miR-103 stem-loop UUGCUCUACGCUUUUAGCCUCUUUACAGUGCUGCCUUGCUCUACUCAUGUUCAAGCAGCAUUGUACAGGGCUAUGACAGCGUAGAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18290 MI0003379 fru-mir-107 Fugu rubripes miR-107 stem-loop UUCUGUCUGCUGUGAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGCGAUCAAGCAGCAUUGUACAGGGCUAUCACCGCACACAGAGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18291 MI0003380 tni-mir-107 Tetraodon nigroviridis miR-107 stem-loop UCUGUCUGCUGUGAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGCGAUCAAGCAGCAUUGUACAGGGCUAUCACCGCACACAGAGCUGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18292 MI0003381 fru-mir-22b Fugu rubripes miR-22b stem-loop GUUGCCUCACAGUCGUUCUUCACUGGCUAGCUUUAUGUCCUCUGACCCAUGCUAAAGCUGCCAGUUGAAGAGCUGUUGUGUGUAAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18293 MI0003382 tni-mir-22b Tetraodon nigroviridis miR-22b stem-loop GUUGCCUCACAGUCGUUCUUCACUGGCUAGCUUUAUGUCCUCCGACCCCACGCUAAAGCUGCCAGUUGAAGAGCUGUUGUGUGUAAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18294 MI0003383 fru-mir-212 Fugu rubripes miR-212 stem-loop GGUCAGCGCAUCAACACCUUGGCUCUAGACUGCUUACUGCUAAAACCGCUCAUAAGUACAGUAACAGUCUACAGUCAUGGCUACUGACGCCUGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18295 MI0003384 tni-mir-212 Tetraodon nigroviridis miR-212 stem-loop GGUCAGCGCAUCAACACCUUGGCUCUAGACUGCUUACUGCUAACACCGCUCUGAAGUACAGUAACAGUCUACAGUCAUGGCUACUGACGCCUGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18296 MI0003385 dre-mir-212 Danio rerio miR-212 stem-loop GUCAGUGCAUCAAUACCUUGGCUCUAGACUGCUUACUGCUAAAUGUGUCUGAAAGUACAGUAACAGUCUACAGUCAUGGCUACUGACGUCUGGC This miRNA was predicted by computational methods using conservation between human, mouse and Fugu rubripes sequences [1]. Expression of the excised miR was validated in zebrafish, and the 5' end mapped by PCR. The 3' end was not experimentally determined. 12 18297 MI0003386 tni-mir-181a-2 Tetraodon nigroviridis mir-181a-2 stem-loop CAGUUUUUUCAGGUCUUUGGGGAACAUUCAACGCUGUCGGUGAGUUUGGUGACUCAGAAAAAAACCAUCGAGCGUUGAGUGUACCUUUAGG This Tetraodon miRNA sequence is predicted based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication). 39 18298 MI0003387 dre-mir-181a-2 Danio rerio mir-181a-2 stem-loop UUGGUGAACAUUCAACGCUGUCGGUGAGUUUUGCGCUUCUGUAACAAACCAUCGACCGUUGACUGUACCCUGAGGGUGG This zebrafish miRNA sequence is predicted based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication). 12 18299 MI0003388 fru-mir-135a Fugu rubripes miR-135a stem-loop UGCUGUGUUUUAUGGCUUUCUAUUCCUAUGUGAUUUUCUCUAGCAUGUCACAUAGGGUCUAAAGCCAUUGGGUACAGAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18300 MI0003389 tni-mir-135a Tetraodon nigroviridis miR-135a stem-loop UGCUGUGUUUUAUGGCUUUCUAUUCCUAUGUGAUUUUCUCUAGCAUGUCACAUAGGGUCUAAAGCCAUUGGGUACAGAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18301 MI0003390 fru-mir-218a-2 Fugu rubripes miR-218a-2 stem-loop GGUUGUUCCUUUGUGCUUGAUCUAACCAUGUGGCUGCCGGGUUCUUAUAGUGGAACAUGGUUCUGUCAAGCACCAUGGAACGGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18302 MI0003391 tni-mir-218a-2 Tetraodon nigroviridis miR-218a-2 stem-loop GGUUGUUCCUUUGUGCUUGAUCUAACCAUGUGGCUGCCAGGUUCUUAUCGUGGAACAUGGUUCUGUCAAGCACCAUGGAACGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18303 MI0003392 fru-mir-29a-1 Fugu rubripes miR-29a-1 stem-loop AGGUUGACUGAUUUCUUUUGGUGUUCAGAGUCCAAUUCUGUUUCUAGCACCAUUUGAAAUCGGUUACAGUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18304 MI0003393 tni-mir-29a-1 Tetraodon nigroviridis miR-29a-1 stem-loop AGGUUGACCGAUUUCUUUUGGUGUUCAGAGUCCAAUUCUGUUUCUAGCACCAUUUGAAAUCGGUUACAGUGA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18305 MI0003394 dre-mir-29a-2 Danio rerio miR-29a-2 stem-loop AGGUUGACCGAUUUCUUUUGGUGUUCAGAGUCUUUUGGGGUUUCUAGCACCAUUUGAAAUCGGUUACAAUG This zebrafish miRNA sequence is predicted based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication). 12 18306 MI0003395 fru-mir-29b-2 Fugu rubripes miR-29b-2 stem-loop UGGAAGCUGGUUUCAGGUGGUGGCUUAGAGUAUUGUCAUCUAUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18307 MI0003396 tni-mir-29b-2 Tetraodon nigroviridis miR-29b-2 stem-loop CUCUUGGAAGCUGGUUUCAGGUGGUGGCUUAGAGUAUUGUCAUCUAUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18308 MI0003397 fru-mir-133 Fugu rubripes miR-133 stem-loop AAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCACCUGUUGAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUGCGCAUUGAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18309 MI0003398 tni-mir-133 Tetraodon nigroviridis miR-133 stem-loop UGACUCCACAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCACCUCUUGAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18310 MI0003399 fru-mir-132 Fugu rubripes miR-132 stem-loop GUCUCCAUGGUUACCGUGGCAUUAGAUUGUUACUGUAGCAACUGCACCAGUGGUAACAGUCUACAGCCAUGGUCGCUAGGGGGCA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18311 MI0003400 tni-mir-132 Tetraodon nigroviridis miR-132 stem-loop GUCUCCAUGGUUACCGUGGCAUUAGAUUGUUACUGUAGCAACUGCACCAGCGGUAACAGUCUACAGCCAUGGUCGCUAGGGGGCA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18312 MI0003401 fru-mir-125b Fugu rubripes miR-125b stem-loop CUCUCAUUCCCUGAGACCCUAACUUGUGACGUUGUGCUGUGAUGUGCACGGGUUGGGUUCUUGGGAGCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18313 MI0003402 tni-mir-125b Tetraodon nigroviridis miR-125b stem-loop GUACCUCUCUCAUUCCCUGAGACCCUAACUUGUGACGUUGUGCUGUGAUGUGCACGGGUUGGGUUCUUGGGAGCUGCGAGGGGCGCUCACACAUC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18314 MI0003403 fru-mir-29a-2 Fugu rubripes miR-29a-2 stem-loop GAAGACAGUCUUGGACUCCCUUCCCCGUCCUCCACCAAAAGAUGACUGAUUUCUUCUGGUGCUGAGAGUCGGCUGCAGCCUUCUAGCACCAUUUGAAAUCGGUUAUAAAACAGUGGGUCGAUACAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18315 MI0003404 tni-mir-29a-2 Tetraodon nigroviridis miR-29a-2 stem-loop UGUUUCUCCACCAAAAGAUGACUGAUUUCCUCUGGUGCUUAGAGCCGCCUGCAGCCUUCUAGCACCAUUUGAAAUCGGUUAUAAAACUGUGGAUCAGUGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18316 MI0003405 fru-mir-29b-1 Fugu rubripes miR-29b-1 stem-loop UCCAGAAGCUGGUUUCAUGUGGUGGUUUAGAUGUGUCUUCCCUCUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18317 MI0003406 tni-mir-29b-1 Tetraodon nigroviridis miR-29b-1 stem-loop CUCCAGAAGCUGGUUUCACGUGGUGGUUUAGAUGUGUCUCCUCAUCGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18318 MI0003407 fru-let-7a-1 Fugu rubripes let-7a-1 stem-loop CAGGUUGAGGUAGUAGGUUGUAUAGUUGAGAGUGACACCACAGGAGAUGACUGUACAGCCUCCUAGCUUUCCCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18319 MI0003408 tni-let-7a-1 Tetraodon nigroviridis let-7a-1 stem-loop CAGGGUGAGGUAGUAGGUUGUAUAGUUGAGAGUGACACCACAGGAGAUAACUGUACAGCCUCCUAGCUUUCCCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18320 MI0003409 fru-mir-100 Fugu rubripes miR-100 stem-loop CACAAACCCGUAGAUCCGAACUUGUGGUGACUGGCCGCACAAGCUCGUAUCUAUAGGUAUGUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18321 MI0003410 tni-mir-100 Tetraodon nigroviridis miR-100 stem-loop CACAAACCCGUAGAUCCGAACUUGUGGUGACUGGCCGCACAAGCUCGUAUCUAUAGGUAUGUG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18322 MI0003411 fru-mir-219-1 Fugu rubripes miR-219-1 stem-loop UGAUUGUCCAAACGCAAUUCUUGUGAAAAUUCAAAUCCUACCCGAGAAUUGUGCCUGGACAUCUGUUGCUGGA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18323 MI0003412 tni-mir-219-1 Tetraodon nigroviridis miR-219-1 stem-loop UCUGAGCACUAGCAGCUGAUUGUCCAAACGCAAUUCUUGUGAAAAUCCAAAGCCUACCCGAGAAUUGUGCCUGGACAUCUGUUGCUGGACGCUCC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18324 MI0003413 fru-mir-24-1 Fugu rubripes miR-24-1 stem-loop GGGUUGUGCCCUCCUGUGCCUACUGAACUGGUAUCAGUGUCAUACUGGAAAACUGGCUCAGUUCAGCAGGAACAGGAGU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18325 MI0003414 tni-mir-24-1 Tetraodon nigroviridis miR-24-1 stem-loop CUUCCUGUGCCUACUGAGCUGAUAUGCAGUUGUACAGAACCACUGGCUCAGUUCAGCAGGAACAGGAGUC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18326 MI0003415 fru-mir-23a-1 Fugu rubripes miR-23a-1 stem-loop GCUGUGGCGGGGAGGGUUCCUGGCACCGUGAUUUGAUGCACAAAGACAAACAAAAAUCACAUUGCCAGGGAUUUCCACCCUUUCACAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18327 MI0003416 tni-mir-23a-1 Tetraodon nigroviridis miR-23a-1 stem-loop GCUGUGGCGGGGAGGGUUCCUGGCACCGUGAUUUGAUGCACAAAGACAAACAAAAAUCACAUUGCCAGGGAUUUCCACCCUUUCACAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18328 MI0003417 fru-mir-27e Fugu rubripes miR-27e stem-loop CACUUGCUAAAGGCACCGAGCUUAGCUAAUUGGUGAGCAUUGAUCCCUGCUAUGUGUUGUUCACAGUGGCUAAGUUCAGUGCCUGAGGUGAAAUAGUUGA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18329 MI0003418 tni-mir-27e Tetraodon nigroviridis miR-27e stem-loop CUCUUGCUGAAGGCACAGAGCUUAGCUAAUUGGUGAGCAUUGAUCCCUGCUAUGUGUUGUUCACAGUGGCUAAGUUCAGUGCC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18330 MI0003419 fru-mir-375 Fugu rubripes miR-375 stem-loop UGUACUUGCUUCACGUUGAGCCUCACGCACAAUACCUGAAGAUGAAGUUUUGUUCGUUCGGCUCGCGUUAUGCAGGU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18331 MI0003420 tni-mir-375 Tetraodon nigroviridis miR-375 stem-loop UGUACUUGCUUCACGUUGAGCCUCACGCACAAUACCUGAAGAUGAAGUUUUGUUCGUUCGGCUCGCGUUAUGCAGGU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18332 MI0003421 fru-mir-128-1 Fugu rubripes miR-128-1 stem-loop GAGAGCCUGGGUACGGGGCCGGGACGCUGUUUGAGAGUCCUCUAUGAAUCUCACAGUGAACCGGUCUCUUUUCCAGCCCCUCACU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18333 MI0003422 tni-mir-128-1 Tetraodon nigroviridis miR-128-1 stem-loop GCUGCAUACGGGGCCGGGACGCUGUUUGAGAGUCCACUAUGAAUCUCACAGUGAACCGGUCUCUUUUGCAGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18334 MI0003423 fru-mir-1 Fugu rubripes miR-1 stem-loop CUUAGUGUACAUACUUCUUUAUGUACCCAUAUGGACAUAUGAUAACUAUGGAAUGUAAAGAAGUAUGUAUUCUUGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18335 MI0003424 tni-mir-1 Tetraodon nigroviridis miR-1 stem-loop AUUACCUCCUUAGUGUACAUACUUCUUUAUGUACCCAUAUGAACAUAUGAUAACUAUGGAAUGUAAAGAAGUAUGUAUUCUUGGUGAGGUGA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18336 MI0003425 fru-mir-202 Fugu rubripes miR-202 stem-loop UCCUUUUUCCUAUGCAUAUACCUUUUUCAGAUGUAACUUUAAAGAGGCAUAGGGCAUGGGAAAAUGGGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18337 MI0003426 tni-mir-202 Tetraodon nigroviridis miR-202 stem-loop UCCUUUUUCCUAUGCAUAUACCUUUUUCAGAUGUAACUUUAAAGAGGCAUAGGGCAUGGGAAAAUGGGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18338 MI0003427 fru-mir-203 Fugu rubripes miR-203 stem-loop CUGAUUAAGUGGUUCUCAACAGUUCAACAGUUCUAUGAGAAAAUUGUGAAAUGUUUAGGACCACUUGACCAGUC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18339 MI0003428 tni-mir-203 Tetraodon nigroviridis miR-203 stem-loop CUGAUUAAGUGGUUCUCAACAGUUCAACAGUUCUUUGAGAAAAUUGUGAAAUGUUUAGGACCACUUGACCAGUC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18340 MI0003429 fru-mir-23a-3 Fugu rubripes miR-23a-3 stem-loop UCUGUUGGCCAGGGGGAUUCCUGGCAGAGUGAUUUUUAGACUACAGGACUGAAUCACAUUGCCAGGGAUUUCCAAUGGCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18341 MI0003430 tni-mir-23a-3 Tetraodon nigroviridis miR-23a-3 stem-loop UCUGUUGGCCAGGGGAAUUCCUGGCAGAGUGAUUUUUGAGACUACAGGACUGAAUCACAUUGCCAGGGAUUUCCAAUGGCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18342 MI0003431 fru-mir-27c Fugu rubripes miR-27c stem-loop GGCUGUGUGGCGGCAGGACUUAACCCACAUGUGAGCAGUGAGUGUGUGCCAUGUUCACAGUGGUUAAGUUCUGCCGCC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18343 MI0003432 tni-mir-27c Tetraodon nigroviridis miR-27c stem-loop GGCUGUGCGGCGGCAGGACUUAACCCACAUGUGAACAGUGAGUGUGCCGUGUUCACAGUGGUUAAGUUCUGCCGCC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18344 MI0003433 fru-mir-24-2 Fugu rubripes miR-24-2 stem-loop GGGUCAGUCUCCUGUGCCUGCUGUGCUGAUAAUCAGUGUGUGACGUUGGCUGGCUCAGUUCAGCAGGAACAGGGGACUGGUC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18345 MI0003434 tni-mir-24-2 Tetraodon nigroviridis miR-24-2 stem-loop GGGUCAGUCUCCUGUGCCUGCUGUGCUGAUAAUCAGUGUGUGACGUUGGCUGGCUCAGUUCAGCAGGAACAGGGGACUGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18346 MI0003435 fru-mir-138 Fugu rubripes miR-138 stem-loop GCUGCAGCUGGUGUUGUGAAUCAGGCCGAUGACAGACACCUCCUAUAAGCCGGCUAUUUCACAACACCAGGGUGGCACC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18347 MI0003436 tni-mir-138 Tetraodon nigroviridis miR-138 stem-loop GCUGCAGCUGGUGUUGUGAAUCAGGCCGAUGACAGACACCUCCUAGAAGCCGGCUAUUUCACAACACCAGGGUGGCACC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18348 MI0003437 fru-mir-129-2 Fugu rubripes miR-129-2 stem-loop UGGGUCUUUUUGCGGUCUGGGCUUGCUGUUCCUAAGGCAGUAGCCAGGAAGCCCUUACCCCAAAAAGUAUCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18349 MI0003438 tni-mir-129-2 Tetraodon nigroviridis miR-129-2 stem-loop GGGUCUUUUUGCGGUCUGGGCUUGCUGUUCCUAAGGCAGUAGCCAGGAAGCCCUUACCCCAAAAAGUAUCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18350 MI0003439 fru-mir-125a Fugu rubripes miR-125a stem-loop CUUCAGUGUCCCUGAGACCCUUAACCUGUGAUGAUAUGAAAGGUCACAGGUGAGGUCCUUGGGAAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18351 MI0003440 tni-mir-125a Tetraodon nigroviridis miR-125a stem-loop CAGUGUCCCUGAGACCCUUAACCUGUGAUAACGUGAAAGGUCACAGGUGAGGUCCUUGGGAAC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18352 MI0003441 fru-mir-17-2 Fugu rubripes miR-17-2 stem-loop GUCAAAGUAGUGUCAAAGUGCUUACAGUGCAGGUAGUUUGAUGACAUCUACUGCAGUGAAGGCACUUUCAGCGCUAUUCUGA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18353 MI0003442 tni-mir-17-2 Tetraodon nigroviridis miR-17-2 stem-loop GUCACCGUAGUGUCAAAGUGCUUACAGUGCAGGUAGUUAAAAGAAAUCUACUGCAGUGAAGGCACUUUCAGCACUAUUCUGA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18354 MI0003443 fru-mir-20 Fugu rubripes miR-20 stem-loop AGCAGUAUUAAAGUGCUUAUAGUGCAGGUAGUUACUGAUGGUCUACUGCAGUGUGAGCACUUCUAGUACUUCUAGAUGCA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18355 MI0003444 tni-mir-20 Tetraodon nigroviridis miR-20 stem-loop GCAGUAUUAAAGUGCUUAUAGUGCAGGUAGUUUUCUCAGGGUCUACUGCAGUAUGAGCACUUCUAGUACUUCU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18356 MI0003445 fru-mir-92-1 Fugu rubripes miR-92-1 stem-loop CUUUCCUGUGCAGGUUGGGAGAGGUAGCAAUGCUCAGAGAUUAUGCGGUAUUGCACUUGUCCCGGCCUGUGGAGGAAGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18357 MI0003446 tni-mir-92-1 Tetraodon nigroviridis miR-92-1 stem-loop CUUUCCUGUACAGGUUGGGAGAGGUAGCAAUGCUCGGAGUUCAUGUGGUAUUGCACUUGUCCCGGCCUGUGGAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18358 MI0003447 fru-mir-15b Fugu rubripes miR-15b stem-loop UGAGUCCCUUAGACUGCUAUAGCAGCGCAUCAUGGUUUGUAACGAUGUAGAAAAGGGUGCAAGCCAUAAUCUGCUGCUUUAGAAUUUUAAGGAAA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18359 MI0003448 tni-mir-15b Tetraodon nigroviridis miR-15b stem-loop GCCCUUAGACUGCUUUAGCAGCGCAUCAUGGUUUGUAAUGAUGUGGAAAAAAGGUGCAAACCAUAAUUUGCUGCUUUAGAAUUUUAAGGAA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18360 MI0003449 fru-mir-10c Fugu rubripes miR-10c stem-loop CUGUCUUCUAUAUCUACCCUGUAGAUCCGGAUUUGUGUAAAAAUCAUUAAAGCAAUCACAAAUUCGCUUCUAGGGGAGUAUAUAGUGGAUUUAUACACGACG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18361 MI0003450 tni-mir-10c Tetraodon nigroviridis miR-10c stem-loop GAGCCGCUGUCUUCUAUAUCUACCCUGUAGAUCCGGAUUUGUGUAACGAUCAUUAAAGCAAUCACAAAUUCGCUUCUAGGGGAGUAUAUAGUGGAUUUAUACACGACG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18362 MI0003451 fru-mir-9-3 Fugu rubripes miR-9-3 stem-loop GGAGCUGUGUUUCUGUCUUUGGUUAUCUAGCUGUAUGAGUGUUAAAUACCUGUCAUAAAGCUAGAUAACCGAAAGUAGAAAU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18363 MI0003452 tni-mir-9-3 Tetraodon nigroviridis miR-9-3 stem-loop GGAGCUGUGUUUCUGUCUUUGGUUAUCUAGCUGUAUGAGUGUUAAAUACCUGUCAUAAAGCUAGAUAACCGAAAGUAGAAAU This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18364 MI0003453 fru-mir-183 Fugu rubripes miR-183 stem-loop CUGUGUAUGGCACUGGUAGAAUUCACUGUGAGAGCUCACUAUCAGUGAAUUACCAUAGGGCCAUAAACAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18365 MI0003454 tni-mir-183 Tetraodon nigroviridis miR-183 stem-loop CUGUGUAUGGCACUGGUAGAAUUCACUGUGAGAGCUCACUAUCAGUGAAUUACCAUAGGGCCAUAAACAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18366 MI0003455 fru-mir-96 Fugu rubripes miR-96 stem-loop CUCUUCUUCGCCCAUUUUGGCACUAGCACAUUUUUGCUUCUGUAUGUAUACUUUGAGCAAUUAUGUGUAGUGCCAAUAUAGGAGAAGACAGACUUUCAACCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18367 MI0003456 tni-mir-96 Tetraodon nigroviridis miR-96 stem-loop UUGCCCAUUUUGGCACUAGCACAUUUUUGCUUCUGUAUAUAUACUUUGAGCAAUUAUGUGUAGUGCCAAUAUAGGAGA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18368 MI0003457 fru-mir-182 Fugu rubripes miR-182 stem-loop UGUUUGGCAAUGGUAGAACUCACACUGGUGAGGUAGAUGGAUCCGGUGGUUCUAGACUUGCCAACUACUGCU This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18369 MI0003458 tni-mir-182 Tetraodon nigroviridis miR-182 stem-loop UGUUUGGCAAUGGUAGAACUCACACUGGUGAGGUAGAUGGAUCCGGUGGUUCUAGACUUGCCAACUA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18370 MI0003459 fru-mir-210 Fugu rubripes miR-210 stem-loop UCUAAAAGCAGGUGAGCCACUGACUAACGCACAUUGCGCCAGUUGACAGUUCCACUGUGCGUGUGACAGCGGCUAACCUGGUUUUGGGAACGCUUCUG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18371 MI0003460 tni-mir-210 Tetraodon nigroviridis miR-210 stem-loop CAGGUGAGCCACUGACUAACGCACAUUGUGCCAGUUGACAGUUCCACUGUGCGUGUGACAGCGGCUAACCUGGUUUUGGGGA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18372 MI0003461 fru-let-7g Fugu rubripes let-7g stem-loop UGGGAUGAGGUAGUAGUUUGUAUAGUUUUAGGAUCACACCAGAUCUGGGAGAUAACUAUACAGUCUACUGUCUUUCCCA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18373 MI0003462 tni-let-7g Tetraodon nigroviridis let-7g stem-loop UGGGAUGAGGUAGUAGUUUGUAUAGUUUUAGGAUCACACCAGAUCUGGGAGAUAACUAUACAGUCUACUGUCUUUCCCA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18374 MI0003463 fru-mir-22a Fugu rubripes miR-22a stem-loop GCCGACCUACAGCAGUUCUUCACUGGCAAGCUUUAUGUCCUCGUGCAACAGCUAAAGCUGCCAGCUGAAGAACUGUUGUGGUUGGC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18375 MI0003464 tni-mir-22a Tetraodon nigroviridis miR-22a stem-loop GCCGACCUACAGCAGUUCUUCACUGGCAAGCUUUAUGUCCUCGUGCAACCGCUAAAGCUGCCAGCUGAAGAACUGUUGUGGUCGGC This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18376 MI0003465 fru-mir-204 Fugu rubripes miR-204 stem-loop UGUGACCUGUGGGCUUCCCUUUGUCAUCCUAUGCCUGGAGCUCGGAUAAGGCAGGGACAGCAAAGGGAUGCUCAGCUGUCACCACUGACAUC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18377 MI0003466 tni-mir-204a Tetraodon nigroviridis miR-204a stem-loop UGUGACCUGUGGGCUUCCCUUUGUCAUCCUAUGCCUGGAGCUCGGAUAAGGCAGGGACAGCAAAGGGAUGCUCAGCCGUCACCACUGACUUCA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18378 MI0003467 fru-mir-152 Fugu rubripes miR-152 stem-loop GGCUAAGUUCUGUGAUACACUCUGACUGUGAAUGUCUAUGCUAGUCAGUGCAUAACAGAACUUUGUCCCGG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18379 MI0003468 tni-mir-152 Tetraodon nigroviridis miR-152 stem-loop CUGCUCAAACUCUGGGCUAAGUUCUGUGAUACACUCUGACUGUGAAUGGCUAUGCUAGUCAGUGCAUAACAGAACUUUGUCCCGG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18380 MI0003469 fru-mir-15a Fugu rubripes miR-15a stem-loop CUGGUGAUGCUGUAGCAGCACGGAAUGGUUUGUGGGUUACACUGAGAUACAGGCCAUACUGUGCUGCCGCA This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18381 MI0003470 tni-mir-15a Tetraodon nigroviridis miR-15a stem-loop CUGGUGAUGCUGUAGCAGCACGGAAUGGUUUGUGAGUUACACUGAGAUACAAGCCAUGCUGUGCUGCCGCA This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18382 MI0003471 fru-mir-16 Fugu rubripes miR-16 stem-loop GCCACUGUGCUGUAGCAGCACGUAAAUAUUGGAGUUAAGGCUCUCUGUGAUACCUCCAGUAUUGAUCGUGCUGCUGAAGCAAAGAUGAC This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18383 MI0003472 tni-mir-16 Tetraodon nigroviridis miR-16 stem-loop UAGCAGCACGUAAAUAUUGGAGUUAAGGCUCUCUGUGAUACCUCCAGUAUUGAUCGUGCUGCUGAAGCAAAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18384 MI0003473 fru-mir-190 Fugu rubripes miR-190 stem-loop CUGUCUGAUAUGUUUGAUAUAUUAGGUUGUUAUUCAGUCCAACUAUAUAUCAAACAUAUUCCUACAG This Fugu miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 38 18385 MI0003474 tni-mir-190 Tetraodon nigroviridis miR-190 stem-loop CUGUCUGAUAUGUUUGAUAUAUUAGGUUGUUAUUCAGUCCAACUAUAUAUCAAACAUAUUCCUACAG This Tetraodon miRNA sequence is predicted based on homology with a verified zebrafish sequence (Mihaela Zavolan, personal communication). 39 18386 MI0003475 fru-mir-181a-2 Fugu rubripes mir-181a-2 stem-loop GACUUUGUCAAGUCUUUGGGGAACAUUCAACGCUGUCGGUGAGUUUUGUCUCCGAAAAACCAUCGACUGUUGAGUGUACCCUGACACUUGAGCUCCC This Fugu miRNA sequence is predicted based on homology with a verified mammalian sequence (Mihaela Zavolan, personal communication). 38 18387 MI0003476 mmu-mir-489 Mus musculus miR-489 stem-loop ACUGCUGCAGUGGCAGCUUGGUUGUCAUAUGUGUGAUGACACUUUCUAAAGUCUUCCAGAAUGACACCACAUAUAUGGCAGCUAAACUGUUACAUGGAACAACAAGU 6 18388 MI0003477 rno-mir-489 Rattus norvegicus miR-489 stem-loop ACUGCUACAGUGGCAGCUUGGUUGUCGUAUGCGUGAUGACACGUUCUCGUGUAUUCCAGAAUGACAUCACAUAUAUGGCAGCUAAACUGUUACAGGAACAACAAGU 8 18389 MI0003478 rno-mir-383 Rattus norvegicus miR-383 stem-loop UCCUCAGAUCAGAAGGUGACUGUGGCUUUGGGUGGAUAUUAAUCAGCCACAGCACUGCCUGGUCAGAAAGAGCA 8 18390 MI0003479 rno-mir-207 Rattus norvegicus miR-207 stem-loop AGGCAGGGGUGAGGGGCUGCGGGAGGAGCGGGGCGGAGGCUGCGGCUUGCGCUUCUCCUGGCUCUCCUCCCUUUCUUU 8 18391 MI0003480 rno-mir-501 Rattus norvegicus miR-501 stem-loop GCUCGUCCUCUCUAAUCCUUUGUCCCUGGGUGAAAAUGCUAUUUGUAUGCAAUGCACCCGGGCAAGGAUUUGGGGAAGGUAAGC 8 18392 MI0003481 rno-mir-361 Rattus norvegicus miR-361 stem-loop GAAGCUUAUCAGAAUCUCCAGGGGUACUUAUUAUUUGAAAAGUCCCCCAGGUGUGAUUCUGAUUCGUUUC 8 18393 MI0003482 rno-mir-215 Rattus norvegicus miR-215 stem-loop GGUGUACAGGACAAUGACCUAUGAUUUGACAGACAGUGUGGCUGCGUGUGUCUGUCAUUCUGUAGGCCAAUAUUCUGUAUGUCUCUCCUCCUUACAA 8 18394 MI0003483 rno-mir-224 Rattus norvegicus miR-224 stem-loop GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGGUUUUUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC 8 18395 MI0003484 mmu-mir-483 Mus musculus miR-483 stem-loop GAGGGGGAAGACGGGAGAAGAGAAGGGAGUGGUUUUUGGGUGCCUCACUCCUCCCCUCCCGUCUUGUUCUCUC 6 18396 MI0003485 rno-mir-483 Rattus norvegicus miR-483 stem-loop GAGGGGGAAGACGGGAGAAGAGAAGGGAGUGGUUUUUGGGUGCCUCACUCCUCCCCUCCCGUCUUGUUCUCUC 8 18397 MI0003486 rno-mir-370 Rattus norvegicus miR-370 stem-loop AGACAGAGAGACCAGGUCACGUCUCUGCAGUUACACAGCUCAUGAGUGCCUGCUGGGGUGGAACCUGGUUUGUCUGUCU 8 18398 MI0003487 rno-mir-377 Rattus norvegicus miR-377 stem-loop CUUGAGCAGAGGUUGCCCUUGGUGAAUUCGCUUUAUUGAUGUUGAAUCACACAAAGGCAACUUUUGGUUGAG 8 18399 MI0003488 rno-mir-412 Rattus norvegicus miR-412 stem-loop GGGACGGAUGGUCGACCAGCUGGAAAGUAAUUGUUUCUAAUGUACUUCACCUGGUCCACUAGCCGUCGGU 8 18400 MI0003489 rno-mir-1 Rattus norvegicus miR-1 stem-loop UGCCUACUCAGAGCACAUACUUCUUUAUGUACCCAUAUGAACAUAGAAUGCUAUGGAAUGUAAAGAAGUGUGUAUUUUGGGUAGGUA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 18401 MI0003490 rno-mir-133b Rattus norvegicus miR-133b stem-loop CCCUGCUCUGGCUGGUCAAACGGAACCAAGUCCGUCUUCCUGAGAGGUUUGGUCCCCUUCAACCAGCUACAGCAGGGCUGGCAA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 18402 MI0003491 mmu-mir-484 Mus musculus miR-484 stem-loop CUCGUCAGGCUCAGUCCCCUCCCGAUAAACCUCAAAAUAGGGUCUUACCUAGGGGGCUGGCGGCGUA 6 18403 MI0003492 mmu-mir-485 Mus musculus miR-485 stem-loop ACUUGGAGAGAGGCUGGCCGUGAUGAAUUCGAUUCAUCUAAACGAGUCAUACACGGCUCUCCUCUCUUCUAGU miR-485-3p was predicted by Sewer et al [1], and its expression later verified experimentally by Mineno et al using MPSS technology [2]. The MPSS protocol used provides 22nt sequences, but the true extents of the mature miRNA are not reliably obtained. Landgraf et al. show that the 5' product is the predominant one [3]. 6 18404 MI0003493 mmu-mir-486 Mus musculus miR-486 stem-loop CAGCCAGCUCUGAUCUCGCCCUCCCUGAGGGGUCCUGUACUGAGCUGCCCCGAGGUCCUUCACUGUGCUCAGCUCGGGGCAGCUCAGUACAGGAUGCGUCAGGGUGGGAGACAACGGGGAACAAGCCA 6 18405 MI0003494 ppt-MIR390a Physcomitrella patens miR390a stem-loop CAUGAUACAAUUACGAAGCUCAGGAGGGAUAGCGCCAUUCUCUGUUCUUCUCUAUCGACACUUGGUAAACCAGCUUGUGCUAGCUAUGGGCAGAGAUAUGGCGUUAUCCAUUCUGAGCUUUGCAAGUGUCUCGUGCU 40 18406 MI0003495 ppt-MIR390b Physcomitrella patens miR390b stem-loop AUCAAGCUGCUGGGAGAUACAAUUACGAAGCUCAGGAGGGAUAGCGCCCAGCCCUGCUUUUACUGUUCAAUCAGUUAGAGUGCUUCUGAUAGUAAGAUGCAGAUGCAUGACGCUAUCCAUUCUGAGCUUUGCAACUGUGUCCCCCUAAUUUGGGCAACCGGAUCGGUUAGCUGGU 40 18407 MI0003496 ppt-MIR319a Physcomitrella patens miR319a stem-loop GUGGAGCUCCGUUUCGGUCCAAUAGUGGCUGCGACGGAAGGUGGUCCCGCUGCCGAAUCACACGUCCGGGUUGCUUAUCGGGGCAGGGCCCCGAUACGGUAUCCGAACGUUUGUCCCGGGAACUGGUCGACCUUCCGCCCGGCGUCUCUUGGACUGAAGGGAGCUCCAC 40 18408 MI0003497 ppt-MIR319b Physcomitrella patens miR319b stem-loop GAGCUCUUUUCAGUCCAGUAGCAGCUAAUGUCGAAGGUUGUACCGCUGCCGACUCAAACUUCCGGCUUCCAUAUCACGACGCGUGAUAUGGAAUCCGAAGGUCUGAUCCGGGAGCUGAUCGAUCUCCAGGUUAGCAUCUCUUGGACUGAAGGGAGCUCCU 40 18409 MI0003498 ppt-MIR319c Physcomitrella patens miR319c stem-loop UAACCUCACUGGCUGUGGGAGCUUCCUUCGGUUCAAUAGUGGCUGAUAUGAGGUUGCACUGCUGCCGACUCAAACUUCCGGCUUCCCUCUCUUAGAAUGGCAGGGAAUCCGAAUGUCUGAUGCGGGAGCUGAGCGGUCUUCAACUCAGCUUCUCUUGGACUGAAGGGAGCUCCCAUGUCUUUGUGGUUA 40 18410 MI0003499 ppt-MIR319d Physcomitrella patens miR319d stem-loop CAGCGUGGAGCUUUCUUCGGUCCAAUAGUGGCUGAGUCGAAGGUUGUGCUGCUGCCGACUCAAACUUCCGGCUUCCCUAUCCAACCCCUGGUAUGGAAUCCGAAUGUCUGAUACGGGAGCUGUUCAAUCUCCGGCUUAGCAUCUCUUGGACUGAAGGGAGCUCCCCGCUG 40 18411 MI0003500 ppt-MIR533a Physcomitrella patens miR533a stem-loop AUGGGGAGCUGGCCAGGCUGUGAGGGACGGAGCAGAGUUGGCUUGUGGCUCCUUGUGGCCCCCUCCAGCAGCUUCCUCCUCACAGUCUGCACAGCUCUCCGU Arazi et al. identified a mature miRNA from the 5' arm of this precursor, and called it miR533 [1]. Axtell et al. show by deep sequencing that the 3' product is the predominant one [3]. The 5' miRNA is renamed miR533* here. 40 18412 MI0003501 ppt-MIR534a Physcomitrella patens miR534a stem-loop AUAUGCAUGCAACUUGUGUGGACAGACUGACUAGUCUAGUGGUGUAGUGGAAAGUAUUAGUUGGUUGAUGCACGAUGUUGUUUUGCAACAAGUGACUCGUCGCUGCAAUACUGAACCCACAAGUUUUGGAAGUUGUUUUGAUUGGGGCCACCCACAUUGCUCGACUAGAUUCAGUAUGUCCAUUGCAGUUGCAUACAUAU 40 18413 MI0003502 ppt-MIR535a Physcomitrella patens miR535a stem-loop GGAGGUGAAACGGUGGAGAACCUAGGUGACAACGAGAGAGAGCACGCUGGAAUGCUUUUCAUGCAAUACGCUUGGAUGUGUUCUAGCGUGCCCUCUACCGUUGUCGCCAAACAUCUUCUCCAUGACUUCUCCUCU 40 18414 MI0003503 ppt-MIR535b Physcomitrella patens miR535b stem-loop GUGACAACGAGAGAGAGCACGCUGGAAUGCACUCUUGUAAGAAGCAUGGGUAUGUUCUUGUGUGCCCUCUCCCGCUGUCGC 40 18415 MI0003504 ppt-MIR535c Physcomitrella patens miR535c stem-loop GUGACAACGAGAGAGAGCACGCUGGAAUGCUUUCACGCAAUAAGCCUGGAUGUGUUCUUGCGUGCCCUUUCCCGUUGUCGC 40 18416 MI0003505 osa-MIR535 Oryza sativa miR535 stem-loop GGCGGUGACAACGAGAGAGAGCACGCCGGUGCGGCGGUCACGGUGAGCCGGCCCGCGGCGGCGUACCUGCGUGCUUUCUCCCGUUGUCACUGCC 7 18417 MI0003506 ppt-MIR156a Physcomitrella patens miR156a stem-loop GGCGGUGGAGGAUGUGGGAGUGACAGAAGAGAGUGAGCACAGCUGAGCAUGUACAUGAGGAAGUACUUGCCCAUGUGUGCUCACUCUCUUCCUGUCGCACCUCUCCUUUGACGCU 40 18418 MI0003507 ppt-MIR536a Physcomitrella patens miR536a stem-loop UGAUUCCACCCCUUGGAUGUCACUGCUUGGCACAAUCCUCUUAUUGUGAAUUUCAUGUCCUCUUUCGUGGUUAGUCGAUAGAGUUGUACUACCUUUAUUCAUCCAGUGUUAUAAAUGUUUGUCCAGUGCUAGCUCUUCACUUGGGGAUUGCACAACAGGGGGUUCGUGCCAAGCUGUGUGCAACCUAAGGGUGGUUUUA 40 18419 MI0003508 ppt-MIR537a Physcomitrella patens miR537a stem-loop GUUGUCGUCAUAUAUGGACUGUAGAAACACCUGAAGCGAGUGAGGACCAUCCGAUUCUAGCCAUGGAAACAGAUAAGAGCUCAUGUCUGGGUUCCUGUUUCUGUGAUGCUUUUGAGGUUUGCGCAUGAGAUAGCAUCGGUUAGGCUUCAAACUCUUGAGGUGUUUCUACAGGCUACAUAUGAUUGAUAGC 40 18420 MI0003509 ppt-MIR537b Physcomitrella patens miR537b stem-loop UCAUAUCUGGACUGUAGAAACACCUGAAGUGACUGAAGUUAGUCCGGUUUAGGUAUGAGAAUGAUUGGAGCACCUCUCCAGAUGUUCCAGAUGUAAUGAAACCGGUGCAAGCUUCAAGCUCUUGAGGUGUUUCUACAGGCUACAUAUGA 40 18421 MI0003510 ppt-MIR538a Physcomitrella patens miR538a stem-loop UUACAAUGAGUUUGUGAGUCUCCAUGCUGCUCUAACAUUGCAUGGAGUCUAUGUCUGGAGUAUUGUCCUUCAUUCCCGUGCAAAUGCUGAAGUAAUGCAAGAAUGUGAACAUUGGGACUAUUCCAGACGUAGCCUUCAUGCAUGUUAGAGUGAUGUGGAAACCCGUGAACUACUUGUAA 40 18422 MI0003511 ppt-MIR538b Physcomitrella patens miR538b stem-loop CCAUGCUUCUCUAACGUUGCAUGGAGUCUAUGUCUGGACCUCCUCCAUUUGCUCUUUCAAGAGAAUGUGAGAAUUUCGAGAUUCGGACAUAGCCUUCAUGCAUGCUAGAGUAGAAUGG 40 18423 MI0003512 ppt-MIR538c Physcomitrella patens miR538c stem-loop UUACAAAGAGUUCUUGAGUCUCCAUGCUUCUCUGACGUUGCAUGGAGUCUAUGUCUGGACCUUCUCCAUUUCCUCUUUCAAGAGAAUGUGAGCAUUGAAGGAUUCGGACAUAGCCUUCAUGCAUGCUAGAGUAUCAUGGAGGCCCGUGAACUACUUGUAA 40 18424 MI0003513 hsa-mir-455 Homo sapiens miR-455 stem-loop UCCCUGGCGUGAGGGUAUGUGCCUUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUGCCUCAAGGCCUAUGUCAUC The mir-455 precursor was predicted computationally and a 5' mature product verified in human by Northern blot [1]. The precise sequence termini of the mature forms were derived by cloning from human and rat samples [2]. 5 18425 MI0003514 hsa-mir-539 Homo sapiens miR-539 stem-loop AUACUUGAGGAGAAAUUAUCCUUGGUGUGUUCGCUUUAUUUAUGAUGAAUCAUACAAGGACAAUUUCUUUUUGAGUAU 5 18426 MI0003515 hsa-mir-544 Homo sapiens miR-544 stem-loop AUUUUCAUCACCUAGGGAUCUUGUUAAAAAGCAGAUUCUGAUUCAGGGACCAAGAUUCUGCAUUUUUAGCAAGUUCUCAAGUGAUGCUAAU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18427 MI0003516 hsa-mir-545 Homo sapiens miR-545 stem-loop CCCAGCCUGGCACAUUAGUAGGCCUCAGUAAAUGUUUAUUAGAUGAAUAAAUGAAUGACUCAUCAGCAAACAUUUAUUGUGUGCCUGCUAAAGUGAGCUCCACAGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18428 MI0003517 mmu-mir-546 Mus musculus miR-546 stem-loop CCUCUCUUCCCAAAACUAAACAGGAUCUAUCAUGGUGGCACGGAGUCAGCUAGAUGUUGUCUCUUGCUAUCCCUGUGCUAGUUCCAUGUUUUAGAAGCAAAGUGAUACUGGGGAGGAGAGG 6 18429 MI0003518 mmu-mir-540 Mus musculus miR-540 stem-loop UGGGCCAAGGGUCACCCUCUGACUCUGUGGCCAAGGGUAGACAGGUCAGAGGUCGAUCCUGGGCCUA 6 18430 MI0003519 mmu-mir-543 Mus musculus miR-543 stem-loop UGCUUAAUGAGAAGUUGCCCGCGUGUUUUUCGCUUUAUAUGUGACGAAACAUUCGCGGUGCACUUCUUUUUCAGCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 18431 MI0003520 mmu-mir-539 Mus musculus miR-539 stem-loop UACUUGAGGAGAAAUUAUCCUUGGUGUGUUGGCUCUUUUGGAUGAAUCAUACAAGGAUAAUUUCUUUUUGAGUA 6 18432 MI0003521 mmu-mir-541 Mus musculus miR-541 stem-loop GCCAAAAUCAGAGAAGGGAUUCUGAUGUUGGUCACACUCCAAGAGUUUUAAAAUGAGUGGCGAACACAGAAUCCAUACUCUGCUUAUGGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 18433 MI0003522 mmu-mir-542 Mus musculus miR-542 stem-loop GGAUCUCAGACGUCUCGGGGAUCAUCAUGUCACGAGAUACCACUGUGCCCUUGUGACAGAUUGAUAACUGAAAGGUCUGGGAGCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 18434 MI0003523 mmu-mir-547 Mus musculus miR-547 stem-loop GUGUGAUGUAUCACUUGAGGAUGUACCACCCAUUUAACAGGAAACAUGCUUGGUACAUCUUUGAGUGAGAUAACACAC The predominant miRNA cloned by Langraf et al. has a 3' terminal U residue, which is incompatible with the genome sequence [2]. 6 18435 MI0003524 rno-mir-540 Rattus norvegicus miR-540 stem-loop CCCUGGGGCUGGGCCAAGGGUCACCCUCUGACUCUGUGGCCAAGGGUAGACAGGUCAGAGGUCGAUCCUGGGCCUACUCUGGGG 8 18436 MI0003525 rno-mir-543 Rattus norvegicus miR-543 stem-loop GGUGCUUAAUGAGAAGUUGCCCGCGUGUUUUUCGCUUUAUAUGUGACGAAACAUUCGCGGUGCACUUCUUUUUCAGCAUC 8 18437 MI0003526 rno-mir-539 Rattus norvegicus miR-539 stem-loop AUACUUGAGGAGAAAUUAUCCUUGGUGUGUUUGCUCUUUUGGAUGAAUCAUACAAGGGUAAUUUCUUUUCGAGUAU 8 18438 MI0003527 rno-mir-541 Rattus norvegicus miR-541 stem-loop GCCAAAAUCAGAGAAGGGAUUCUGAUGUUGGUCACACUCCAAGAAUUUUAAAAUGAGUGGCGAACACAGAAUCCAUACUCUGCUUAUGGC 8 18439 MI0003528 rno-mir-542 Rattus norvegicus miR-542 stem-loop UCUCAGACGUCUCGGGGAUCAUCAUGUCACGAGAUACCACUGCGCACUUGUGACAGAUUGAUAACUGAAAGGUCUGGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 18440 MI0003529 hsa-mir-376a-2 Homo sapiens miR-376a-2 stem-loop GGUAUUUAAAAGGUAGAUUUUCCUUCUAUGGUUACGUGUUUGAUGGUUAAUCAUAGAGGAAAAUCCACGUUUUCAGUAUC The mature miR-376a products have been shown to be modified by A to I edits [2]. 5 18441 MI0003530 hsa-mir-487b Homo sapiens miR-487b stem-loop UUGGUACUUGGAGAGUGGUUAUCCCUGUCCUGUUCGUUUUGCUCAUGUCGAAUCGUACAGGGUCAUCCACUUUUUCAGUAUCAA 5 18442 MI0003531 mmu-mir-367 Mus musculus miR-367 stem-loop AGGCCGUCACUGUUGCUAACAUGCAACUCUGUUGAAUAGAAAUUGGAAUUGCACUUUAGCAAUGGUGAUGGACCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 18443 MI0003532 mmu-mir-494 Mus musculus miR-494 stem-loop UUGAUACUUGAAGGAGAGGUUGUCCGUGUUGUCUUCUCUUUAUUUAUGAUGAAACAUACACGGGAAACCUCUUUUUUAGUAUCAA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 18444 MI0003533 mmu-mir-376c Mus musculus miR-376c stem-loop UUUGGUAUUUAAAAGGUGGAUAUUCCUUCUAUGUUUAUGCUUUUUGUGAUUAAACAUAGAGGAAAUUUCACGUUUUCAGUGUCAAA The mature miR-376c products have been shown to be modified by A to I edits [2]. 6 18445 MI0003534 mmu-mir-487b Mus musculus miR-487b stem-loop UGGUACUUGGAGAGUGGUUAUCCCUGUCCUCUUCGCUUCACUCAUGCCGAAUCGUACAGGGUCAUCCACUUUUUCAGUAUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 18446 MI0003535 mmu-mir-369 Mus musculus miR-369 stem-loop GGUACUUGAAGGGAGAUCGACCGUGUUAUAUUCGCUUGGCUGACUUCGAAUAAUACAUGGUUGAUCUUUUCUCAGUAUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 18447 MI0003536 mmu-mir-20b Mus musculus miR-20b stem-loop CCUAGUAGUGCCAAAGUGCUCAUAGUGCAGGUAGUUUUUAUACCACUCUACUGCAGUGUGAGCACUUCUAGUACUCCUGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [4]. 6 18448 MI0003537 mmu-mir-450a-2 Mus musculus miR-450a-2 stem-loop GAACUAUUUUUGCGAUGUGUUCCUAAUAUGUACUAUGAGUAUAUUGGGGAUGCUUUGCAUUCAUGGUUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18449 MI0003538 mmu-mir-503 Mus musculus miR-503 stem-loop UGCCCUAGCAGCGGGAACAGUACUGCAGUGAGUGUUUGGUGCCCUGGAGUAUUGUUUCCACUGCCUGGGUA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [5]. 6 18450 MI0003539 mmu-mir-291b Mus musculus miR-291b stem-loop ACAUACAGUGUCGAUCAAAGUGGAGGCCCUCUCCGCGGCUUGGCGGGAAAGUGCAUCCAUUUUGUUUGUCUCUGUGUGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 18451 MI0003540 rno-mir-493 Rattus norvegicus miR-493 stem-loop GGCCUCCAGGGCCUUGUACAUGGUAGGCUUUCAUUCAUUGUUUGCACAUUCGGUGAAGGUCUACUGUGUGCCAGGCCCUGUGCC 8 18452 MI0003541 rno-mir-379 Rattus norvegicus miR-379 stem-loop UGGUUCCUGCAGAGGUGGUAGACUAUGGAACGUAGGCGUUAUGUUUCUGACCUAUGUAACAUGGUCCACUAACUCUCAGUAUCCA 8 18453 MI0003542 rno-mir-494 Rattus norvegicus miR-494 stem-loop UGAUACUUGAAGGAGAGGUUGUCCGUGUUGUCUUCUCUUUAUUUAUGAUGAAACAUACACGGGAAACCUCUUUUUUAGUAUCA 8 18454 MI0003543 rno-mir-376c Rattus norvegicus miR-376c stem-loop UUGGUAUUUAAAAGGUGGAUAUUCCUUCUAUGUUUAUGGUAUUUAUGAUUAAACAUAGAGGAAAUUUCACGUUUUCAGUGUCAA 8 18455 MI0003544 rno-mir-376b Rattus norvegicus miR-376b stem-loop UUUGGUAUUUAAAAGGUGGAUAUUCCUUCUAUGGUUACGUGCUUCCUGGAUAAUCAUAGAGGAACAUCCACUUUUUCAGUAUCAAA 8 18456 MI0003545 rno-mir-376a Rattus norvegicus miR-376a stem-loop UGAUAUUUAAAAGGUAGAUUCUCCUUCUAUGAGUACAAUAUUAAUGACUAAUCGUAGAGGAAAAUCCACGUUUUCAGUAUCA 8 18457 MI0003546 rno-mir-381 Rattus norvegicus miR-381 stem-loop AGCGAGGUUGCCCUUUGUAUAUUCGGUUUAUUGACAUGGGAUAUACAAGGGCAAGCUCUCU 8 18458 MI0003547 rno-mir-487b Rattus norvegicus miR-487b stem-loop UGGUACUUGGAGAGUGGUUAUCCCUGUCCUCUUCGCUUCACUUAUGCCGAAUCGUACAGGGUCAUCCACUUUUUCAGUAUCA 8 18459 MI0003548 rno-mir-382 Rattus norvegicus miR-382 stem-loop GGUACUUGAAGAGAAGUUGUUCGUGGUGGAUUCGCUUUACUUGUGACGAAUCAUUCACGGACAACACUUUUUUCAGUACC 8 18460 MI0003549 rno-mir-485 Rattus norvegicus miR-485 stem-loop GAUACUUGGAGAGAGGCUGGCCGUGAUGAAUUCGAUUCAUCUAAACGAGUCAUACACGGCUCUCCUCUCUUCUAGUGUC 8 18461 MI0003550 rno-mir-409 Rattus norvegicus miR-409 stem-loop GGUACUCGGAGAGAGGUUACCCGAGCAACUUUGCAUCUGGAGGACGAAUGUUGCUCGGUGAACCCCUUUUCGGUAUC 8 18462 MI0003551 rno-mir-369 Rattus norvegicus miR-369 stem-loop GGUACUUGAAGGGAGAUCGACCGUGUUAUAUUCGCUUAGCUGACUUCGAAUAAUACAUGGUUGAUCUUUUCUCAGUAUC 8 18463 MI0003552 rno-mir-374 Rattus norvegicus miR-374 stem-loop CUCGGAUGGAUAUAAUACAACCUGCUAAGUGUUCUAGCACUUAGCACGUUGUAUUAUUAUUGUCCGAG 8 18464 MI0003553 rno-mir-363 Rattus norvegicus miR-363 stem-loop UUUUGCUGUUAUCGGGUGGAUCACGAUGCAAUUUUGAUUAGAGUAAUGGGAGAGAAAUUGCACGGUAUCCAUCUGUAAACCGCAGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 18465 MI0003554 rno-mir-20b Rattus norvegicus miR-20b stem-loop GUAGUGCCAAAGUGCUCAUAGUGCAGGUAGGUUUUGCUGCACUCUACUGCAGUGUGAGCACUUCUGGUACUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 18466 MI0003555 rno-mir-503 Rattus norvegicus miR-503 stem-loop UGCCCUAGCAGCGGGAACAGUACUGCAGUGAGUGUUUGGUGCCCUGGAGUAUUGUUUCCGCUGCCUGGGUA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 18467 MI0003556 hsa-mir-551a Homo sapiens miR-551a stem-loop GGGGACUGCCGGGUGACCCUGGAAAUCCAGAGUGGGUGGGGCCAGUCUGACCGUUUCUAGGCGACCCACUCUUGGUUUCCAGGGUUGCCCUGGAAA 5 18468 MI0003557 hsa-mir-552 Homo sapiens miR-552 stem-loop AACCAUUCAAAUAUACCACAGUUUGUUUAACCUUUUGCCUGUUGGUUGAAGAUGCCUUUCAACAGGUGACUGGUUAGACAAACUGUGGUAUAUACA 5 18469 MI0003558 hsa-mir-553 Homo sapiens miR-553 stem-loop CUUCAAUUUUAUUUUAAAACGGUGAGAUUUUGUUUUGUCUGAGAAAAUCUCGCUGUUUUAGACUGAGG 5 18470 MI0003559 hsa-mir-554 Homo sapiens miR-554 stem-loop ACCUGAGUAACCUUUGCUAGUCCUGACUCAGCCAGUACUGGUCUUAGACUGGUGAUGGGUCAGGGUUCAUAUUUUGGCAUCUCUCUCUGGGCAUCU 5 18471 MI0003560 hsa-mir-92b Homo sapiens miR-92b stem-loop CGGGCCCCGGGCGGGCGGGAGGGACGGGACGCGGUGCAGUGUUGUUUUUUCCCCCGCCAAUAUUGCACUCGUCCCGGCCUCCGGCCCCCCCGGCCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18472 MI0003561 hsa-mir-555 Homo sapiens miR-555 stem-loop GGAGUGAACUCAGAUGUGGAGCACUACCUUUGUGAGCAGUGUGACCCAAGGCCUGUGGACAGGGUAAGCUGAACCUCUGAUAAAACUCUGAUCUAU 5 18473 MI0003562 hsa-mir-556 Homo sapiens miR-556 stem-loop GAUAGUAAUAAGAAAGAUGAGCUCAUUGUAAUAUGAGCUUCAUUUAUACAUUUCAUAUUACCAUUAGCUCAUCUUUUUUAUUACUACCUUCAACA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18474 MI0003563 hsa-mir-557 Homo sapiens miR-557 stem-loop AGAAUGGGCAAAUGAACAGUAAAUUUGGAGGCCUGGGGCCCUCCCUGCUGCUGGAGAAGUGUUUGCACGGGUGGGCCUUGUCUUUGAAAGGAGGUGGA 5 18475 MI0003564 hsa-mir-558 Homo sapiens miR-558 stem-loop GUGUGUGUGUGUGUGUGUGGUUAUUUUGGUAUAGUAGCUCUAGACUCUAUUAUAGUUUCCUGAGCUGCUGUACCAAAAUACCACAAACGGGCUG 5 18476 MI0003565 hsa-mir-559 Homo sapiens miR-559 stem-loop GCUCCAGUAACAUCUUAAAGUAAAUAUGCACCAAAAUUACUUUUGGUAAAUACAGUUUUGGUGCAUAUUUACUUUAGGAUGUUACUGGAGCUCCCA 5 18477 MI0003567 hsa-mir-561 Homo sapiens miR-561 stem-loop CUUCAUCCACCAGUCCUCCAGGAACAUCAAGGAUCUUAAACUUUGCCAGAGCUACAAAGGCAAAGUUUAAGAUCCUUGAAGUUCCUGGGGGAACCAU 5 18478 MI0003568 hsa-mir-562 Homo sapiens miR-562 stem-loop AGUGAAAUUGCUAGGUCAUAUGGUCAGUCUACUUUUAGAGUAAUUGUGAAACUGUUUUUCAAAGUAGCUGUACCAUUUGCACUCCCUGUGGCAAU 5 18479 MI0003569 hsa-mir-563 Homo sapiens miR-563 stem-loop AGCAAAGAAGUGUGUUGCCCUCUAGGAAAUGUGUGUUGCUCUGAUGUAAUUAGGUUGACAUACGUUUCCCUGGUAGCCA 5 18480 MI0003570 hsa-mir-564 Homo sapiens miR-564 stem-loop CGGGCAGCGGGUGCCAGGCACGGUGUCAGCAGGCAACAUGGCCGAGAGGCCGGGGCCUCCGGGCGGCGCCGUGUCCGCGACCGCGUACCCUGAC 5 18481 MI0003572 hsa-mir-566 Homo sapiens miR-566 stem-loop GCUAGGCGUGGUGGCGGGCGCCUGUGAUCCCAACUACUCAGGAGGCUGGGGCAGCAGAAUCGCUUGAACCCGGGAGGCGAAGGUUGCAGUGAGC 5 18482 MI0003573 hsa-mir-567 Homo sapiens miR-567 stem-loop GGAUUCUUAUAGGACAGUAUGUUCUUCCAGGACAGAACAUUCUUUGCUAUUUUGUACUGGAAGAACAUGCAAAACUAAAAAAAAAAAAAGUUAUUGCU 5 18483 MI0003574 hsa-mir-568 Homo sapiens miR-568 stem-loop GAUAUACACUAUAUUAUGUAUAAAUGUAUACACACUUCCUAUAUGUAUCCACAUAUAUAUAGUGUAUAUAUUAUACAUGUAUAGGUGUGUAUAUG 5 18484 MI0003575 hsa-mir-551b Homo sapiens miR-551b stem-loop AGAUGUGCUCUCCUGGCCCAUGAAAUCAAGCGUGGGUGAGACCUGGUGCAGAACGGGAAGGCGACCCAUACUUGGUUUCAGAGGCUGUGAGAAUAA 5 18485 MI0003576 hsa-mir-569 Homo sapiens miR-569 stem-loop GGUAUUGUUAGAUUAAUUUUGUGGGACAUUAACAACAGCAUCAGAAGCAACAUCAGCUUUAGUUAAUGAAUCCUGGAAAGUUAAGUGACUUUAUUU 5 18486 MI0003577 hsa-mir-570 Homo sapiens miR-570 stem-loop CUAGAUAAGUUAUUAGGUGGGUGCAAAGGUAAUUGCAGUUUUUCCCAUUAUUUUAAUUGCGAAAACAGCAAUUACCUUUGCACCAACCUGAUGGAGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18487 MI0003578 hsa-mir-571 Homo sapiens miR-571 stem-loop CCUCAGUAAGACCAAGCUCAGUGUGCCAUUUCCUUGUCUGUAGCCAUGUCUAUGGGCUCUUGAGUUGGCCAUCUGAGUGAGGGCCUGCUUAUUCUA 5 18488 MI0003579 hsa-mir-572 Homo sapiens miR-572 stem-loop GUCGAGGCCGUGGCCCGGAAGUGGUCGGGGCCGCUGCGGGCGGAAGGGCGCCUGUGCUUCGUCCGCUCGGCGGUGGCCCAGCCAGGCCCGCGGGA 5 18489 MI0003580 hsa-mir-573 Homo sapiens miR-573 stem-loop UUUAGCGGUUUCUCCCUGAAGUGAUGUGUAACUGAUCAGGAUCUACUCAUGUCGUCUUUGGUAAAGUUAUGUCGCUUGUCAGGGUGAGGAGAGUUUUUG 5 18490 MI0003581 hsa-mir-574 Homo sapiens miR-574 stem-loop GGGACCUGCGUGGGUGCGGGCGUGUGAGUGUGUGUGUGUGAGUGUGUGUCGCUCCGGGUCCACGCUCAUGCACACACCCACACGCCCACACUCAGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18491 MI0003582 hsa-mir-575 Homo sapiens miR-575 stem-loop AAUUCAGCCCUGCCACUGGCUUAUGUCAUGACCUUGGGCUACUCAGGCUGUCUGCACAAUGAGCCAGUUGGACAGGAGCAGUGCCACUCAACUC 5 18492 MI0003583 hsa-mir-576 Homo sapiens miR-576 stem-loop UACAAUCCAACGAGGAUUCUAAUUUCUCCACGUCUUUGGUAAUAAGGUUUGGCAAAGAUGUGGAAAAAUUGGAAUCCUCAUUCGAUUGGUUAUAACCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18493 MI0003584 hsa-mir-577 Homo sapiens miR-577 stem-loop UGGGGGAGUGAAGAGUAGAUAAAAUAUUGGUACCUGAUGAAUCUGAGGCCAGGUUUCAAUACUUUAUCUGCUCUUCAUUUCCCCAUAUCUACUUAC 5 18494 MI0003585 hsa-mir-578 Homo sapiens miR-578 stem-loop AGAUAAAUCUAUAGACAAAAUACAAUCCCGGACAACAAGAAGCUCCUAUAGCUCCUGUAGCUUCUUGUGCUCUAGGAUUGUAUUUUGUUUAUAUAU 5 18495 MI0003586 hsa-mir-579 Homo sapiens miR-579 stem-loop CAUAUUAGGUUAAUGCAAAAGUAAUCGCGGUUUGUGCCAGAUGACGAUUUGAAUUAAUAAAUUCAUUUGGUAUAAACCGCGAUUAUUUUUGCAUCAAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18496 MI0003587 hsa-mir-580 Homo sapiens miR-580 stem-loop AUAAAAUUUCCAAUUGGAACCUAAUGAUUCAUCAGACUCAGAUAUUUAAGUUAACAGUAUUUGAGAAUGAUGAAUCAUUAGGUUCCGGUCAGAAAUU 5 18497 MI0003588 hsa-mir-581 Homo sapiens miR-581 stem-loop GUUAUGUGAAGGUAUUCUUGUGUUCUCUAGAUCAGUGCUUUUAGAAAAUUUGUGUGAUCUAAAGAACACAAAGAAUACCUACACAGAACCACCUGC 5 18498 MI0003589 hsa-mir-582 Homo sapiens miR-582 stem-loop AUCUGUGCUCUUUGAUUACAGUUGUUCAACCAGUUACUAAUCUAACUAAUUGUAACUGGUUGAACAACUGAACCCAAAGGGUGCAAAGUAGAAACAUU 5 18499 MI0003590 hsa-mir-583 Homo sapiens miR-583 stem-loop AACUCACACAUUAACCAAAGAGGAAGGUCCCAUUACUGCAGGGAUCUUAGCAGUACUGGGACCUACCUCUUUGGU 5 18500 MI0003591 hsa-mir-584 Homo sapiens miR-584 stem-loop UAGGGUGACCAGCCAUUAUGGUUUGCCUGGGACUGAGGAAUUUGCUGGGAUAUGUCAGUUCCAGGCCAACCAGGCUGGUUGGUCUCCCUGAAGCAAC 5 18501 MI0003592 hsa-mir-585 Homo sapiens miR-585 stem-loop UGGGGUGUCUGUGCUAUGGCAGCCCUAGCACACAGAUACGCCCAGAGAAAGCCUGAACGUUGGGCGUAUCUGUAUGCUAGGGCUGCUGUAACAA 5 18502 MI0003593 hsa-mir-548a-1 Homo sapiens miR-548a-1 stem-loop UGCAGGGAGGUAUUAAGUUGGUGCAAAAGUAAUUGUGAUUUUUGCCAUUAAAAGUAACGACAAAACUGGCAAUUACUUUUGCACCAAACCUGGUAUU 5 18503 MI0003594 hsa-mir-586 Homo sapiens miR-586 stem-loop AUGGGGUAAAACCAUUAUGCAUUGUAUUUUUAGGUCCCAAUACAUGUGGGCCCUAAAAAUACAAUGCAUAAUGGUUUUUCACUCUUUAUCUUCUUAU 5 18504 MI0003595 hsa-mir-587 Homo sapiens miR-587 stem-loop CUCCUAUGCACCCUCUUUCCAUAGGUGAUGAGUCACAGGGCUCAGGGAAUGUGUCUGCACCUGUGACUCAUCACCAGUGGAAAGCCCAUCCCAUAU 5 18505 MI0003596 hsa-mir-548b Homo sapiens miR-548b stem-loop CAGACUAUAUAUUUAGGUUGGCGCAAAAGUAAUUGUGGUUUUGGCCUUUAUUUUCAAUGGCAAGAACCUCAGUUGCUUUUGUGCCAACCUAAUACUU 5 18506 MI0003597 hsa-mir-588 Homo sapiens miR-588 stem-loop AGCUUAGGUACCAAUUUGGCCACAAUGGGUUAGAACACUAUUCCAUUGUGUUCUUACCCACCAUGGCCAAAAUUGGGCCUAAG 5 18507 MI0003598 hsa-mir-548a-2 Homo sapiens miR-548a-2 stem-loop UGUGAUGUGUAUUAGGUUUGUGCAAAAGUAAUUGGGGUUUUUUGCCGUUAAAAGUAAUGGCAAAACUGGCAAUUACUUUUGCACCAAACUAAUAUAA 5 18508 MI0003599 hsa-mir-589 Homo sapiens miR-589 stem-loop UCCAGCCUGUGCCCAGCAGCCCCUGAGAACCACGUCUGCUCUGAGCUGGGUACUGCCUGUUCAGAACAAAUGCCGGUUCCCAGACGCUGCCAGCUGGCC Cummins et al. identified a mature product from the 3' arm of this precursor, and named it miR-589 [1]. Landgraf et al. show that the 5' product is the predominant one [2]. The 3' mature sequence is therefore renamed miR-589*. 5 18509 MI0003600 hsa-mir-550-1 Homo sapiens miR-550-1 stem-loop UGAUGCUUUGCUGGCUGGUGCAGUGCCUGAGGGAGUAAGAGCCCUGUUGUUGUAAGAUAGUGUCUUACUCCCUCAGGCACAUCUCCAACAAGUCUCU Cummins et al. identified a mature product from the 3' arm of this precursor, and named it miR-550 [1]. Landgraf et al. show that the 5' product is the predominant one [2]. The 3' miRNA is therefore renamed miR-550*. 5 18510 MI0003601 hsa-mir-550-2 Homo sapiens miR-550-2 stem-loop UGAUGCUUUGCUGGCUGGUGCAGUGCCUGAGGGAGUAAGAGCCCUGUUGUUGUCAGAUAGUGUCUUACUCCCUCAGGCACAUCUCCAGCGAGUCUCU Cummins et al. identified a mature product from the 3' arm of this precursor, and named it miR-550 [1]. Landgraf et al. show that the 5' product is the predominant one [2]. The 3' miRNA is therefore renamed miR-550*. 5 18511 MI0003602 hsa-mir-590 Homo sapiens miR-590 stem-loop UAGCCAGUCAGAAAUGAGCUUAUUCAUAAAAGUGCAGUAUGGUGAAGUCAAUCUGUAAUUUUAUGUAUAAGCUAGUCUCUGAUUGAAACAUGCAGCA 5 18512 MI0003603 hsa-mir-591 Homo sapiens miR-591 stem-loop UCUUAUCAAUGAGGUAGACCAUGGGUUCUCAUUGUAAUAGUGUAGAAUGUUGGUUAACUGUGGACUCCCUGGCUCUGUCUCAAAUCUACUGAUUC 5 18513 MI0003604 hsa-mir-592 Homo sapiens miR-592 stem-loop UAUUAUGCCAUGACAUUGUGUCAAUAUGCGAUGAUGUGUUGUGAUGGCACAGCGUCAUCACGUGGUGACGCAACAUCAUGACGUAAGACGUCACAAC 5 18514 MI0003605 hsa-mir-593 Homo sapiens miR-593 stem-loop CCCCCAGAAUCUGUCAGGCACCAGCCAGGCAUUGCUCAGCCCGUUUCCCUCUGGGGGAGCAAGGAGUGGUGCUGGGUUUGUCUCUGCUGGGGUUUCUCCU Cummins et al. identified a mature miRNA from the 5' arm of this precursor, and named it miR-593 [1]. Landgraf et al. show that the 3' product is the predominant one [2]. The 5' product is therefore renamed miR-593*. 5 18515 MI0003607 hsa-mir-595 Homo sapiens miR-595 stem-loop ACGGAAGCCUGCACGCAUUUAACACCAGCACGCUCAAUGUAGUCUUGUAAGGAACAGGUUGAAGUGUGCCGUGGUGUGUCUGGAGGAAGCGCCUGU 5 18516 MI0003608 hsa-mir-596 Homo sapiens miR-596 stem-loop AGCACGGCCUCUCCGAAGCCUGCCCGGCUCCUCGGGAACCUGCCUCCCGCAUGGCAGCUGCUGCCCUUCGGAGGCCG 5 18517 MI0003609 hsa-mir-597 Homo sapiens miR-597 stem-loop UACUUACUCUACGUGUGUGUCACUCGAUGACCACUGUGAAGACAGUAAAAUGUACAGUGGUUCUCUUGUGGCUCAAGCGUAAUGUAGAGUACUGGUC 5 18518 MI0003610 hsa-mir-598 Homo sapiens miR-598 stem-loop GCUUGAUGAUGCUGCUGAUGCUGGCGGUGAUCCCGAUGGUGUGAGCUGGAAAUGGGGUGCUACGUCAUCGUUGUCAUCGUCAUCAUCAUCAUCCGAG 5 18519 MI0003611 hsa-mir-599 Homo sapiens miR-599 stem-loop AAAGACAUGCUGUCCACAGUGUGUUUGAUAAGCUGACAUGGGACAGGGAUUCUUUUCACUGUUGUGUCAGUUUAUCAAACCCAUACUUGGAUGAC 5 18520 MI0003612 hsa-mir-548a-3 Homo sapiens miR-548a-3 stem-loop CCUAGAAUGUUAUUAGGUCGGUGCAAAAGUAAUUGCGAGUUUUACCAUUACUUUCAAUGGCAAAACUGGCAAUUACUUUUGCACCAACGUAAUACUU 5 18521 MI0003613 hsa-mir-600 Homo sapiens miR-600 stem-loop AAGUCACGUGCUGUGGCUCCAGCUUCAUAGGAAGGCUCUUGUCUGUCAGGCAGUGGAGUUACUUACAGACAAGAGCCUUGCUCAGGCCAGCCCUGCCC 5 18522 MI0003614 hsa-mir-601 Homo sapiens miR-601 stem-loop UGCAUGAGUUCGUCUUGGUCUAGGAUUGUUGGAGGAGUCAGAAAAACUACCCCAGGGAUCCUGAAGUCCUUUGGGUGGA 5 18523 MI0003615 hsa-mir-602 Homo sapiens miR-602 stem-loop UUCUCACCCCCGCCUGACACGGGCGACAGCUGCGGCCCGCUGUGUUCACUCGGGCCGAGUGCGUCUCCUGUCAGGCAAGGGAGAGCAGAGCCCCCCUG 5 18524 MI0003616 hsa-mir-603 Homo sapiens miR-603 stem-loop GAUUGAUGCUGUUGGUUUGGUGCAAAAGUAAUUGCAGUGCUUCCCAUUUAAAAGUAAUGGCACACACUGCAAUUACUUUUGCUCCAACUUAAUACUU 5 18525 MI0003617 hsa-mir-604 Homo sapiens miR-604 stem-loop AGAGCAUCGUGCUUGACCUUCCACGCUCUCGUGUCCACUAGCAGGCAGGUUUUCUGACACAGGCUGCGGAAUUCAGGACAGUGCAUCAUGGAGA 5 18526 MI0003618 hsa-mir-605 Homo sapiens miR-605 stem-loop GCCCUAGCUUGGUUCUAAAUCCCAUGGUGCCUUCUCCUUGGGAAAAACAGAGAAGGCACUAUGAGAUUUAGAAUCAAGUUAGG 5 18527 MI0003619 hsa-mir-606 Homo sapiens miR-606 stem-loop UGUAUCCUUGGUUUUUAGUAGUUUUACUAUGAUGAGGUGUGCCAUCCACCCCAUCAUAGUAAACUACUGAAAAUCAAAGAUACAAGUGCCUGACCA 5 18528 MI0003620 hsa-mir-607 Homo sapiens miR-607 stem-loop UUGCCUAAAGUCACACAGGUUAUAGAUCUGGAUUGGAACCCAGGGAGCCAGACUGCCUGGGUUCAAAUCCAGAUCUAUAACUUGUGUGACUUUGGG 5 18529 MI0003621 hsa-mir-608 Homo sapiens miR-608 stem-loop GGGCCAAGGUGGGCCAGGGGUGGUGUUGGGACAGCUCCGUUUAAAAAGGCAUCUCCAAGAGCUUCCAUCAAAGGCUGCCUCUUGGUGCAGCACAGGUAGA 5 18530 MI0003622 hsa-mir-609 Homo sapiens miR-609 stem-loop UGCUCGGCUGUUCCUAGGGUGUUUCUCUCAUCUCUGGUCUAUAAUGGGUUAAAUAGUAGAGAUGAGGGCAACACCCUAGGAACAGCAGAGGAACC 5 18531 MI0003623 hsa-mir-610 Homo sapiens miR-610 stem-loop UCUAUUUGUCUUAGGUGAGCUAAAUGUGUGCUGGGACACAUUUGAGCCAAAUGUCCCAGCACACAUUUAGCUCACAUAAGAAAAAUGGACUCUAGU 5 18532 MI0003624 hsa-mir-611 Homo sapiens miR-611 stem-loop AAAAUGGUGAGAGCGUUGAGGGGAGUUCCAGACGGAGAUGCGAGGACCCCUCGGGGUCUGACCCACA 5 18533 MI0003625 hsa-mir-612 Homo sapiens miR-612 stem-loop UCCCAUCUGGACCCUGCUGGGCAGGGCUUCUGAGCUCCUUAGCACUAGCAGGAGGGGCUCCAGGGGCCCUCCCUCCAUGGCAGCCAGGACAGGACUCUCA 5 18534 MI0003626 hsa-mir-613 Homo sapiens miR-613 stem-loop GGUGAGUGCGUUUCCAAGUGUGAAGGGACCCUUCCUGUAGUGUCUUAUAUACAAUACAGUAGGAAUGUUCCUUCUUUGCCACUCAUACACCUUUA 5 18535 MI0003627 hsa-mir-614 Homo sapiens miR-614 stem-loop UCUAAGAAACGCAGUGGUCUCUGAAGCCUGCAGGGGCAGGCCAGCCCUGCACUGAACGCCUGUUCUUGCCAGGUGGCAGAAGGUUGCUGC 5 18536 MI0003628 hsa-mir-615 Homo sapiens miR-615 stem-loop CUCGGGAGGGGCGGGAGGGGGGUCCCCGGUGCUCGGAUCUCGAGGGUGCUUAUUGUUCGGUCCGAGCCUGGGUCUCCCUCUUCCCCCCAACCCCCC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18537 MI0003629 hsa-mir-616 Homo sapiens miR-616 stem-loop UUAGGUAAUUCCUCCACUCAAAACCCUUCAGUGACUUCCAUGACAUGAAAUAGGAAGUCAUUGGAGGGUUUGAGCAGAGGAAUGACCUGUUUUAAAA Cummins et al. identified a mature product from the 5' arm of this precursor, and named it miR-616 [1]. Landgraf et al. show that the 3' product is the predominant one [2]. The 5' miRNA is therefore renamed miR-616*. 5 18538 MI0003630 hsa-mir-548c Homo sapiens miR-548c stem-loop CAUUGGCAUCUAUUAGGUUGGUGCAAAAGUAAUUGCGGUUUUUGCCAUUACUUUCAGUAGCAAAAAUCUCAAUUACUUUUGCACCAACUUAAUACUU Extensive cloning studies suggest that the 5' miRNA may be the predominant one [2]. 5 18539 MI0003631 hsa-mir-617 Homo sapiens miR-617 stem-loop CAUCAUAAGGAGCCUAGACUUCCCAUUUGAAGGUGGCCAUUUCCUACCACCUUCAAAUGGUAAGUCCAGGCUCCUUCUGAUUCAAUAAAUGAGGAGC 5 18540 MI0003632 hsa-mir-618 Homo sapiens miR-618 stem-loop CUCUUGUUCACAGCCAAACUCUACUUGUCCUUCUGAGUGUAAUUACGUACAUGCAGUAGCUCAGGAGACAAGCAGGUUUACCCUGUGGAUGAGUCUGA 5 18541 MI0003633 hsa-mir-619 Homo sapiens miR-619 stem-loop CGCCCACCUCAGCCUCCCAAAAUGCUGGGAUUACAGGCAUGAGCCACUGCGGUCGACCAUGACCUGGACAUGUUUGUGCCCAGUACUGUCAGUUUGCAG 5 18542 MI0003634 hsa-mir-620 Homo sapiens miR-620 stem-loop AUAUAUAUCUAUAUCUAGCUCCGUAUAUAUAUAUAUAUAUAUAUAGAUAUCUCCAUAUAUAUGGAGAUAGAUAUAGAAAUAAAACAAGCAAAGAA 5 18543 MI0003635 hsa-mir-621 Homo sapiens miR-621 stem-loop UAGAUUGAGGAAGGGGCUGAGUGGUAGGCGGUGCUGCUGUGCUCUGAUGAAGACCCAUGUGGCUAGCAACAGCGCUUACCUUUUGUCUCUGGGUCC 5 18544 MI0003636 hsa-mir-622 Homo sapiens miR-622 stem-loop AGAGAAGCUGGACAAGUACUGGUCUCAGCAGAUUGAGGAGAGCACCACAGUGGUCAUCACACAGUCUGCUGAGGUUGGAGCUGCUGAGAUGACACU 5 18545 MI0003637 hsa-mir-623 Homo sapiens miR-623 stem-loop GUACACAGUAGAAGCAUCCCUUGCAGGGGCUGUUGGGUUGCAUCCUAAGCUGUGCUGGAGCUUCCCGAUGUACUCUGUAGAUGUCUUUGCACCUUCUG 5 18546 MI0003638 hsa-mir-624 Homo sapiens miR-624 stem-loop AAUGCUGUUUCAAGGUAGUACCAGUACCUUGUGUUCAGUGGAACCAAGGUAAACACAAGGUAUUGGUAUUACCUUGAGAUAGCAUUACACCUAAGUG Cummins et al. identified a mature miRNA from the 5' arm of this precursor, and named it miR-624 [1]. Landgraf et al. later showed that the 3' product is the predominant one [2]. The 5' product is therefore renamed miR-624*. 5 18547 MI0003639 hsa-mir-625 Homo sapiens miR-625 stem-loop AGGGUAGAGGGAUGAGGGGGAAAGUUCUAUAGUCCUGUAAUUAGAUCUCAGGACUAUAGAACUUUCCCCCUCAUCCCUCUGCCCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18548 MI0003640 hsa-mir-626 Homo sapiens miR-626 stem-loop ACUGAUAUAUUUGUCUUAUUUGAGAGCUGAGGAGUAUUUUUAUGCAAUCUGAAUGAUCUCAGCUGUCUGAAAAUGUCUUCAAUUUUAAAGGCUU 5 18549 MI0003641 hsa-mir-627 Homo sapiens miR-627 stem-loop UACUUAUUACUGGUAGUGAGUCUCUAAGAAAAGAGGAGGUGGUUGUUUUCCUCCUCUUUUCUUUGAGACUCACUACCAAUAAUAAGAAAUACUACUA 5 18550 MI0003642 hsa-mir-628 Homo sapiens miR-628 stem-loop AUAGCUGUUGUGUCACUUCCUCAUGCUGACAUAUUUACUAGAGGGUAAAAUUAAUAACCUUCUAGUAAGAGUGGCAGUCGAAGGGAAGGGCUCAU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18551 MI0003643 hsa-mir-629 Homo sapiens miR-629 stem-loop UCCCUUUCCCAGGGGAGGGGCUGGGUUUACGUUGGGAGAACUUUUACGGUGAACCAGGAGGUUCUCCCAACGUAAGCCCAGCCCCUCCCCUCUGCCU Cummins et al. identified a product from the 3' arm of this precursor, and named it miR-629 [1]. Landgraf et al. later showed that the 3' product is the predominant one [2]. The 3' product is renamed miR-629*. 5 18552 MI0003644 hsa-mir-630 Homo sapiens miR-630 stem-loop AACUUAACAUCAUGCUACCUCUUUGUAUCAUAUUUUGUUAUUCUGGUCACAGAAUGACCUAGUAUUCUGUACCAGGGAAGGUAGUUCUUAACUAUAU 5 18553 MI0003645 hsa-mir-631 Homo sapiens miR-631 stem-loop GUGGGGAGCCUGGUUAGACCUGGCCCAGACCUCAGCUACACAAGCUGAUGGACUGAGUCAGGGGCCACACUCUCC 5 18554 MI0003646 hsa-mir-33b Homo sapiens miR-33b stem-loop GCGGGCGGCCCCGCGGUGCAUUGCUGUUGCAUUGCACGUGUGUGAGGCGGGUGCAGUGCCUCGGCAGUGCAGCCCGGAGCCGGCCCCUGGCACCAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18555 MI0003647 hsa-mir-632 Homo sapiens miR-632 stem-loop CGCCUCCUACCGCAGUGCUUGACGGGAGGCGGAGCGGGGAACGAGGCCGUCGGCCAUUUUGUGUCUGCUUCCUGUGGGACGUGGUGGUAGCCGU 5 18556 MI0003648 hsa-mir-633 Homo sapiens miR-633 stem-loop AACCUCUCUUAGCCUCUGUUUCUUUAUUGCGGUAGAUACUAUUAACCUAAAAUGAGAAGGCUAAUAGUAUCUACCACAAUAAAAUUGUUGUGAGGAUA 5 18557 MI0003649 hsa-mir-634 Homo sapiens miR-634 stem-loop AAACCCACACCACUGCAUUUUGGCCAUCGAGGGUUGGGGCUUGGUGUCAUGCCCCAAGAUAACCAGCACCCCAACUUUGGACAGCAUGGAUUAGUCU 5 18558 MI0003650 hsa-mir-635 Homo sapiens miR-635 stem-loop CAGAGAGGAGCUGCCACUUGGGCACUGAAACAAUGUCCAUUAGGCUUUGUUAUGGAAACUUCUCCUGAUCAUUGUUUUGUGUCCAUUGAGCUUCCAAU 5 18559 MI0003651 hsa-mir-636 Homo sapiens miR-636 stem-loop UGGCGGCCUGGGCGGGAGCGCGCGGGCGGGGCCGGCCCCGCUGCCUGGAAUUAACCCCGCUGUGCUUGCUCGUCCCGCCCGCAGCCCUAGGCGGCGUCG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18560 MI0003652 hsa-mir-637 Homo sapiens miR-637 stem-loop UGGCUAAGGUGUUGGCUCGGGCUCCCCACUGCAGUUACCCUCCCCUCGGCGUUACUGAGCACUGGGGGCUUUCGGGCUCUGCGUCUGCACAGAUACUUC 5 18561 MI0003653 hsa-mir-638 Homo sapiens miR-638 stem-loop GUGAGCGGGCGCGGCAGGGAUCGCGGGCGGGUGGCGGCCUAGGGCGCGGAGGGCGGACCGGGAAUGGCGCGCCGUGCGCCGCCGGCGUAACUGCGGCGCU 5 18562 MI0003654 hsa-mir-639 Homo sapiens miR-639 stem-loop UGGCCGACGGGGCGCGCGCGGCCUGGAGGGGCGGGGCGGACGCAGAGCCGCGUUUAGUCUAUCGCUGCGGUUGCGAGCGCUGUAGGGAGCCUGUGCUG 5 18563 MI0003655 hsa-mir-640 Homo sapiens miR-640 stem-loop GUGACCCUGGGCAAGUUCCUGAAGAUCAGACACAUCAGAUCCCUUAUCUGUAAAAUGGGCAUGAUCCAGGAACCUGCCUCUACGGUUGCCUUGGGG 5 18564 MI0003656 hsa-mir-641 Homo sapiens miR-641 stem-loop UGGGUGAAAGGAAGGAAAGACAUAGGAUAGAGUCACCUCUGUCCUCUGUCCUCUACCUAUAGAGGUGACUGUCCUAUGUCUUUCCUUCCUCUUACCCCU 5 18565 MI0003657 hsa-mir-642 Homo sapiens miR-642 stem-loop AUCUGAGUUGGGAGGGUCCCUCUCCAAAUGUGUCUUGGGGUGGGGGAUCAAGACACAUUUGGAGAGGGAACCUCCCAACUCGGCCUCUGCCAUCAUU 5 18566 MI0003658 hsa-mir-643 Homo sapiens miR-643 stem-loop ACCAAGUGAUAUUCAUUGUCUACCUGAGCUAGAAUACAAGUAGUUGGCGUCUUCAGAGACACUUGUAUGCUAGCUCAGGUAGAUAUUGAAUGAAAAA 5 18567 MI0003659 hsa-mir-644 Homo sapiens miR-644 stem-loop UUUUUUUUUAGUAUUUUUCCAUCAGUGUUCAUAAGGAAUGUUGCUCUGUAGUUUUCUUAUAGUGUGGCUUUCUUAGAGCAAAGAUGGUUCCCUA 5 18568 MI0003660 hsa-mir-645 Homo sapiens miR-645 stem-loop CAGUUCCUAACAGGCCUCAGACCAGUACCGGUCUGUGGCCUGGGGGUUGAGGACCCCUGCUCUAGGCUGGUACUGCUGAUGCUUAAAAAGAGAG 5 18569 MI0003661 hsa-mir-646 Homo sapiens miR-646 stem-loop GAUCAGGAGUCUGCCAGUGGAGUCAGCACACCUGCUUUUCACCUGUGAUCCCAGGAGAGGAAGCAGCUGCCUCUGAGGCCUCAGGCUCAGUGGC 5 18570 MI0003662 hsa-mir-647 Homo sapiens miR-647 stem-loop AGGAAGUGUUGGCCUGUGGCUGCACUCACUUCCUUCAGCCCCAGGAAGCCUUGGUCGGGGGCAGGAGGGAGGGUCAGGCAGGGCUGGGGGCCUGAC 5 18571 MI0003663 hsa-mir-648 Homo sapiens miR-648 stem-loop AUCACAGACACCUCCAAGUGUGCAGGGCACUGGUGGGGGCCGGGGCAGGCCCAGCGAAAGUGCAGGACCUGGCACUUAGUCGGAAGUGAGGGUG 5 18572 MI0003664 hsa-mir-649 Homo sapiens miR-649 stem-loop GGCCUAGCCAAAUACUGUAUUUUUGAUCGACAUUUGGUUGAAAAAUAUCUAUGUAUUAGUAAACCUGUGUUGUUCAAGAGUCCACUGUGUUUUGCUG 5 18573 MI0003665 hsa-mir-650 Homo sapiens miR-650 stem-loop CAGUGCUGGGGUCUCAGGAGGCAGCGCUCUCAGGACGUCACCACCAUGGCCUGGGCUCUGCUCCUCCUCACCCUCCUCACUCAGGGCACAGGUGAU 5 18574 MI0003666 hsa-mir-651 Homo sapiens miR-651 stem-loop AAUCUAUCACUGCUUUUUAGGAUAAGCUUGACUUUUGUUCAAAUAAAAAUGCAAAAGGAAAGUGUAUCCUAAAAGGCAAUGACAGUUUAAUGUGUUU 5 18575 MI0003667 hsa-mir-652 Homo sapiens miR-652 stem-loop ACGAAUGGCUAUGCACUGCACAACCCUAGGAGAGGGUGCCAUUCACAUAGACUAUAAUUGAAUGGCGCCACUAGGGUUGUGCAGUGCACAACCUACAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 3' end of the miRNA is offset with respect to previous annotations. miR-652 cloned in [2] has a 1 nt 3' extension (U), which is incompatible with the genome sequence. 5 18576 MI0003668 hsa-mir-548d-1 Homo sapiens miR-548d-1 stem-loop AAACAAGUUAUAUUAGGUUGGUGCAAAAGUAAUUGUGGUUUUUGCCUGUAAAAGUAAUGGCAAAAACCACAGUUUCUUUUGCACCAGACUAAUAAAG 5 18577 MI0003669 hsa-mir-661 Homo sapiens miR-661 stem-loop GGAGAGGCUGUGCUGUGGGGCAGGCGCAGGCCUGAGCCCUGGUUUCGGGCUGCCUGGGUCUCUGGCCUGCGCGUGACUUUGGGGUGGCU 5 18578 MI0003670 hsa-mir-662 Homo sapiens miR-662 stem-loop GCUGUUGAGGCUGCGCAGCCAGGCCCUGACGGUGGGGUGGCUGCGGGCCUUCUGAAGGUCUCCCACGUUGUGGCCCAGCAGCGCAGUCACGUUGC 5 18579 MI0003671 hsa-mir-548d-2 Homo sapiens miR-548d-2 stem-loop GAGAGGGAAGAUUUAGGUUGGUGCAAAAGUAAUUGUGGUUUUUGCCAUUGAAAGUAAUGGCAAAAACCACAGUUUCUUUUGCACCAACCUAAUAAAA 5 18580 MI0003672 hsa-mir-663 Homo sapiens miR-663 stem-loop CCUUCCGGCGUCCCAGGCGGGGCGCCGCGGGACCGCCCUCGUGUCUGUGGCGGUGGGAUCCCGCGGCCGUGUUUUCCUGGUGGCCCGGCCAUG 5 18581 MI0003673 hsa-mir-449b Homo sapiens miR-449b stem-loop UGACCUGAAUCAGGUAGGCAGUGUAUUGUUAGCUGGCUGCUUGGGUCAAGUCAGCAGCCACAACUACCCUGCCACUUGCUUCUGGAUAAAUUCUUCU 5 18582 MI0003674 hsa-mir-653 Homo sapiens miR-653 stem-loop UUCAUUCCUUCAGUGUUGAAACAAUCUCUACUGAACCAGCUUCAAACAAGUUCACUGGAGUUUGUUUCAAUAUUGCAAGAAUGAUAAGAUGGAAGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 5 18583 MI0003675 hsa-mir-411 Homo sapiens miR-411 stem-loop UGGUACUUGGAGAGAUAGUAGACCGUAUAGCGUACGCUUUAUCUGUGACGUAUGUAACACGGUCCACUAACCCUCAGUAUCAAAUCCAUCCCCGAG 5 18584 MI0003676 hsa-mir-654 Homo sapiens miR-654 stem-loop GGGUAAGUGGAAAGAUGGUGGGCCGCAGAACAUGUGCUGAGUUCGUGCCAUAUGUCUGCUGACCAUCACCUUUAGAAGCCC 5 18585 MI0003677 hsa-mir-655 Homo sapiens miR-655 stem-loop AACUAUGCAAGGAUAUUUGAGGAGAGGUUAUCCGUGUUAUGUUCGCUUCAUUCAUCAUGAAUAAUACAUGGUUAACCUCUUUUUGAAUAUCAGACUC 5 18586 MI0003678 hsa-mir-656 Homo sapiens miR-656 stem-loop CUGAAAUAGGUUGCCUGUGAGGUGUUCACUUUCUAUAUGAUGAAUAUUAUACAGUCAACCUCUUUCCGAUAUCGAAUC 5 18587 MI0003679 hsa-mir-549 Homo sapiens miR-549 stem-loop AGACAUGCAACUCAAGAAUAUAUUGAGAGCUCAUCCAUAGUUGUCACUGUCUCAAAUCAGUGACAACUAUGGAUGAGCUCUUAAUAUAUCCCAGGC Cummins et al report two mature isoforms that map to the same precursor locus, referred to as miR-549a (shown here) and miR-549b (two nt longer at the 3' end - GACAACUAUGGAUGAGCUCUCA) [1]. 5 18588 MI0003681 hsa-mir-657 Homo sapiens miR-657 stem-loop GUGUAGUAGAGCUAGGAGGAGAGGGUCCUGGAGAAGCGUGGACCGGUCCGGGUGGGUUCCGGCAGGUUCUCACCCUCUCUAGGCCCCAUUCUCCUCUG 5 18589 MI0003682 hsa-mir-658 Homo sapiens miR-658 stem-loop GCUCGGUUGCCGUGGUUGCGGGCCCUGCCCGCCCGCCAGCUCGCUGACAGCACGACUCAGGGCGGAGGGAAGUAGGUCCGUUGGUCGGUCGGGAACGAGG 5 18590 MI0003683 hsa-mir-659 Homo sapiens miR-659 stem-loop UACCGACCCUCGAUUUGGUUCAGGACCUUCCCUGAACCAAGGAAGAGUCACAGUCUCUUCCUUGGUUCAGGGAGGGUCCCCAACAAUGUCCUCAUGG 5 18591 MI0003684 hsa-mir-660 Homo sapiens miR-660 stem-loop CUGCUCCUUCUCCCAUACCCAUUGCAUAUCGGAGUUGUGAAUUCUCAAAACACCUCCUGUGUGCAUGGAUUACAGGAGGGUGAGCCUUGUCAUCGUG 5 18592 MI0003685 hsa-mir-421 Homo sapiens miR-421 stem-loop GCACAUUGUAGGCCUCAUUAAAUGUUUGUUGAAUGAAAAAAUGAAUCAUCAACAGACAUUAAUUGGGCGCCUGCUCUGUGAUCUC 5 18593 MI0003686 hsa-mir-542 Homo sapiens miR-542 stem-loop CAGAUCUCAGACAUCUCGGGGAUCAUCAUGUCACGAGAUACCAGUGUGCACUUGUGACAGAUUGAUAACUGAAAGGUCUGGGAGCCACUCAUCUUCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18594 MI0003687 hcmv-mir-US4 Human cytomegalovirus miR-US4 stem-loop CGUGUCGCGACAUGGACGUGCAGGGGGAUGUCUGUCGCGAUAGAGUUGAUGUGACAGCCCGCUACACCUCUCUGUCGCGACAUG 22 18595 MI0003688 hcmv-mir-UL70 Human cytomegalovirus miR-UL70 stem-loop GGUUGCGUCUCGGCCUCGUCCAGACUGGCGAUGAGCGCCGAGAGGGGGAUGGGCUGGCGCGCGGCC 22 18596 MI0003689 sv40-mir-S1 Simian virus 40 miR-S1 stem-loop UGAACAGACUGUGAGGGCUGAGGGGCCUGAAAUGAGCCUUGAGACUGUGAAUCAAUGCCUGUUUCAUGCCCUGAGUCUUCCAUGUUCU 41 18597 MI0003690 dre-mir-34b Danio rerio miR-34b stem-loop GGGGUUGGUCUGUAGGCAGUGUUGUUAGCUGAUUGUUUCAUAUGAACUAUAAUCACUAACCAUACUGCCAACACAACAACCUACA 12 18598 MI0003691 dre-mir-31 Danio rerio miR-31 stem-loop GAAGAGAUGGCAAGAUGUUGGCAUAGCUGUUAAUGUUUAUGGGCCUGCUAUGCCUCCAUAUUGCCAUUUCUG 12 18599 MI0003692 dre-mir-135a Danio rerio miR-135a stem-loop ACAGCUGUCGUGUCUUAUGGCUUUUUAUUCCUAUGUGAAGGUGAACAAGGCUCAUGUAGGGAUACAAGCCACUAAACACGCAGUCAGAAAUCAGCUUU 12 18600 MI0003693 dre-mir-139 Danio rerio miR-139 stem-loop CUGUAUUCUACAGUGCAUGUGUCUCCAGUGUUUCUAUGGCGACUGGGGAGGCAGCGCUGUUGGAAUAAC 12 18601 MI0003694 gga-mir-9-1 Gallus gallus miR-9-1 stem-loop UUGGGUUGGUUUUUCUCUUUGGUUAUCUAGCUGUAUGAGUGUAUGUGAUAUCAUAAAGCUAGAGAACCGAAUGUAAAAACCCGCUCGC 10 18602 MI0003695 gga-mir-146b MI0003695 Gallus gallus miR-146b stem-loop GGACUGGCUGCUUGGCUUUGAGAACUGAAUUCCAUAGGCGUUAAAGCAUCCAAAAAUGCCCUAUGGAUUCAGUUCUGCAGUUGGGCAGCAAAUAAACCUCCAGCC 10 18603 MI0003696 gga-mir-147-1 Gallus gallus miR-147-1 stem-loop AAUCUAGUGGAAUCACUUCUGCACAAACUUGACUACUGAAAUCAGUGUGCGGAAAUGCUUCUGCUACAUU 10 18604 MI0003697 gga-mir-147-2 Gallus gallus miR-147-2 stem-loop AAUCUAGUGGAAUCACUUCUGCACAAACUUGACUACUGAAAUCAGUGUGCGGAAAUGCUUCUGCUACAUU 10 18605 MI0003698 gga-mir-193b Gallus gallus miR-193b stem-loop GUGGUUCCAGAGUCGGGGUUUUGGGGGCGAGAUGAGCUUAUGUUUUAUCCAACUGGCCCACAAAGUCCCGCUUUUGGUGGUCA 10 18606 MI0003699 gga-mir-202 Gallus gallus miR-202 stem-loop GCUCGUUGUUCCUUUUUCCUAUGCAUAUACUUCUUUGAGAGUUUGAUCUAAAGAGGCAUAGAGCAUGGGAAAAUGGGGCGACUGAGGUA 10 18607 MI0003700 gga-mir-302b Gallus gallus miR-302b stem-loop CCCUUUUACUUUAACAUGGAGGUGCUUUCUGUGAUUUUACAAAAGUAAGUGCUUCCAUGUUUUAGUAGAGGU 10 18608 MI0003701 gga-mir-302c Gallus gallus miR-302c stem-loop CCUCCGCUUUAACAUGGAGGUACCUGCUGCCUACAAAAGUAAGUGCUUCCAUGUUUCAGUGGUGG 10 18609 MI0003702 gga-mir-302d Gallus gallus miR-302d stem-loop CCUCAACUUUAACAUGGAGGUACUUGCUGGACACCUGAAAAAGUAAGUGCUUCCAUGUUUUAGUUGUGG 10 18610 MI0003703 gga-mir-365-1 Gallus gallus miR-365-1 stem-loop CGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUCCAUUACACUAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCA 10 18611 MI0003704 gga-mir-365-2 Gallus gallus miR-365-2 stem-loop GGCAGCAAGAAAAAUGAGGGACUUUCAGGGGCAGCUGUGUUUUACUAACCCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGUUCUUGCAAUGGUCAA 10 18612 MI0003705 gga-mir-375 Gallus gallus miR-375 stem-loop CCUGGCGUCGAGCCCCACGUGCAAGACCUGACCUGAACGUUUUGUUCGUUCGGCUCGCGUUAGGC 10 18613 MI0003706 gga-mir-383 Gallus gallus miR-383 stem-loop CUCCUCAGAUCAGAAGGUGAUUGUGGCUUUGGGUAAAUAUUGAGCAGCCACAGCACUGCCUGGUCAGAAAGAG 10 18614 MI0003707 gga-mir-455 Gallus gallus miR-455 stem-loop UCCCUGGUGUGAGGGUAUGUGCCCUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUGCCUCAAGGU 10 18615 MI0003708 gga-mir-489 Gallus gallus miR-489 stem-loop GUGGUGGCUUGGUGGUCGUAUGUAUGACGUCAUUUACUUGGACUUUUAGGAGUGACAUCAUAUGUACGGCUGCUAAACUGCUGC 10 18616 MI0003709 gga-mir-490 Gallus gallus miR-490 stem-loop AAGUUCAUGGUUCGACACCAUGGAUCUCCAGGUGGGUCAAGAUUAUAGAGAUACACCAACCUGGAGGACUCCAUGCUGUUGAGCUGUUCACAA 10 18617 MI0003710 gga-mir-499 Gallus gallus miR-499 stem-loop UUUGAGGGAGCGGCAGUUAAGACUUGUAGUGAUGUUUAGAUAAUGUAUUACAUGAACAUCACUUUAAGUCUGUGCUACUUCUCUCCUCAUU 10 18618 MI0003711 gga-mir-211 Gallus gallus miR-211 stem-loop CCUGUGAGCUUCCCUUUGUCAUCCUAUGCCUGAGCGAUGCCUGGAGGCUGGGACGGUGAAGGGAGGCCCACGGG 10 18619 MI0003712 gga-mir-367 Gallus gallus miR-367 stem-loop AGGCUAAUACUGUUGCUAACAUGCAACUCUGUUGUAUAAAAAUUGGAAUUGCACUUUAGCAAUGGUGAUGGAC 10 18620 MI0003713 gga-mir-466 Gallus gallus miR-466 stem-loop AGUUUUCUGAGUGUACAUAUAUGUAUGUAUGUAUAUAUAUAUAUAUAUAUAUACACACACACAUAAGAC 10 18621 MI0003714 gga-mir-429 Gallus gallus miR-429 stem-loop GCCUGCUGAUUGCUGUCUUACCAGGCAAAGUUAGAUCUAGCUAUUUCUGUCUAAUACUGUCUGGUAAUGCCGUCAAUCGCAUGG 10 18622 MI0003715 gga-mir-449 Gallus gallus miR-449 stem-loop CUGUGUGCGGUGGGGUGGCAGUGUAUGUUAGCUGGUUGAAACUCUUGACAUCAGCUAACACGCAGUUGCUAACCUGCUCCACAUAC 10 18623 MI0003716 mmu-mir-302b Mus musculus miR-302b stem-loop GUUCCCUUCAACUUUAACAUGGGAAUGCUUUCUGUCUCAUCGAAGAGUAAGUGCUUCCAUGUUUUAGUAGAAGU Mouse miR-302b was verified experimentally by Mineno et al using MPSS technology [1]. The MPSS protocol used provides 22nt sequences, but the true extents of the mature miRNA are not reliably obtained. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18624 MI0003717 mmu-mir-302c Mus musculus miR-302c stem-loop CCUCUGCUUUAACAUGGGGUUACCUGCUGUGUUAAACAAAAGCAAGUGCUUCCAUGUUUCAGUGGGGG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [1]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18625 MI0003718 mmu-mir-302d Mus musculus miR-302d stem-loop CCUUUACUUUAACAUGGAGGCACUUGCUGUGCAUUUAAAAAUAAGUGCUUCCAUGUUUGAGUGUGG Mouse miR-302d was verified experimentally by Mineno et al using MPSS technology [1]. The MPSS protocol used provides 22nt sequences, but the true extents of the mature miRNA are not reliably obtained. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18626 MI0003719 rno-mir-378 Rattus norvegicus miR-378/miR-422b stem-loop GGGCUCCUGACUCCAGGUCCUGUGUGUUACCUCGAAAUAGCACUGGACUUGGAGUCAGAAGGCCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 8 18627 MI0003720 rno-mir-505 Rattus norvegicus miR-505 stem-loop AGUGGGGGAGCCAGGAAGUAUUGAUGUUUCUGCCAGGUUAGCGUCAACACUUGCUGGUUUCCUCUCU 8 18628 MI0003721 rno-mir-499 Rattus norvegicus miR-499 stem-loop GCUGUUAAGACUUGCAGUGAUGUUUAGCUCCUCUCCAUGUGAACAUCACAGCAAGUCUGUGCUGC 8 18629 MI0003722 rno-mir-664-1 Rattus norvegicus miR-664-1 stem-loop CUGGCUGGGGAAAAAGAUUGGAUAGAAAACAUUAUUCUAUUCAUUUACUCCCCAGCCUA 8 18630 MI0003723 rno-mir-664-2 Rattus norvegicus miR-664-2 stem-loop CUGGCUGGGGAAAAUGAUUGGAUAGAAAACAUUAUUCUAUUCAUUUACUCCCCAGCCUA 8 18631 MI0003724 rno-mir-497 Rattus norvegicus miR-497 stem-loop CCAGCAGCACACUGUGGUUUGUACGGCACUGUGGCCACGUCCAAACCACACUGUGGUGUUAGAGCGAGG 8 18632 MI0003725 ebv-mir-BART3 Epstein Barr virus miR-BART3 stem-loop CCUUUGGUGGAACCUAGUGUUAGUGUUGUGCUGUAAAUAAGUGUCCAGCGCACCACUAGUCACCAGGUGUCACCGGAGG mir-BART3 was discovered independently by two groups. Cai et al identified mature miRNA products from both arms of the hairpin precursor and mapped the ends of the mature sequences by cloning [1]. Grundhoff et al confirmed that the 5' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. The mature miRNA names reflect cloning frequencies from Landgraf et al. [3], and may differ subtly from previous annotations. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 18633 MI0003726 ebv-mir-BART4 Epstein Barr virus miR-BART4 stem-loop UUUGGUGGGACCUGAUGCUGCUGGUGUGCUGUAAAUAAGUGCCUAGCACAUCACGUAGGCACCAGGUGUCACCAGG mir-BART4 was discovered independently by two groups. Cai et al mapped the ends of the mature sequence by cloning [1]. Grundhoff et al confirmed that the 5' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. 9 18634 MI0003727 ebv-mir-BART5 Epstein Barr virus miR-BART5 stem-loop GCUCUGUGGCACCUCAAGGUGAAUAUAGCUGCCCAUCGACGUAUCGCUGGAAACCGGUGGGCCGCUGUUCACCUAAAGUGACGCAAGGU mir-BART5 was discovered independently by two groups. Cai et al mapped the ends of the mature sequence by cloning [1]. Grundhoff et al confirmed that the 5' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence was misnamed miR-BART6 in [2]. 9 18635 MI0003728 ebv-mir-BART6 Epstein Barr virus miR-BART6 stem-loop UGACCUUGUUGGUACUUUAAGGUUGGUCCAAUCCAUAGGCUUUUUUUGUGAAAACCCGGGGAUCGGACUAGCCUUAGAGUAACUCAAGGCCA mir-BART6 was discovered independently by two groups. Cai et al identified a mature miRNA product from the 3' arm of the hairpin precursor and mapped the ends of the mature sequence by cloning [1]. Grundhoff et al report that the 5' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence was misnamed miR-BART9 in [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 18636 MI0003729 ebv-mir-BART7 Epstein Barr virus miR-BART7 stem-loop UCCAGUGUCCUGAUCCUGGACCUUGACUAUGAAACAAUUCUAAAAAAAUGCAUCAUAGUCCAGUGUCCAGGGACAGUGCACUCGGA mir-BART7 was discovered independently by two groups. Cai et al mapped the ends of the mature sequence by cloning [1]. Grundhoff et al confirmed that the 3' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence is misnamed miR-BART11 in [2]. 9 18637 MI0003730 ebv-mir-BART8 Epstein Barr virus miR-BART8 stem-loop UGGGUUCACUGAUUACGGUUUCCUAGAUUGUACAGAUGAACUAGAACUGUCACAAUCUAUGGGGUCGUAGACAGUGUGCUUA mir-BART8 was discovered independently by two groups. Cai et al identified a mature miRNA product from the 5' arm of the hairpin precursor and mapped the ends of the mature sequence by cloning [1]. Grundhoff et al report that the 3' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. The ends of ebv-miR-BART8-3p are therefore predicted, not experimentally determined. This sequence was misnamed miR-BART12 in [2]. The mature miRNA names reflect cloning frequencies from Landgraf et al. [3], and may differ subtly from previous annotations. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 18638 MI0003731 ebv-mir-BART9 Epstein Barr virus miR-BART9 stem-loop CAGCUGUUGUUUGUACUGGACCCUGAAUUGGAAACAGUAACUUGGAUUCUGUAACACUUCAUGGGUCCCGUAGUGACAACUAUGCUG mir-BART9 was discovered independently by two groups. Cai et al mapped the ends of the mature sequence by cloning [1]. Grundhoff et al confirmed that the 3' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence was misnamed miR-BART13 in [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 18639 MI0003732 ebv-mir-BART10 Epstein Barr virus miR-BART10 stem-loop CAGAGGAGUGUCCCGGGGCCACCUCUUUGGUUCUGUACAUAUUUUGUUAUUGUACAUAACCAUGGAGUUGGCUGUGGUGCACUCCAUCUG mir-BART10 was discovered independently by two groups. Cai et al mapped the ends of the mature sequence by cloning [1]. Grundhoff et al confirmed that the 3' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence was misnamed miR-BART14 in [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 18640 MI0003733 ebv-mir-BART11 Epstein Barr virus miR-BART11 stem-loop GGCUUCUGUUGGGUCAGACAGUUUGGUGCGCUAGUUGUGUGCUUAGCAGCAACGCACACCAGGCUGACUGCCUUAGCAGUGUGGCC mir-BART11 was discovered independently by two groups. Cai et al identified a mature miRNA product from the 3' arm of the hairpin precursor and mapped the ends of the mature sequence by cloning [1]. Grundhoff et al report that the 5' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence was misnamed miR-BART15 in [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 18641 MI0003734 ebv-mir-BART12 Epstein Barr virus miR-BART12 stem-loop CUGGUGACCUAACACCCGCCCAUCACCACCGGACAGAUUCUGAACUUGUCCUGUGGUGUUUGGUGUGGUUUUGGGGUACGCAG mir-BART12 was discovered independently by two groups. Cai et al mapped the ends of the mature sequence by cloning [1]. Grundhoff et al confirmed that the 3' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence is misnamed miR-BART16 in [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 9 18642 MI0003735 ebv-mir-BART13 Epstein Barr virus miR-BART13 stem-loop UUGGGCACCUCGAUAACCGGCUCGUGGCUCGUACAGACGAUUGUUUGGCUCUGUAACUUGCCAGGGACGGCUGACGAUGUGUUUAG mir-BART13 was discovered independently by two groups. Cai et al mapped the ends of the mature sequence by cloning [1]. Grundhoff et al confirmed that the 3' arm gives rise to a mature miRNA product, but didnot experimentally determine the extents of that product [2]. This sequence is misnamed miR-BART19 in [2]. 9 18643 MI0003736 ebv-mir-BART14 Epstein Barr virus miR-BART14 stem-loop CAGGGGUGGCCGGUACCCUACGCUGCCGAUUUACAUAAUAUAAAUUGUAAAUGCUGCAGUAGUAGGGAUCUGGACGCGCGACCUG mir-BART14 was discovered independently by two groups. Cai et al identified a mature miRNA products from the 5' arm of the hairpin precursor and mapped the ends of the mature sequence by cloning [1]. Grundhoff et al report that both arms give rise to a mature miRNA products, but didnot experimentally determine the extents of those products [2]. The ends of ebv-miR-BART14-3p are therefore predicted, not experimentally determined. This sequence is nisnamed miR-BART20 in [2]. The mature miRNA names reflect cloning frequencies from Landgraf et al. [3], and may differ subtly from previous annotations. 9 18644 MI0003737 rlcv-mir-rL1-1 Rhesus lymphocryptovirus miR-rL1-1 stem-loop GGCCGGCUCCUUAUUAACCUGAUCAGCCCCGGGGUUGCCUGUCUUAGCACUAACUCCGGGCCUGAAGAGGUUGACAAGAAGGGUC 42 18645 MI0003738 rlcv-mir-rL1-2 Rhesus lymphocryptovirus miR-rL1-2 stem-loop GCCCCCACUUUUAAAUUCUGCCACAGAAGAUAGCUGAUACUCGAUGUUAUCUUUUGCGGGGGAAUUUCCAAGUGUUGGC 42 18646 MI0003739 rlcv-mir-rL1-3 Rhesus lymphocryptovirus miR-rL1-3 stem-loop CUGGGUCCUCGGGGGGCGGUGGAGACCGCGGGUGCGGUGAUUGCUUGACCCUCGCACCUCGCCGUCUCUACUGCUCGCCGGGUACGUCUGG 42 18647 MI0003740 rlcv-mir-rL1-4 Rhesus lymphocryptovirus miR-rL1-4 stem-loop GAGAUGCUUUAACCUUGGGGGGACCUAGUAAUUGUGCGGUGUUGUGAGUGUUAGAAACACCACACGAUCCACUAGGUCUCACCUGGGCUCCUUGCCUC 42 18648 MI0003741 rlcv-mir-rL1-5 Rhesus lymphocryptovirus miR-rL1-5 stem-loop CUUCGGUGGAACCUAGUGCCGGUGAUGUGCUGUGGAUAGGCAGCUAGCGCACCACUUUUCACUAGGUGUCACCGGGG 42 18649 MI0003742 rlcv-mir-rL1-6 Rhesus lymphocryptovirus miR-rL1-6 stem-loop CCCUUGGUGGGUUUUAGUGGAAGUGACGUGCUGUGAUUAGGUACCCAUAGCACCGCUAUCCACUAUGUCUCACCAGGG The mature miRNA names reflect cloning frequencies from Landgraf et al. [2], and may differ subtly from previous annotations. 42 18650 MI0003743 rlcv-mir-rL1-7 Rhesus lymphocryptovirus miR-rL1-7 stem-loop CCGUGUGCCGCUUCGAGGUAAACAUCGGCUUACUGAAGUCUCUUAGUAAGGUCAGUGGGCCUGUUUCCCUCACAGAGACACAUGG 42 18651 MI0003744 rlcv-mir-rL1-8 Rhesus lymphocryptovirus miR-rL1-8 stem-loop UUGCUGCGGCACCGUAAGGUGAAUAUAGCUGCCCAUUGAUGUCUGUUUAGAACCCGGUGGGCCGCAGUUCACCUACAGUGACGCAGUGA The predominant mature miRNA form cloned by Landgraf et al. has an additional 3' terminal U residue, which is incompatible with the genome sequence and hairpin shown here [2]. 42 18652 MI0003745 rlcv-mir-rL1-9 Rhesus lymphocryptovirus miR-rL1-9 stem-loop GCCUGCGGAACCCUAAGAGGGGGGCCUGCACGCCGAGGUUAUUUCCCAGCCCUUCGAUGCAUGGUCCCCCCUUAGUGGACUGCAGGC 42 18653 MI0003746 rlcv-mir-rL1-10 Rhesus lymphocryptovirus miR-rL1-10 stem-loop GUGGUCCUCUGACAUCGGGUUUCCGCUGUACUUGCAUAAUGAGAACUUUGUAGUGCGCCGGUGACCUGAUAGCAGCGGUCUCAC 42 18654 MI0003747 rlcv-mir-rL1-11 Rhesus lymphocryptovirus miR-rL1-11 stem-loop GGGGCCUUGCCUCCGUAUCCUAUCAAGUGUGACGUGGCUUUGUUCGUGACACUCGAUAGGAUACGGGGGUAAAGGCGCCU 42 18655 MI0003748 rlcv-mir-rL1-12 Rhesus lymphocryptovirus miR-rL1-12 stem-loop UCAGGGUACGCUCAGACCAGACCAUGCACAGUGGGCGAUUAAGACAUUGCUCUAACGGUGCAUGGACUGGCUAGAGUGUUCCUGG 42 18656 MI0003749 rlcv-mir-rL1-13 Rhesus lymphocryptovirus miR-rL1-13 stem-loop CCCGUGUCUUGAUCCUGGGCAUGGGCUAUGAAACAGUUCUAACAAUUGGAUCAUAGCCAGUGUCCAGGGACGGUGCACCGGG 42 18657 MI0003750 rlcv-mir-rL1-14 Rhesus lymphocryptovirus miR-rL1-14 stem-loop GCCCUCCGGCUGGGUCGGACGGUCUGGUGCGCUUGAUGUGUUUUCGGUACCAUCGCACAUCAGGCUGAACGACUCAGAGGAGUGGC 42 18658 MI0003751 rlcv-mir-rL1-15 Rhesus lymphocryptovirus miR-rL1-15 stem-loop UUCCUGGAGCCGGUGACCUGAGACCCACCCUUCUCGACGGGGCAGGUGUUAUAAGUGUCCUGUAGAGUAUGGGUGUGGUUUUAGUGCACGCGGGAG 42 18659 MI0003752 rlcv-mir-rL1-16 Rhesus lymphocryptovirus miR-rL1-16 stem-loop GAGGGCCAGUUGAAGCAGGCAUGUCUUCAUUCCUGAUUUCCUGAUGGCAUGAAACACAUGGCCUGUUCCUAUUGGCACCUU 42 18660 MI0003757 hsa-mir-758 Homo sapiens miR-758 stem-loop GCCUGGAUACAUGAGAUGGUUGACCAGAGAGCACACGCUUUAUUUGUGCCGUUUGUGACCUGGUCCACUAACCCUCAGUAUCUAAUGC 5 18661 MI0003758 hsa-mir-1264 Homo sapiens miR-1264 stem-loop AGGUCCUCAAUAAGUAUUUGUUGAAAGAAUAAAUAAACCAACAAGUCUUAUUUGAGCACCUGUUAUGUG 5 18662 MI0003760 hsa-mir-671 Homo sapiens miR-671 stem-loop GCAGGUGAACUGGCAGGCCAGGAAGAGGAGGAAGCCCUGGAGGGGCUGGAGGUGAUGGAUGUUUUCCUCCGGUUCUCAGGGCUCCACCUCUUUCGGGCCGUAGAGCCAGGGCUGGUGC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18663 MI0003761 hsa-mir-668 Homo sapiens miR-668 stem-loop GGUAAGUGCGCCUCGGGUGAGCAUGCACUUAAUGUGGGUGUAUGUCACUCGGCUCGGCCCACUACC 5 18664 MI0003763 hsa-mir-767 Homo sapiens miR-767 stem-loop GCUUUUAUAUUGUAGGUUUUUGCUCAUGCACCAUGGUUGUCUGAGCAUGCAGCAUGCUUGUCUGCUCAUACCCCAUGGUUUCUGAGCAGGAACCUUCAUUGUCUACUGC 5 18665 MI0003764 hsa-mir-1224 Homo sapiens mir-1224 stem-loop GUGAGGACUCGGGAGGUGGAGGGUGGUGCCGCCGGGGCCGGGCGCUGUUUCAGCUCGCUUCUCCCCCCACCUCCUCUCUCCUCAG This sequence was identified as a miRNA candidate by Berezikov et al [1], and confirmed later by more extensive cloning [2]. 5 18666 MI0003776 hsa-mir-320b-1 Homo sapiens mir-320b-1 stem-loop AAUUAAUCCCUCUCUUUCUAGUUCUUCCUAGAGUGAGGAAAAGCUGGGUUGAGAGGGCAAACAAAUUAACUAAUUAAUU 5 18667 MI0003778 hsa-mir-320c-1 Homo sapiens mir-320c-1 stem-loop UUUGCAUUAAAAAUGAGGCCUUCUCUUCCCAGUUCUUCCCAGAGUCAGGAAAAGCUGGGUUGAGAGGGUAGAAAAAAAAUGAUGUAGG This sequence was identified as a candidate by RAKE analysis [1], and later confirmed by Solexa sequencing [2]. 5 18668 MI0003780 hsa-mir-1296 Homo sapiens miR-1296 stem-loop ACCUACCUAACUGGGUUAGGGCCCUGGCUCCAUCUCCUUUAGGAAAACCUUCUGUGGGGAGUGGGGCUUCGACCCUAACCCAGGUGGGCUGU 5 18669 MI0003786 hsa-mir-1323 Homo sapiens miR-1323 stem-loop ACUGAGGUCCUCAAAACUGAGGGGCAUUUUCUGUGGUUUGAAAGGAAAGUGCACCCAGUUUUGGGGAUGUCAA This sequence was identified as a miRNA candidate by Berezikov et al [1], and confirmed later by cloning [2]. Afanasyeva et al. refer to this sequence using the internal identifier MYCNAMP_NB2_61 [2]. 5 18670 MI0003814 hsa-mir-1271 Homo sapiens miR-1271 stem-loop CACCCAGAUCAGUGCUUGGCACCUAGCAAGCACUCAGUAAAUAUUUGUUGAGUGCCUGCUAUGUGCCAGGCAUUGUGCUGAGGGCU 5 18671 MI0003815 hsa-mir-1301 Homo sapiens miR-1301 stem-loop GGAUUGUGGGGGGUCGCUCUAGGCACCGCAGCACUGUGCUGGGGAUGUUGCAGCUGCCUGGGAGUGACUUCACACAGUCCUC 5 18672 MI0003820 hsa-mir-454 Homo sapiens miR-454 stem-loop UCUGUUUAUCACCAGAUCCUAGAACCCUAUCAAUAUUGUCUCUGCUGUGUAAAUAGUUCUGAGUAGUGCAAUAUUGCUUAUAGGGUUUUGGUGUUUGGAAAGAACAAUGGGCAGG The mature miRNA sequences were named miR-454-5p and miR-454-3p in [1] and here. Landgraf et al. showed that the 3' product is the predominant one [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 5 18673 MI0003821 hsa-mir-1185-2 Homo sapiens miR-1185-2 stem-loop UUUGGUACUUAAAGAGAGGAUACCCUUUGUAUGUUCACUUGAUUAAUGGCGAAUAUACAGGGGGAGACUCUCAUUUGCGUAUCAAA This sequence was proposed as a miRNA candidate by Berezikov et al by RAKE analysis [1], and validated by cloning independently by Subramanian et al [2]. 5 18674 MI0003832 hsa-mir-1283-1 Homo sapiens miR-1283-1 stem-loop CUCAAGCUAUGAGUCUACAAAGGAAAGCGCUUUCUGUUGUCAGAAAGAAGAGAAAGCGCUUCCCUUUUGAGGGUUACGGUUUGAGAA 5 18675 MI0003834 hsa-mir-769 Homo sapiens miR-769 stem-loop GCCUUGGUGCUGAUUCCUGGGCUCUGACCUGAGACCUCUGGGUUCUGAGCUGUGAUGUUGCUCUCGAGCUGGGAUCUCCGGGGUCUUGGUUCAGGGCCGGGGCCUCUGGGUUCCAAGC 5 18676 MI0003836 hsa-mir-766 Homo sapiens miR-766 stem-loop GCAUCCUCAGGACCUGGGCUUGGGUGGUAGGAGGAAUUGGUGCUGGUCUUUCAUUUUGGAUUUGACUCCAGCCCCACAGCCUCAGCCACCCCAGCCAAUUGUCAUAGGAGC 5 18677 MI0003839 hsa-mir-320b-2 Homo sapiens miR-320b-2 stem-loop UGUUAUUUUUUGUCUUCUACCUAAGAAUUCUGUCUCUUAGGCUUUCUCUUCCCAGAUUUCCCAAAGUUGGGAAAAGCUGGGUUGAGAGGGCAAAAGGAAAAAAAAAGAAUUCUGUCUCUGACAUAAUUAGAUAGGGAA This sequence was identified as a candidate by RAKE analysis [1], and later confirmed by Solexa sequencing [2,3]. The sequence was named mir-1242 in [2]. 5 18678 MI0003844 hsa-mir-1185-1 Homo sapiens miR-1185-1 stem-loop UUUGGUACUUGAAGAGAGGAUACCCUUUGUAUGUUCACUUGAUUAAUGGCGAAUAUACAGGGGGAGACUCUUAUUUGCGUAUCAAA This sequence was proposed as a miRNA candidate by Berezikov et al by RAKE analysis [1], and validated by cloning independently by Subramanian et al [2]. 5 18679 MI0003906 hsa-mir-802 Homo sapiens mir-802 stem-loop GUUCUGUUAUUUGCAGUCAGUAACAAAGAUUCAUCCUUGUGUCCAUCAUGCAACAAGGAGAAUCUUUGUCACUUAGUGUAAUUAAUAGCUGGAC 5 18680 MI0003938 hsa-mir-1298 Homo sapiens miR-1298 stem-loop AGACGAGGAGUUAAGAGUUCAUUCGGCUGUCCAGAUGUAUCCAAGUACCCUGUGUUAUUUGGCAAUAAAUACAUCUGGGCAACUGACUGAACUUUUCACUUUUCAUGACUCA 5 18681 MI0004118 mmu-mir-1224 Mus musculus mir-1224 stem-loop GUGAGGACUGGGGAGGUGGAGGGUAGCAUCAUUAGAGCCAGAGCUCUGUCUCAGCUCCCUCUCCCCCCACCUCUUCUCUCCUCAG This sequence was identified as a miRNA candidate by Berezikov et al [1], and confirmed later by more extensive cloning [2]. 6 18682 MI0004122 mmu-mir-301b Mus musculus mir-301b stem-loop UUUCCUGCUGGCUGCGGGUGCUCUGACUAGGUUGCACUACUGUGCUGUGAGAAGCAGUGCAAUGGUAUUGUCAAAGCAUCUGGGACCAGCCUCGAAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 18683 MI0004123 mmu-mir-675 Mus musculus mir-675 stem-loop UGCGGCCCAGGGACUGGUGCGGAAAGGGCCCACAGUGGACUUGGUACACUGUAUGCCCUAACCGCUCAGUCCCUGGGUCUGGCA 6 18684 MI0004124 mmu-mir-744 Mus musculus mir-744 stem-loop GGCUGGGCAAGGUGCGGGGCUAGGGCUAACAGCAGUCUUACUGACGGUUUCCUGGAAACCACACACAUGCUGUUGCCACUAACCUCAACCUUACUCGGUC mir-744 was also named mir-803 in Takada et al., supplementary information [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 18685 MI0004125 mmu-mir-374 Mus musculus mir-374 stem-loop GAAGAAAUCCUACUCGGGUGGAUAUAAUACAACCUGCUAAGUGUUCUAGCACUUAGCAGGUUGUAUUAUCAUUGUCCGAGGUUAUGGCUCUCGUC 6 18686 MI0004126 mmu-mir-216b Mus musculus mir-216b stem-loop UUGGCAGACUGGGAAAUCUCUGCAGGCAAAUGUGAUGUCACUGAAGAAACCACACACUUACCUGUAGAGAUUCUUCAGUCUGACAA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18687 MI0004127 mmu-mir-592 Mus musculus mir-592 stem-loop UGAUAUUAUGCCAUGACAUUGUGUCAAUAUGCGAUGAUGUGUUGUGAUGGCACAGCGUCAUCACGUGGUGACGCAACAUCAUGACGUAAGACAUCA 6 18688 MI0004129 mmu-mir-758 Mus musculus miR-758 stem-loop UGGGUGCGUGAGGUGGUUGACCAGAGAGCACACGCUAUAUUUGUGCCGUUUGUGACCUGGUCCACUAACCCUCAGUAUCUA 6 18689 MI0004131 mmu-mir-551b Mus musculus mir-551b stem-loop GUGCUCUUGUGGCCCAUGAAAUCAAGCUUGGGUGAGACCUGGUGCAGAACAGGAAGGCGACCCAUACUUGGUUUCAGUGGCUGCAAGAAUGACUGCAU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18690 MI0004133 mmu-mir-671 Mus musculus mir-671 stem-loop UGGCAGGCCAGGAAGAGGAGGAAGCCCUGGAGGGGCUGGAGGUGAUGGAUGUUUUCCUCCGGUUCUCAGGGCUCCACCUCUUUCGAGCCGUAGAGCCA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 18691 MI0004134 mmu-mir-668 Mus musculus mir-668 stem-loop GGUAAGUGUGCCUCGGGUGAGCAUGCACUUAAUGUAGGUGUAUGUCACUCGGCUCGGCCCACUACC 6 18692 MI0004171 mmu-mir-665 Mus musculus mir-665 stem-loop AGAACAGGGUCUCCUUGAGGGGCCUCUGCCUCUAUCCAGGAUUAUGUUUUUAUGACCAGGAGGCUGAGGUCCCUUACAGGCGGCCUCUUACUCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 18693 MI0004196 mmu-mir-667 Mus musculus mir-667 stem-loop GUGGGUACUGGCCUCGGUGCUGGUGGAGCAGUGAGCACGCCAUACAUUAUAUCUGUGACACCUGCCACCCAGCCCAAGGCCCCUAGGCCCAC 6 18694 MI0004203 mmu-mir-770 Mus musculus miR-770 stem-loop GCCACCUUCUGUGCCCCCAGCACCACGUGUCUGGGCCACGUGAGCAACGCCACGUGGGCCUGACGUGGAGCUGGGGCCGCAGGGGUCUGAUGGC 6 18695 MI0004215 mmu-mir-762 Mus musculus miR-762 stem-loop GCCCGGCUCCGGGUCUCGGCCCGCACGGUCCGGCCGGCCAUGCUGGCGGGGCUGGGGCCGGGACAGAGCCCGUGGC 6 18696 MI0004249 mmu-mir-802 Mus musculus mir-802 stem-loop GGUCCUAUUAUUUGCAAUCAGUAACAAAGAUUCAUCCUUGUGUCAAUCAUACAACACGGAGAGUCUUUGUCACUCAGUGUAAUUAAUAGCCUUCACC 6 18697 MI0004258 mmu-mir-672 Mus musculus mir-672 stem-loop GAUGGUGAUCUAGCCCUUUAGUUUUGAGGUUGGUGUACUGUGUGUGAGUAUACAUAUUUAUCACACACAGUCACUAUCUUCGAAAGUGAGGGUGCACAUC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. 6 18698 MI0004295 mmu-mir-670 Mus musculus mir-670 stem-loop GGUUUGGAGGUGGGCCUGACAUCCCUGAGUGUAUGUGGUGAACCUGAACUUGCCCUGGGUUUCCUCAUAUCCAUUCAGGAGUGUCAGCUGCCUCUUCGCU 6 18699 MI0004306 mmu-mir-761 Mus musculus miR-761 stem-loop UGGCAAGUGGAGGAGCAGCAGGGUGAAACUGACACAGUGCUGGUGAGUUUCACUUUGCUGCUCCUCCUGACUCCCA 6 18700 MI0004310 mmu-mir-764 Mus musculus miR-764 stem-loop UCAACACAAUCUGAAUCUUGGAGGCAGGUGCUCACAUGUCCUCCUCCAUGCUUAUAAAUACAUGGAGGAGGCCAUAGUGGCAACUGUCACCAUGAUUGAUUUCGUUGG 6 18701 MI0004516 mmu-mir-763 Mus musculus miR-763 stem-loop AAUGAUGGAGGUGCAGGCGUUUCCUGGGGAUUAAUGACCAGCUGGGAAGAACCAGUGGCCCUCGGCUCUGCCUCCCAGCCAGCCAUUAACUCCAAGGAAAUGUCUUUUGCUGAGGUCGUU 6 18702 MI0004523 mmu-mir-669a-1 Mus musculus mir-669a-1 stem-loop UGUAUGUGCAUGUGUGUAUAGUUGUGUGUGCAUGUUCAUGUCUAUAUUUGAAUAUACAUAACAUACACACACACGUAUAAACGCAAGCACACAUACA The sequence of miR-669a-1 is of low complexity. The sequence maps exactly to several genomic positions, and many more with 1 or 2 substitutions. Confidence in this miRNA might therefore be reduced. 6 18703 MI0004553 mmu-mir-666 Mus musculus mir-666 stem-loop CUGAUUCUGCCUGCGUGGAGCGGGCACAGCUGUGAGAGCCCCCUAGGUACAGCGGGGCUGCAGCGUGAUCGCCUGCUCACGCACAGGAAGUGACGACAG 6 18704 MI0004554 mmu-mir-759 Mus musculus miR-759 stem-loop GGAUUAUAAUAAAUUAAAUGCCUAAACUGGCAGAGUGCAAACAAUUUUGACUCAGAUCUAAAUGUUUGCACUGGCUGUUUAAACAUUUAAUUUGUUCC 6 18705 MI0004589 mmu-mir-496 Mus musculus mir-496 stem-loop AGUGUUCGAAUGGAGGUUGCCCAUGGUGUGUUCAUUUUAUUUAUGAUGAGUAUUACAUGGCCAAUCUCCUUUCGGCACU 6 18706 MI0004601 mmu-mir-673 Mus musculus mir-673 stem-loop UGGAGCCUGAGGGGCUCACAGCUCUGGUCCUUGGAGCUCCAGAGAAAAUGUUGCUCCGGGGCUGAGUUCUGUGCACCCCCCUUGCCCUCCA 6 18707 MI0004605 mmu-mir-760 Mus musculus miR-760 stem-loop CGGGAGGAUGCCUCGGUGCGGGGCGCGUCGCCCCCCUCAGGCCACCAGAGCCCGGAUACCUCAGAAAUUCGGCUCUGGGUCUGUGGGGAGCGAAAUGCAACCCAAACCCCGUUUCCCCG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18708 MI0004611 mmu-mir-674 Mus musculus mir-674 stem-loop GGCCUAGUCAUCACCCUGAGCCUUGCACUGAGAUGGGAGUGGUGUAAGGCUCAGGUAUGCACAGCUCCCAUCUCAGAACAAGGCUCGGGUGUGCUCAGCU Landgraf et al. show that the 5' miRNA product is the predominant one [4]. 6 18709 MI0004633 mmu-mir-488 Mus musculus miR-488 stem-loop UUCGGGUGAGAGUGAGAAUCCUCUCUCCCAGAUAAUAGCACUCUCAAACAAGUUUCCAUGUUGUUUGAAAGGCUGUUUCUUGGUCAGAAGACUCUCAAUUUCUUCUGGA The predominant miRNA cloned by Langraf et al. has a 3' terminal U residue, which is incompatible with the genome sequence [2]. 6 18710 MI0004634 mmu-mir-677 Mus musculus miR-677 stem-loop GAGCCUUCAGUGAUGAUUAGCUUCUGACUUUCGUUCUUCUGAAUUUGCUGAAGCCAGAUGCCGUUCCUGAGAAGGGGAAAAUGGACAGAACUGAACAUUUUUGAAGGCU 6 18711 MI0004635 mmu-mir-678 Mus musculus miR-678 stem-loop GUGGACUGUGACUUGCAGAGCUGUGCUCCAAUAUGAGAGAUGGCCAUGCACCCGUGUCUCGGUGCAAGGACUGGAGGUGGCAGU 6 18712 MI0004636 mmu-mir-497 Mus musculus miR-497 stem-loop CCUGCCCCCGCCCCAGCAGCACACUGUGGUUUGUACGGCACUGUGGCCACGUCCAAACCACACUGUGGUGUUAGAGCGAGGGUA 6 18713 MI0004637 mmu-mir-423 Mus musculus miR-423 stem-loop ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 18714 MI0004638 mmu-mir-679 Mus musculus miR-679 stem-loop CUAUGGCUUUGGACUGUGAGGUGACUCUUGGUGUGUGAUGGCUUUUCAGCAAGGUCCUCCUCACAGUAGCUAUA 6 18715 MI0004639 mmu-mir-495 Mus musculus miR-495 stem-loop AAAGAAGUUGCCCAUGUUAUUUUUCGCUUUUAUUUGUGACGAAACAAACAUGGUGCACUUCUU 6 18716 MI0004640 mmu-mir-680-1 Mus musculus miR-680-1 stem-loop AGAAGUGGGCAUCUGCUGACAUGGGGGCCGAAGUCAGGCGCCAGGAAGCGGGCACUUUGCAUCUUAUCUCCGGAACAUCGAUCCUCUUGACAGCCUUGGGUGUCAGGCU 6 18717 MI0004641 mmu-mir-680-2 Mus musculus miR-680-2 stem-loop GGGCAUCUGCUGACAUGGGGGCCGAAGUCAGGCGCCAGGCAUCGGGCACUCUGGAUCUUAUCUCUGGAACAUUGAUCCUCCUUGACAGCCUUGGGGGUCAGGCUGGGCUC 6 18718 MI0004642 mmu-mir-680-3 Mus musculus miR-680-3 stem-loop GGGGGAUUUAACAAAGAACAAAAAAGGUGGGCAUCUGCUGACAUGGGGGCAGAAGUCAGGCUCUAGGCAGCAGGUACUCUUCAUCUU 6 18719 MI0004643 mmu-mir-681 Mus musculus miR-681 stem-loop GCAGCCUCGCUGGCAGGCAGCUCCAGAGUGUGGCUGUCCUCAUCACUCUCCCUAAGCAGGUAGAUGGGUUUCAGUUCACUCGCAGUCCAGGGCCUCCAGCGGGACAGUUG 6 18720 MI0004644 mmu-mir-682 Mus musculus miR-682 stem-loop GCCGUCGGCAUCUGGCACUGUGGUUCCUGCAUGAAAACAGUGGCCGGCGGGGCCUGGACCUACAACACCACCUCUGCAGUCACAGUGAAGUCUGCC 6 18721 MI0004645 mmu-mir-449c Mus musculus miR-449c stem-loop AGGAUGAAGUGUGGGUGUGUCAGGCAGGCAGUGCAUUGCUAGCUGGCUGUUAGAACUUUAUCCCAACAGUUGCUAGCUGCACUACCCUCUGCUGCACUCAGAAGCAUGC 6 18722 MI0004646 mmu-mir-683 Mus musculus miR-683 stem-loop UGGGAAGUCCAGCUGGGAGGCUGCAGUGGACCCAGGCUAAAAGCCAAGCUUUUCUGCACUGCAGUGGAUGCCUGCUGUAAGCUGUGUCCUCCUGGGCUGCAUGGAGCCC 6 18723 MI0004647 mmu-mir-684-1 Mus musculus miR-684-1 stem-loop GUAGGGCAAUCUGUCUUUAAGUAGGGAUAAAUUACUCUUGAACAAAAUGAUCCUAGAUAGUUUUCCCUUCAAGUCAAGCGUCUUGC 6 18724 MI0004648 mmu-mir-684-2 Mus musculus miR-684-2 stem-loop UGUAGGGCAAUCUGUCUUUAAGUAGGGAUAAAUUACUCUUGAACAAAAUGAUCCUAGAUAGUUUUCCCUUCAAGUCAAGUGUCUUG 6 18725 MI0004649 mmu-mir-685 Mus musculus miR-685 stem-loop GUCGGGGCGGAUGCCUCCCUCGCCGGAGCGGAUGCCUCCCUCGCCGGAGCUUGGAACAGACUCACGGCCAGCAGUGCGAGUUCAAUGGCUGAGGUGAGGCACCUCCCGG 6 18726 MI0004650 mmu-mir-686 Mus musculus miR-686 stem-loop GCCACAGCAGGUGCUUAUAUUGCUUCCCAGACGGUGAAGAAAGUAAUAGAGAUCAACCCGUACCUUCUGGGCACCAUGGCUGGGGGUGCAGCGGAUUGCAGCUUCUGGG 6 18727 MI0004651 mmu-mir-719 Mus musculus miR-719 stem-loop UUUAGGUGCUUAAAGAACAGUAUCUCGGCUACAGAAAAAUGUUUUUGGGUGAUGCUGUGGAUGUGUUUGAAGCCAGGAGAACAGAAGCCAAGAAGUGGCAGAAUGCACCC 6 18728 MI0004652 mmu-mir-687 Mus musculus miR-687 stem-loop AUAGUCUGACACACAUUUUACACUAUCCUGGAAUGCAGCAAUGAAUCCUGGGUUAUUGUUUCAGUCUGUCAUUGUAUUCUUGGAAAGUG 6 18729 MI0004653 mmu-mir-688 Mus musculus miR-688 stem-loop GAAAGGGCAGUGAAGAAAAGUAGGGGCUUGCUUGGGGAGAGCACCUCGCAGGCGACUACUUAUUCCAGCUCGCCC 6 18730 MI0004654 mmu-mir-689-1 Mus musculus miR-689-1 stem-loop CCCGGAUAGCCGGGUCCCCGUCCGUCCCCGCUCGGCGGGGUCCCCGCGUCCUCCCCGCAGCGGCGCGGGGUCUCCCCCCGCCGGGCGUCGGGACCGGGAUCCGGUGCGG 6 18731 MI0004655 mmu-mir-689-2 Mus musculus miR-689-2 stem-loop CCCGGAUAGCCGGGUCCCCGUCCGUCCCCGCUCGGCGGGGUCCCCGCGUCGUCCCCGCGGCGGCGCGGGGUCUCCCCCCGCCGGGCGUCGGGACCGGGGUCCGGUGCGG 6 18732 MI0004658 mmu-mir-690 Mus musculus miR-690 stem-loop UGUGUUUUUGUGGAGCUAAUUGGCUGUAUUAAAGUGCUAGUAAGAAACAUUCUCCUCCAGCUGGAGAGAUGGCUCAGCUGUUAAAGGCUAGGCUCACAACCAAAAUAUA 6 18733 MI0004659 mmu-mir-691 Mus musculus miR-691 stem-loop GCUGAUUUAUUUUUGCUUUCUUCCUUGGGUCUGCUUUGAAUAUUCCUGAAGAGAGGCAGAAAAUGUUAUAUUUAAUAU 6 18734 MI0004660 mmu-mir-692-1 Mus musculus miR-692-1 stem-loop AGGGUGGCAGGGCCACAACCAGCGCAGACUGGCGCGCCCCAGGGAUCUCUGGGUGAGUAUCUCUUUGAGCGCCUCACUCUCAAGCACAACUAGGAGGCCUCUGCCUUCC 6 18735 MI0004661 mmu-mir-692-2 Mus musculus miR-692-2 stem-loop GGUGGCAGGGCCACAACCAGCGCAGACUGGCGCGCCCCAGGGAUCUCUGGGCGAGUAUCUCUUUGAGCGCCUCACUCUCAAGCACGACUAGGAGGCCUCUGUGCCUUCC 6 18736 MI0004662 mmu-mir-693 Mus musculus miR-693 stem-loop AGUUGUAGGCAUGCUCAUUACAGCCACAUCCGAAAGUUUUCCUGGCUAGGGCAGCUUUCAGAUGUGGCUGUAAUGAGCAUGCUCCCAGC 6 18737 MI0004664 mmu-mir-694 Mus musculus miR-694 stem-loop AAAGGCCAGCUCAGGCAUCGCUUUCAACCCAAGACCAGGCUGAAAAUGUUGCCUGAAGCAGUCUCUGCCU 6 18738 MI0004665 mmu-mir-146b Mus musculus miR-146b stem-loop GACUGAGAGAACUUUGGCCACCUGGCUCUGAGAACUGAAUUCCAUAGGCUGUGAGCUCUAGCAGACGCCCUAGGGACUCAGUUCUGGUGCCCGGCUGUGCUAUACCAUC 6 18739 MI0004666 mmu-mir-669b Mus musculus miR-669b stem-loop AUGAAUGUAUGUGCAUGUGUAUAUAGUUUUGUGUGCAUGUGCAUGUGUGUCUAUUAAUGUACAUAUACAUACACACAAACAUAUACACGCAUGCGCA 6 18740 MI0004667 mmu-mir-669a-2 Mus musculus miR-669a-2 stem-loop CAUGUAUGUGCAUGUGUGUAUAGUUGUGUGUGCAUGUUCAUGUCUAUAUUUGAAUAUACAUAACAUACACACACACGUAUAAACGCAAGCACACACA 6 18741 MI0004668 mmu-mir-669a-3 Mus musculus miR-669a-3 stem-loop UUCCUCCAUGUAUGUGCAUGUGUGUAUAGUUGUGUGUGCAUGUUCAUGUCUAUAUUUGAAUAUACAUAACAUACACACACAUGUAUAAACGCAAGCACACAUACACAGA 6 18742 MI0004671 mmu-mir-467b Mus musculus miR-467b stem-loop CCGUGUGCGUAAGUGCCUGCAUGUAUAUGCGUGUAUAUUUUAUGCAUAUACAUACACACACCAACACACACAU The sequence of miR-467 is of low complexity. The sequence maps exactly to several genomic positions, and many more with 1 or 2 substitutions. Confidence in this miRNA might therefore be reduced. 6 18743 MI0004673 mmu-mir-669c Mus musculus miR-669c stem-loop CCUCCAUGUAUGUGCAUGUGUGUAUAGUUGUGUGUGGAUGUGUGUAUUUGCAUAUAAAUAACAUACACACACACACACAAGUAAACACAAGUGCACAAACAGACACAGG 6 18744 MI0004674 mmu-mir-297b Mus musculus miR-297b stem-loop UCUAUUUGCUUGUGUGUAUAUGUAUGUGUGCAUGAACAUGUGUAUAUGAAUAUACAUAUACAUACACACAUACCCAUACAAACAUGCAUACAAACACACAGAAAAUGGA 6 18745 MI0004675 mmu-mir-695 Mus musculus miR-695 stem-loop UCACGAGGAAUCCUAGAUUGGGCAUAGGUGACUGAAGUACACAGCUGCCUUUCUUACAAAGGCACUGGUUACCUUGGUCCUGGUCACCGGCUCGGCUAUCUGCUACUCG 6 18746 MI0004676 mmu-mir-499 Mus musculus miR-499 stem-loop GGGUGGGCAGCUGUUAAGACUUGCAGUGAUGUUUAGCUCCUCUGCAUGUGAACAUCACAGCAAGUCUGUGCUGCUGCCU 6 18747 MI0004677 mmu-mir-696 Mus musculus miR-696 stem-loop GGUCUGUCGCGGUGCCUGAAGCUGUCCCCGAGCCACGCUUCCUGCUUUCCCGGGCUUGCUGCUUGCGUGUGCUUGCUGUGGGCAGCUU 6 18748 MI0004678 mmu-mir-720 Mus musculus miR-720 stem-loop CUGGAGCCCCAGAAUGAAGAUGCAGCUUUAGAAUUUGGGUGGUCUAUCUCGCUGGGGCCUCCAG 6 18749 MI0004679 mmu-mir-455 Mus musculus miR-455 stem-loop CUCCCUGGUGUGAGCGUAUGUGCCUUUGGACUACAUCGUGAACGCAGCACCAUGCAGUCCACGGGCAUAUACACUUGCCUCA Landgraf et al. show that the 3' mature miRNA product is the predominant one [3]. The 5' miRNA is renamed miR-455* here. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18750 MI0004680 mmu-mir-491 Mus musculus miR-491 stem-loop AAUUGACUUAGCUGGGAAGUGGGGAACCCUUCCAUGAGGAGUAGAACACUCCUUAUGCAAGAUUCCCUUCUACCUGACUGAGUUGA 6 18751 MI0004681 mmu-mir-697 Mus musculus miR-697 stem-loop GAGUGGGGAUGUGUCCUGGAUGUUGGUCUUGACAGGUCUCAGAGGUGACUACCACACAUUGAAGGGGUGGCGGUAACAUCCUGGUCCUGUGGAGACUGUCAUAGUCUCC 6 18752 MI0004682 mmu-mir-698 Mus musculus miR-698 stem-loop UCAUCUCUGCCCUCACUGUAAGGGAGGGUGGUGGCUAUGUGGGUGGGACAGGGAUGUUCAGUUGCUAAAGACAUUCUCGUUUCCUUCCCUCAGUGUCCCCAGAUGGUGA 6 18753 MI0004683 mmu-mir-699 Mus musculus miR-699 stem-loop CGUGCAGCGGGGCGUCAUCCGUCAGCUCACAUAGUGACGCAGGCAGUGCGACCUGGCUCGCAC 6 18754 MI0004684 mmu-mir-700 Mus musculus miR-700 stem-loop UUCACUGGGAGUAAGGCUCCUUCCUGUGCUUGCAGGGGAGAAAUACGAACUGCACGCGGGAACCGAGUCCACCCCCAGU 6 18755 MI0004685 mmu-mir-701 Mus musculus miR-701 stem-loop GUGGAGCAUCUACCUUGAGCAAGUAAUUAGCCGCUGAAAUAGAUGGAUUGUAUAGAUGAGGUUCUAUCUAUUAAAGAGGCUAGCCACUUAUCAAGUGCUAACAGCCCAC 6 18756 MI0004686 mmu-mir-702 Mus musculus miR-702 stem-loop CGGGACAAGGUGAGUGGGGUGGUUGGCAUGGGUUGCCCAUGGGGACUCGACGCUGUGCCCACAGCCUCCUGAUGUCCUCCUCACGCAUGCCCACCCUUUACCCCGCUCC 6 18757 MI0004687 mmu-mir-703 Mus musculus miR-703 stem-loop AGACUGGUUAAUGAUAACAAUGCAUCAUAAAACCUUCAGAAGGAAAGAAUGUUGUGGACCAUUUUUUUUUGUGUGUGGCAGUUUUAAGUUAUUAGUUUUCAAAAUCAGU 6 18758 MI0004688 mmu-mir-704 Mus musculus miR-704 stem-loop GCUGGGAGCUAGAGGAUGUGGUCAGCUGCAAGGAUCUUCCUCAGACAUGUGCUCUGCUCCUAGGGAUUGUUGACUAC 6 18759 MI0004689 mmu-mir-705 Mus musculus miR-705 stem-loop AUGUCCCAGUAGUGGUGGGAGGUGGGGUGGGCACAGAGGGAAUGACUUCUUUCUCCUGCAGUCCUCCCUACCUCCCUAACAU 6 18760 MI0004690 mmu-mir-706 Mus musculus miR-706 stem-loop AGAGAAACCCUGUCUCAAAAAACAAAAAAACAAACAAAAUUACUUUUAGUAGGUUUAUUUUGUUUUUUGAGAUGGCUUUUUUUU 6 18761 MI0004691 mmu-mir-707 Mus musculus miR-707 stem-loop GGCAUGCAGUCAUGCCGCUUGCCUACGCUUGUGUGAGCAUGGGCAUGCGGUCAUAGUUGUUGCGGGCAAUUCG 6 18762 MI0004692 mmu-mir-708 Mus musculus miR-708 stem-loop CUGUGUUUGAAAUGGGGACUGCCCUCAAGGAGCUUACAAUCUAGCUGGGGGUAGAUGACUUGCACUUGAACACAACUAGACUGUGAGCUUCUAGAGGGCAGGGGCCUUA Mineno et al. and Takada et al. identified a mature miRNA from the 3' arm of this hairpin, and named it miR-708 [1,2]. Landgraf et al. later showed that the 5' product was the predominant one [3]. The 3' miRNA is renamed miR-708* here. 6 18763 MI0004693 mmu-mir-709 Mus musculus miR-709 stem-loop UGUCCCGUUUCUCUGCUUCUACUCAGAAGUGCUCUGAGCAUAGAACUGUCCUGUUUGAGCAGCACUGGGGAGGCAGAGGCAGGAGGAU 6 18764 MI0004694 mmu-mir-710 Mus musculus miR-710 stem-loop CUCUCUCGUCAAAUAGAAGCCAAGUCUUGGGGAGAGUUGAGCUUGGUGUGAAAACUGACAUACCCCUUCAACUCUUUAGAACUUAGGUAUCUGAAGUGGAGUGGAUGGAG 6 18765 MI0004695 mmu-mir-711 Mus musculus miR-711 stem-loop CAUGUUCCUAACUUUGAAUCUCUUCUUAGGGUGCUUCAGGCAAAGCUGGGGACCCGGGGAGAGAUGUAAGUCUGGGGAGAUG 6 18766 MI0004696 mmu-mir-712 Mus musculus miR-712 stem-loop UCUCCGCUUCUCCUUCACCCGGGCGGUACCCGCUCCGGCGCCGGCCCGCGGGACGCCGCGGCGUCCGUGCGCCGAUGCGAGUCACCCCCGGGUGUUGCGAGUUCGGGGA mir-712a and mir-712b sequences [1] map to the same genomic locus in mouse genome assembly NCBI36. The reported miR-712b mature sequence is two bases longer at the 3' end (UCCUUCACCCGGGCGGUACCCG) than that shown here. 6 18767 MI0004698 mmu-mir-713 Mus musculus miR-713 stem-loop GGCCUAUCCGGAGGCCCUGAUUGGUUAGUGAGACUUGAUUGACAUGAGCACCUCCCUUAGGGUUAGAGUGCACUGAAGGCACACAGCAUAGGGCUUCCAAGAUCGGGU 6 18768 MI0004699 mmu-mir-714 Mus musculus miR-714 stem-loop CGACGAGGGCCGGUCGGUCGCCCUGCGGUGGUUGUCUGUGUGUGUUUGGGUCUUGCGCUGGGGGAGGCGGGGUCGACCGCUCGCGGGGUUGGCGCGGUCGCCCGGCGCCG 6 18769 MI0004700 mmu-mir-715 Mus musculus miR-715 stem-loop GGCUGGGGAGAGGGCUCCGUGCACACCCCCGCGUGCGCGGUACUUUCCUCCCCUCCUGAGGGCCGCCGUGCGGGACGGGGUGUGGGUAGGCAACGGUGGGCUCCCGGGUC 6 18770 MI0004702 mmu-mir-500 Mus musculus miR-500 stem-loop CUCCUCUGCUCCCCCUCUCUAAUCCUUGCUAUCUGGGUGCUUAGUGCUAUCUCAAUGCAAUGCACCUGGGCAAGGGUUCAGAGAAGGUGAGC Mouse miR-500 was identified independently by two groups. Wheeler et al cloned a mature product with the same length as the human ortholog (MIR:MI0003184) [1]. Mineno et al report a shorter mature product with 1 additional base at the 5' end and 3 fewer at the 3' end (AAUGCACCUGGGCAAGGGUU), referred to as miR-500b in [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 18771 MI0004703 mmu-mir-501 Mus musculus miR-501 stem-loop CUUCUGCUCUGCUCAUCCUCUCUAAUCCUUUGUCCCUGGGUGAAAAUGCUAUUUGUAUGCAAUGCACCCGGGCAAGGAUUUGGGGAAGGUGAGCCUGAUCUGCAUGGAG 6 18772 MI0004704 mmu-mir-717 Mus musculus miR-717 stem-loop UUGUCCGCUAUCACUGUACCGUCAUUUUUCAGUCUCAGACAGAGAUACCUUCUCUGAAUUCAUAGAAGCUGCUCUCCGUUCCGAAGGGAUUCAGAAGUGAUAAAUCCAG 6 18773 MI0004705 mmu-mir-450b Mus musculus miR-450b stem-loop GAUACAGAAUUAUUUUUGCAGUAUGUUCCUGAAUACAUAACAUAAGCGUAUUGGGAACAUUUUGCAUGCAUAAUUUUGUAUC 6 18774 MI0004706 mmu-mir-505 Mus musculus miR-505 stem-loop AAAUUGAUGCACCCAGUGGGGGAGCCAGGAAGUAUUGAUGUUUCUGCCAGGUUAGCGUCAACACUUGCUGGUUUUCUCUCUGGAGUAUCA 6 18775 MI0004707 mmu-mir-718 Mus musculus miR-718 stem-loop ACGCCCCCGUGUGGCGGAAGGCCGCGGAGGGCAAGAUGGCGGCGGGUCGAGCGCCGCCUCUUCCGCCCGGCCGGGUGUCGCACGAGGC 6 18776 MI0004708 mmu-mir-721 Mus musculus miR-721 stem-loop GGAAGACAGUGCAAUUAAAAGGGGGAAAAAAGUACCUGGGAUGUUCUGAGAAUUUCAUUUUUCUUGUUAUUGCCACUCCUGCUUGGAA 6 18777 MI0004710 ppt-MIR1211 Physcomitrella patens miR1211 stem-loop UUACAUGAUUGUCAACAGGGAGGGAUGGUUAUGCAAGAGGGUGCAAGAGGUGGCAGAUCAUCUCUUGAAGCAUCUUGCAUGACCGUCUCUUCCUGCAGGUAGAGUUAUGUAA Talmor-Neiman et al. identified a mature miRNA from the 5' arm of this precursor, and called it miR1211 [1]. Axtell et al. show by deep sequencing that the 3' product is the predominant one [3]. The 5' miRNA is renamed miR1211* here. 40 18778 MI0004711 ppt-MIR1212 Physcomitrella patens miR1212 stem-loop GUAUGAGGAGUUGCAUCCUCUGCUGUGCCCACAUGCGUCGUGGCGCGUGGCGGCCGCGCGUGGGACAGCAUAGAAUGCGGAUCCUUGUA 40 18779 MI0004713 ppt-MIR1214 Physcomitrella patens miR1214 stem-loop UGUGGUUGGGUUUUCUACUAUGAGAAUCUCGCGGCCAAGGUGGUUUUGGACGACCAUUUCUGCGAUUUUCUCAUAGCAGAUGAACUAGCCCCA 40 18780 MI0004714 ppt-MIR1215 Physcomitrella patens miR1215 stem-loop CGUGAAGGUACUGGAGCUCAUUGCAAAACUGUAUACGAUCCUUUCAACUUGAACAGCAUUCGAAAGCUUGUGGCUAUUGCUCAGAGGAUGGUAUACAGUUUCGCUGUGGAACUCCAGUCCCUACAUG 40 18781 MI0004715 ppt-MIR1216 Physcomitrella patens miR1216 stem-loop GCGAGGUUGGUUUUGUAUGUCCAGUGUCUGUCAAUGUCGUUGAUGGUGAUGCGCUUGUAUCUCGAAAGGACCAUUCGUGAGGGAAUGGUGUCGUCGUGUUACAAGCCCAUCACCCUCAACGACAUGACCCGCCUGUUUCAUACUCCACCAAACCUCGC 40 18782 MI0004716 ppt-MIR1217 Physcomitrella patens miR1217 stem-loop UCCUGUUUCUGGUUGAUCUUGGUAUCAUGUUGCAAAUGGCAAAACCUGUGACCGGAAUGGUACUCAGUUUUUGAAAUUUGAAGCAUGAUGUCAAGUACAACGGAAGUUGGA 40 18783 MI0004717 ppt-MIR1218 Physcomitrella patens miR1218 stem-loop CAGUGAUUACAUGUGUCGUGGUAGGCAUCCUUAGAGUCGUAGGCCUCUGUGUGGAAUUCAAGAUAGUUCACAGUCGUUUUGAACACACAUCACAGGAGCCUACGACUCUGAAGAUACCUAUCUCGGGACAAAUUUCUG 40 18784 MI0004718 ppt-MIR1219a Physcomitrella patens miR1219a stem-loop UGAAGUGUGGACGAUGGAGAGUCAGCCUCUUCCUGCCUCUCACUAGCUUCAUCCCUUCCUCCCUAAAUUUUAGUCUGGGAGGGAAGGAGCUAUUGGUGGUCAGGAAUAGCGCACCCUUCAUUUAUCCACACUUCA 40 18785 MI0004719 ppt-MIR1219b Physcomitrella patens miR1219b stem-loop CUCUUCCUGCCUCUCACUAGCUUCAUCCCUUCGAACCCGAAGGUACUAAGGUAAGGAACUAUUGGGAAGCAGGAACAG 40 18786 MI0004720 ppt-MIR1219c Physcomitrella patens miR1219c stem-loop GGCCUCUUCCUGCCUCUCACUAGCUUCAUCCCUCAGAAGCUGAAUCUUCUCAGGGAAGGAGCUACUGAAGAGCAGGAAUAGAUUGCACUCUUGGACUCCAACCAAUCUGUCUUCCAUUAUUUGUGUACUCAAAUUCUUCUGUUGUAGUGGCC 40 18787 MI0004721 ppt-MIR1219d Physcomitrella patens miR1219d stem-loop AGAGGCGUGUGCGGAGCACCGUGAGUCUUUUCCUGCCUCUCACUAGCUUCUUCCCUCCCUGCCUGAGUCGCAGUCUGGGAGGUAAGGAGCUAUUGGUAGACAGGAAUAGCGCGCACGUAGUCCCACGCAUGUUUCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 40 18788 MI0004722 ppt-MIR1220a Physcomitrella patens miR1220a stem-loop ACUUCUUGCACUCCUCUAUCUCCCUCGGCACCUGCACAGUGAUUUUCUCAAUAUCUUCACGUUGGUGGCCACGUUCGAACAUAUCCCAUGCGGGCAACUCCGGCGUAGGUGUACACGGCCAGCGUUGCUUACCAUCUGGAGGAUACCCUUGCUCAAACCUACGACUCUGUUCCGGUGGUGAGGAAGAUAGAGGAGUUCAAGAAGU The mature miRNA shown here is the predominant clone by deep sequencing [2]. Talmor-Neiman et al. identify an offset product by Northern blot [1]. 40 18789 MI0004723 ppt-MIR1220b Physcomitrella patens miR1220b stem-loop ACUUCUCGGACUCCUCUAUCUCCCUCGGCACCUGCACAGUCAUUUUAUCAAUAUCUUCACGUUGGUGGCCACGUUCGAACAUAUCCCAUGCGGGCAACUCCGGCGUAGGUGUACAAGGCCAGCGUUGCUUACCAUCUGGAGGAUACCCCUGCUCAAACCUACGACUCUGUUCCGGUGGUGAGGAAGAUAGAGGAGUUCAAGAAGU The mature miRNA shown here is the predominant clone by deep sequencing [2]. Talmor-Neiman et al. identify an offset product by Northern blot [1]. 40 18790 MI0004724 ppt-MIR533b Physcomitrella patens miR533b stem-loop GGAGGACCGAUAUGGAGAGCUGUCCAGGCUGUGAGGGGAGCACUCGUAUUCUUUUGACCUUUGCUAGAAGAGGGAAUACAGCGCUCUCCCUCACAGUCUGUACAGCUCUCUGUAUCUCUUCCUCU Axtell et al. show that mature products from both arms are significantly expressed [3], named here miR533b-5p and miR533b-3p. 40 18791 MI0004725 ppt-MIR535d Physcomitrella patens miR535d stem-loop GGUGACAACGAGAGAGAGCACGCCGGAAUGCGUUCAUGCAGCGAGUGCCUGGAGGUGUUCGAGCGUGCCCUCUCCCGUCGUCACC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 40 18792 MI0004726 ppt-MIR1221 Physcomitrella patens miR1221 stem-loop AACUGAUGGAGAAACUGCCGUGGAUGGUGUGCAGGGUCAAAUACUCUUUUGGCUUUCGAUGUGUGUUUUCCGCUGGCGGCGGUUUGUGUCGAAGUGGUGACCUUAGUGGGUUGGACACAUAUGAAUCAGGAGCAUUUGGCCCAUGCACAGUAUCUACGCAAGUUCCUCGGUCUGGUU 40 18793 MI0004727 ppt-MIR1222a Physcomitrella patens miR1222a stem-loop CACGACAUAGCUGGUUGUUGUGGGCAUUCUUGUGCUAGUAAACUCCUUCAUGCAGAAGUGCGCUUCUAGCACCUGCUUGAAGGAGUUCAUUGGUAUAUAAAUGCCCACAACAUGAUGACCGAUUAACGUG 40 18794 MI0004728 ppt-MIR1223a Physcomitrella patens miR1223a stem-loop AGACUAGAGGGUCAGCAAGGGUGUGUGACUCUAUAAUCCAAGCUGUGCUAGUAGAUCGCUUAAGAUCGAAGUGCACACCAAGCAUUCGAUUGUAGAGUCAUACACCUCCACUGACACUUCUAGUCU 40 18795 MI0004729 ppt-MIR390c Physcomitrella patens miR390c stem-loop GGUAUAAUUACAGAGCUCAGGAGGGAUAGCGCCCAUCUCAGUCUUUUUUAGCAUCCAAUUGAAAUGGUUAACAUUCCUUUGGAUAGCUAGACGGCGAAGCAUGGCGCUGUCCAUUCUGAGCAUUGCAUUUGUACC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The ends of the miRNA may be offset with respect to previous annotations. 40 18796 MI0004730 hsv1-mir-H1 Herpes Simplex Virus 1 miR-H1 stem-loop CGAGGGGAACGGGGGAUGGAAGGACGGGAAGUGGAAGUCCUGAUACCCAUCCUACACCCCCCUGCCUUCCACCCUCCGGCCCCCCG 45 18797 MI0004731 bta-mir-26a Bos taurus miR-26a stem-loop GGCUGUGGCUGGAUUCAAGUAAUCCAGGAUAGGCUGUUUCCAUCUGUGAGGCCUAUUCUUGAUUACUUGUUUCUGGAGGCAGCU 44 18798 MI0004732 bta-mir-18b Bos taurus miR-18b stem-loop CUUGUGUUAAGGUGCAUCUAGUGCAGUUAGUGAAGCAGCUCAGAAUCUACUGCCCUAAAUGCUCCUUCUGGCACA 44 18799 MI0004733 bta-mir-29a Bos taurus miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU 44 18800 MI0004734 bta-let-7f-2 Bos taurus let-7f-2 stem-loop UGUGGGAUGAGGUAGUAGAUUGUAUAGUUUUAGGGUCAUACCCCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCCCACG 44 18801 MI0004735 bta-mir-101 Bos taurus miR-101 stem-loop ACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAUAUCUGAAAGGUACAGUACUGUGAUAACUGAAGAAUGGUGGU 44 18802 MI0004736 bta-mir-103-1 Bos taurus miR-103-1 stem-loop CUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGC 44 18803 MI0004737 bta-mir-148a Bos taurus miR-148a stem-loop GAGGCAAAGUUCUGAGACACUCCGACUCUGAAUAUGAUAGAAGUCAGUGCACUACAGAACUUUGUCUC 44 18804 MI0004738 bta-mir-151 Bos taurus miR-151 stem-loop CCUGCCCUCGAGGAGCUCACAGUCUAGUACGUCUCAUCCCCUACUAGACUGAAGCUCCUUGAGGACAGG 44 18805 MI0004739 bta-mir-16 Bos taurus miR-16 stem-loop CAUACUUGUUCCGCUGUAGCAGCACGUAAAUAUUGGCGUAGUAAAAUAAAUAUUAAACACCAAUAUUAUUGUGCUGCUUUAGCGUGACAGGGA 44 18806 MI0004740 bta-mir-18a Bos taurus miR-18a stem-loop UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA 44 18807 MI0004741 bta-mir-20a Bos taurus miR-20a stem-loop GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUGC 44 18808 MI0004742 bta-mir-21 Bos taurus miR-21 stem-loop UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACAGCAGUCGAUGGGCUGUCUGACA 44 18809 MI0004743 bta-mir-221 Bos taurus miR-221 stem-loop CCAACAUCCAGGUCUAGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUUGUUGAGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAACACGUUCUU 44 18810 MI0004744 bta-mir-222 Bos taurus miR-222 stem-loop GCUGCUGGAAUGUGUAGGUACCCUCAAUGGCUCAGUAGCCAGUGUAGAUCCUGUCUUUUGUAAUCAGUAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUCUUCUACCU 44 18811 MI0004745 bta-mir-26b Bos taurus miR-26b stem-loop UGCCCGGGACCCAGUUCAAGUAAUUCAGGAUAGGUUGUGUGCUGUCCAGCCUGUUCUCCAUUACUUGGCUCGGGGGCCGGUGCCC 44 18812 MI0004746 bta-mir-27a Bos taurus miR-27a stem-loop UGGCCUGGGGAGCAGGGCUUAGCUGCUUGUGAGCAGGUCCACAUCAAAUCGUGUUCACAGUGGCUAAGUUCCGCCCCC 44 18813 MI0004747 bta-mir-30d Bos taurus miR-30d stem-loop GUUGUUGUAAACAUCCCCGACUGGAAGCUGUACCACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC 44 18814 MI0004748 bta-mir-320 Bos taurus miR-320 stem-loop AAAAACGAAAAAGAGGCCUUCUCUUCCCGGUUCUUCCCGGAGUCGGGAAAAGCUGGGUUGAGAGGGCGAAAAAGGAAGAGGG 44 18815 MI0004749 bta-mir-484 Bos taurus miR-484 stem-loop GUCAGGCUCAGUCCCCUCCCGAUAAACCUCUAAAUAGGGACCUUCCCGGGGGGCUACCUCGGC 44 18816 MI0004750 bta-mir-499 Bos taurus miR-499 stem-loop GGGCGGGCGGCCGUUAAGACUUGCAGUGAUGUUUAACUCCUCUCCACGUGAACAUCACAGCAAGUCUGUGCUGCUUCCCGUCCCCACGCUGCCUGGGCAGGGU 44 18817 MI0004751 bta-mir-99a Bos taurus miR-99a stem-loop CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG 44 18818 MI0004752 bta-mir-125a Bos taurus miR-125a stem-loop UGCCGGCCUCUGCGUCCCUGAGACCCUUUAACCUGUGAGGACGUCCAGGGUCACAGGUGAGGUUCUUGGGAGCCUGGCGUCCGGCC 44 18819 MI0004753 bta-mir-125b-1 Bos taurus miR-125b-1 stem-loop CGCGCGCCUCUCAAUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCGCGCC 44 18820 MI0004754 bta-mir-126 Bos taurus miR-126 stem-loop UGACGGGACAUUAUUACUUUUGGUACGCGCUGUGACACUUCAAACUCGUACCGUGAGUAAUAAUGCGCUGUCA 44 18821 MI0004755 bta-mir-128 Bos taurus miR-128 stem-loop UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC 44 18822 MI0004756 bta-mir-145 Bos taurus miR-145 stem-loop CACCUUGUCCUCACGGUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAUGGUU 44 18823 MI0004757 bta-mir-181a Bos taurus mir-181a stem-loop UGCCAGGGCCAGGACCCAGUCUUCAGAGGACUCCAAGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACCGACCGUUGACUGUACCUUGGGUUCCUUA 44 18824 MI0004758 bta-mir-199a Bos taurus miR-199a stem-loop UGGAAGCUUCUGGAGAUCCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAAGGG 44 18825 MI0004759 bta-mir-205 Bos taurus miR-205 stem-loop CUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCGUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAG 44 18826 MI0004760 bta-mir-27b Bos taurus miR-27b stem-loop ACCUCUCUGACGAGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGACUGGUUUCCGCUUUGUUCACAGUGGCUAAGUUCUGCACCUGAAGAGAAGGUG 44 18827 MI0004761 bta-mir-30b Bos taurus miR-30b stem-loop CCAAGUUUUCAGUUCAUGUAAACAUCCUACACUCAGCUGUAACACACGAGUCGGCUGGGAGGUGGAUGUUUACUUCAGCUGACUUGGA 44 18828 MI0004762 bta-mir-31 Bos taurus miR-31 stem-loop UCCUGUAACUUGGAACUGGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGCGAACCUGCUAUGCCAACAUAUUGCCAUCUCUCUUGUCCG 44 18829 MI0004763 bta-mir-34b Bos taurus miR-34b stem-loop GUGCUCGGUUUGUAGGCAGUGUAAUUAGCUGAUUGUACUCUCAUGCUUACAAUCACUAGUUCCACUGCCAUCAAAACAAGGCAC 44 18830 MI0004764 dre-mir-190b Danio rerio miR-190b stem-loop UGUUACAGACUAUGUGAUAUGUUUGAUAUUCGGUUGCUUUCUUUAUAUCAUGUCAACUAAAUAUCAGACAUAUUCCUAUAGACUGUGACA 12 18831 MI0004765 dre-mir-722 Danio rerio miR-722 stem-loop GGAACGGAGUGGAAUUUGAAACGUUUUGGCCAAAAAUGUAGCCAUGGCAAAGGGGUUUUUUGCAGAAACGUUUCAGAUUUCGCUCCGUUCU 12 18832 MI0004766 dre-mir-499 Danio rerio miR-499 stem-loop ACUGAGAGGGAGGCAGUUAAGACUUGCAGUGAUGUUUAGAGAAAUGUCACAUGAACAUCACUUUAAGUCUGUGCUGGCUCCUGUUCUGAGU 12 18833 MI0004767 dre-mir-723 Danio rerio miR-723 stem-loop UGCGUAGAGAUAAAGACAGUUUUAAAUGAUGUUACUUUUUUUCAAAUGGAGAAAGACAUCAAUUAAAUCUGUGCUUAUCUCUACAAGCA 12 18834 MI0004768 dre-mir-724 Danio rerio miR-724 stem-loop CAGCAGACUGGAUUUAAAGGGAAUUUGCGACUGUUAGUCAGAUUUGUAGAACAGCCACACCUUCCUUUUAAGAUCUUGCCUGCUG 12 18835 MI0004769 dre-mir-725 Danio rerio miR-725 stem-loop CUGCAGUGCACAUUGCUAGGAAUGGUGGCUGAGAUGAAGAGCAGGAUUUCAGUCAUUGUUUCUAGUAGUGCGCGCUGCAG 12 18836 MI0004770 dre-mir-726 Danio rerio miR-726 stem-loop UCAGUCGUAUGCCUGGAAUUCCGCUAGUUCUGAACUAUUCGUGAUUGGCAAAAGUUCACUACUAGCAGAACUCGGAUAUACAACUGA 12 18837 MI0004771 dre-mir-727 Danio rerio miR-727 stem-loop CUGUAUGUCAUUUUCAGUCUUCAAUUCCUCCCAGCCCGUACCCAUCGAAACUGUGAGUUGAGGCGAGUUGAAGACUUAAAGUGCUGUACAG 12 18838 MI0004772 dre-mir-728 Danio rerio miR-728 stem-loop CAUCUUCUGAGGAAAUGUAGUAGACUAUAAGUAUACAGUAAACAUGAACGUAUACUAAGUACACUACGUUUUCUCAAGAGGUG 12 18839 MI0004773 dre-mir-729 Danio rerio miR-729 stem-loop CGUCAAGGGCCAUCCAGUGACCCGGGGUUGUAUUGUAACCAAGCUGUAAGUGUCCAUGAUGCAUGGGUAUGAUACGACCUGGGUUACAGAAUGGUGAUG 12 18840 MI0004774 dre-mir-34c Danio rerio miR-34c stem-loop UGCUGUGUGGUCACCAGGCAGUGCAGUUAGUUGAUUACAAUCCAUAAAGUAAUCACUAACCUCACUACCAGGUGAAGGCUAGUA 12 18841 MI0004775 dre-mir-730 Danio rerio miR-730 stem-loop GGGUUCUCCGGUCUCCUCAUUGUGCAUGCUGUGUGUCUUCAGUCUGGUCCUCACAGCGCCUGCAAUGUGGAGGCUAGGGGACUC 12 18842 MI0004776 dre-mir-731 Danio rerio miR-731 stem-loop UGAUGCUGAUCUGGAAUGACACGUUUUCUCCCGGAUCGCCAGAAAUAUGUUUCGCCACCGGGAACUUCGUGUCAGCCAAGAUUGGCAUCA 12 18843 MI0004777 dre-mir-732 Danio rerio miR-732 stem-loop AGAUAAAGUUCCACCGAGGGUUAAAUGUUUUGGUAUUUUAAUAGUGUCAAUCUCAAAGCAGAGAACUCUCGGUGGAGAUGUAUUU 12 18844 MI0004778 dre-mir-733 Danio rerio miR-733 stem-loop UGGCUUUUCCGUAGUGUCGCUGUUGCGUUGGUUUAGCUCAGUGGUUACUUCUGUGAUCCCUGAAAAAUCAACCUUUCAUGGUCACCUCGGUGCCA 12 18845 MI0004779 dre-mir-15c Danio rerio miR-15c stem-loop CCUUAGACCGCUAAAGCAGCGCGUCAUGGUUUUCAACAUUAGAGAAGGUGCAAGCCAUCAUUUGCUGCUCUAGAGUUUUAAGG 12 18846 MI0004780 dre-mir-734 Danio rerio miR-734 stem-loop UGAUAUUGAGAGCUGAACCAUUCUGCAGCAUGGCUGCCUGUGGAUCCUCUGGGGAAAGGUAAAUGCUGCAGAAUCGUACCGUUCUUGGUAUCA 12 18847 MI0004781 dre-mir-735 Danio rerio miR-735 stem-loop GGCUGGUCCGAAGGCGGUGGGUUAGUCUUCUCUCCCCUCUCCCACCGCUAAACUUGACCAGUC 12 18848 MI0004782 dre-mir-736 Danio rerio miR-736 stem-loop UCUACUGACAGAGAAGCUUUUUGUUUGUGUUAUGUUUAUUUUCAAAUGUAAGACGAACAAAAAGUUUUUCUGUUAGUAGG 12 18849 MI0004783 dre-mir-737 Danio rerio miR-737 stem-loop CCACAGCUGCUGUGCUGUUGUUUUUUUAGGUUUUGAUUUUUGUGAAAUGUCGAUGAGAAAAUCAAAACCUAAAGAAAAUACUGCGCAGAUAGAUGG 12 18850 MI0004784 dre-mir-738 Danio rerio miR-738 stem-loop GCUACGGCCCGCGUCGGGACCUCUCGUCUAGCGGCUUCUCCCCUCGGGGGAGGGGGUAGGUCGCGGGGCGAGUGUCCUCCCCGGCGCGGUGCCUCGGC 12 18851 MI0004785 dre-mir-739 Danio rerio miR-739 stem-loop CGGGUGGAGCCGCCGCGGGCGCAGAUCUUGGUGGUAGUAGCAAAUAUUCAAACGAGAGCUUUGAAGGCCGAAGUGGAGAAGGGUUCCAUGUG 12 18852 MI0004786 dre-mir-740 Danio rerio miR-740 stem-loop GCAUUUGUGUGCAUAAAAAGUGGUAUGGUACAGUUUGCUUUUAGGUACUUUUUGACAGUGGAAUCAGCCAUAAAAGCGUACUGUACCGUACCAUACCGUAUGGUACCAGGGGC 12 18853 MI0004787 xtr-let-7b Xenopus tropicalis let-7b stem-loop CUGGCUGAGGUAGUAGUUUGUGUAGUUAGGGGGCAGUGGUGUUUGCCCAUGGAGAUAACUAGACAAACUACUGCCUUGCCAG 43 18854 MI0004788 xtr-mir-1a-2 Xenopus tropicalis miR-1a-2 stem-loop UGGGAGACAUACUUCUUUAUAUGUCCAUAUGGAAGUGCCAAUGCUAUGGAAUGUAAAGAAGUAUGUAUCUC 43 18855 MI0004789 xtr-mir-1a-1 Xenopus tropicalis miR-1a-1 stem-loop ACCUGUUUGGAGUACAUACUUCUUUAUGUACCCAUAUGAACAUACAAUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUUAUCAGG 43 18856 MI0004790 xtr-mir-7-1 Xenopus tropicalis miR-7-1 stem-loop UGGAUGUUGGUUUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACAACAUUGACAACAAAUCGCAGUCUGCCAUAUGGCACAGACCAUGCCUCUACA 43 18857 MI0004791 xtr-mir-7-3 Xenopus tropicalis miR-7-3 stem-loop CUGGGUCGGUUUGGAAGACUAGUGAUUUUGUUGUUUUUAUAAAAGUUUGUCACAAACAGCAAAUCGUAGUCUCCACUCUGCCCCAGGA 43 18858 MI0004792 xtr-mir-7-2 Xenopus tropicalis miR-7-2 stem-loop GAGGUGCAGGCUGACUCUUUGUGGAAGACUAGUGAUUUUGUUGUUGUAAGCCUUAUUGCAUGACAACAAGUCACAGUCUGCCUCACAGUGCCCAGCAAUAUCA 43 18859 MI0004793 xtr-mir-9a-1 Xenopus tropicalis miR-9a-1 stem-loop GGGGUUGGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUUGUCAAUCCUUCAUAAAGCUAGAUAACCGAAAGUAAAAAUAACCCCA 43 18860 MI0004794 xtr-mir-9a-2 Xenopus tropicalis miR-9a-2 stem-loop GGAAGUGGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUUUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUC 43 18861 MI0004795 xtr-mir-9b Xenopus tropicalis miR-9b stem-loop GUUUCUGUCUUUGGUUACCUAGCUGUAUGAGUAUAACUAAUGUCAUAAAGCUAGACAACCGAACGUAUAAACCA 43 18862 MI0004796 xtr-mir-10a Xenopus tropicalis miR-10a stem-loop GAUUUGCCUGUCCUCUGUAUGUACCCUGUAGAUCCGAAUUUGUGUGAGCGCAAUCAUAUCACAAAUUCGUGUCUGGGGGGAUAUGCAGUUGACACAAACG 43 18863 MI0004797 xtr-mir-10b Xenopus tropicalis miR-10b stem-loop AACGUUGUCUAUAUGUACCCUGUAGAACCGAAUUUGUGUGGUUCGUACAGUCACAGAUUCGAUUCUAGGGGGAUAUAUGGUCGAUGCA 43 18864 MI0004798 xtr-mir-10c Xenopus tropicalis miR-10c stem-loop UAUAUGCACCCUGUAGAAUCGAAUUUGUGUGAGUUCUGAACCACAGAUUCGUCUCUAGGGGGGUAUAUGGG 43 18865 MI0004799 xtr-mir-15a Xenopus tropicalis miR-15a stem-loop CCUUGACGUAAAGUAGCAGCACAUAAUGGUUUGUGGGUUACACAGAGGUGCAGGCCAUACUGUGCUGCCGCCAAAACACAAGG 43 18866 MI0004800 xtr-mir-15b Xenopus tropicalis miR-15b stem-loop UGUCCUAAAGAAGUGUAGCAGCACAUCAUGAUUUGCAUGCUGUAUUAUAGAUUCUAAUCAUUUUUUGCUGCUUCAUGAUAUUGGGAAA 43 18867 MI0004801 xtr-mir-16c Xenopus tropicalis miR-16c stem-loop UUUAGCAGCACGUAAAUACUGGAGUUCAUGACCAUAUCUGCACUCUCCAGUAUUACUUUGCUGCUAUAUU 43 18868 MI0004802 xtr-mir-16a Xenopus tropicalis miR-16a stem-loop GCCAGCAGUCCUUUAGCAGCACGUAAAUAUUGGUGUUAAAAUGGUCCCAAUAUUAACUGUGCUGCUAGAGUAAGGUUGGCCU 43 18869 MI0004803 xtr-mir-17 Xenopus tropicalis miR-17 stem-loop GUCAAGAGUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUUUAACAGAACCUACUGCAGUGAAGGCACUUGUAGCAUUAUAUUGAC 43 18870 MI0004804 xtr-mir-19a Xenopus tropicalis miR-19a stem-loop GCAGUCUUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAAAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGCAGCCUG 43 18871 MI0004805 xtr-mir-19b-2 Xenopus tropicalis miR-19b-2 stem-loop UUCAUGGUUAGUUUUGCAGGUUUGCAUCCAGUUGUUCUUCUGGCUCACUGUGCAAAUCCAUGCAAAACUGAUUAUGGCA 43 18872 MI0004806 xtr-mir-23a-2 Xenopus tropicalis miR-23a-2 stem-loop CUGUGGCUGGUAGGAUUCCUGGCAGAGUGAUUUGGAAAUGUAUGGUACAAAAUCACAUUGCCAGGGAUUUCCAAUCAGUCCCG 43 18873 MI0004807 xtr-mir-26-1 Xenopus tropicalis miR-26-1 stem-loop GGCUGCUGCCUGGUUCAAGUAAUCCAGGAUAGGCUGUUUCCUCAAAGCACGGCCUACUCUUGAUUACUUGUUUCAGGAAGUAGCU 43 18874 MI0004808 xtr-mir-26-2 Xenopus tropicalis miR-26-2 stem-loop UGGGCGCUCGCUUCAAGUAAUCCAGGAUAGGCUGUAAUGUCUCCUGUCAGCCUUUUCUCGAUUACUUGGGACCAGAGCCA 43 18875 MI0004809 xtr-mir-27a Xenopus tropicalis miR-27a stem-loop CGGCGGCCCAGGGCUUAGCUGUAUUGUGAGCACUGUCACUCUCGCACCUGUUCACAGUGGCUAAGUUCCGCGCCUC 43 18876 MI0004810 xtr-mir-27b Xenopus tropicalis miR-27b stem-loop ACCUUUCUACCAAGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGAUUCCCUCUUUGUUCACAGUGGCUAAGUUCUGCACCUGAAGAGAGGGC 43 18877 MI0004811 xtr-mir-29d Xenopus tropicalis miR-29d stem-loop UCAGGAGGCUGGUUUCAUGUGGUGGUUUAGAUUUAACUGCACAAUGUCUAGCACCAUAUGAAAUCAGUGUCCUUA 43 18878 MI0004812 xtr-mir-29b Xenopus tropicalis miR-29b stem-loop UCCCGGAAGCUGGUUUCUUGUGGUGACUUAGAUUUAUCCAUCGCUGCAUCUAGCACCAUUUGAAAUCAGUGUUCUAGGAG 43 18879 MI0004813 xtr-mir-30a Xenopus tropicalis miR-30a stem-loop GCGACUGUAAACAUCCUCGACUGGAAGCUGUGAAGCAGUUGAAGGGCUUUCAGUCAGAUGUUUGCAGCUGC 43 18880 MI0004814 xtr-mir-30b Xenopus tropicalis miR-30b stem-loop GUAUUAGUCUAUGUAAACAUCCUACACUCAGCUCGUAUGUAUAACCUGACUGGGUGGGGGGUGUUUGCCUCGACUGAUCU 43 18881 MI0004815 xtr-mir-30c-1 Xenopus tropicalis miR-30c-1 stem-loop ACCAUGCAGCAGUGAUUGUAAACAUCCUACACUCUCAGCUGUGAACAUAAGGUGGCUGGGAGAAGGGUGUUUACUCCCCCUGCCAUGGA 43 18882 MI0004816 xtr-mir-34a Xenopus tropicalis miR-34a stem-loop CUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGGCACGUUAUAGAAGUAGCAAUCAGCAAAUAUACUGCCCUAGAAGUUCUGCACAUU 43 18883 MI0004817 xtr-mir-34b-2 Xenopus tropicalis miR-34b-2 stem-loop UUCAGGCAGUGUAGUUAGCUGAUUGUGUUAUAUCAAAUUUGCAAUCACUAGCUAAACUACCAUAAAA 43 18884 MI0004818 xtr-mir-34b-4 Xenopus tropicalis miR-34b-4 stem-loop UUCAGGCAGUGUAGUUAGCUGAUUGUGUUAUAUCAAAUUUGCAAUCACUAGCUAAACUACCAUAAAA 43 18885 MI0004819 xtr-mir-92a-2 Xenopus tropicalis miR-92a-2 stem-loop UCCUCUGUGGGUGGGGAUUUGUUGCACUACUGUAUGUAUGAAAAGUAUUGCACUUGUCCCGGCCUGUGGGUGA 43 18886 MI0004820 xtr-mir-98 Xenopus tropicalis miR-98 stem-loop UCUGCCCUCUUCAGGAUGAGGUAGUAAGUUGUAUUGUUGUGGGGGUUUUUAUUUCCCCAAAUUAGGAGAUAACUAUACAGCUUACUGCCUUCCCUGCAGCAUGGUAAU 43 18887 MI0004821 xtr-mir-99 Xenopus tropicalis miR-99 stem-loop UAACAUAAACCCGUAGAUCCGAUCUUGUGGUGAAUUCCUUUGCUCAAGCUCGUUUCUAUGGGUCUGUGUCA 43 18888 MI0004822 xtr-mir-106 Xenopus tropicalis miR-106 stem-loop UGCAAAAGUGCUUAUAGUGCAGGUAGAAUUUAAACCUACUGCACCAUAAGCACUUCCUGCAUC 43 18889 MI0004823 xtr-mir-107 Xenopus tropicalis miR-107 stem-loop CUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCA 43 18890 MI0004824 xtr-mir-122 Xenopus tropicalis miR-122 stem-loop GAGCUAUGGAGUGUGACAAUGGUGUUUGUGUCAGAGCUAUCAAACGCCAUUAUCACACUAAUGAGCUAC 43 18891 MI0004825 xtr-mir-125b-1 Xenopus tropicalis miR-125b-1 stem-loop UGCACCCCUCUCAAUCCCUGAGACCCUAACUUGUGAUGUUUAGCUUUAAAAAUCCACGGGUUAGGCUCUUGGGAGCUGUGAGUUGUGC 43 18892 MI0004826 xtr-mir-125b-2 Xenopus tropicalis miR-125b-2 stem-loop GACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGAUUUUUUAGCAACAAUCACAAGUUAGGCUCUUGGGACCUAGGCGGAGGG 43 18893 MI0004827 xtr-mir-126 Xenopus tropicalis miR-126 stem-loop GGCUGUGCAUUAUUACUUUUGGUACGCGCUGUGUCACAUCAAACUCGUACCGUGAGUAAUAAUGCGCAG 43 18894 MI0004828 xtr-mir-128-2 Xenopus tropicalis miR-128-2 stem-loop GUGCAGCUGGAACGGGGGCCGUUACACUGUAAGAGAGUGAGUAGUAGGUCUCACAGUGAACCGGUCUCUUUUCUUACUGU 43 18895 MI0004829 xtr-mir-129-1 Xenopus tropicalis miR-129-1 stem-loop GUCCUUCUCAAAUCUUUUUGCGGUCUGGGCUUGCUGUAUGUAAAUACCUAGCCGGGAAGCCCUUACCCCAAAAAGCAUUUGCGGAGGGCG 43 18896 MI0004830 xtr-mir-129-2 Xenopus tropicalis miR-129-2 stem-loop UCUCAAAGCUUUUUGCGGUCUGGGCUUGCUGUUCUCAAUCAAAGUAUCCAGGAAGCCCUUAUCCCAAAAAGAAUUUGCGAGG 43 18897 MI0004831 xtr-mir-130a Xenopus tropicalis miR-130a stem-loop CUGUCCAGUGCCCUUUUUAUGUUGUACUACUAGUGGUCACACACAAAAAAAGCAGUGCAAUGUUAAAAGGGCAUUGGCCAGGG 43 18898 MI0004832 xtr-mir-130c Xenopus tropicalis miR-130c stem-loop AUCCGUGGCCCUUUUUCUGUUGUACUACUGGAAUUUGUAAUUAGCAGUGCAAUAUUAAAAGGGCAUUGGCU 43 18899 MI0004833 xtr-mir-130b Xenopus tropicalis miR-130b stem-loop CCGCCUGACACUCUUUCCCUGUUGCACUACUGUGGCAGUGAAUAAAGCAGUGCAAUGAUGAAAGGGCAUCAGUCUG 43 18900 MI0004834 xtr-mir-132 Xenopus tropicalis miR-132 stem-loop CUGUCUCCAGGGCAACCGUGGCUUUAGAUUGUUACUGUAGUUCUGCAUUGGUAACAGUCUACAGCCAUGGUCGCUCGGGCAAGAUGC 43 18901 MI0004835 xtr-mir-133c Xenopus tropicalis miR-133c stem-loop AAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCAACUGUUGAAUGGAUUUGGUCCCCUUCAACCAGCUGCAGCUGUGCAUUGA 43 18902 MI0004836 xtr-mir-133d Xenopus tropicalis miR-133d stem-loop CUGGUUGCGGCUGGUGAAAAGGAACCACAUCAACCCAGAAAAAGGAUUUGGUCCCCUUCAACCAGCCGCAACUGGU 43 18903 MI0004837 xtr-mir-133b Xenopus tropicalis miR-133b stem-loop CUGCUAUGGCUGGUCAAACGGAACCAAGUCCGUCUUCCUUAGAGGUUUGGUCCCCUUCAACCAGCUAUUGCAGUA 43 18904 MI0004838 xtr-mir-135-1 Xenopus tropicalis miR-135-1 stem-loop AGAUAAAUUCACUGUGGUGUUUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAUGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAAGUCA 43 18905 MI0004839 xtr-mir-138 Xenopus tropicalis miR-138 stem-loop CGGUGCGGAGCAGCAGCUGGUGUUGUGAAUCAGGCCGUGACCACUCAGAAAACGGCUACUUCACAACACCAGGGUUGCUUCUCAC 43 18906 MI0004840 xtr-mir-139 Xenopus tropicalis miR-139 stem-loop UGUAUUCUACAGUGCAUGUGUCUCCAGUCAUAUAGAGGCACUGGGGAUACAGCUCUGUUGGAAUAAC 43 18907 MI0004841 xtr-mir-140 Xenopus tropicalis miR-140 stem-loop CCCUCUCUGUGUCCUCCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAGGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACGGGGAGCU 43 18908 MI0004842 xtr-mir-142-1 Xenopus tropicalis miR-142-1 stem-loop CAGUGCAGCCACCCAUAAAGUAGAAAGCACUACUAGACAGGACUGAACGCUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGGG 43 18909 MI0004843 xtr-mir-142-2 Xenopus tropicalis miR-142-2 stem-loop CAGUGCAGCCACCCAUAAAGUAGAAAGCACUACUAGACAGGACUGAACGCUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGGG 43 18910 MI0004844 xtr-mir-146 Xenopus tropicalis miR-146 stem-loop CAAUGAGUUCUUAGCUUUGAGAACUGAAUUCCAUAGGUUGUUAGAGGUUAGACCUAUGGUGCUUAGUUCCAUAGCUUGGAUCCCACUGGC 43 18911 MI0004845 xtr-mir-148b Xenopus tropicalis miR-148b stem-loop UGAGGAACAGCGUUUGAGGUGAAGUUCUGUUAUACACUCCGGCUGUGAGUAAGUGGAAGUCAGUGCAUCACAGAACUUUGUCUCGAGGGCUUCACUA 43 18912 MI0004846 xtr-mir-150 Xenopus tropicalis miR-150 stem-loop CUCUCUCCCAACCCUUGUACCAGAGUGAUAAUGGGAACUCUGGUACAGAGGAUGGCUGAAAGGA 43 18913 MI0004847 xtr-mir-153-1 Xenopus tropicalis miR-153-1 stem-loop CACGGCUGCCCUUGUCAUUUUUGUGAUUUGCAGCUUGUAAUUUUGGUCUCAGUUGCAUAGUCACAAAAGUGAUCAUGGGCAGGUGGG 43 18914 MI0004848 xtr-mir-155 Xenopus tropicalis miR-155 stem-loop UAUUAAUGCUAAUCGUGAUAGGGGUUUUUUAAUACAUAUUGACUCCUACAUGUUAGCAUUAUUAUCAUG 43 18915 MI0004849 xtr-mir-181b-1 Xenopus tropicalis miR-181b-1 stem-loop AAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUGAGUUAAGAACACAAGCUCGCUGAACGAUGAAUGCAACUGUGUCCCC 43 18916 MI0004850 xtr-mir-181b-2 Xenopus tropicalis miR-181b-2 stem-loop AAUGGCUGCAAUAAACAUUCAUUGCUGUCGGUGGGUUGUAGUUUAGAAAAGCUCAUUGAUCAAUGAAUGCAAACUGCAGACCA 43 18917 MI0004851 xtr-mir-182 Xenopus tropicalis miR-182 stem-loop AGUGGCUUCUCUGGCAGUGUUUGGCAAUGGUAGAACUCACACUGGUGAGCUAUGAAGAUCCGGUGGUUCUAGACUUGCCAACUAUGGCCUGGGAAUAAAGCAGCA 43 18918 MI0004852 xtr-mir-183 Xenopus tropicalis miR-183 stem-loop CAUCCCUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAAAACACAAAAUCAGUGAAUUACCAUAGGGCCAUAAACAGAGCAGAGAAAGAAC 43 18919 MI0004853 xtr-mir-184 Xenopus tropicalis miR-184 stem-loop CCAGUAUCACUUCCUUAUCACUUUUCCAGCCCAGCUUUUCAUGACAAACUGUUGGACGGAGAACUGAUAAGGCUGUGUGACUG 43 18920 MI0004854 xtr-mir-187 Xenopus tropicalis miR-187 stem-loop UGGUAUACCUUUGGUUACAACACAGGACAUGGGAGCUUACUUGGAACCCUCGUGUCUUGUGUUGCAGCCAGUGGUGGCCAAA 43 18921 MI0004855 xtr-mir-192 Xenopus tropicalis miR-192 stem-loop GAGUGUACGGGCCUAUGACCUAUGAAUUGACAGCCAGUGGAUGUGAAGUCUGCCUGUCAAUUCUGUAGGCCACAGGUUCGUCCACCU 43 18922 MI0004856 xtr-mir-193 Xenopus tropicalis miR-193 stem-loop GUGGUUUCGGAGUCGGGAUUUUGGGGGCGAGAUGAGCUAAUGAUUUAUCCAACUGGCCCGCAAAGUCCCGCUUCUGGAAGUCA 43 18923 MI0004857 xtr-mir-194-1 Xenopus tropicalis miR-194-1 stem-loop UAGUGUGUAUCAGGUGUAACAGCAACUCCAUGUGGACUUGUCCGUAUUCCAGUGGAGAUGCUGUUACUUUUGAUGGGCAC 43 18924 MI0004858 xtr-mir-194-2 Xenopus tropicalis miR-194-2 stem-loop UGAUGCUCAUAACCUGUAACAGCAACUCCAUGUGGAAGUAGAUAUAAUAUUCCGGUGGAGAUGCUGUUAUCUGUAAUGUGUAUCUA 43 18925 MI0004859 xtr-mir-199a Xenopus tropicalis miR-199a stem-loop AAGAACCUGCUCCGUCGCCCCAGUGUUCAGACUACCUGUUCAGGACAAUGCUGUUGUACAGUAGUCUGCACAUUGGUUAGACUGGGCAUGGGACAG 43 18926 MI0004860 xtr-mir-202-1 Xenopus tropicalis miR-202-1 stem-loop CUCGCUGUUCCUUUUUCCUAUGCAUAUACCUCUUUGAAAAAUGAAUGUAAAGGGGCAUAGGGCAUGGGAAAAUGGCGCAGCUGAGCC 43 18927 MI0004861 xtr-mir-202-2 Xenopus tropicalis miR-202-2 stem-loop CUCGCUGUUCCUUUUUCCUAUGCAUAUACCUCUUUGAAAAAUAAAUGUAAAGGGGCAUAGGGCAUGGGAAAAUGGCGCAGCUGAGCC 43 18928 MI0004862 xtr-mir-205b Xenopus tropicalis miR-205b stem-loop UGCUGCUGUCCUUCAUUCCACCGGAUCCUGUGUAAAUAUAAUCCAGAUUCCCAGUGGCAUGAAGUGCAUUAG 43 18929 MI0004863 xtr-mir-206 Xenopus tropicalis miR-206 stem-loop GAGGUCACAUGCUUCUUUAUAUACCCAUAUGAACUACAUUGUUAUGGAAUGUAAGGAAGUGUGUGGCUUC 43 18930 MI0004864 xtr-mir-210 Xenopus tropicalis miR-210 stem-loop UCCAGAUGCAGGUCAGCCACUGACUAACGCACAUUGCGCUGCUCCUAAAAUGCCACUGUGCGUGUGACAGCGGCUAACCAGCAUCUAGGAA 43 18931 MI0004865 xtr-mir-181a-1 Xenopus tropicalis miR-181a-1 stem-loop GGCUACUUUAGUGAACAUUCAACGCUGUCGGUGAGUUUGGUAUCUAAAGGCAAACCAUCGAUCGUUGACUGUACAUUACGGCAAUGCCAG 43 18932 MI0004866 xtr-mir-181a-2 Xenopus tropicalis miR-181a-2 stem-loop UUGAGGGCUUCAGAGAACAUUCAACGCUGUCGGUGAGUUUGAGAAAGUGUAAAAAUAUAAACCAUCGGCCGUUGACUGUACCCUGAGGCUUUUCA 43 18933 MI0004867 xtr-mir-214 Xenopus tropicalis miR-214 stem-loop UUGGCUGGAAGGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCUCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU 43 18934 MI0004868 xtr-mir-215 Xenopus tropicalis miR-215 stem-loop AACUGGUAACCAGGAGGAUGACCUAUGAAAUGACAGCCACUUCCAUACCAAACAUGUCUGUCAUUUCUGUAGGCCAAUAUUCUGAUUGCUUUGUUGA 43 18935 MI0004869 xtr-mir-216 Xenopus tropicalis miR-216 stem-loop UGGCUGUGAAUUGGCUUAAUCUCAGCUGGCAACUGUGAGCAGUUAAUAAAUUAUCUCACAGUGGUCUCUGGGAUUAUACUAAACACAGCAA 43 18936 MI0004870 xtr-mir-217 Xenopus tropicalis miR-217 stem-loop UUGAUGUUGUAGAUACUGCAUCAGGAACUGAUUGGAUCCCAGGGAGCAGCCAUCAGUUCCUAAUGCACUGCCUUCGGCAUCUA 43 18937 MI0004871 xtr-mir-218-1 Xenopus tropicalis miR-218-1 stem-loop UGGUAACAAGGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGUGAGGUAUGAGUAAAACAUGGUUCUGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA 43 18938 MI0004872 xtr-mir-218-2 Xenopus tropicalis miR-218-2 stem-loop GGGGUUUUCCUUUGUGCUUGAUCUAACCAUGUGGUAGAACAAUACAUAUUGAACAUGGUUCUGUCAAGCACCAUGGAAGGCCAC 43 18939 MI0004873 xtr-mir-219 Xenopus tropicalis miR-219 stem-loop AUGGAGCUCUCGCCCUUGAUUGUCCAAACGCAAUUCUUGUUCCAAUAGAAAUAUCAAGCCAAGAAUUGUGCCUGGACAUCUGUGGCUGGUGAUCC 43 18940 MI0004874 xtr-mir-222 Xenopus tropicalis miR-222 stem-loop CGCUCAGUAAUCAGUGUAGAUCCUGUAUAUCUGUCAGCAGCUACAUCUGGCUACUGGGUCUCUA 43 18941 MI0004875 xtr-mir-223 Xenopus tropicalis miR-223 stem-loop AGUGUGGCACUGAGUGUAUUUGACAAGCUGAGUCCGACACUCAAUGAGACAGAGUGUCAGUUUGUCAAAUACCCCAAGUGAGGCAC 43 18942 MI0004876 xtr-mir-301-1 Xenopus tropicalis miR-301-1 stem-loop CUGCUAAUGUGUGCUCUGACUUUAUUGCACUACUGUACUAUACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCAUCUGCAAGCAG 43 18943 MI0004877 xtr-mir-301-2 Xenopus tropicalis miR-301-2 stem-loop GAAUUGCUCUGACAGUGUUGCACUACUGUGAUCUCAAAUGAAGCAGUGCAAUAGUAUUGUCAAAGCAUUUCAU 43 18944 MI0004878 xtr-mir-302 Xenopus tropicalis miR-302 stem-loop CCCCACUACUUUAACAUUGGUGUACUUUCUAUGUCUUUAAAAAGGGUAAGUGCUCCAAUGUUUUAGUGG 43 18945 MI0004879 xtr-mir-365-1 Xenopus tropicalis miR-365-1 stem-loop CCGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUCACUUACACUACCAUAAUGCCCCUAAAAAUCCUUAUUGUUCUUGCA 43 18946 MI0004880 xtr-mir-367 Xenopus tropicalis miR-367 stem-loop UUACUGUUGCCUAUGUGCAAACUCUGUGCUAUAUUGUCUAGAAUUGCACUGUAGCAAUGGUGA 43 18947 MI0004881 xtr-mir-383 Xenopus tropicalis miR-383 stem-loop CUCCUCAGAUCAGAAGGUGAUUGUGGCUUUUAGUAGAUAUUAAGCAGCCACAGCACUGCCUGGUCAGAAAGAG 43 18948 MI0004882 xtr-mir-425 Xenopus tropicalis miR-425 stem-loop GCCUUGGAAUGACACGAUCACUCCCGUUGAGCCGAAACUCACAGCGCCAUCGGGAAUAUCGUGUCGCUCCAAAGCUC 43 18949 MI0004883 xtr-mir-455 Xenopus tropicalis miR-455 stem-loop UCCCUGGCGUGAGGGUAUGUGCCCUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUGCCUCAAGGUU 43 18950 MI0004884 xtr-mir-489 Xenopus tropicalis miR-489 stem-loop GUGGUGGCUUAGUGGUCGUAUGUAUGACGUCAUUUACUGGAUUUUUUAGGAGUGACAUCAUAUGUACGGCUGCUAAACUGCUGC 43 18951 MI0004885 xtr-mir-499 Xenopus tropicalis miR-499 stem-loop GUGAGAGCGAGGCAGUUAAGACUUGCAGUGAUGUUUAGUUAAAAUCUUUUCAUGAACAUCACUUUAAGUCUGUACUGCUUCUCCCUC 43 18952 MI0004886 xtr-let-7c Xenopus tropicalis let-7c stem-loop UGUGUGCAUCCAGGUUGAGGUAGUAGGUUGUAUGGUUUAGAAUGACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGCUCACU 43 18953 MI0004887 xtr-let-7f Xenopus tropicalis let-7f stem-loop UGCAGGAUGAGGUAGUAGAUUGUAUAGUUUUGGGGUCACACCCGAUCUGGGAGAUAACUAUACAGUUUACUGUCUUUCCUGCG 43 18954 MI0004888 xtr-let-7g Xenopus tropicalis let-7g stem-loop GGCUGAGGUAGUUGUUUGUACAGUUUAAGGGUCUGUGACACCACCCUCUGUUGGAGAUAACUGUACAGGCCACUGCCUUGCCUA 43 18955 MI0004889 xtr-let-7i Xenopus tropicalis let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACACUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUAG 43 18956 MI0004890 xtr-mir-1b Xenopus tropicalis miR-1b stem-loop GCACAUACUUCUUUAUAUGCCCAUACUGAAUGAAAAUGCUAUGGAAUGUUAAGAAGUAUGUA 43 18957 MI0004891 xtr-mir-9-3 Xenopus tropicalis miR-9-3 stem-loop GUUUCUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAAAUAAGCCGUCAUAAAGCUAGAUAACCGAAAGUAGGAAUCA 43 18958 MI0004892 xtr-mir-15c Xenopus tropicalis miR-15c stem-loop CUUUGAGGUGAUCUAGCAGCACAUCAUGGUUUGUAGAAACAAGGAGAUACAGACCAUUCUGAGCUGCCUCUUGA 43 18959 MI0004893 xtr-mir-18a Xenopus tropicalis miR-18a stem-loop GUGCUUUUUGUCCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCAUAAAAAGU 43 18960 MI0004894 xtr-mir-23a-1 Xenopus tropicalis miR-23a-1 stem-loop CUGACAGCGGGGGAUUCCUGGAGAUGGGAUUUUAUUUUGGCAGCCAAUAAAUCACAUUGCCAGGGAUUUCCAACUGUC 43 18961 MI0004895 xtr-mir-24a Xenopus tropicalis miR-24a stem-loop CUCUUGUGCCUACUGAACUGAUAUCAGUUCUAUUUCACACACUGGCUCAGUUCAGCAGGAACAGGAG 43 18962 MI0004896 xtr-mir-24b Xenopus tropicalis miR-24b stem-loop CUCCCGUACCUACUGGGCUGAUAAUCAGUGGUUAUAUCUUCCCCUGGCUCAGUUCAGCAGGACAGGAG 43 18963 MI0004897 xtr-mir-29a Xenopus tropicalis miR-29a stem-loop ACCCUUUUAAAGGAUGACUGAUUUCUUCUGGUGUUCAGAGUCUUUUGUUUUCUAGCACCAUUUGAAAUCGGUUAUAAUGAUGGGGUA 43 18964 MI0004898 xtr-mir-30d Xenopus tropicalis miR-30d stem-loop AGUUUGUCGCUGUAAACAUCCCCGACUGGAAGCUGUGAGGCUGCAUUUGAGCUUUCAGUCUGGUGUUUGCUGCUACCGGCU 43 18965 MI0004899 xtr-mir-92b Xenopus tropicalis miR-92b stem-loop UACAGAAGGAUCGGGAUGUUGUGCACUGUUGUCCUUUCUCCUGCCAAUAUUGCACUCGUCCCGGCCUCCUGCG 43 18966 MI0004900 xtr-mir-93a Xenopus tropicalis miR-93a stem-loop AUGGGCUUCAAAGUGCUGUUCGUGCAGGUAGCUUAAUAACAGACCUACUGCAUGGGCGGCACUUCCCAAGCCC 43 18967 MI0004901 xtr-mir-93b Xenopus tropicalis miR-93b stem-loop CUUCAAGUGCUGUUCGUGCAGGUAGCUUAAUAACAGACCUACUGCAUGGGCGGCACUUCCCAAG 43 18968 MI0004902 xtr-mir-96 Xenopus tropicalis miR-96 stem-loop GGCCUGCUUUGGCACUAGCACAUUUUUGCUUUUGUACAUAUACUUUGAGCAAUUAUGUGUAGUGCCAAUAUAGGA 43 18969 MI0004903 xtr-mir-101a-2 Xenopus tropicalis miR-101a-2 stem-loop AGGCUGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCUACUCUAAAGGUACAGUACUGUGAUAACUGAAGGAUGGUAGCCA 43 18970 MI0004904 xtr-mir-103-1 Xenopus tropicalis miR-103-1 stem-loop UUCUCAUUUCCUUUGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGGAUCUGAGA 43 18971 MI0004905 xtr-mir-148a Xenopus tropicalis miR-148a stem-loop UAGUCUUUUAAAUCAAAGUUCUGUGACACUUAGACUCUGAAUAUGAUAGCAGUCAGUGCACUACAGAACUUUGUUUUGGGAGUCUG 43 18972 MI0004906 xtr-mir-338-1 Xenopus tropicalis miR-338-1 stem-loop GUCCCCUGGAACAAUAUCCUGAUGCUGAAUGAGUGGGACAUACAUGCUCCAGCAUCAGUGAUUUUGUUGCAGGCGGCA 43 18973 MI0004907 xtr-let-7e-1 Xenopus tropicalis let-7e-1 stem-loop CCCUGUGGGAUGAGGUAGUAGGUUGUUUAGUUAUUGGGCCGCACCCACCAAUGGGAGAGAACUACACAACCUACUGUCUCUCCUAAAGUG 43 18974 MI0004908 xtr-let-7a Xenopus tropicalis let-7a stem-loop GUGGGCUCCAGGCUGAGGUAGUAGGUUGUAUAGUUGAGGAUAACACCAAAGGAGAUAACUGUACAGCCUCCUAUCUUUCCCUGGGGCUU 43 18975 MI0004909 xtr-let-7e-2 Xenopus tropicalis let-7e-2 stem-loop GCCCUUUGGGGUGAGGUAGUAGGUUGUUUAGUUGUGGGUUGCACCCUGACGUUUGGAUAACUAUACAAUCUACUGUCUUUCCUGAAGUGGCUG 43 18976 MI0004910 xtr-mir-16b Xenopus tropicalis miR-16b stem-loop AAUUGCUCCGCAUUAGCAGCACGUAAAUAUUGGGUGAUAUGAUAUGGAGCCCCAGUAUUAUUGUACUGCUUAAGUGUGGCAAGG 43 18977 MI0004911 xtr-mir-20a Xenopus tropicalis miR-20a stem-loop GCUAAAGUGGUGCUAAAGUGCUUAUAGUGCAGGUAGUUUUUCUGUAUUCUACUGCAUAAUGAGCACUUAAAGUACUCCUAGCUG 43 18978 MI0004912 xtr-mir-22 Xenopus tropicalis miR-22 stem-loop CUGGCCCGCUAGAAGCAGUUCUUCAGUGGCAAGCUUUAUGUUGUUCCUCUGUGCUAAAGCUGCCAGUUGAAGAACUGUUGAAAGUGGCUACU 43 18979 MI0004913 xtr-mir-23b Xenopus tropicalis miR-23b stem-loop CCGGUGUGGCUGUUUGGGUUCCUGGCAUGCUGAUUUGUGAGUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACACAACCAUGUCCU 43 18980 MI0004914 xtr-mir-25-1 Xenopus tropicalis miR-25-1 stem-loop GCUGGUGUUGACAGGCAGAGACAGGAGCAACUGCUGGUGUGCCUUGGUAGCAUUGCACUUGUCUCGGUCUGACAGUGUCGGC 43 18981 MI0004915 xtr-mir-25-2 Xenopus tropicalis miR-25-2 stem-loop GCUGGUGUUGACAGGCAGAGACAGGAGCAACUGCUGGUGUGCCUUGGUAGCAUUGCACUUGUCUCGGUCUGACAGUGUCGGC 43 18982 MI0004916 xtr-mir-27c-1 Xenopus tropicalis miR-27c-1 stem-loop CUCUAGAGAGGCAGGACUUAGCUGGCUCUGUGAACAGGUCUUGUGUGUCAAUGUUCACAGUGGCUAAGUUCCACCCCACUGG 43 18983 MI0004917 xtr-mir-27c-2 Xenopus tropicalis miR-27c-2 stem-loop CUCUAGAGAGGCAGGACUUAGCUGGCUCUGUGAACAGGUCUUGUGUGUCAAUGUUCACAGUGGCUAAGUUCCACCCCACUGG 43 18984 MI0004918 xtr-mir-29c Xenopus tropicalis miR-29c stem-loop UCCCUUACACAGGAUGACCGAUCUCUCUUGGUGUUCAGAGGCUCAGGUCUUCAUCUAGCACCAUUUGAAAUCGGUUAUAAUGUAAGGUGA 43 18985 MI0004919 xtr-mir-30c-2 Xenopus tropicalis miR-30c-2 stem-loop GAGAGACAGAUACUGUAAACAUCCUACACUCUCAGCUGUGGAAAUACAAAGCUGGGGGAAGGCUGUUUACUCUCUCUG 43 18986 MI0004920 xtr-mir-30e Xenopus tropicalis miR-30e stem-loop GGGCAGUUACAGCCUCUGUAAACAUCCUUGACUGGAAGCUGUGAAAUAAUGAUAGUAGCUUUCAGUCGGAUGUUUACAGCUGCUAGCUGC 43 18987 MI0004921 xtr-mir-31 Xenopus tropicalis miR-31 stem-loop CCUAGUUCUAGAGAGGAGGCAAGAUGUUGGCAUAGCUGUUGCAUCUGAAACCAGUUGUGCCAACCUAUUGCCAUCUUUCUUGUCUACC 43 18988 MI0004922 xtr-mir-33a Xenopus tropicalis miR-33a stem-loop CUGUGGUGCAUUGUAGUUGCAUUGCAUGUGAUAUCAGCGGUGUGCAAUGUGCCUGCAGUGCAACACAG 43 18989 MI0004923 xtr-mir-33b Xenopus tropicalis miR-33b stem-loop CCCUGGUGCAUUGUUGUUGCAUUGCAUGUCACCUUGGACGUUGUGCAAUGUUUCUUCAGUGCAGUAUGG 43 18990 MI0004924 xtr-mir-34b-3 Xenopus tropicalis miR-34b-3 stem-loop UGUUGGGUUUUCAGGCAGUGUAGUUAGCUGAUUGUGUUAACAUAAGACUUGCAAUCACUAGCUAAACUACCAGCAAAACUAAACA 43 18991 MI0004925 xtr-mir-34b-1 Xenopus tropicalis miR-34b-1 stem-loop UGUUGGGUUUUCAGGCAGUGUAGUUAGCUGAUUGUGUUAACAUAAGACUUGCAAUCACUAGCUAAACUACCAGCAAAACUAAACA 43 18992 MI0004926 xtr-mir-92a-1 Xenopus tropicalis miR-92a-1 stem-loop CUUUCUGUAUAGGUUGGGAUUGGUUGCAAUGCUGUACUAUUUAUGUAGUAUUGCACUUGUCCCGGCCUGUUUAGGAUG 43 18993 MI0004927 xtr-mir-100 Xenopus tropicalis miR-100 stem-loop GUUGCCAUAAACCCGUAGAUCCGAACUUGUGCUGUGCCCCUCUCACAAGCUCGAGUGUGCGGGUCUGUGUCGGCUU 43 18994 MI0004928 xtr-mir-101a-1 Xenopus tropicalis miR-101a-1 stem-loop GCGUGAACUGUCCUUUUUCGGUUAUCAUGGUACCGGUGCUGUGUAUAUGAAAGGUACAGUACUGUGAUAACUGAAGAAUGGUGGUGCCAUC 43 18995 MI0004929 xtr-mir-103-2 Xenopus tropicalis miR-103-2 stem-loop CUCUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUAGCAUCUAUGUCAAGCAGCAUUGUACAGGGCUAUGAAGGAGCAGAGA 43 18996 MI0004930 xtr-mir-124 Xenopus tropicalis miR-124 stem-loop UAAGUCUCUGACUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGUGGAGCCUAC 43 18997 MI0004931 xtr-mir-125a Xenopus tropicalis miR-125a stem-loop GUCCCUGAGACCCUUAACCUGUGAGGAAGACAUAUGUCACAGGUGAGGUUCUGAGGAGCUGG 43 18998 MI0004932 xtr-mir-128-1 Xenopus tropicalis miR-128-1 stem-loop UGAGCGGCUGGAACCGGGCCCGGAGCGCUGUCUGAGAGGGUUUAAGUUUCUCACAGUGAACCGGUCUCUUUUUCAGUCUCUUC 43 18999 MI0004933 xtr-mir-135-2 Xenopus tropicalis miR-135-2 stem-loop CCCCCUGCUGAGGUAUAUGGCUUUUUAUUCCUAUGUGAUUGCUUUCCUAAUUCACAUAGGGCAGAAAGCCAUGUGCUGCACAGGGGAC 43 19000 MI0004934 xtr-mir-137-1 Xenopus tropicalis miR-137-1 stem-loop GCUCUGUGGCUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUUGAGGAGAGUAUCUUCAGCA 43 19001 MI0004935 xtr-mir-137-2 Xenopus tropicalis miR-137-2 stem-loop GCUCUGUGGCUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUUGAGGAGAGUAUCUUCAGCA 43 19002 MI0004936 xtr-mir-137-3 Xenopus tropicalis miR-137-3 stem-loop GCUCUGUGGCUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUUGAGGAGAGUAUCUUCAGCA 43 19003 MI0004937 xtr-mir-143 Xenopus tropicalis miR-143 stem-loop UGUCUCCCAGCCCAAGGUGCAGUGCUGCAUCUCUGGUCAGUUGUGAGUCUGAGAUGAAGCACUGUAGCUCGGGAAGGGGGAAU 43 19004 MI0004938 xtr-mir-144 Xenopus tropicalis miR-144 stem-loop UUUGGGAUAUCAUCAUAUACUGUAAGUUUGUUUUAAGACACUACAGUAUAGAUGAUGUACUA 43 19005 MI0004939 xtr-mir-145 Xenopus tropicalis miR-145 stem-loop ACCUAUUCCUCAAGGUCCAGUUUUCCCAGGAAUCCCUUGGGUGCUGUGGUGGGGAUUCCUGGAAAUACUGUUCUUGGGGUGUAGGC 43 19006 MI0004940 xtr-mir-153-2 Xenopus tropicalis miR-153-2 stem-loop AGCAGUUGCCAGUGUCAUUUUUGUGACGUUGCAGCUAGUAAUAUGAGCCCAGUUGCAUAGUCACAAAAGUGAUUAUUGGAAACUGU 43 19007 MI0004941 xtr-mir-191 Xenopus tropicalis miR-191 stem-loop GGCGGUAGCUCUGACAACGGAAUCCCAAAAGCAGCUGUUGUGAAAAUGUUCAGCUGCAGUUGGGACCCGUUCACGGAUCUAUUGCC 43 19008 MI0004942 xtr-mir-196a Xenopus tropicalis miR-196a stem-loop UUUGUAUCCAGCUGAUCUGUGGUUUAGGUAGUUUCAUGUUGUUGGGAUUGCUUUUUCUUAACGCGGCAACAAGAAACUGCCUUAAUUACGUCAGUUCGUCUUCAUC 43 19009 MI0004943 xtr-mir-196b Xenopus tropicalis miR-196b stem-loop AGCCGCUGUGUGGUUUAGGUAGUUUUAUGUUGUUGGGCAUUCACCUUUCUCUCUACAACAAGAAACUGCCUUAAUUACAUCAGUGGG 43 19010 MI0004944 xtr-mir-199b Xenopus tropicalis miR-199b stem-loop AAGAUCCCGAGAGGUGGGUGGUCCCGUUCCCCCAGUGUUCAGACUACGUGUUCGUUGGACAGAACCUGAACAGUAGUCUACACACUGGUUAAACUGGGCCAUGCGGUCAA 43 19011 MI0004945 xtr-mir-200a Xenopus tropicalis miR-200a stem-loop UGGUCCUCUAUGGACAUCUUACUAGACAGUGCUGGAUUUAUUUUAUCUUUUCUAACACUGUCUGGUAACGAUGUUUAAAGAGUGAGCCA 43 19012 MI0004946 xtr-mir-200b Xenopus tropicalis miR-200b stem-loop CUGUGGCGCUAUUGCCAUCUUACUGGGCAGCAUUGGAUUUUGUCUAUGUUUCUAAUACUGCCUGGUAAUGAUGAUUAUGGCGCCCCACA 43 19013 MI0004947 xtr-mir-203 Xenopus tropicalis miR-203 stem-loop CCUGGCCGAGUGGUUCUUAACAGUUCAACAGUUCUCUAUCGAAAUUGUGAAAUGUUUAGGACCACUUGAUCCGG 43 19014 MI0004948 xtr-mir-204-2 Xenopus tropicalis miR-204-2 stem-loop AUGUGACCUGUGGGCUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGGGGCUGGGAAGGCAAAGGGACGUUCAGUUGUCAUCA 43 19015 MI0004949 xtr-mir-204-1 Xenopus tropicalis miR-204-1 stem-loop UAGAGGACUUCGACAUUGUGACCCAUGGGCUUCCCUUUGUCAUCCUAUGCCUGAGAAUGCUGGAGAGGCAGGGACAGCAAAGGGAUGCUCAGAUGUUACCUCUUG 43 19016 MI0004950 xtr-mir-205a Xenopus tropicalis miR-205a stem-loop CCACGUGUCCUGCUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACAUAAUCAGAUUUCAGUGGAGUGAAGCACAAGAGGCAUGUAG 43 19017 MI0004951 xtr-mir-208 Xenopus tropicalis miR-208 stem-loop UCCUUUCAACAGGCAAGCUUUUUGCUUGGAUUAUGUUUUCUGUUGUUGUAUAAGACGAGCAUAAAGCUUGUUUGUUAGAAG 43 19018 MI0004952 xtr-mir-212 Xenopus tropicalis miR-212 stem-loop UGGUCAUUGCAUCGGCACCUUGGCUCUAGACUGCUUACUGUGAAACUGUGCUAUAGGAACAGUAACAGUCUACAGUCAUGGCUACUGACGUAUGAC 43 19019 MI0004953 xtr-mir-221 Xenopus tropicalis miR-221 stem-loop ACCCAGACUUUGGCGUGCACCUGGCAUACAAUGUAGAAAACUGUGUUUGCAAAGCAACAGCUACAUUGUCUGCUGGGUUUCAUGCUGAAUGGA 43 19020 MI0004954 xtr-mir-338-2 Xenopus tropicalis miR-338-2 stem-loop CAACAAUAUCCUGAUGCCGUCUGAGUGUGCGGGAAAGCUCCAGCAUCAGUGAUUUUGUUG 43 19021 MI0004955 xtr-mir-363 Xenopus tropicalis miR-363 stem-loop UUUUGUUGUUCGCGGGUGGAUCACGAUGCAAUUUUAUUUAGUUUGGUAGGAGAAAAAUUGCACGGUAUCCAUCUGUAAACCGCAGAA 43 19022 MI0004956 xtr-mir-429 Xenopus tropicalis miR-429 stem-loop UGCCUGUUGACCAAUGUCUUACCAGACAAGGUUAGAUCUAGUUACUCUCGUCUAAUACUGUCUGGUAAUGCCGUUGGUCACAUUGGC 43 19023 MI0004957 xtr-mir-449 Xenopus tropicalis miR-449 stem-loop CUGUGUUUAGAAGGAAGGCAGUGUAAUGUUAGCUGGUUGGAAAAUAGCAGACACUGGUUAACUUACACCUGCCCCCCUUCUUUACAU 43 19024 MI0004958 xtr-mir-451 Xenopus tropicalis miR-451 stem-loop GAGUGGCAAUGAAACCGUUACCAUUACUGAGUUUAGUAAUGGUAAGGGUUCUGUUGCUGCUC 43 19025 MI0004959 xtr-mir-18b Xenopus tropicalis miR-18b stem-loop CCUUGUGUUAAGGUGCAUCUAGUGCAGUUAGUGACAUAGUGUAGCAUCUACUGCCCUAAAUGCUCCUUUUGGCACAGG 43 19026 MI0004960 xtr-mir-19b-1 Xenopus tropicalis miR-19b-1 stem-loop GCUCCUGUCAGUUUAGCUGGUUUGCAUCAGCUGACUAUUGUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGC 43 19027 MI0004961 xtr-mir-20b Xenopus tropicalis miR-20b stem-loop GCAGUUCCAAAGUGCUCAUAGUGCAGGUAGUUGUAUUGAUGUUCUACUGUAAUAUGGGCACUUACAGUACUGCU 43 19028 MI0004962 xtr-mir-133a Xenopus tropicalis miR-133a stem-loop CAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCACCUCUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGGAUUGCAUUG 43 19029 MI0004963 xtr-mir-428 Xenopus tropicalis miR-428 stem-loop CACGUCGGCCUAACUGGAGCCCUGUCUCAUUGCAGCUGUGAGUAAGUGCUCUCUAGUUCGGUUGCUGAGUG 43 19030 MI0004965 mmu-mir-652 Mus musculus miR-652 stem-loop AGGAACAGCUAUGUACUGCACAACCCUAGGAGGGGGUGCCAUUCACAUAGAGUAUAAUUGAAUGGCGCCACUAGGGUUGUGCAGUGUACAGCCUACAC The predominant miRNA cloned by Langraf et al. has a 3' terminal U residue, which is incompatible with the genome sequence [2]. 6 19031 MI0004966 tni-mir-10d Tetraodon nigroviridis miR-10d stem-loop GCCGGUGAGGUGCUCGUCGUCUAUACAUACCCUGUAGAACCGAAUGUGUGUGCAGCUGACUUGAUCACAGAUUGGGUUCUAGGGGAGUCUAUGGGCGCUGAAUAAUCAUCGAUGAACGGC 39 19032 MI0004967 fru-mir-10d Fugu rubripes miR-10d stem-loop CCGGUGAGGUGGAUCGUCGUCUAUAAAUACCCUGUAGAACCGAAUGUGUGUGCAGCUGACUUGAUCACAGAUUGGGUUCUAGGGGAGUCUAUGGGCGAUGAAUAAUCACUGA 38 19033 MI0004968 bmo-let-7 Bombyx mori let-7 stem-loop GGUACUGCCGUCGGCUUGUUGAGGUAGUAGGUUGUAUAGUACGGAAAUACAACACAUAGGUGCGACUGUAUAGCCUGCUAACUUUCCGAGCUGACGGAAUGACA 46 19034 MI0004969 bmo-mir-1 Bombyx mori miR-1 stem-loop AGCCUUGCGCAAGUUCCGUGCUUCCUUACUUCCCAUAGUCAUUGUAAUCAUAUGGAAUGUAAAGAAGUAUGGAGCUGCGCGGGCG 46 19035 MI0004970 bmo-mir-7 Bombyx mori miR-7 stem-loop CGCUUCGUGUUGUAUGGAAGACUAGUGAUUUUGUUGUUUUUGUUGACUAACAAGAAAUCACUAAUCUGCCUACAAAGCGACAGCA 46 19036 MI0004971 bmo-mir-8 Bombyx mori miR-8 stem-loop CACGACGGAGUAACGGUUCGCAUCUUACCGGGCAGCAUUAGAGUCCUGUCUAUAUUUUCUAAUACUGUCAGGUAAAGAUGUCGUCCGCGCUCCACGUUCGUC 46 19037 MI0004972 bmo-mir-9 Bombyx mori miR-9 stem-loop AGUAGACUGGUUAAUUAUCUUUGGUUAUCUAGCUGUAUGAGUAUUACUGACGUCAUAAAGCUAGGUUACCGGAGUUAAGUGCCGUCUACA 46 19038 MI0004973 bmo-mir-10 Bombyx mori miR-10 stem-loop AGUGCCCUACAUCUACCCUGUAGAUCCGAAUUUGUUUGAAGUGAGGCGACAAAUUCGGUUCUAGAGAGGUUUGUGUGGUGCACG Tong et al erroneously published the reverse complement of the sequence shown here [1]. 46 19039 MI0004974 bmo-mir-14 Bombyx mori miR-14 stem-loop UUGUCAUUUGUGUCGGGGAGAGAAAUCGACGAGGCUGUUUUAUUUAGUCAGUCUUUUUCUCUCUCCUAUAUGAGUGACAU 46 19040 MI0004975 bmo-mir-34 Bombyx mori miR-34 stem-loop AGAAUCAGGGUAGACCGCGUUGGCAGUGUGGUUAGCUGGUUGUGUAUGGAAAUGACAACAGCCACUAACGACACUGCUCCUGCGUGCACCCUAAAUCA 46 19041 MI0004976 bmo-mir-124 Bombyx mori miR-124 stem-loop CAGUCCACCUCCUCGCGUUCACUGCCGGAGCCGUUAUGUAUAUUUAAAAUUCAUAAGGCACGCGGUGAAUGCCAAGAGCGGACUC 46 19042 MI0004977 bmo-mir-263b Bombyx mori miR-263b stem-loop AGCCCACGCUGUUCCUUGGCACUGGGAGAAUUCACAGGAGUUGUAAUUCAUACCCGUGAAUUUCCCGAUGCCUUAGCUCAGUGUGGUCA 46 19043 MI0004978 bmo-mir-263a Bombyx mori miR-263a stem-loop AUCGAUCCAAGCACAGGCAAUGGCACUGGAAGAAUUCACGGGUUCAGUUUAUAUAUUCCCGUGAUCUCUUAGUGGCAUCACUGGUGCAGGACGAC 46 19044 MI0004979 bmo-mir-275 Bombyx mori miR-275 stem-loop CAGGCGGCAGCGCCGCGCGCUACUCCGGCGCCAGGACUGUCCUCACCGAGUCAGGUACCUGAAGUAGCGCGCGGUGUCUCCUCCUA 46 19045 MI0004980 bmo-mir-276 Bombyx mori miR-276 stem-loop CUGGUAAUUACCACUAGCGAGGUAUAGAGUUCCUACGUAUGCUAACACUGUAGGAACUUCAUACCGUGCUCUUGGGUUUGCCAA 46 19046 MI0004981 bmo-mir-277 Bombyx mori miR-277 stem-loop UUGAUUACGCCUCGGGGUUCGUGCCAGGAGUGCGUUUGCAAAGAGGCCGACAUGUUUGCGUUAUUGCAAUGUUAACACUGUAAAUGCACUAUCUGGUACGACAUCCCGGGGCGUGUAGCAAC 46 19047 MI0004982 bmo-mir-279 Bombyx mori miR-279 stem-loop ACGUCAAUUUCUUUCGAUGAGUGGAGGUUUAGUGCAUGUUUAUUUACACCAUGACUAGAUCCACACUCAUCCAUGGAAGUUGCGA 46 19048 MI0004983 bmo-mir-282 Bombyx mori miR-282 stem-loop CGGGACUUUGACCUAGCCUCUCCUUGGCUUUGUCUGUUUCGUUAGUAGCUCAGACAUAGCCUGAUAGAGGUUACGUUUUGUCCCU 46 19049 MI0004984 bmo-mir-283 Bombyx mori miR-283 stem-loop AACGUUUCCCGACUAAAUAUCAGCUGGUAAUUCUGGGCUUUAUUAAUCCCAGGCUAUCAGCUGGUAUACAGUUAUGAUACGUA 46 19050 MI0004985 bmo-mir-305 Bombyx mori miR-305 stem-loop CGACCGCCGCACGCCCAUUGUACUUCAUCAGGUGCUCUGGUGAUCAUAGUUCCAGGCGCUUGUUGGAGUACACUUACCGUGUCGGCGGUUA 46 19051 MI0004986 bmo-mir-307 Bombyx mori miR-307 stem-loop AGCUCGUUCCCGGUUACUCACUCAACCUGGGUGUGAUGUGUGCACUCGUUGCUCGGCCCAUCACAACCUCCUUGAGUGAGCGAUCGUCUAUGAGCC 46 19052 MI0004987 kshv-mir-K12-12 Kaposi sarcoma-associated herpesvirus miR-K12-12 stem-loop GAUGGCCGGCACGCGGUGUCAACCAGGCCACCAUUCCUCUCCGCAUUAAAGCACUCGGUGGGGGAGGGUGCCCUGGUUGACACAAUGUGCCGCGCAUC The arm of the precursor miRNA giving rise to the mature sequence was verified using microarray hybridisation and Northern blot, but the extents of the mature miRNA shown here are predicted and not experimentally determined [1]. 16 19053 MI0004988 ebv-mir-BART15 Epstein Barr virus miR-BART15 stem-loop UGUGCCGCUUGGAGGGAAACAUGACCACCUGAAGUCUGUUAACCAGGUCAGUGGUUUUGUUUCCUUGAUAGAGACACA The arm of the precursor miRNA giving rise to the mature sequence was verified using microarray hybridisation and Northern blot, but the extents of the mature miRNA shown here are predicted and not experimentally determined [1]. This sequence was named miR-BART5 by Grundhoff et al [1] but is not related to ebv-miR-BART5 (MIR:MI0003727). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 9 19054 MI0004989 ebv-mir-BART16 Epstein Barr virus miR-BART16 stem-loop AGGCUUUCAGGUGUGGAAUUUAGAUAGAGUGGGUGUGUGCUCUUGUUUAAUUACACCAAGAUCACCACCCUCUAUCCAUAUCCCACAAUUGAUAAACCU The arm of the precursor miRNA giving rise to the mature sequence was verified using microarray hybridisation and Northern blot, but the extents of the mature miRNA shown here are predicted and not experimentally determined [1]. This sequence was named miR-BART7 by Grundhoff et al [1] but is not related to ebv-miR-BART7 (MIR:MI0003729). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 9 19055 MI0004990 ebv-mir-BART17 Epstein Barr virus miR-BART17 stem-loop GUUGAACAGGAUGUGGCACCCUAAGAGGACGCAGGCAUACAAGGUUAUUACCCAGUCCUUGUAUGCCUGGUGUCCCCUUAGUGGGACGCAGGCCUAGGUAGC The arm of the precursor miRNA giving rise to the mature sequence was verified using microarray hybridisation and Northern blot, but the extents of the mature miRNA shown here are predicted and not experimentally determined [1]. This sequence was named miR-BART8 by Grundhoff et al [1] but is not related to ebv-miR-BART8 (MIR:MI0003730). The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 9 19056 MI0004991 ebv-mir-BART18 Epstein Barr virus miR-BART18 stem-loop UUGUUGCCGUUGAAAGACGGGUGUCCUGGCUCAAGUUCGCACUUCCUAUACAGUGUUAAAGCCUUGUAUCGGAAGUUUGGGCUUCGUCCCAGUGUACUCGAUAAUGUCGACUGCUGCGA The arm of the precursor miRNA giving rise to the mature sequence was verified using microarray hybridisation and Northern blot, but the extents of the mature miRNA shown here are predicted and not experimentally determined [1]. This sequence was named miR-BART10 by Grundhoff et al [1] but is not related to ebv-miR-BART10 (MIR:MI0003732). The mature miRNA names and sequences reflect cloning frequencies from Landgraf et al. [2], and may differ subtly from previous annotations. 9 19057 MI0004992 ebv-mir-BART19 Epstein Barr virus miR-BART19 stem-loop GUAUCCGUGUCCUGACAACAUUCCCCGCAAACAUGACAUGGGUUAAUUUAAACAUGUUUUGUUUGCUUGGGAAUGCUCUUAGGGCCUGGAAGC The arm of the precursor miRNA giving rise to the mature sequence was verified using microarray hybridisation and Northern blot, but the extents of the mature miRNA shown here are predicted and not experimentally determined [1]. This sequence was named miR-BART17 by Grundhoff et al [1]. The mature miRNA names and sequences reflect cloning frequencies from Landgraf et al. [2]. The ends of the miRNA may be offset with respect to previous annotations. 9 19058 MI0004993 ebv-mir-BART20 Epstein Barr virus miR-BART20 stem-loop UACAGGCGUAGGGCCUAUUGUAGCAGGCAUGUCUUCAUUCCUGCGUACCGAAUGGCAUGAAGGCACAGCCUGUUACCAUUGGCACCUUUUUUCCAUGUA The arm of the precursor miRNA giving rise to the mature sequence was verified using microarray hybridisation and Northern blot, but the extents of the mature miRNA shown here are predicted and not experimentally determined [1]. This sequence was named miR-BART18 by Grundhoff et al [1]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 9 19059 MI0004994 gga-mir-21 MI0004994 Gallus gallus miR-21 stem-loop UGUACCAUCCUGUCGGAUAGCUUAUCAGACUGAUGUUGACUGUUGGAUCUCAUGGCAACAACAGUCGGUAGGCUGUCUGACAUUUUGGUAUCUCUCA 10 19060 MI0004995 gga-mir-451 Gallus gallus miR-451 stem-loop ACACAUGGCUGGCAGGGAAACCGUUACCAUUACUGAGUUUAGUAAUGGUAACGGUUCUGCUGACAGCCA 10 19061 MI0004996 gga-mir-144 Gallus gallus miR-144 stem-loop CCCGCCGCCCUGGGCUGGAUAUCAUCAUAUACUGUAAGUUCACUAUGAGACACUACAGUAUAGAUGAUGUACUCCCCUGGGCUGC 10 19062 MI0004997 gga-mir-456 MI0004997 Gallus gallus miR-456 stem-loop AUUUAAGCUGCUGUGUGUGUGCGUGUGUGAGCAGGCAUCUUCUCAGCCUACAUGUGGAUUCCUAAAUCUGCAGGCUGGUUAGAUGGUUGUCAUGCAUUCAUCUGAUAACUGC 10 19063 MI0004998 gga-mir-460 Gallus gallus miR-460 stem-loop CUGACUAUAUAGCACCUGCAUUGUACACACUGUGUGUGUUAACUGGAAAUGCACAGCGCAUACAAUGUGGAUUCUGUAGAAGUCACUCAC 10 19064 MI0004999 gga-mir-757-1 Gallus gallus miR-757-1 stem-loop CCCGGUGACUUUCUCGCAGAGCUGCAGAUGGGAUUCUCGCUAUGAGCUCUCUGCUGCUCAGUCGGAUACACUCAGUGCUGUA This sequence is incorrectly named mir-548 in the E-published Xu et al article [1]. Chicken mir-757 is unrelated to mir-548 (MIR:MI0003593). 10 19065 MI0005000 gga-mir-757-2 Gallus gallus miR-757-2 stem-loop CCCGGUGACUUUCUCGCAGAGCUGCAGAUGGGAUUCUCGCUAUGAGCUCUCUGCUGCUCAGUCGGAUACACUCAGUGCUGUA This sequence is incorrectly named mir-548 in the E-published Xu et al article [1]. Chicken mir-757 is unrelated to mir-548 (MIR:MI0003593). 10 19066 MI0005002 mmu-mir-490 Mus musculus miR-490 stem-loop UGGAAAGUUCAUUGUUCGACACCAUGGAUCUCCAGGUGGGUCACGUUUAGAUAUACACCAACCUGGAGGACUCCAUGCUGUUGA 6 19067 MI0005003 mmu-mir-676 Mus musculus miR-676 stem-loop CUUUGCCUGAAUGCAUGACUCUACAACCUUAGGACUUGCAGAAUUAAAGGAAUGCCGUCCUGAGGUUGUUGAGCUGUGCGUUUCUGGGC 6 19068 MI0005004 mmu-mir-615 Mus musculus miR-615 stem-loop UCGGGAGGGGCGGGAGGGGGGUCCCCGGUGCUCGGAUCUCGAGGGUGCUUAUUGUUCGGUCCGAGCCUGGGUCUCCCUCUUCCCCCCAUCCC 6 19069 MI0005005 bta-mir-106 Bos taurus miR-106 stem-loop CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG 44 19070 MI0005006 bta-mir-107 Bos taurus miR-107 stem-loop CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA 44 19071 MI0005007 bta-mir-10a Bos taurus miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGAUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUC 44 19072 MI0005008 bta-mir-127 Bos taurus miR-127 stem-loop UGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGGAAGUCUCCUCAUC 44 19073 MI0005009 bta-mir-139 Bos taurus miR-139 stem-loop GUGUACUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC 44 19074 MI0005010 bta-mir-140 Bos taurus miR-140 stem-loop UCUCUCUGUGUCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACCGGGGCACC 44 19075 MI0005011 bta-mir-142 Bos taurus miR-142 stem-loop GACAGUGCAGUCACCCAUAAAGUAGAAAGCACUACUAACAGCACUGGAGGGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGUG In addition to the mature miR-142 sequence shown here, Gu et al. also cloned the offset sequence CCCAUAAAGUAGAAAGCACUA just once [2]. This sequence aligns with that cloned in chicken (MIR:MI0001281). 44 19076 MI0005012 bta-mir-15b Bos taurus miR-15b stem-loop UUGAGACCUUAAAGUACUGUAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAUUUAAGGAAAUUCAU 44 19077 MI0005013 bta-mir-181b Bos taurus miR-181b stem-loop CUGAUGGCUGCACUCAACAUUCAUUGCUGUCGGUGGGUUUGACUUUGAAUCAACUCACUGAUCAAUGAAUGUAAACUGCGGACCAAACA 44 19078 MI0005014 bta-mir-193a Bos taurus miR-193a stem-loop UGGGAGCUGAGAGCUGGGUCUUUGCGGGCGAGAUGAAGGUGUCGGUUCAACUGGCCUACAAAGUCCCAGUCCUCGGCCCCC 44 19079 MI0005015 bta-mir-20b Bos taurus miR-20b stem-loop AGUACCAAAGUGCUCACAGUGCAGGUAGUUUUGGCAGCGCUCUACUGUAGUGUGGGCACUUCCAGUACU 44 19080 MI0005016 bta-mir-215 Bos taurus miR-215 stem-loop UGUACAGGAAAAUGACCUAUGAAUUGACAGACAACGUGACUAAGUCUGUCUGUCAUUUCUGUAGGCCAAUGUUCUGUAU 44 19081 MI0005017 bta-mir-218 Bos taurus miR-218 stem-loop UUUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACC 44 19082 MI0005018 bta-mir-30e Bos taurus miR-30e stem-loop GGGCAGUCUUUGCUACUGUAAACAUCCUUGACUGGAAGCUGUAAGGCGUUGCAAGGAGCUUUCAGUCGGAUGUUUACAGCGGCAGGCUGCCA 44 19083 MI0005019 bta-mir-345 Bos taurus miR-345 stem-loop ACCCAAACCCAGGUCUGCUGACUCCUAGUCCAGUGCUUGUGAUGGCUGGUGGGCCCUGAACUAGGGGUCUGGAGGCCUGGGUUUGAAUAUC 44 19084 MI0005020 bta-mir-369 Bos taurus miR-369 stem-loop UGAAGGGAGAUCGACCGUGUUAUAUUCGCUUUAUUGACUUCGAAUAAUACAUGGUUGAUCUUUUCUCAG 44 19085 MI0005021 bta-mir-380 Bos taurus miR-380 stem-loop AAGAUGGUUGACCAUAGAACAUGCGCUGUCUCUAUGUCGUAUGUAAUGUGGUCCACGUCUU 44 19086 MI0005022 bta-mir-487a Bos taurus miR-487a stem-loop GGUACUUGAAGAGUGGUUAUCCCUGCUGUGUUCGCUGUAUUUAUGACGAAUCAUACAGGGACAUCCAGUUUUUCAGUAUC 44 19087 MI0005023 bta-mir-545 Bos taurus miR-545 stem-loop CCCAGCCUGGCACAUUCGUAGGCCUCAGUAAAUGUUUAUUGGAUGAAUAAAUGAAUGGCUCAUCAACAAACAUUUAUUGUGUGCCUGCUAACGUGAUCUCCACAGG 44 19088 MI0005024 bta-mir-92 Bos taurus miR-92 stem-loop UGGGUGGGGAUUUGUUGCACUGCUUGUGUUAUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA 44 19089 MI0005025 bta-mir-98 Bos taurus miR-98 stem-loop AGGACUCUGCUCAUGCUGGGGUGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUUUUAGGCCCCAAUUUGAAGAUAACUAUACAACUUACUACUUUCCCUGGUGUGUAGCACAUUCA 44 19090 MI0005026 bta-let-7d Bos taurus let-7d stem-loop CCUAGGAAGAGGUAGUAGGUUGCAUAGUUUUCGGGCAGGGAUUUUGCCCACAAGGAGGUAACUAUACGACCUGCUGCCUUUCUUAGG 44 19091 MI0005027 bta-mir-124a Bos taurus miR-124a stem-loop AGGCCUCUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAAUGGGGCUG 44 19092 MI0005028 bta-mir-132 Bos taurus miR-132 stem-loop CCGCCCCCGCGUCUCCAGGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAACCGGAGGUAACAGUCUACAGCCAUGGUCGCCCCGCAGCACGCCCACGCGC 44 19093 MI0005029 bta-mir-138 Bos taurus miR-138 stem-loop GUUGCUGCAGCUGGUGUUGUGAAUCAGGCCGACGAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUGCAUCA 44 19094 MI0005030 bta-mir-148b Bos taurus miR-148b stem-loop UUAGCAUUUGAGGUGAAGUUCUGUUAUACACUCAGGCUGUGGCUCUCUGAAAGUCAGUGCAUCACAGAACUUUGUCUCGAAAGCUUUCUA 44 19095 MI0005031 bta-mir-17 Bos taurus miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC 44 19096 MI0005032 bta-mir-181c Bos taurus miR-181c stem-loop UUGCCAAGGGUUUGGGGGAACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACCCCGAGGCCUGGAACUGCC 44 19097 MI0005033 bta-mir-186 Bos taurus miR-186 stem-loop UGCUUAUAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUGAUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUGAGCU 44 19098 MI0005034 bta-mir-191 Bos taurus miR-191 stem-loop GGCUGGACAGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCGCUUGGAUUUCGUUCCCUGCUCUCCUGCCU 44 19099 MI0005035 bta-mir-192 Bos taurus miR-192 stem-loop AGACCGAGUGCACAGGGCUCUGACCUAUGAAUUGACAGCCAGUGCUCUUGUGUCCCCUCUGGCUGCCAAUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGCCAGC 44 19100 MI0005036 bta-mir-199b Bos taurus miR-199b stem-loop CCUCCACUCCGUCUACCCAGUGUUUAGACUAUCUGUUCAGGACUCCCAAAUUGUACAGUAGUCUGCACAUUGGUUAGGCUGGGCUGGGUUAGACCCUCGG 44 19101 MI0005037 bta-mir-200a Bos taurus miR-200a stem-loop GGGCCUCUGUGGACAUCUUACCGGACAGUGCUGGAUUUCUCGGCUCGACUCUAACACUGUCUGGUAACGAUGUUCAAAGGUGACCC 44 19102 MI0005038 bta-mir-200c Bos taurus miR-200c stem-loop CGUCUUACCCAGCAGUGUUUGGGUGCUGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG 44 19103 MI0005039 bta-mir-210 Bos taurus miR-210 stem-loop CCUCCAGGCGCAGGGCAGCCACUGCCCACCGCACACUGCGCUGCUCCGGACCCACUGUGCGUGUGACAGCGGCUGAUCUGUCCCUGGGCAGCGCGACC 44 19104 MI0005040 bta-mir-214 Bos taurus miR-214 stem-loop GGCCUGGCUGGACGGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU The mature sequence shown here was cloned by Gu et al. [2] and is consistent with that identified in rat (MIR:MI0000954) and zebrafish (MIR:MI0001381). The mature product reported by Coutinho et al. is extended by two bases at the 5' end [1]. 44 19105 MI0005041 bta-mir-22 Bos taurus miR-22 stem-loop GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGCC 44 19106 MI0005042 bta-mir-23a Bos taurus miR-23a stem-loop GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUGCCUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCGACC 44 19107 MI0005043 bta-mir-29b Bos taurus miR-29b stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG 44 19108 MI0005044 bta-mir-29c Bos taurus miR-29c stem-loop AUCUCUUACACAGGCUGACCGAUUUCUCCUGGUGUUCAGAGUCUGUUUUUGUCUAGCACCAUUUGAAAUCGGUUAUGAUGUAGGGGGA 44 19109 MI0005045 bta-mir-361 Bos taurus miR-361 stem-loop GGAGCUUAUCAGAAUCUCCAGGGGUACUUAUAAUUUGAAAAAGUCCCCCAGGUGUGAUUCUGAUUUGCUUC 44 19110 MI0005046 bta-mir-423 Bos taurus miR-423 stem-loop AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC 44 19111 MI0005047 bta-mir-425 Bos taurus miR-425 stem-loop GAAAGCGCUUUGGAAUGACACGAUCACUCCCGUUGAGUGGGCACCCAAGAAGCCAUCGGGAAUGUCGUGUCCGCCCAGUGCUCUUUC 44 19112 MI0005048 bta-mir-450 Bos taurus miR-450 stem-loop CAAAGAAAGAUGCUAAACUAUUUUUGCGAUGUGUUCCUAAUAUGUAAUCUAAAUGUAUUGGGAACAUUUUGCAUUCAUAGUUUUGUAUCAAU 44 19113 MI0005049 bta-mir-455 Bos taurus miR-455 stem-loop UCCCUGGCGUGAGGGUAUGUGCCUUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUGCCUCAAGGCCUA 44 19114 MI0005050 bta-mir-93 Bos taurus miR-93 stem-loop CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUCACCUGACCUACUGCUGAGCCAGCACUUCCCGAGCCCC 44 19115 MI0005051 bta-let-7g Bos taurus let-7g stem-loop AGGCUGAGGUAGUAGUUUGUACAGUUUGAGGGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCCACUGCCUUGCC 44 19116 MI0005052 bta-mir-10b Bos taurus miR-10b stem-loop CAGUGACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUAUCCAUGUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAAC 44 19117 MI0005053 bta-mir-24 Bos taurus miR-24 stem-loop CUCUGCCUCCCGUGCCUACUGAGCUGAAACACAGUUGAUUUGUGCACACUGGCUCAGUUCAGCAGGAACAGG 44 19118 MI0005054 bta-mir-30a Bos taurus miR-30a stem-loop CUGUAAACAUCCUCGACUGGAAGCUGUGAGGCUGCAGAAAGGCUUUCAGUCGGAUGUUUGCAGCUGC 44 19119 MI0005055 bta-mir-200b Bos taurus miR-200b stem-loop CCAUCUUACUGGGCAGCAUUGGAUGGUGUCUGGUCUCUAAUACUGCCUGGUAAUGAUGA 44 19120 MI0005056 bta-mir-7 Bos taurus miR-7 stem-loop AGACUGGAGCGGUUGUGGUCUAGUGCUGUGUGGAAGACUAGUGAUUUUGUUGUUCUGAUGUACUAUGACAACAAGUCACAGC 44 19121 MI0005057 bta-let-7a-1 Bos taurus let-7a-1 stem-loop UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCUA 44 19122 MI0005058 bta-mir-150 Bos taurus miR-150 stem-loop CCUCUCUCCUCACGGCCCUGUCUCCCAACCCUUGUACCAGUGUGUGUCUCAGACCCUGGUACAGGUACGGGGAGGCAGGGACCUGGGGGAUCCCAGCAGC 44 19123 MI0005059 bta-mir-342 Bos taurus miR-342 stem-loop UGGAAGCGGGUGCGAGGCGAGGGGUGCUAUCUGUGGUUGAGGACACGGCAAAUGAAACUGUCUCACACAGAAAUCGCACCCAUCUCCUCGGCCC The miR-342 mature product reported by Gu et al. is truncated at the 3' end [2]. 44 19124 MI0005060 bta-mir-487b Bos taurus miR-487b stem-loop UUGGUACUUGGAGAGUGGUUAUCCCUGUCCUGUUCGUUUUACUCAUGUCGAAUCGUACAGGGUCAUCCACUUUUUCAGUAUCAA 44 19125 MI0005061 bta-mir-532 Bos taurus miR-532 stem-loop GACUUGCUUUCUCUCUUACAUGCCUUGAGUGUAGGACCGUUGGCAUCUUAAUUACCCUCCCACACCCAAGGCUUGCAGGAGAGCCA 44 19126 MI0005062 bta-let-7f-1 Bos taurus let-7f-1 stem-loop UCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUUCCCUGA 44 19127 MI0005063 bta-mir-122 Bos taurus miR-122 stem-loop CCUUAGCAGAGCUGUGGAGUGUGACAAUGGUGUUUGUGUCCAAACUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGUUAGGC The mature miR-122 sequence identified by Sonstegard et al [1] has an additional C base at the 5' end, which conflicts with the draft genome sequence. 44 19128 MI0005064 bta-mir-30c Bos taurus miR-30c stem-loop CAGACUGUAACCAUGCCGUAGUGUGUGUAAACAUCCUACACUCUCAGCUGUGAGCUCGAGGUGGCUGGGAGAGGGUUGUUUACUCCUUCUGCCAUGGAAAACGUC The mature miR-30c sequence identified by Sonstegard et al [1] has an additional G base at the 3' end, which conflicts with the draft genome sequence. 44 19129 MI0005065 bta-let-7i Bos taurus let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUA The 5' terminal base of the mature let-7i sequence identified by Coutinho et al [1] is reported as C, which conflicts with the draft genome sequence that requires U as shown here. The 5' end reported by Gu et al. is shorter by 7 nts [2]. 44 19130 MI0005066 bta-mir-23b Bos taurus miR-23b stem-loop GGGUUCCUGGCAUGCUGAUUUGUGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCAC 44 19131 MI0005067 bta-mir-25 Bos taurus miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCCGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC The mature miR-25 sequence identified by Coutinho et al [1] has an additional A base at the 5' end, which conflicts with the draft genome sequence. 44 19132 MI0005068 bta-mir-34c Bos taurus miR-34c stem-loop AGUCUAGUUACUAGGCAGUGUAGUUAGCUGAUUGCUAAUAAUACCAAUCACUAACCACACGGCCAGGUAAAAAGAUU The mature miR-34c sequence identified by Sonstegard et al [1] has an A base at position 11 of the mature miRNA, which conflicts with the draft genome sequence that has G as shown here. 44 19133 MI0005069 bta-mir-363 Bos taurus miR-363 stem-loop UGUUGUCGGGUGGAUCACGAUGCAAUUUUGAUUAGUAUAAUAGGAGAAAAAUUGCACGGUAUCCAUCUGCGAAC 44 19134 MI0005070 mtr-MIR395c Medicago truncatula miR395c stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAUAUCUAUUUGGUCUAAUAUCCAUUAGAAAAGAUAGUCUUUUCUUCUAUGAAGUGUUUGGGGGAACUC 23 19135 MI0005071 mtr-MIR395d Medicago truncatula miR395d stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAUAUCUAUUUGGUCUAAAAUCCAUUAGAAAAAUAGUUCUUCUUAAAUGAAGUGUUUGGGGGAACUC 23 19136 MI0005072 mtr-MIR395e Medicago truncatula miR395e stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAUAUCUAUCUAUUUGGUUUAAAAUCCAUUAGGAUAGAUAGUUCUUCUUAAAUGAAGUGUUUGGGGGAACUC 23 19137 MI0005073 mtr-MIR395f Medicago truncatula miR395f stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAAUAUCUCUUUGGUUUAAAAUCCAUUAGAAAAGAUAGUAUUUUCUUCUAUGAAGUGUUUGGGGGAACUC 23 19138 MI0005074 mtr-MIR395g Medicago truncatula miR395g stem-loop GAGUUCCUCUGAACGCUUCAUAUAAGAGGUUAUCCAUCUUCAUUGAAGUGUUUGGGGGAACUC 23 19139 MI0005075 mtr-MIR395h Medicago truncatula miR395h stem-loop GACUUUCUCUGAACACUUCAUACAAGAGGUUAUCCAUCUAAUCUAAAAGUCAUUAGAUAUUUACGAUGGGUCGUUCUUCAAUGAAGUGUUUGGGGGAACUU 23 19140 MI0005076 mtr-MIR395i Medicago truncatula miR395i stem-loop GAGUUCCUCUGAAUGCUUCAAUCAUGAGACAAUCUAUAUGAAUAGUUCUUGUUCAAUGAAGUGUUUGGGGGAACUC 23 19141 MI0005077 mtr-MIR395j Medicago truncatula miR395j stem-loop GAGUUCCUCUGAAUGCUUCAAACAUGAGACAAUCUAUAUGGAUAGUUCUUGUUCAAUGAAGUGUUUGGGGGAACUC 23 19142 MI0005078 mtr-MIR395k Medicago truncatula miR395k stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAAUAUCUCUUUGGUUUAAAAUCCAUUAGAAAAGAUAGUAUUUUCUUCUAUGAAGUGUUUGGGGGAACUC 23 19143 MI0005079 mtr-MIR395l Medicago truncatula miR395l stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAUAUCUAUCUAUUUGGUCUAAAGUCCAUUAGAAAAGAUAGCCAUUUUUUCAAUGAAGUGUUUGGGGGAACUC 23 19144 MI0005080 mtr-MIR395m Medicago truncatula miR395m stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAUAUCUAUCUAUUUGGUCUAAAAUCCAUUAGAAAAGAUAGUUCUUCUUAAAUGAAGUGUUUGGGGGAACUC 23 19145 MI0005081 mtr-MIR395n Medicago truncatula miR395n stem-loop GAGUUCCUUUGAACGCUUCAUGCAUGAGAAUAUCUAUCUAUUUGGUCUAAAGUCCAUUAGAAAAGAUAGCCAUUUUUUCAAUGAAGUGUUUGGGGGAACUC 23 19146 MI0005082 mtr-MIR395o Medicago truncatula miR395o stem-loop GAGUUCCUCUGAACUCUUCAUCUAAAGGGCUAUAGCAAGAAAGAAAGGAAAAUCCUUGUAUGAUGAAGUGUUUGGGGGAACUC 23 19147 MI0005083 mtr-MIR395p Medicago truncatula miR395p stem-loop GAGUUCCCUUAAACAUUUCAUUAAGGACUCAAUUUCUUCUCUUCAACCUUGUUGAAGCGUUUGGGGGAACUC 23 19148 MI0005084 osa-MIR395m Oryza sativa miR395m stem-loop GAGUUCUCCUCAAAUCACUUCAGUAGAUAGCUAGCUAGGCUUCAUUGCAUUACACUGUUACAAAACUGUGAGCAUGGGGCCAAAAGCUAGUUGUAUAUAGUGAAGUGUUUGGGGGAACUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19149 MI0005085 osa-MIR395n Oryza sativa miR395n stem-loop GAGUUCCCUUCAAGCACUUCACGACGCACUAUUUAGAGAGUUGUUGUGAAGUGUUUGGGGGAACUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19150 MI0005086 osa-MIR395o Oryza sativa miR395o stem-loop GAGUUCUCUUUAAGCACUUCAUACGACACCAUUAUUGUUAGGGUUGUUAUGAAGUGUUUGGAGGAACUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19151 MI0005087 osa-MIR395p Oryza sativa miR395p stem-loop GAGUUCCCUUCAAGCACUUCACGUGGCACUAUUUCAAUGCGUACCGUGUGAAGUGUUUGGGGGAACUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19152 MI0005088 osa-MIR395q Oryza sativa miR395q stem-loop GAGUUCCCUUCAAGCACUUCACAUGACACUAUUUCAAUGUCUAUUAUGUGAAGUGUUUGGGGGAACUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19153 MI0005090 osa-MIR395v Oryza sativa miR395v stem-loop GAAUUCUCUUUAAGCACUUCAUACGACACAAUUAUUUCAAGGGUUGUUGUGAAGUAUUUGGCGGAACUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19154 MI0005091 osa-MIR395w Oryza sativa miR395w stem-loop GAGUUCUCUUUAAUCAUUUCACAUGGCACUAUUUUAAGGCCUACUGUGUGAAGUGUUUGGGGGAUUCUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19155 MI0005092 osa-MIR395r Oryza sativa miR395r stem-loop GAGUUCCCUUCAACCACUUCACGUGGCACUAUUUUAGGACCUACUAUGUGAAGUGUUUGGGGGAACUC Four clusters of rice miR395 genes are found on chromosomes 4, 8 and 9, and the gene names have been rationalised to reflect this arrangement [1]. 7 19156 MI0005093 mdv1-mir-M1 Mareks disease virus miR-M1 stem-loop UUCCCCUUUUGCUUGUUCACUGUGCGGCAUUAUUACAUUUACACCGGUAAUGCUGCGCAUGAAAGAGCGAACGGAA 48 19157 MI0005094 mdv1-mir-M2 Mareks disease virus miR-M2 stem-loop AAAAGAAAGUUGUAUUCUGCCCGGUAGUCCGUUUGUAAGGUCUUGGAACGGACUGCCGCAGAAUAGCUUUCUUG 48 19158 MI0005095 mdv1-mir-M3 Mareks disease virus miR-M3 stem-loop GCGGCAUGAAAAUGUGAAACCUCUCCCGCUAGAAAUAGAAUCUGCUGGGGGGUUCACAUUUUUAAGUUGU 48 19159 MI0005096 mdv1-mir-M4 Mareks disease virus miR-M4 stem-loop GAAGUUUAAUGCUGUAUCGGAACCCUUCGUUCGGUGACCACGAAUGGUUCUGACAGCAUGACCUUU 48 19160 MI0005097 mdv1-mir-M5 Mareks disease virus miR-M5 stem-loop UCAUGAACCGUAUGCGAUCACAUUGACACGGUUUAAAAUACAUACGUGUGUAUCGUGGUCGUCUACUGUUUGUGG 48 19161 MI0005098 mdv1-mir-M6 Mareks disease virus miR-M6 stem-loop ACGUCCUGGGAAAAUCUGUUGUUCCGUAGUGUUCUCGUGACACUAACUCGAGAUCCCUGCGAAAUGACAGUUUUCUCUGGGAAUUACAUCGUCCUGAUUGUCGCGACAUGGAAUGGAAGC 48 19162 MI0005099 mdv1-mir-M7 Mareks disease virus miR-M7 stem-loop GGAGAACUGUUAUCUCGGGGAGAUCCCGAUCUCUCCUACCAGCAACUCGAGAUCUCUACGAGAUUACAGUUUUUGGGGGAAAUGUGUCCUCAGAACUGCUUAAUCGUAGAAGCUUCCUAG 48 19163 MI0005100 mdv1-mir-M8 Mareks disease virus miR-M8 stem-loop AUUCCUACGGAAACCUAUUGUUCUGUGGUUGGUUUCGAUCUAUCGUUCUCGUACUGCGUGACCUCUACGGAACAAUAGUUUUCCAGGAGAUUUCCCGGUUUCGACUGCCGAAGCAUGGAA 48 19164 MI0005101 ath-MIR771 Arabidopsis thaliana miR771 stem-loop UAAAUUCGUCAUGAGCCUCUGUGGUAGCCCUCACAAUGAUCUCAAUAGAGUGCAUGCCACGAUCUUGUAAAGACGUAGAUGAGGGCUCCUCAGGUGUUCAUGUCGAAUGUUAG 1 19165 MI0005102 ath-MIR472 Arabidopsis thaliana miR472 stem-loop UCUGUAUGUAUGUAUGGUCGAAGUAGGCAAAAUCUCACCUUUCUAGCAGAUCAACAAUGAAUUUUGUGGAAUAGAUGUUGGAUUUGUAAGGUUUUGGUGUUUGCAAGUGUUGAGAUGCGCAAGAUUUGAGUAAGAUUUUUCCUACUCCGCCCAUACCAUACAUACACC Lu et al. named this sequence MIR772 [1]. The sequence was later shown to be homologous to poplar MIR472 (MI:MI0002354), and so is renamed ath-MIR472 here [2]. 1 19166 MI0005103 ath-MIR773 Arabidopsis thaliana miR773 stem-loop AGGAGGCAAUAGCUUGAGCAAAUAAUUGAUUGCAGAAGUCCAUCGACUAAAGCUGUCACCUGUUUGCUUCCAGCUUUUGUCUCCU 1 19167 MI0005104 ath-MIR774 Arabidopsis thaliana miR774 stem-loop UCAUUUCAGAUGGCUGUUUGGGUAACUAAUAUUUAAGAUUUUGGUCAAUUUAAGUUACCAAUUUAUAUAUUGGUUACCCAUAUGGCCAUCUCAAAUUU 1 19168 MI0005105 ath-MIR775 Arabidopsis thaliana miR775 stem-loop UUUAAACGUUGCACUACGUGACAUUGAAACUGUCUUUCAACAUUCCAAUAUUUCAACUUUCGAAUACCCAAUAUUUGGUUUGUUCAAAGACAUUUUCGAUGUCUAGCAGUGCCAAUGUUUAAA 1 19169 MI0005106 ath-MIR776 Arabidopsis thaliana miR776 stem-loop UUGGGAUUAUAGCCACGAACUCAAUAGAAUUCUUAAGAUCAUGUGAAAACGUUGACAAGAUCGUCUACGAUUUUCCAAGAUUCUAAGUCUUCUAUUGAUGUUCAUGGCUUUAACCUGA 1 19170 MI0005107 ath-MIR777 Arabidopsis thaliana miR777 stem-loop AGAGAGCAACAAAAUCAGUGUGUAUUUGUUAAGACAAAUGUUUAUAUAAGUCGUCCAUGCGUUGUACAUUUAAUCUUAACUAAUACGCAUUGAGUUUCGUUGCUUUCU 1 19171 MI0005108 ath-MIR778 Arabidopsis thaliana miR778 stem-loop CCGCCUUGGCUUGGUUUAUGUACACCGAGUAUGUUCAGCUCCAUCCUAUACAGAUUUUGGGACAUGUGCCUAGGGUUGAGGUUUCAUAUAUAGAAAGAACUGAACAAACUCGGUGUACAUAGACCAAACCAAGGCGGU 1 19172 MI0005109 ath-MIR779 Arabidopsis thaliana miR779 stem-loop AAUGAGAGUAAUAUAGUUGAAUCUUCGAAAGUAUUUCAAGAAGUCAGCUGAGCUUUCUCGUCAUCACUUAUUAGUAAAUAUAGUCUCUAUAUUUUUGAUGAGUGAUGAUUGGAAAUUUCGUUGACUCAUUACUCUUGAUGAUUCUGCUAUGUUGCUGCUCAUU 1 19173 MI0005110 ath-MIR780 Arabidopsis thaliana miR780 stem-loop CAAGAUAUCAGAUAUUUCACGAAGAUAUCUGCAUAACAGCUACGAGGAAAUUGUGAUUUUAUCGUUUCACAAACAUCAACAGCUCCAUGGAUCGUUAUGGACGGAUAAAUCACAAUCACUAUCCUUUUUCUAGCAGCUGUUGAGCAGGUUUCUUCGUGAAUAUCUGGCAUUUUG Fahlgren et al [2] identify two mature products from the same arm of the hairpin precursor, named here miR780.1 and miR780.2. miR780.2 corresponds to the sequence reported by Lu et al [1]. 1 19174 MI0005111 ath-MIR781 Arabidopsis thaliana miR781 stem-loop UCAAAUUAGAGUUUUCUGGAUACUUAUUAGUUACUAACAAAGAGAGGGCUUCUUCGAUAUUAACUUUUAAGUAUCCAGAAAACUCUAAAUUUGA 1 19175 MI0005112 ath-MIR782 Arabidopsis thaliana miR782 stem-loop AACCUUUUUCUACAAACACCUUGGAUGUUCUUUAAAUAAGAUGAAAAGGCUAUUAUUCUAAUGAACAACAUGAAGCCAAAAGAAAAUCCAAGGCGUUUGCAGAAAGAGGUU 1 19176 MI0005113 ath-MIR783 Arabidopsis thaliana miR783 stem-loop GACACUAGUCUUAACCAUAUCUUUUGUCGGAAGAUUCAGGAGAACAUGGAAGAGCAAAGAUUCUAGCAAAUCUCUUACCCAAUCAACUUCAUCACCAGAUCUUUUGUCGGAAAAUUCAGGAGAACAUGAUCGUUUGGUACGAAUACAAGAUCUGGUGAGAAUGGACGAAGAAGGAAAGAGAGACGUGUUCGUACCAAACGAUCAUGUUCUCCUGAAUCUUCCGACAAAAGAUCUGGUGAUGAAGUUGAUUGGUUAAGUGAUUUACCAGAAGCUUUGCUCGUUCAUGUUCUCCUGAAUCUUCCGACAAAAAAUGUGGUUAAGACUAGUGUCU 1 19177 MI0005114 ptc-MIR171k Populus trichocarpa miR171k stem-loop GAUACUGGCUCGGUUCAACCUCAUCGUAGUCUUGAUGAAUGAUUCAAAUCUAUGGUUGGAUUGAGCCGCGCCAAUAUC This sequence is a predicted homolog of a verified miRNA in Arabidopsis (E. Bonnet, pers. comm.). 26 19178 MI0005115 ptc-MIR403c Populus trichocarpa miR403c stem-loop GGUUUGUGCGUGGAUCUGAGGCCAUCACAACCGUCCACUACACGACCACCCAAUGGCUUUAGAUUCACGCACAAACUCG This sequence is a predicted homolog of a verified miRNA in Arabidopsis (E. Bonnet, pers. comm.). 26 19179 MI0005116 hsa-mir-765 Homo sapiens miR-765 stem-loop UUUAGGCGCUGAUGAAAGUGGAGUUCAGUAGACAGCCCUUUUCAAGCCCUACGAGAAACUGGGGUUUCUGGAGGAGAAGGAAGGUGAUGAAGGAUCUGUUCUCGUGAGCCUGAA 5 19180 MI0005117 hsa-mir-768 Homo sapiens miR-768 stem-loop CUGUGCUUUGUGUGUUGGAGGAUGAAAGUACGGAGUGAUCCAUCGGCUAAGUGUCUUGUCACAAUGCUGACACUCAAACUGCUGACAGCACACGUUUUUCACAG 5 19181 MI0005118 hsa-mir-770 Homo sapiens miR-770 stem-loop AGGAGCCACCUUCCGAGCCUCCAGUACCACGUGUCAGGGCCACAUGAGCUGGGCCUCGUGGGCCUGAUGUGGUGCUGGGGCCUCAGGGGUCUGCUCUU 5 19182 MI0005119 sme-bantam-a Schmidtea mediterranea bantam-a stem-loop UAUUGGUUUUACUAGUGAUCUAAGAAUGAUAUAUAAAAAUCUGAGAUCACUAUGAAAGCUGGUA 47 19183 MI0005120 sme-bantam-b Schmidtea mediterranea bantam-b stem-loop CUUUAAAAACCGGUUUUCGUUGAGAUCUUAGAUAUAUUCAUCUGAGAUCACUGCGAAAGCUGAUUAUGAAGUCGCUUUC 47 19184 MI0005121 sme-bantam-c Schmidtea mediterranea bantam-c stem-loop UAGUUUAAAGGCUUUCAUUAUGAUUUUAAAAUGUUAUUUUGAGAUCAUUAUGAAAGCUUUUUACUG 47 19185 MI0005122 sme-let-7a Schmidtea mediterranea let-7a stem-loop AUCAAAUUCAUGAGGUAGAAUGUUGGAUGACUAAGGUAAAGGUAACAUAUCAGAGCUGUUCAAUUUUCUGCCUUUAAAAUUUGAU 47 19186 MI0005123 sme-let-7b Schmidtea mediterranea let-7b stem-loop GUAACAUUAACAAUUGAGGUAGAUUGUUGGAUGACUUAAUUUUAAAGCCAUUCAACUAUCUGUCUUCUCUUGUUAAAUUAC 47 19187 MI0005124 sme-let-7c Schmidtea mediterranea let-7c stem-loop UCAUACUAACUAGAUGAGGUAGUGACUCAAAAGGUUGAAGAAAUACAUCAAAUGGAGUAAAACCUUUUGUUUCUCUAGCUUUAUCAGUUAUAUGA 47 19188 MI0005125 sme-lin-4 Schmidtea mediterranea lin-4 stem-loop AUCAGUUAUAAUCUCCCUGAGACCUUCGACUGUGUUUGACCAUUAAAUUAUCAGAAAUGAUUGCACAGUCGAUGAUCAUAGGGUUAAAAUAGCCGAU 47 19189 MI0005128 sme-mir-1a Schmidtea mediterranea miR-1a stem-loop AGCGAGCAUUUUUCGAGGCAUUUCAUAGAGUCAAAUGAAAAUAAACCUGUGGAAUGUCGAGAAAUAUGCAUGCU 47 19190 MI0005129 sme-mir-1b Schmidtea mediterranea miR-1b stem-loop AACAACACACGGGCAUAAUUCAAGAUAUUCGAUAGGGUUUUUGGUAACUAAUGGAAUGUCGUGAAUUAUGGUCUUCAUUGUU 47 19191 MI0005130 sme-mir-1c Schmidtea mediterranea miR-1c stem-loop GUUACGUGAGGUGCACAUUAUUCAAAACAUUGAAUCACAUCGAACUGUGGAAUGUUGUGAAUAGUGUCACAGACGUAAU 47 19192 MI0005131 sme-mir-2a-1 Schmidtea mediterranea miR-2a-1 stem-loop GUUCAUUUAUGUGAGUUCCAGUGUGCUAUGAUGUAUAUUUCUAAAAAUUUCUAUAUAUCACAGCCCCGCUUGGAACGCUAAUUAAUGAAU 47 19193 MI0005132 sme-mir-2a-2 Schmidtea mediterranea miR-2a-2 stem-loop GUUCACUUAAUUGAGUUCUACGGUGUUGUGAUAUAAUGAUUAUUUAUAUCACAGCCCCGCUUGGAACGCUAAAAUAUGAAU 47 19194 MI0005133 sme-mir-2b Schmidtea mediterranea miR-2b stem-loop GGUUAUUGCUUUCAUCAUUGUUGGUUGUCAGUUAUUGUAUUCAAUAUCACAGCCAAUUUUGAUGAGAUGAGAUAGCU 47 19195 MI0005134 sme-mir-2c Schmidtea mediterranea miR-2c stem-loop UUUCUUUUUCAAAUACAAAAAUCAUCAAUUUGGUCUGUUAUAAAUGGCUUUUAUCACAGCCAAAACUGAUGAUCUUAUAAAUUUGUCAAACAU 47 19196 MI0005135 sme-mir-2d Schmidtea mediterranea miR-2d stem-loop GUGACAUUUUGCCUCUUACGGACAUCAUUAUUUGACUGUCGAUAGAUAUUGGUAACAUUAUUUUGGUAGUAUCACAGCCAAAUUUGAUGUCCUAAAUAAGGUAGUCAC 47 19197 MI0005136 sme-mir-7a Schmidtea mediterranea miR-7a stem-loop CAUAAUUUGGAAGACUAUUGAUUUAGUUGAAUUGGUUAAUUUAGUUUCAACUGAUUCUAGUCAUCCUUAUG 47 19198 MI0005137 sme-mir-7b Schmidtea mediterranea miR-7b stem-loop GGAAUAACACAGAAAAAUAAUCAUGGAAGACUGUCGAUUUCGUUGUCAGAGCAUUUUUAAAUGUAACAACGAUUUUGAUAAUCUUCCUGGAUUUUUUUGUUGAAACUUCU 47 19199 MI0005138 sme-mir-7c Schmidtea mediterranea miR-7c stem-loop UGAAUAAGUUUAAUAUUUUGUGGAAGACUGAUGAUUUGCUGAACGCAUGCAGCCAGCGGGUCUUCUUUCUUCUCAUUAUAUUUUAUUAAUCA 47 19200 MI0005139 sme-mir-8 Schmidtea mediterranea miR-8 stem-loop AAUGACAUCGAAUCAGACAGUUUAAGACAGAAUUUAAUAAAAUCUAAUACUGUCAGGUAACGAUGCCAUU 47 19201 MI0005140 sme-mir-10 Schmidtea mediterranea miR-10 stem-loop CUGUCACCGAUCUGAACCCUGUAGAUCCGAGUUUGAUUAAUGCCAAUGUUGAGUUUUGAAGCAUUUCAAUCAAAAUCGAAUCUUCAAGGUGAAGCUGGUGAUAG 47 19202 MI0005141 sme-mir-12 Schmidtea mediterranea miR-12 stem-loop AUUUUAUCCAUCGCUCACUGAGUAUUCUAUCAGGAGUCGAAAAAUGCGUUAAGUUAACUAACGUUUCGUCUCUUGAUGGUUUACUUAAUAAGCAAAGGAUUUUU 47 19203 MI0005142 sme-mir-13 Schmidtea mediterranea miR-13 stem-loop GAGCCUUUGGCGGCUGUGAUAUGAUAAUUAUAUCAUAUCACAGUCAUGCUAAAGAGCUU 47 19204 MI0005143 sme-mir-745 Schmidtea mediterranea miR-745 stem-loop AUUAACUCUGUGAUGAUACGCUCUUACCAGCUAGAAUGCUGAUAAUUUACCACAUGCUGCCUGGUUAAGAGCUGUGUCAAACACCUUUCAAAC 47 19205 MI0005144 sme-mir-746 Schmidtea mediterranea miR-746 stem-loop UGAUAAUUCGCAUAACAUCUAGCCGGAUAAAUCCUGUGUGCAUUGAUAGAAAGUGAAAUGAUUUUAUUCAUAAGAUCUACCAUAUCUAGCACCAGGGUAUAUCGGGAUUGAAACGAACAUGAUCAUCA 47 19206 MI0005145 sme-mir-31a Schmidtea mediterranea miR-31a stem-loop UUUUAUUGUUAUGUUUUAAGGCAAGAUGUUGGCAUAACUGACAACAAUUCGAAAGGAUUAAUUUCAGUUACGUUAGCACUUACCAGAUAGCAAAACAAA 47 19207 MI0005146 sme-mir-31b Schmidtea mediterranea miR-31b stem-loop AUUGAUAAUGACAAGGCAAGAUGCUGGCAUAGCUGAUAAACUAUUUAUUACCAGCUAUUCAGGAUCUUUCCCUGAAUAUAUCAAU 47 19208 MI0005147 sme-mir-36 Schmidtea mediterranea miR-36 stem-loop AGCCACAGUGUUUUGAUGCAUGCUACUUGGUUUUGUUGUUAUUAUAUUAACAUCACCGGGUAGACAUUCAUUAUACAACUGUUGUU 47 19209 MI0005148 sme-mir-61 Schmidtea mediterranea miR-61 stem-loop UUUUUAGAAUAGAAACUCUUGAUACAGUUUGUGAGUUUCUAGGCAUAUAGAUUUUUCUAUGACUAGAAAGUUCACUUACUGUUGUACGAGUUUUAAACUUCAUU 47 19210 MI0005149 sme-mir-71a-1 Schmidtea mediterranea miR-71a-1 stem-loop AUUUUAAAUGCAUGAAUGAAAGACACGGGUAGUGAGAUAAGCUAUAUAUCAUCUCAUUGCCAAUGUCUUUUAAACGUGUUAUUU 47 19211 MI0005150 sme-mir-71a-2 Schmidtea mediterranea miR-71a-2 stem-loop UUGGAUAUAACUGAAAGACACGGGUAGUGAGAUAUGGAUUUUUCAUCUCUAUAUUCGUGUCUUUCAUAUUUAUUCACG 47 19212 MI0005151 sme-mir-71b Schmidtea mediterranea miR-71b stem-loop UGAUUCAGUACUCUUUGAAAGACACAGGUAGUGGGACAGAUAUUAUCUAAUAAAAGCUUGUCCUUCUAAUGUGUUUUUCGAAAACCAUUGAAUCAAUCAU 47 19213 MI0005152 sme-mir-71c Schmidtea mediterranea miR-71c stem-loop GUAGUUUUCUUGAAAGACAUGGGUAGUGAGAUUAUUUAAAUUAAAUAUUUAAAAUCUCAUUAUUCAAGUUUUUCUUAUAAGC 47 19214 MI0005153 sme-mir-79 Schmidtea mediterranea miR-79 stem-loop UUGAAACAUAAUCUCUUCUUUGGUCAUCUGGCUUUGUGAUAGAGAAAUUAUCAUCGUAAAGCUAAAUUACCAAAGUGCUAGAAAAUGUUGGAU 47 19215 MI0005154 sme-mir-87a Schmidtea mediterranea miR-87a stem-loop UUUGCCAGUAUUUCAACACUUGGUAAUUUGCUCAAACCAAUGUCCGAAAAGGAGUCUGGUGAGCAAAGUUUCAAGUGUAUAUAUGUGGCAUUAAA 47 19216 MI0005155 sme-mir-87b Schmidtea mediterranea miR-87b stem-loop UUCAUUGAUGCGUUGAUGCUUCAUUCGAAAUUUUGCUCAAAUCCAUUUUGAUAAUAAUAAUUUUCGAUGGUGAGCAAAGCUUCAAAUGAGAUUUCACGGAAUUCGGUC 47 19217 MI0005156 sme-mir-92 Schmidtea mediterranea miR-92 stem-loop AAUUGCUAAAUGGUAAAUAUCUAGUGCAAGUCUACAGGUGAAUUUCUUUUUAGAUUGCACUAGUUAAUUAUCAUCAUACAAUUU 47 19218 MI0005157 sme-mir-124a Schmidtea mediterranea miR-124a stem-loop UUCAAUCAGAUGUGCUUUUAACGCGGAGCUUUAGUAAUUUAACAUGUAUACUAAGGCACGCGGUGAAUGCUUACUUGAUUGAG 47 19219 MI0005158 sme-mir-124b Schmidtea mediterranea miR-124b stem-loop GUAUCCAUGAAAAUUUGCAUUUACAACGUGUCUUUAGUUCAUGUGACACUAAGGCACGCGGUGAAUGCUGAAUUAAAUGGUUUA 47 19220 MI0005159 sme-mir-124c Schmidtea mediterranea miR-124c stem-loop UGAUCCUAUUCUUUACUAGCGCUCACCUCGUGACCUUUGUCAGUGUUGGACUAAGGCACGCGGUGAAUGCCAGAUGAAAGGAUGA 47 19221 MI0005160 sme-mir-125a Schmidtea mediterranea miR-125a stem-loop CUGUUGUCUGUAUUUAUAUCCCUGAGACCAUUGACUGCAUUUGUUUGAGGUUUCAAUGUAGUUUUUGGUAUCAGGAUUGUGGAUAUGGAGCAUUC 47 19222 MI0005161 sme-mir-125b Schmidtea mediterranea miR-125b stem-loop GCAAGUUAUUCGACAUCCCUGAGAUCAUAAUAUGCCUGAGAUUUGAACGCAAACCGGUAGAUUAUUGUCUCAGAGUAAUUGAUAAACUGCA 47 19223 MI0005162 sme-mir-133 Schmidtea mediterranea miR-133 stem-loop AAAACACUUUUGUAUUUGCUGCUAGAUGGUGAAUCAAAACCGUUUGGGUCUUGGUCCCCAUCAACCAGCAAUUUUCAAGUGUUUAUC 47 19224 MI0005163 sme-mir-184 Schmidtea mediterranea miR-184 stem-loop GAUUUUCAUUAACUCCUUUGUGUAUCUCCGUUUCACAUUUAUUAUAUCAUUUAUACUGGACGGAGGUUUGCUAAGGAAUAUUUGAAAAUU 47 19225 MI0005164 sme-mir-190a Schmidtea mediterranea miR-190a stem-loop GAUUAACUUCGAGAUAUGUUUGGUUAAUUGGUGAUAGGUAACCACCACUGACCGAGCAUAUCCAGUUGUUAAUU 47 19226 MI0005165 sme-mir-190b Schmidtea mediterranea miR-190b stem-loop GCACUUCAAAUCGUGAUAUGUUUGGUUUAUUGGUGAGUGUAAACUGAUUUCUAACACCAUUAGCCUAAUGUAUCGUGUCAUUGAGUGC 47 19227 MI0005166 sme-mir-747 Schmidtea mediterranea miR-747 stem-loop UCAGUUCUGUUCAUAAUCUCAUCUGGUAAUUGAAGUGAUCUAUUUUUUAAAAAAAGAAACUUCAUUAUCAUUUCAGAUUGUAAUCGAAAUGA 47 19228 MI0005167 sme-mir-219 Schmidtea mediterranea miR-219 stem-loop CGGUAAUUUAUUGCUGAUUGUCCAUACGCAGUUCUCAAGGUCUAGAAUCGACGAAUUGCCGUUUAAGAAUUGCGAAUGGUCAUCAACAAUAAUUGCUG 47 19229 MI0005168 sme-mir-277a Schmidtea mediterranea miR-277a stem-loop UGGUAAACUGUUUUCUUUACGUAUUCGUUGGAGCAUUUUUACAAACAAAAUGUAUAAAUGCACUAUCGGAUAUGACAUAGAUACAGUUUAA 47 19230 MI0005169 sme-mir-277b Schmidtea mediterranea miR-277b stem-loop GGUUGUAUUGAUCUUGAUCAGAAAUGCAGCUUCAGAGAAAUCACUGUGAAAAUGCAUUAUCUGGCCAAGAAAAUGAAGCCU 47 19231 MI0005170 sme-mir-277c Schmidtea mediterranea miR-277c stem-loop AUCAUUUAUAUUAAUCAUAUCAGAUUUGCAUUAUUAUUAUGAAUUAAACAUCAAUAAAUGCAUUAUCUGGUAUGAUAUUUGAAAUGAU 47 19232 MI0005171 sme-mir-278 Schmidtea mediterranea miR-278 stem-loop GGUCGUGAUCUUUGACUUCGAAUGCUAUUUUCACCAGAUGCUUGUUCAAGUUCAACAGUCAAGCUCGGUGGGAGUAACAUUCGAAAUUAAUUACGAUC 47 19233 MI0005172 sme-mir-281 Schmidtea mediterranea miR-281 stem-loop UUACAGCUUACAAUGAAGAGCUAUUCAUGAGGUGCAGUAUAAUGACAAUUUCAUCUGUUCCCCAUGUCAUGGAUAUGCUCUUCAUAAAAGCUAUAA 47 19234 MI0005173 sme-mir-67 Schmidtea mediterranea miR-67 stem-loop GUGUAAUAUUAGCCUCAUUCUAUGGGUUGUUAUGAUGCAAUAUCAUCACAACCUCCAUGAACGAGGGUAAUCGACAUG 47 19235 MI0005174 sme-mir-748 Schmidtea mediterranea miR-748 stem-loop CAAUCACAUUAUGUCCUUAUUAUAUUGCUGUCAAGUAAGCACUACUGGACGGAAGUGUAAUGAGGGUAAAAUUGUGAAA 47 19236 MI0005175 sme-mir-749 Schmidtea mediterranea miR-749 stem-loop AUCGCUGGGAUGAGCCUCGGUGGUCCGGGGUGCAGGCUUCAAACCUGUAGUCGGUUGACACCGAAGUGGUUCGAUUCCACCUUUCCAGCGAU 47 19237 MI0005176 sme-mir-750 Schmidtea mediterranea miR-750 stem-loop AUUGAAAUCAGAUUUUCAGCACUGGAAGGUUUGGUUUAGCUGCUGUGCACCGUCAUGUCGACACAGUCAGAUCUAACUCUUCCAGUUCUAAAGCUGAUAGCGAAC 47 19238 MI0005177 sme-mir-751 Schmidtea mediterranea miR-751 stem-loop ACUAAUUUUGUUUUCUUGUAAACUCCGAUAGAAUGAUUCAUAAGAUUGACUAUAAAACAUGUUUGAAUGGCCAUGACAAAGUAUU 47 19239 MI0005178 sme-mir-752 Schmidtea mediterranea miR-752 stem-loop AUUGAUUAUAGUUAUCUAAUUUGAAAACCUCCAAAGUGAUUGUGAAUAAAAGUUUUAUUAAUUUAAUCACAGUCAGCAUUGGUGGUUUGAAAGUAGAGUGAUCUUACAAUCGAA 47 19240 MI0005179 sme-mir-753 Schmidtea mediterranea miR-753 stem-loop UAAAGUAUAUUUUAGAGCUUGGAUUGUGAUCUCAUAUAUUUAUGAGAUCAUUAUUCAAGCUCUUAAAUAAUACUUUU 47 19241 MI0005180 sme-mir-754 Schmidtea mediterranea miR-754 stem-loop ACCCAGCAUGUUGCUUGGGGUUAUUACUAUAUUUAUUAAUAUAGUUUUAUCUUCAAGCAAUAUCAGAUGAGGA 47 19242 MI0005181 sme-mir-755 Schmidtea mediterranea miR-755 stem-loop UUUCUGUAGUGGAGCUAUUGUAUUUCACCGUGGUUGGCUAUCGUGAGAUUCAAUUACUCCAACUACGAUUUA 47 19243 MI0005182 sme-mir-756 Schmidtea mediterranea miR-756 stem-loop UAAAAGUUGGGAUAAAUCGAUAUGUGGUAAUUUGGAUGACAUAAUUAACUUUGUAAUCUCAUCCAUCUUAUCAUUUAUCAAAAUAUUCUGACAUG 47 19244 MI0005183 sme-mir-277d Schmidtea mediterranea miR-277d stem-loop AAGCAUCAAAAAUGUUGGUUAGUUGUGCAUUUUCAUUAAAUAUUAUGUAAAUGCAUUUAUCUGGCCAAGAAAUAGUUGCUU 47 19245 MI0005184 cel-mir-784 Caenorhabditis elegans miR-784 stem-loop UUCGACGUCCACGUGGCACAAUCUGCGUACGUAGAAAGAUCAAAAAGUCACUUCUAUGUACAAAUGUUGCGCUGCCUGGCACAGUGAA 3 19246 MI0005185 cel-mir-785 Caenorhabditis elegans miR-785 stem-loop GCUCUUUUUCUCACCCAUCAGCACAGAAUUUUUCGCUAACAGAAACCUCAAAACAAUGUAAGUGAAUUGUUUUGUGUAGAUGGUGGAAAUGAGC 3 19247 MI0005186 cel-mir-786 Caenorhabditis elegans miR-786 stem-loop GGGAUAGUUCCCGAUCGAAUAUCAGUUGGGGUAUUUACAAAAAGACAAAAUUGUAAUGCCCUGAAUGAUGUUCAAUCGGUGAUGAAUCUC 3 19248 MI0005187 cel-mir-787 Caenorhabditis elegans miR-787 stem-loop GAUGUAUCAGUGGACGAAAGAUACAUACGAUCUUACAUCUUCAAAAUGGUAUGUAAGCUCGUUUUAGUAUCUUUCGUCUCUGAUCACAUU 3 19249 MI0005188 cel-mir-788 Caenorhabditis elegans miR-788 stem-loop GCUCACUUUUCCGCUUCUAACUUCCAUUUGCAGAGUUCAAGUAAUCUGGAAAUGGAUUAGAAUCGUGGAAAAGUUAGU 3 19250 MI0005189 cel-mir-789-1 Caenorhabditis elegans miR-789-1 stem-loop UGUCCUGAAGGCAGGCAAUUGAUGACCCAGACAAGGACUAAUCAAGAUUGUCGAUCUAGUCCCUGCCUGGGUCACCAAUUGUCGGCCCCCGCGGGCA 3 19251 MI0005190 cel-mir-789-2 Caenorhabditis elegans miR-789-2 stem-loop UGUCCUGAAGGCGGACAAUUGAUGACUCAGGCAGGGACUAAUCAUGAUUGUCGAUUUAGUCCCUGCCUGGGUCACCAAUUGUCGGCCCCCGCGGACA 3 19252 MI0005191 cel-mir-790 Caenorhabditis elegans miR-790 stem-loop GCCGGCUUGGCACUCGCGAACACCGCGAUUUCACUUAUAACUCGCGGCGUUAGCUCUGUGUCAAACCGGC 3 19253 MI0005192 cel-mir-791 Caenorhabditis elegans miR-791 stem-loop GAACCUUCGAUUACCUUAUCCGUUGUAGCCAAAGUUCAACGAAGCGGCAACUUUGGCACUCCGCAGAUAAGGCAAUCGAUUGUUU 3 19254 MI0005193 cel-mir-792 Caenorhabditis elegans miR-792 stem-loop AAGUUGGUCAACGUUUGAGAGUUCAAAAGAUUUAGCAAUUUUAUACGAGUGAAAUUGAAAUCUCUUCAACUUUCAGACGUUUUCUGAUUU 3 19255 MI0005194 cel-mir-793 Caenorhabditis elegans miR-793 stem-loop UGGUUGGUAAAAGUCUGUUUAACUAUUGUACAUCACAAUUUUCACUGCGAAAAAUUGAGGUAUCUUAGUUAGACAGACAUAUACUACAACCA 3 19256 MI0005195 cel-mir-794 Caenorhabditis elegans miR-794 stem-loop CUGAGCGUGUCUCUUGAGGUAAUCAUCGUUGUCACUUCGCAAAGUUGGAAUUGAAAACGUUGUCUAUCUCGAAAGGCUUAUCAG 3 19257 MI0005196 cel-mir-795 Caenorhabditis elegans miR-795 stem-loop GAAACGUUACCUGCUGAGGUAGAUUGAUCAGCGAGCUUGAUACCCCGUUCAAAAUCGUGAUCAGUAUACUUCGUCAGGCAGCUUGUUUU 3 19258 MI0005197 cel-mir-796 Caenorhabditis elegans miR-796 stem-loop ACUCUAAUGACAAGCUGGAAUGUAGUUGAGGUUAGUAAAAGCACUAUACUUGUUACAAACCUUGCCACGUUCCGACUUGUCAAAAGAGU 3 19259 MI0005198 cel-mir-797 Caenorhabditis elegans miR-797 stem-loop CGUCCAAUGGACGAUAUCACAGCAAUCACAAUGAGAAGAAUACAUCUAGAUACUCUUUUCAUUGGUUUCUGUGAAAUCGUAUUUGAAUG 3 19260 MI0005199 cel-mir-798 Caenorhabditis elegans miR-798 stem-loop UACUGUUUCAUGUAGGUGUUAAAGUUUGUACAAGAAGUUAGUUUUCUGUUAAGCCUUACAUAUUGACUGAGCAGUA 3 19261 MI0005200 cel-mir-799 Caenorhabditis elegans miR-799 stem-loop GUUUUUCAAUUUUUUUCACCGGUUUUAAAAAGUGGUUUCACAUUCAAUAAAGACAUGUGAACCCUGAUAAAGCUAGUGGAAAUAUCGGAAAAC 3 19262 MI0005201 cel-mir-800 Caenorhabditis elegans miR-800 stem-loop ACGGCGGCUGACAAUUUCCGAGUUAGGCCACUCUUAUAAUCAGUGGCCAAACUCGGAAAUUGUCUGCCGCCGU 3 19263 MI0005203 mmu-mir-804 Mus musculus miR-804 stem-loop CCCUACACAUCCAUCUUUGAGGUUACAACUUCCCCAGUAGACUGUUUCCUGACAUUCCUUGUGAGUUGUUCCUCACCUGGAAGAUGUGGUGGCGG 6 19264 MI0005204 mmu-mir-805 Mus musculus miR-805 stem-loop GUCAUAUUUUGGGAACUACUAGAAUUGAUCAGGACAUAGGGUUUGAUAGUUAAUAUUAUAUGUCUUUCAAGUUCUUAGUGUUUUUGGGGUUUGGC 6 19265 MI0005205 mmu-mir-741 Mus musculus miR-741 stem-loop UUGAUCUACGUAGAUUGGUACCUAUCAUGUAAAUCAUGUAAGCAUGAGAGAUGCCAUUCUAUGUAGAUUAA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 19266 MI0005206 mmu-mir-742 Mus musculus miR-742 stem-loop UGCUCUACUCACAUGGUUGCUAAUCACGUGAAGUGUAGGUGAAAGCCACCAUGCUGGGUAAAGUA 6 19267 MI0005207 mmu-mir-743a Mus musculus miR-743a stem-loop CUGUAUUCAGAUUGGUGCCUGUCAUGUUUAUAAGAAUGAAAGACACCAAGCUGAGUAGAGUA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 6 19268 MI0005209 osa-MIR807a Oryza sativa miR807a stem-loop AACCACACUAUCAAUAAAUAGAUUCACCCGUGAGAUGACUUGGUUGUUCCACAUAGGACAAUGACAUGCAUCCUAUUACCAGCCAUCUCAUGAAAUUAAUAGGAUGCCACGUCGACUUGGUUGUUCCACAUAGGACAAUGACAUGCAUCCUAUUACCAGCCAUCUCAUGAAAUUAAUAGGAUGCCACGUCCUCAUCCUAGGUAAAAUAACCACGUCAUCUCACAGGUGAAUCCAUUCAUUGAUAUUGUGGUU miR807 was misnamed miR562 by Luo et al [1]. 7 19269 MI0005210 osa-MIR806a Oryza sativa miR806a stem-loop UACGUAUAUACUCUCUCCGUUUCAAAAUGUUUGACACCGUUGACUUUUUAAAUACGUGUUUGACCAUUCGUCUUAUUCAAAAAAUUUAAGUAAUUAUUUAUUCUUUUCAUACAUUUGAUUCAUUGUUAAAUAUACUUUCAUGUACACAUAUAGUUUUACGUAUUUCAAAAAAAAAUUUAAUAAGACGAACGGUUAAACAUGUGCUAAAAAGUCAACGGUGUCAAACAUUUUAAAACGGAGGGAGUAUUUGUG miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19270 MI0005211 osa-MIR806b Oryza sativa miR806b stem-loop UCAAAAUGUUUGACACCGUUGACUUUUUAAGUACGUGUUUGACUAUUCGUCUUAUUCAAAAAAAUUUAAGUAAUUAUUUAUUCUUUUUAUAUCAUUUGAUUCAUUGUUAAAUAUACUUUCAUGUACACAUAUAAUUUUACAUAUUUCACAAAUUUUUUUUAAUAAGACGAACAGUCAAGAAUGUGCUAAAAAGUCAACGGUGUCAAACAGUUUGA miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19271 MI0005212 osa-MIR806c Oryza sativa miR806c stem-loop GAAGAUAGCUUGUAAUGUACUCCCUCCGUUUCAAAAUGUUUGACACCGUUGACUUUUUAGUACGUAUUUGAUCAUUCGUCUUAUUCAAAAAAUUUAAGUAAUUAUUUAUUUUUUUCAUAUCGUUUGAUUUAUUGUUAAAUAUACUUUCAUGUACACAUAUAGUUUUACAUAUUUCAUAAAAUUUUUUGAAUAAGACGAAUGGUCAAACAUGUGCUAAAAAGUCAACGGUGUCAAACAUUUCGAAACGGAUGGAGUAUUUAUUGUAACUUU miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19272 MI0005213 osa-MIR806d Oryza sativa miR806d stem-loop CUCCCUCCGUCCGAAAUACUCCCUCCUUUCAAAAUGUUUGAUACCGUUGAGUUUUUAAUACGUGUUUGACCAUUCGUUUUAUUCAAAAAAUUUAAAUAAUUAUUUAUUCUUUUCAUAUCAUUUGAUUCAUUGUUAAAUAUACUUUCAUAUGCACAUAUAGUUUUACAUAUUUCACAAUUUUUUUAGAAUAAGACUAACGGUCAAACAUGUGCUAAAAAGUCAACGGUGUCAAACAUUUUAAAACGGAGGGAGUAUAAGGGAUUUUAGGUGG miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19273 MI0005214 osa-MIR806e Oryza sativa miR806e stem-loop UUAGGUAAUACUCCAUCCGUUUCAAAAUGUUUGACGCCGUUGACUUUUUAGCAUAUGUUUGACCGUUCGUCUUAUUCAAAAAAUUUAAGUAAUUAUUAAUUCUUUUCUUAUCAUUUAAUUUAUUGUUAAAUAUAUUUUUAUGUAGGCAUAUAAUUUUACAUAUUUCACAAAAGUUUUUAAAUAAGACGAACGGUCAAACAUGUGCUAAAAAGUCAACGGUGUCAAAUAUUUCGAAACGGAGGGAGUGUGGUUUAG miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19274 MI0005215 osa-MIR806f Oryza sativa miR806f stem-loop AUACUCCCUCCGUUUCGGAAUGUUUGACGCCGUUGACUUUUUAUUACAUGUUUGACCGUUCGUCUUAUUCAAAAAAUUUUGACACUUAAUAAUUCUUUUCCUAUCAUUUGAUUCAUUGUUAAAUAUAUUUUCAUGUAGGCAUAUAAUUUUACAUAUUUCAUAAAAGUUUUUGAAUAAGACGAACAGUCAAACAUGUGCUAAAAAGUCAACGGUGUCAAAUAUUUCGAAACGGAGGGAGUAU miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19275 MI0005216 osa-MIR806g Oryza sativa miR806g stem-loop UGCUCCCUCCGUUUCAAAAUGUUUGACACCGCUGACUUUUUAGUACGUGUUUGAUCAUUCGUUUUAUUCCAAAAAAAUUAAGUAAUUAUUUAUUCUUUUUAUAUCAUUUGAUUCAUUGUUAAAUAUACUUUCAUGUACACAUGUAGUUUUACAUAUUUCACUAACUUUUUUGAAUAAGACGAACGGUCAAACAUGUGCUAAAAAGUCAACGGUGUCAAACAUUUUGAAACGGAGGGAGUA miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19276 MI0005217 osa-MIR806h Oryza sativa miR806h stem-loop CUGAAAUAGAUAGUACUCCCUCCGUUUCGAAAUGUUUAACGCCGUUGACUUUUUAUCAUAUGUUUGACCGUUCGUCUUAUUCAAAAAAUUUAAGUAAUUAUUAAUUCUUUUCCUAUCAUUUGAUUCAUUGUUAAAUAUAUUUUUAUGUAGGCAUAUAAUUUUACAUAUCUCACAAAAGUUUUUGAAUAAGACGAAUGGUCAAACAUGUGCUAAAAAGUCAACGGUGUCAAACAUUUAGAAACGGAGGGAGUAGUAUGUUUAUUCGCUUCAG miR806 was misnamed miR561 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19277 MI0005218 osa-MIR807b Oryza sativa miR807b stem-loop GAAUUGAUUCACCUGUGAUAUGGCGUGGCUGUUCCACUUAUGAUGAGGACAUGGCAUCCUAUUACCAGCCAUCGCACAAAAUUAAUAGGAUGCCAUAUUCUCGUCCUAGGUGUAACAACCACGUCAUCUCACAGGUGAAUCCAUUU miR807 was misnamed miR562 by Luo et al [1]. 7 19278 MI0005219 osa-MIR807c Oryza sativa miR807c stem-loop AUAAAAUCAUACUAUCAAUGAAUGGAUUCACCCGUGAUAUGACGUGGUUGUUCCACUUAGGACAAGAACGUGGCAUCCUAUUACAAGCCAUCGCACAAAAUCAAUAGGAUGCCACGUCCUCAUCAUAGGUGGAACAACCACGUCAUCUCACAGGUGAAUCCAUUCAUUGAUAGUGUGGUUUUGU miR807 was misnamed miR562 by Luo et al [1]. 7 19279 MI0005220 osa-MIR808 Oryza sativa miR808 stem-loop ACUUCCUCCGUUUCACAAUGUAAGUCAUUCUAGCAUUUUCCACAUUCAUAUUGAUGUUAAUGAAUCUAGAUAGAUAUAUAUGUCUAGAUUCAUUAACAUCAAUAUGAAUGUGGGAAAUGUAAGAAUGACUUACAUUGUGAAAUGGAGGGAGU miR808 was misnamed miR564 by Luo et al [1]. 7 19280 MI0005221 osa-MIR809a Oryza sativa miR809a stem-loop UGUACUCCUUCCGUUUCACAAUGUAAGUCAUUAUAGCAUUUUUCAAAUUCAUAUUGAGGUUAAUGAAUCUAUAUAGAUAUAUAUAUGUCUAGAUUCAUUAACAUCAAUAUGAAUGUGAGAAAUGUUAGAAUGACUUACAUUGUGAAAUGGAGGGAGUAACA miR809 was misnamed miR565 by Luo et al [1]. 7 19281 MI0005222 osa-MIR809b Oryza sativa miR809b stem-loop UUGUUCUAAAUACUUCCUUUUUCACAAUAUAAGUCAUUCUAGCAUUUCCCACAUUCAUAUUGAUGUUAAUGAAUCUAGAUUGAUGUUACAUCAAUAUGAAUGUGAGAAAUGUUAGAAUGACUUACAUUGUGAAACGGAGGGAGUAGUUGCAA miR809 was misnamed miR565 by Luo et al [1]. 7 19282 MI0005223 osa-MIR809c Oryza sativa miR809c stem-loop AUACUCCCUCCAUUUCACAAUAUAAGUCAUUCUAGCAUAUCCUAUAUUCAUAUUAAUAUUAAUGAAUCUAGAUAUAUAUAUUUAUAUAAAUUCAUUAACAUCAAAUGAAUGUGAGAAAUGUUAGAAUGACUUACAUUGUGAAAUGGAGGAAGUAU miR809 was misnamed miR565 by Luo et al [1]. 7 19283 MI0005224 osa-MIR809d Oryza sativa miR809d stem-loop UUUACAGGUACUCCCUCCGUUUCACAAUGUAAGUCAUUCUAGCAUUUCCCACAUUCAUAUUGAUGUUAAUGAAUCUAGACAUAGUUAUCUAUCUAGAUUCAUUAACAUCAAUAUGAAUGUGAGAAAUGUUAGAAUGACUUACAUUGUGAAACGGAGGAAGUAGUAAA miR809 was misnamed miR565 by Luo et al [1]. 7 19284 MI0005225 osa-MIR809e Oryza sativa miR809e stem-loop UACUCCCUCCGUUUCACAAUGUAAGUUAUUCUAACAUUUCCUACAUUUAUAUUAAUGUUAAUGAAUCUAGACAUCAUUAACAUCAAUAUGUCUAGAUUUAUUAACAUCAAUAUGAAUGUGAGAAAUGUUAGAAUAACUUACAUUGUGAAACGGAUGAAGUA miR809 was misnamed miR565 by Luo et al [1]. 7 19285 MI0005226 osa-MIR809f Oryza sativa miR809f stem-loop UACUCCCUCCGUUUCACAAUUUAAGUCAUUCUAUCAUUUCUCACAUUCAUAUUAAUGUUAAUGAAUCUAGACAUAUAUAUCUAUCUAAAUUCAUUACCAUCAAUAUGAAUGUGAGAAAUGUUAGAAUGAUUUAAAUUGUGAAACGGAGGAAGUA miR809 was misnamed miR565 by Luo et al [1]. 7 19286 MI0005227 osa-MIR809g Oryza sativa miR809g stem-loop ACUUCCUCCGUUUCACAAUGUAAGUCAUUUUAGCAUUUCCCAUAUUCAUAUUGAUGCUAAUGAAUAUAUAUAAAUAUAUAUGUCUAGAUUCAUUAGCAUCAAUAUGAAUGUGAGAAAUGUUAGAAUGACUUACAUUGUGAAACGGAGGGAGU miR809 was misnamed miR565 by Luo et al [1]. 7 19287 MI0005228 osa-MIR809h Oryza sativa miR809h stem-loop GUUUCACAAUGUAAGUCAUUCUAACAUUUCCCACAUUCAUAUUGAUGUUAAUGAAUCUAGACAUAUAUAUCUAUUUAGAUUCAUUAAAAUCAAUAUGAAUGUGAGAAAUGUUAGAAUAACUUACAUUGUGAAAC miR809 was misnamed miR565 by Luo et al [1]. 7 19288 MI0005229 osa-MIR810 Oryza sativa miR810 stem-loop AAUAUUCACUAUGGUUGCCAUCAUAAGCCCACCACAUGUGGCUCGCAUGCUUAAAUAACUAACGGCAUAAUUAGAUCACUUGAUGACGACGUAUAUCGGUGUUCGCUAUAUAUACUAUCUACUGGUAAGUAUAUAUAGCGAACACCGAUAUGCGUCAUCAUCAAGUGAUUUAAUUAUGCCGUUAGUUAAGCAUGCGAGCCACAUGUGGUGAGCUUACGAUGACGACCACAGUUUGUU miR810 was misnamed miR566 by Luo et al [1]. 7 19289 MI0005230 osa-MIR811a Oryza sativa miR811a stem-loop GGAAACUUGAAAACUACCGUUAGAUCGAGAAAUGGACGUCCGAGAUUCGUUCACGUCAUCAUGAGUUAAAAUUUAACUCGCAGAUUCACUCAUGAGUUGAAAUUUUACUGGGAGUUAAAUUUUAACUCAUUGUGACGUGGACGAAUCUCGGACGUCCAUUUCUCGAUCCAACGUUAGUUUCCAAGUUUCC miR811 was misnamed miR567 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19290 MI0005231 osa-MIR811b Oryza sativa miR811b stem-loop GGAAACUUGAAAACUACCGUUAGAUCGAGAAAUGGACGUCCGAGAUUCGUCCACGUCACCAUGAGUUAAAAUUUAACUCGCAGAUUCACUCCUGAGUUAAACUUUUACUGGGAGUUAAAUUUUAACUCAUGGUGACGUGGGCGAAUCUCGAACGUUCGUUUCUGGAUCCAACGGUAGUUUCCAAGUUUCC miR811 was misnamed miR567 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19291 MI0005232 osa-MIR811c Oryza sativa miR811c stem-loop ACCGUUAGAUCGAGAAAUGGACGUUCGAGAUUCGUCCACGUCACCAUGAGUUAAAAUUUAACUCUCAGUAAAUUUUAACUCAUGAGUGAAUCUGCGAGUUAAAUUUUAACUCAGGGUGACGUGGACGAAUCUCGGACGUCUAUUUCUCGAUCCAACGGU miR811 was misnamed miR567 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19292 MI0005233 osa-MIR812a Oryza sativa miR812a stem-loop ACCUCCGUCCCAAAAUAAGUGCAGUUUUACACUAUUCAUCUCCAAAGUUUGAUCGUUCGUCUUAUUUGAAAAUUUUUUAUGAUUACUAUUUUUAUUGUUAUUACAUGAUAAAACAUGAAUAGUAUUUUAUGUGUGACUAAUUUUUUUAAAAAUUUUCAUAAAUUUUUCAAAUAAGACGGACGGUUAAACGUUGGACACGGAUUUUCACGGCUGCACUUAUUUUGAAACGGAGGU miR812 was misnamed miR569 by Luo et al [1]. 7 19293 MI0005234 osa-MIR812b Oryza sativa miR812b stem-loop GUAUCCGUAUCUACGUUUGACCGUUCGUCUUAUUUGAAAAUUUUAUGAAAAGAUUAAAAAAAUAGUCACGCAUAAAGUAAUAUUCAUGUUUUAUCAUCUAAUAACAAUAAAAAUACUAAUCAUUAAAAAUUUUCAAAUAAGACGGACGGUUAAACGUUGGACACGAAUAC miR812 was misnamed miR569 by Luo et al [1]. 7 19294 MI0005235 osa-MIR812c Oryza sativa miR812c stem-loop GGUUUCCGCGUCUAAUGUUUGACCGUCCAUCUUAUUUGAAAAAAAUUAAAAACAUAAGUCAUGCAUAAAAUAUUAUUCAUGUUUUAUCAUUUAACAAUAAUAAUAACACCAAUCAUAAAAAAAAAUUAUAUAAGACGGACGGUUAAACGUUGGACACGGAAACC miR812 was misnamed miR569 by Luo et al [1]. 7 19295 MI0005236 osa-MIR812d Oryza sativa miR812d stem-loop CGUAUCCAACAUUUGAUCAUCUGCCUUAUUCGAAAAAUUUAUAAAAAAAAACAAGUCACGCAUAAAGUAUUAUUCAUGUUUUAUCAUAUAAGAACAAUAAAAAUACUAAUCAUAAAAAAAGUAAAUAAGACGGACGGUUAAACGUUGGACACG miR812 was misnamed miR569 by Luo et al [1]. 7 19296 MI0005237 osa-MIR812e Oryza sativa miR812e stem-loop GUUUUAGUGCCCAACUUUGACCGUCCGUCUUAUUUGAAAAUUUUUUUAUUACUAUUUUUAUUGUUAUUAGAUGAUAAAAUAUAAAUAUUACUUCAUGCGUGACUUAAUUUUUAAAAAAAUUUCAUAAAAUUUUUAAAUAAGACGGACGGUUAAACGUUGGACACGGAAAC miR812 was misnamed miR569 by Luo et al [1]. 7 19297 MI0005238 osa-MIR813 Oryza sativa miR813 stem-loop UAAACGUAGAUUACUGACAAAACCAAUUCCAUAACCCCUAGGCUAUUUUGCAAGACGAAUCUAAUGAUGUAUAUUAAUCCAUGAUUAGCGACCAAUUACUGUAGCGUCACUAUAAUAAAUCAUGGAUUAAUAUACCUCAUUAGAUUCGUCUCGCAAAAUAGCCUAGGGGUUAUGGAAUGGGUUUUACCACUAAUCUAUGUUUA miR813 was misnamed miR570 by Luo et al [1]. 7 19298 MI0005239 osa-MIR814a Oryza sativa miR814a stem-loop ACCUAGUACCGGACGAGACACUUCAUAGUACAACGAAUCUGGACAGUAAGCCUGUCCAGAUUCGUUGUACUAUGAAGUGUCAUAUCCGGUCCUAAGU miR814 was misnamed miR573 by Luo et al [1]. 7 19299 MI0005240 osa-MIR814b Oryza sativa miR814b stem-loop ACCGGACGAGACACUUCAUAGUACAACGAAUCUGGACAUGAAGAUUCGUUGUACUAUAAAGUGUCUCGUCUGGU miR814 was misnamed miR573 by Luo et al [1]. 7 19300 MI0005241 osa-MIR814c Oryza sativa miR814c stem-loop ACCAGAUGUGACACUUCAUAGUACAACGAAUCUGGACAGGAAGCAUGUCCGGAUUCGUUAUACUAUAAAGUGUCCUAUUCGGU miR814 was misnamed miR573 by Luo et al [1]. 7 19301 MI0005242 osa-MIR815a Oryza sativa miR815a stem-loop UUUUUUUAGACUCUUAAUUUCUUUUUCUAGGAUGAACUCUUAGGGUGUGUUUGAGGAGAAGGGGAUUGAGGAGAUUGGGGAGA miR815 was misnamed miR574 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19302 MI0005243 osa-MIR815b Oryza sativa miR815b stem-loop CUAAUGGUUCACCUCGUUUUGCGUAUAUUCCCAAUCUUCUCUAUUUCCUUCUCCUCAAACACAGCCUGGGAGUGUUUGAGAAGGGGAUUGAGGAGAUUGGGAAGAUACGUAAAACGAGGUGAGCCAUUAG miR815 was misnamed miR574 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19303 MI0005244 osa-MIR815c Oryza sativa miR815c stem-loop CUUCUCCUCUCUUCUCUCCUCCACCUCAGCAUUUAGCCGGCUUAUAGCCUAUACUUCCUCUAAGGGUGUGUUUGAGGAGAAGGGGAUUGAGGAGAUUGGGAAG miR815 was misnamed miR574 by Luo et al [1]. The identified mature sequence maps many times to the rice genome, and overlaps annotated transposon and siRNA loci. This entry may therefore represent an siRNA rather than a miRNA, and may be removed from future database releases. 7 19304 MI0005245 osa-MIR816 Oryza sativa miR816 stem-loop AUGUGACAUAUUUUACUACAACGAAUCUGGAUAUGACAGAGGUAUGUUUAAAUUCGUAGUAUUAGGAUGUGUCACAU miR816 was misnamed miR576 by Luo et al [1]. 7 19305 MI0005246 osa-MIR817 Oryza sativa miR817 stem-loop UAUCUCAAUCAGGCCUCAAGUUGGUGUCCGUCAUGGAUGAUGGUCAUCCGUGACGGGCUCCAACUUGAGGCCCGAUUGAGAUA miR817 was misnamed miR578 by Luo et al [1]. 7 19306 MI0005247 osa-MIR818a Oryza sativa miR818a stem-loop UCCCUCCAUCCCAUAGUAUAAGGGAUUUGGGAAUGAUGUGACAUAUCCUAGUAUAAUGAAUCUGGACAAACCGUCUGUCCAAAUUCAUUGUCCUAGUAUGUGUCACAUCUACUCAAAAUCCCUUAUAUUAUGGGACGGAAGGGA miR818 was misnamed miR580 by Luo et al [1]. 7 19307 MI0005248 osa-MIR818b Oryza sativa miR818b stem-loop CCUCCGUCCCAUAAUAUAAGAGAUUUUAGAUGGAUGUGAUACAUCUCAGUACAAUGAAUCUGUACUAUAAUAUAUCAUAUCCAUCCAAAAUCCCUUAUAUUAUGGGACGGAGG miR818 was misnamed miR580 by Luo et al [1]. 7 19308 MI0005249 osa-MIR818c Oryza sativa miR818c stem-loop AUAAUAUACUCAUUUCGUCCUAUAAUAUAAGGGAUUUUGAAGGGAUGUGACACAUCCUAGCUAUAACCAUAUAUCUAGACAUAGCUAGGAACAUAUAUCUAGACAUGCUCUUGUCUAGAUAUAUGUGUUAUAUCUCUCCAAAAUCCCUUAUAUUAUGGGACGGAUGAAUAUGUUAU miR818 was misnamed miR580 by Luo et al [1]. 7 19309 MI0005250 osa-MIR818d Oryza sativa miR818d stem-loop UUCCUAUUAAUUGUUACUCUCUCCAUCCCAUAAUAUAAGGGAUUUUAGAGGGAUGUGAUCUAGAUUCGUAGUCCGAGGAAACAUCACAUACCUCUAAAAUCCCUUAUAUUAUGGGACGGAGGGAGUACUAGUUUAGGAA miR818 was misnamed miR580 by Luo et al [1]. 7 19310 MI0005251 osa-MIR818e Oryza sativa miR818e stem-loop CCCCGUCCUAUAAUAUAAGGGAUUUUGAGUUUUUGCUUGCACUGUUUGACCACUCGUCUUAUUUAAAUUUUUUUUGGAAUUAUUAUUAUUUUUGACUUAUUUUAUUAUCCAAAGUACUUUAAGCAUAACUUUUCGUUUUUUAUAUUUGUACAAAUUUUUUGAAUAAAACGAGUGGUCAAACAAUACAAACAAAAACUUAAAAUCCCUUAUAUUAUGGGACGGAGG miR818 was misnamed miR580 by Luo et al [1]. 7 19311 MI0005252 osa-MIR819a Oryza sativa miR819a stem-loop CCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCACAUUCAUAUAGAUGUUAAUGAAUCUAGGCAUAUAACAUCUAUAUGAAUGUGGGCAAUGCUAGAAAGUCUUAUAAUAUGAAACGGAGG miR819 was misnamed miR581 by Luo et al [1]. 7 19312 MI0005253 osa-MIR819b Oryza sativa miR819b stem-loop GUAAGCUACUACCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUACCCACAUUCAUAUAGAUAUUAAUGAAUCUAGACAUACAUAUAUGUCUAGAUUCAUUAACAUAUAUAUGAAUGUUGAUAAUGCUAGAAAGUCUUAUAAUAUGAAACGGAGGAAGUAGCUUAC miR819 was misnamed miR581 by Luo et al [1]. 7 19313 MI0005254 osa-MIR819c Oryza sativa miR819c stem-loop UACUACCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCACAUUCAUAUAGAUGUUAAUGAAUCUAGGCACACAUAUAUGUCUAGAUUCAUUAACAUAUAUAUGAAUGUGGGCAAUGCUAGAAAGCCUUAUAAUAUGAAACGGAGGAAGUA miR819 was misnamed miR581 by Luo et al [1]. 7 19314 MI0005255 osa-MIR819d Oryza sativa miR819d stem-loop CUACUACCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCACAUUCAUAUAGAUGUUAAUGAAUCUAGACAAGUGUGUCUAGAUUCAUUAACAUCUAUAUGAAUGUGGGCAAUGCUAGAAAGUCUUAUAACCUGAAACGGAGGAAGUAG miR819 was misnamed miR581 by Luo et al [1]. 7 19315 MI0005256 osa-MIR819e Oryza sativa miR819e stem-loop UACUACCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCACAUUCAUAUAGAUGUUAAUGAAUCUAGGCACACAUAUAUGUCUAGAUUCAUUAGCAUAUAUAUGAAUGUGGGCAAUGCUAGAAAGUCUUAUAAUAUGAAACGGAGGAAGUA miR819 was misnamed miR581 by Luo et al [1]. 7 19316 MI0005257 osa-MIR819f Oryza sativa miR819f stem-loop CCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCACAUUCAUAUAUAUGUUAAUGAAUCUAGGCACAUAUACAUGUCUAGAUUCAUUAUCAUAUAUAUGGAUAUGGACAAUGCUAGAAAAUUUUAUAAUAUGAAACGGAGG miR819 was misnamed miR581 by Luo et al [1]. 7 19317 MI0005258 osa-MIR819g Oryza sativa miR819g stem-loop UCCAUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCACAUUCAUAGAGAUGUUAAUGAAUCUAAGCACACAUAUAUGUCUAGAUUCAUUAACAUAUAUAUGAAUGUGGGUAAUGUUAGAAAGUCUUAUAAUAUGAAACGGAGGA miR819 was misnamed miR581 by Luo et al [1]. 7 19318 MI0005259 osa-MIR819h Oryza sativa miR819h stem-loop UACUACUCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCACAUUCAUAUAUAUGUUAAUGCAUCUAGGCACACAUAUAUGUCUAGAUUCAUUAACAUAUAUAUGAAUGUGGACAAUACGAGAAAGUCUUAUAACCUGAAACGGAGGUAGUA miR819 was misnamed miR581 by Luo et al [1]. 7 19319 MI0005260 osa-MIR819i Oryza sativa miR819i stem-loop CCAUGUAAAUAUCAUUGCCACUCAUUUACUACCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGUCUACAUUCGUAUAGAUAUUAAUGAAUCUAGACACAUAUAUAUGUUUAGAUUCAUUAACAUCUAUAUGAAUACGGGCAAUGCUAGAAAAUCUUAUAAUAUGAAACGGAGGAAGUAAUAUUAUUUAUGUCAUGG miR819 was misnamed miR581 by Luo et al [1]. 7 19320 MI0005261 osa-MIR819j Oryza sativa miR819j stem-loop GUUAAACUUUUAUACUACCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCUACAUUCAUAUAGAUGUUAAUGAAUCUAGGCACACAUAUAUGUCUAGAUUCAUUAACAUAUAUAUGAAUGUGGGCAAUGCUAGAAAGUUUUAUAAUAUGAAACGGAGGAAGUAUUAUUUAAU miR819 was misnamed miR581 by Luo et al [1]. 7 19321 MI0005262 osa-MIR819k Oryza sativa miR819k stem-loop GUACUACCUCCGUUUCAGGUUAUAAGACUUUCUAGCAUUGCCCAUAUUCAUAUAGAUGUUAAUGAAUCUUGACACACAUAUGUGUCUAGAUUCAUUAAUAUAUAUAUGAAUGUGGACAAUGCUAGAAAGUCUUAUAAUAUGAAACGGAGGAAGUAC miR819 was misnamed miR581 by Luo et al [1]. 7 19322 MI0005263 osa-MIR820a Oryza sativa miR820a stem-loop CGGCCUCGUGGAUGGACCAGGAGCUCAACAUUCCUUAAGGUUGUUCUUUCAAACCCAUACAAGGUUCCACCGCCUGCAUUGUUCCAAGAGUGUCUUGGAUGAAAGUAGGAAGUGGAACCUUGUUAGGGUUGGAACGAACUGCCUUAAGGAAGUCGAUGCUCCAGGUCCGUCCAGGAGGACG miR820 was misnamed miR583 by Luo et al [1]. 7 19323 MI0005264 osa-MIR820b Oryza sativa miR820b stem-loop UGCGUCGGCCUCGUGGAUGGACCAGGAGCUCGACGUUCCUUAAGGCCGUUCUUUCCGACCCAUACAAGGUUCCGUCGCCUGCAUUGUUCCAAGAGUGUCUUGGACGAAAGCAGGAAGUGGAACCUUGUUAAGGUCGGAACGAACUGCCUUAAGGAAGUCGAUGCUUUAGGUCCGUCCACGAGGACGACGCA miR820 was misnamed miR583 by Luo et al [1]. 7 19324 MI0005265 osa-MIR820c Oryza sativa miR820c stem-loop CGGCCUCGUGGAUGGACCAGGAGCUCGACAUUCCUUAAGGUCGUUCUUUCCGACCCAUACAAGGUUCCGCUGCCUGCAUUGUUCCAAGAGUGUCUUGGACAAAAGCAGGAAGUGGAACCUUGUUAAGGUCGGAACGAACUGCCUUAAGGAAGUCGAUGCUCCAGGUCCGUCCACGAGGACG miR820 was misnamed miR583 by Luo et al [1]. 7 19325 MI0005266 osa-MIR821a Oryza sativa miR821a stem-loop GAUAUCAGCUGAAAAAGUCAUCAACAAAAAAGUUGAAUAACUCAUCAAGAUCUAAAACUUUUAUUUUGGUCAUUUCUUCAUACGACAAAGUGAUAGUAACAUUGUUCACAGAAUUGACAUAUCUCUUAUCUGGUUUUAUAAACUAUAACACAUAUAUGUAAAAUUUGUGAAUAAUAUUACUAACAUUUCGUCAGAUGAAGAAAUAAAAAAAUAAAAGUUAUAGAUCUUGAUGAGUUAUUCAACUUUGUUGUUGAUGACUUUUUCAAUUGAAAUC miR821 was misnamed miR584 by Luo et al [1]. 7 19326 MI0005267 osa-MIR821b Oryza sativa miR821b stem-loop CUAAAUGAUUUCAAUUGAAAAAGUCAUCAACAAAAAAGUUGAAUAACUUAUCAAGAUCUAAAACUUUUAUUUUUGUUAUUUCUUCAUCCGACGAAAUGUUAGUAAUAUUAUUCACAAAUUUUACAUAUAUGUGUUAAAGUUUAUAAAACCAGAUAAGAGAUAUGACAAUUUUAUAAAUAAUGUUACCAUCACUUUGUCGUAUGAAGAAAUAACCACAAUAAAAGUUUUAGAUCUUGAAGAGUUAUUCAACUUUGUUGUUGAUGACUUUUUCAGUUGAUAUCAUUUAG miR821 was misnamed miR584 by Luo et al [1]. 7 19327 MI0005268 osa-MIR821c Oryza sativa miR821c stem-loop UCAACUGAAAAAGUCAUCAACAAAAAAGUUGAAUAACUCAUCAACAUCUAAAACUUUUAUUUUGGUUAUUUCUUCAUACGACAAAGUGAUAGUAACAUUAUUCACAAAAUUGACAUAACUCUUAUCUGGUUUUAUAAACUAUAACACAUAUAUGUAAAAUUUGUGAAUAAUUUUCUAACAUUUUGUCAGAUGAAGAAACAACAAAAAUAAAAGUUUUAGAUCUUGAUGAGUUAUUCAACUUUGUUGUUGAUGACUUUUUCAAUUGA miR821 was misnamed miR584 by Luo et al [1]. 7 19328 MI0005269 mdo-mir-1 Monodelphis domestica miR-1 stem-loop ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAUAUGAACAUACAAUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUUGGUAGGUG 49 19329 MI0005270 mdo-mir-7 Monodelphis domestica miR-7 stem-loop UUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAACGACAACAAAUCACAGUCUGCC 49 19330 MI0005271 mdo-mir-9-2 Monodelphis domestica miR-9-2 stem-loop GGAAGUGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA 49 19331 MI0005272 mdo-mir-9-1 Monodelphis domestica miR-9-1 stem-loop CGAGGCCCGUUUCUCUCUUUGGUUAUCUAGCUGUAUGAGUGUUAUUGAGCUAUCAUAAAGCUAGAUAACCGAAAGUAGAAAUGACUUUCA 49 19332 MI0005273 mdo-mir-10a Monodelphis domestica miR-10a stem-loop CUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUA 49 19333 MI0005274 mdo-mir-10b Monodelphis domestica miR-10b stem-loop CAGAAUGUUAUUACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUAUUUACAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCAC 49 19334 MI0005275 mdo-mir-21 Monodelphis domestica miR-21 stem-loop UGUCGGAUAGCUUAUCAGACUGAUGUUGACUGUUGGAUCUCAUGGCAACAGCAGUCGAUGAGCUGUCUGACAUU 49 19335 MI0005276 mdo-mir-22 Monodelphis domestica miR-22 stem-loop CCGAGCCACAGCAGUUCUUCAGUGGCGAGCUUUAUGUCUUGUCCCAGCUAAAGCUGCCAGUUGAAGAACUGCUGAGCUCUG 49 19336 MI0005277 mdo-mir-30a Monodelphis domestica miR-30a stem-loop GCGGCUGUAAACAUCCUCGACUGGAAGCUGUGAAGCAGCAGAUGGGGCUUUCAGUCGGAUGUUUGCAGCUGC 49 19337 MI0005278 mdo-mir-31 Monodelphis domestica miR-31 stem-loop AGCUGGAGAGGAGGCAAGAUGUUGGCAUAGCUGUUGAACUGAGAACCUGCUAUGCCAACAUAUUGCCAUCUUUCUUGUCUAUCAGCA 49 19338 MI0005279 mdo-mir-32 Monodelphis domestica miR-32 stem-loop GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCUUUAGUGCAAUUUAGUAUGUGUGAUAUUUU 49 19339 MI0005280 mdo-mir-34a Monodelphis domestica miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGUAAUAGAUAAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUUAGGCCC 49 19340 MI0005281 mdo-mir-100 Monodelphis domestica miR-100 stem-loop CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUGAUAUUCCACACAAGCUUGUGUCUAUAGGUAUGUGUCUGUCAGG 49 19341 MI0005282 mdo-mir-101-2 Monodelphis domestica miR-101-2 stem-loop ACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAUAUGUGAAAGGUACAGUACUGUGAUAACUGAAGAAUGGUGGU 49 19342 MI0005283 mdo-mir-101-1 Monodelphis domestica miR-101-1 stem-loop AGGCUGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCCGUUCUCAAGGUACAGUACUGUGAUAACUGAAGGAUGGCAGCCA 49 19343 MI0005284 mdo-mir-103-1 Monodelphis domestica miR-103-1 stem-loop UUGUCUUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGAAGACAUUG 49 19344 MI0005285 mdo-mir-103-2 Monodelphis domestica miR-103-2 stem-loop CUUGGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUUGCAUUGAUGUCAAGCAGCAUUGUACAGGGCUAUGAAAGAACCAAGAU 49 19345 MI0005286 mdo-mir-107 Monodelphis domestica miR-107 stem-loop CUUCUUUCUGCUUUCGGCUUCUCUACAGUGUUGCCUUGUGGCGUGGAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCAUAGA 49 19346 MI0005287 mdo-mir-122 Monodelphis domestica miR-122 stem-loop CAGAGCUAUGGAGUGUGACAAUGGUGUUUGUGUCCAGUCUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGU 49 19347 MI0005288 mdo-mir-124a-1 Monodelphis domestica miR-124a-1 stem-loop AGGCCUCUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAAUGGGGCUG 49 19348 MI0005289 mdo-mir-124a-2 Monodelphis domestica miR-124a-2 stem-loop AUCAGAGACUCUGUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAGCGGAGCCUGAAA 49 19349 MI0005290 mdo-mir-124a-3 Monodelphis domestica miR-124a-3 stem-loop CUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGUCUAUACAAUUAAGGCACGCGGUGAAUGCCAAGAG 49 19350 MI0005291 mdo-mir-125b-1 Monodelphis domestica miR-125b-1 stem-loop ACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGCUUUUCAGCGACAACCACAGGUCAGGCUCUUGGGACCUAGGCGGAGG 49 19351 MI0005292 mdo-mir-125b-2 Monodelphis domestica miR-125b-2 stem-loop AAUCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGC 49 19352 MI0005293 mdo-mir-128 Monodelphis domestica miR-128 stem-loop UGUGCAGCAGGAAGGGGGGCCGUUACACUGUCAGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUUUCCCUGCUGUGGC 49 19353 MI0005294 mdo-mir-129 Monodelphis domestica miR-129 stem-loop UGGAUCUUUUUGCGGUCUGGGCUUGCUGUUCCUUAAAUCAGUAGUCAGGAAGCCCUUACCCCAAAAAGUAUCUA 49 19354 MI0005295 mdo-mir-130a Monodelphis domestica miR-130a stem-loop UGGCCAGAGCUCUUUUCACAUUGUGCUACUGUCUGCACCUAUCACUAGCAGUGCAAUGUAAAAAGGGCAUUGGCUG 49 19355 MI0005296 mdo-mir-133a Monodelphis domestica miR-133a stem-loop CAAUGCUUUGCUAAAGCUGGUAAAAUGGAACCAAAUCACCUAUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCAUUGA 49 19356 MI0005297 mdo-mir-135a Monodelphis domestica miR-135a stem-loop AGAUAAAUUCACUCUAGUGUCUUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAUACAUUGUGAAAUGUCA 49 19357 MI0005298 mdo-mir-135b Monodelphis domestica miR-135b stem-loop AGCUCUCUGCUGUGGCCUAUGGCUUUUCAUUCCUAUGUGAUUGCUGUUCCCAACUCAUGUAGGGCUAAAAGCCAUGGGCUACAGGGAGGGGAGAGCCUCC 49 19358 MI0005299 mdo-mir-137 Monodelphis domestica miR-137 stem-loop CUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUCGAGG 49 19359 MI0005300 mdo-mir-138 Monodelphis domestica miR-138 stem-loop GUUGCUGCAGCUGGUGUUGUGAAUCAGGCCGACAAGCAGCUCAUCCUAUUACCCGGCUAUUUCACUACACCAGGGUUGCAUCA 49 19360 MI0005301 mdo-mir-142 Monodelphis domestica miR-142 stem-loop GCAGUCACCCAUAAAGUAGAAAGCACUACUAACAGCAAUGUAGGGUGUAGUGUUUCCUACUUUAUGGAUGAGUG 49 19361 MI0005302 mdo-mir-143 Monodelphis domestica miR-143 stem-loop CCCGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGUGAGUCUGAGAUGAAGCACUGUAGCUCGGG 49 19362 MI0005303 mdo-mir-144 Monodelphis domestica miR-144 stem-loop CGGGGCCCAGGCCGGGAUAUCAUCGUAUACUGUAAGUUUGCAAUGAGACACUACAGUAUAGAUGAUGUACUGGCGAGGGCCGCCU 49 19363 MI0005304 mdo-mir-451 Monodelphis domestica miR-451 stem-loop CUGGCGGGGAAACCGUUACCAUUACUGUGUUUAGUAAUGGUAAGGGUUCUCCCGCUGCGCUG 49 19364 MI0005305 mdo-mir-145 Monodelphis domestica miR-145 stem-loop CUCAGGGUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAG 49 19365 MI0005306 mdo-mir-152 Monodelphis domestica miR-152 stem-loop CCCGGCCCAGGUUCUGUGAUACACUCCGACUUAGACUCUGGAGCAGUCAGUGCAUGACAGAACUUGGGCUUGG 49 19366 MI0005307 mdo-mir-182 Monodelphis domestica miR-182 stem-loop GCUGUGUUUGGCAAUGGUAGAACUCACACUGGUGAGAUAAUGGAAUCCGGUGGUUCUAGACUUGCCAACUA 49 19367 MI0005308 mdo-mir-184 Monodelphis domestica miR-184 stem-loop CCAGUCACAUCCCCUUAUCACUUUUCCAGCCCAGCUUUCUAAUGCUAAUUGUUGGACGGAGAACUGAUAAGGGUAGGUGAUUGA 49 19368 MI0005309 mdo-mir-187 Monodelphis domestica miR-187 stem-loop AUUGUGAGACCUCUGGCUACAACACAGGACACGGGAGCUUUUCUGAACCCUCGUGUCUUGUGUUGCAGCCAGAGGGGCACA 49 19369 MI0005310 mdo-mir-181c Monodelphis domestica miR-181c stem-loop UGGGGGAACAUUCAACGCUGUCGGUGAGUUUGAGCAGCUGAAGGCAAACCAUCGACCGUUGAGUGGACCCCG 49 19370 MI0005311 mdo-mir-186 Monodelphis domestica miR-186 stem-loop ACCUUCCAAAGAAUUCUCCUUUUGGGCUUUUGAUUCUUAAUUUCAGCCCAAAGGUGAAUUUUUUGGGA 49 19371 MI0005312 mdo-mir-193 Monodelphis domestica miR-193 stem-loop GAGGAUUGGGUCUUUGUGGGCGAGAUGAGGGUGUCAGUUCAACUGGCCUACAAAGUCCCAGUUCUC 49 19372 MI0005313 mdo-mir-196b Monodelphis domestica miR-196b stem-loop AACUGGUCUGUGAUUUAGGUAGUUUCCUGUUGUUGGGGCUCCACCUUUCUCUCGACAGCACGAUACUGCCUUCAUUACUUCAGUUG 49 19373 MI0005314 mdo-mir-199b Monodelphis domestica miR-199b stem-loop CUCCACUCCGUCUACCCAGUGUUUAGACUAUCUGUUCAGGACUCCAAUAUUGUACAGUAGUCUGCACAUUGGUUAGGCUGGGCUGGGCU 49 19374 MI0005315 mdo-mir-203 Monodelphis domestica miR-203 stem-loop AGCUGCCCUGGUCCAGUGGUUCUUAACAGUUCAACAGUUCUGUGUAGAGAUUGUGAAAUGUUUAGGACCACUUGAUCUGGG 49 19375 MI0005316 mdo-mir-204 Monodelphis domestica miR-204 stem-loop CAACUGACUAUGUGACCUGUGGGCUUCCCUUUGUCAUCCUAUGCCUGGAAAUCAGAGUGGGGCAGGGACAGCAAAGGGAUGCUCAGCUGUCGUCUUC 49 19376 MI0005317 mdo-mir-206 Monodelphis domestica miR-206 stem-loop GAGGCAACAUGCUUCUUUAUAUCCCCAUAUGAAUUAUGCUGCUAUGGAAUGUAAGGAAGUGUGUGGUUUCGGGAAG 49 19377 MI0005318 mdo-mir-208 Monodelphis domestica miR-208 stem-loop UUCCUGUGACAGGUGAGCUUUUGGUCCGGGUUAUACCUGAUGCAUGUGUAUAAGACGAGCAAAAAGCUCGUUGGUCG 49 19378 MI0005319 mdo-mir-214 Monodelphis domestica miR-214 stem-loop GGGCUGGCUGGACGGAGUUGUCAUGUGUCUGCCUGUCUACACUUGCUGUGCAGAACAUCCUCUCACCUGUACAGCAGGCACAGACAGGCAGUCACAUGACAACCCAGCCU 49 19379 MI0005320 mdo-mir-216 Monodelphis domestica miR-216 stem-loop GAUGGCUGUGAAUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUAAUAAAUUCCCUCACAGUGGUCUCUGGGAUUAUGCUAAACAGAGCAAUUUC 49 19380 MI0005321 mdo-mir-217 Monodelphis domestica miR-217 stem-loop UUGAUGUCGUAGAUACUGCAUCAGGAACUGAUUGGAUAAUAUUCAGGCACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCU 49 19381 MI0005322 mdo-mir-218 Monodelphis domestica miR-218 stem-loop UGAUUAUGUGGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGUGAGGUAUGAGUAAAACAUGGUUCUGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA 49 19382 MI0005323 mdo-mir-219 Monodelphis domestica miR-219 stem-loop CAGGGGUUCCGCCGCUGAUUGUCCAAACGCAAUUCUUGUGCGAGUCUGCAGCCAACCGAGAAUUGUGGCUGGACAUCUGUGGCUGAGCUCC 49 19383 MI0005324 mdo-mir-223 Monodelphis domestica miR-223 stem-loop UCUGGCCCAGAUCCUUCAGUGCCACACUCCGUGUAUUUGACAAGCUGAGUUGGACACUCCGUGUCGUAGAGUGUCAGUUUGUCAAAUACCCCAAGUGAGGCAUUUGCCUAG 49 19384 MI0005325 mdo-mir-338 Monodelphis domestica miR-338 stem-loop GGCCUUCCUCCCCAACAAUAUCCUGAUGCUGAGUGAGCGGCACAUGGAGACUCCAGCAUCAGUGAUUUUGUUGAAGAGGGUGGCUGCCA 49 19385 MI0005326 mdo-mir-365 Monodelphis domestica miR-365 stem-loop CCGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUCCAUUACACUAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCAG 49 19386 MI0005327 mdo-mir-375 Monodelphis domestica miR-375 stem-loop CCCGCGCCGAGCCCCUCGCACAAACCGGACCUGAGCGUUUUGUUCGUUCGGCUCGCGUGAGGC 49 19387 MI0005328 mdo-mir-383 Monodelphis domestica miR-383 stem-loop CUCAGAUCAGAAGGUGAUUGUGGCUUUCGGUAGACAUGGAACAGCCACAUCACUGGCUGGUCAGAAAGAG 49 19388 MI0005329 mdo-mir-449 Monodelphis domestica miR-449 stem-loop UGUGAUGGGAUGGCAGUGUAUUGUUAGCUGGUUGACUAUCUGAACGUGCCAGCUAACAUGCAACUGCUAUCCCAUUGCA 49 19389 MI0005330 mdo-let-7a-2 Monodelphis domestica let-7a-2 stem-loop AGGUUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACAUCAAGGGAGAUAACUGUACAGCCUCCUAGCUUUCCUU 49 19390 MI0005331 mdo-let-7g Monodelphis domestica let-7g stem-loop AGGCUGAGGUAGUAGUUUGUACAGUUUGAGGGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCCACUGCCUUGCC 49 19391 MI0005332 mdo-let-7i Monodelphis domestica let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUA 49 19392 MI0005333 mdo-mir-15a Monodelphis domestica miR-15a stem-loop CCUUGGGGUAAAGUAGCAGCACAUAAUGGUUUGUUGGUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG 49 19393 MI0005334 mdo-mir-16 Monodelphis domestica miR-16 stem-loop GUCAACAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAAGAUUUUAAAAGUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGUUGGCC 49 19394 MI0005335 mdo-mir-183 Monodelphis domestica miR-183 stem-loop ACUCCUGUUCUGUGUAUGGCACUGGUAGAAUUCACUGUGAAAACACACUAUCAGUGAAUUACCAAAGGGCCAUAAACAGAGCAGAGAA 49 19395 MI0005336 mdo-mir-96 Monodelphis domestica miR-96 stem-loop GAUGUCUGCUUGGCCCGUUUUGGCACUAGCACAUUUUUGCUUCUGUCUCUCUGCUCUGAGCAAUCAUGUGUAGUGCCAAUAUGGGAAAAGCAAGAUG 49 19396 MI0005337 mdo-mir-212 Monodelphis domestica miR-212 stem-loop GGGCAGCGCGCCGGCACCUUGGCUCUAGACUGCUUACUGCCCGGGCCACCCUCAGUAACAGUCUCCAGUCACGGCCACCGACGCCUGGCCC 49 19397 MI0005338 mdo-mir-132 Monodelphis domestica miR-132 stem-loop GGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAACCAGGGGUAACAGUCUACAGCCAUGGUCGCCC 49 19398 MI0005339 mdo-mir-200c Monodelphis domestica miR-200c stem-loop CCCCAUCUUACCCAGCAGUGUUUGGGUGCCGCUCGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGAGG 49 19399 MI0005340 mdo-mir-141 Monodelphis domestica miR-141 stem-loop UGGGGCCAUCUUCCAGUACAGUGGUGGAUGGUGAAGCUUCUAACACUGUCUGGUAAAGAUGCCC 49 19400 MI0005341 mdo-mir-191 Monodelphis domestica miR-191 stem-loop AGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCAAUUGGAUUUCGUUCCCUGCU 49 19401 MI0005342 mdo-mir-425 Monodelphis domestica miR-425 stem-loop AAAGUGCUUUGGAAUGACACGAUCACUCCCGUUGAGCGGACAGCCAAGAAGCCAUCGGGAAUAUCGUGUCCGUCCAAUGCUCUUU 49 19402 MI0005343 mdo-mir-181a Monodelphis domestica miR-181a stem-loop UGAACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUGAAAACCAUCGACCGUUGAUUGUACC 49 19403 MI0005344 mdo-mir-181b Monodelphis domestica miR-181b stem-loop AAGGUCACAAUCAACAUUCAUUGCUGUCGGUGGGUUUAACUGUAUGGACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCCCACUU 49 19404 MI0005345 mdo-mir-200b Monodelphis domestica miR-200b stem-loop CCAUCUUACUGGGCAGCAUUGGAUGGUGUCUGUGUUUCUAAUACUGCCUGGUAAUGAUGAUGAUGGGG 49 19405 MI0005346 mdo-mir-200a Monodelphis domestica miR-200a stem-loop GGGCCUCUGUGGGCAUCUUACUAGACAGUGCUGGAUUUUUGGAUGUACUCUAACACUGUCUGGUAACGAUGUUUAAAGAGGGAACC 49 19406 MI0005347 mdo-mir-222a Monodelphis domestica miR-222a stem-loop UGUAGAUACUGUCUCUUUCCAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUCUUAGAGCU 49 19407 MI0005348 mdo-mir-221 Monodelphis domestica miR-221 stem-loop GCAUGAACCUGGCAUACAAUGUAGAAUUCUGUGUUUAUUAAGUAACAGCUACAUUGUCUGCUGGGUUUCAGGCU 49 19408 MI0005349 mdo-let-7f-2 Monodelphis domestica let-7f-2 stem-loop GGGAUGAGGUAGUAGAUUGUAUAGUUUUAGGGUCACACCCGAUCUCGGAGAUAACUAUACAGUCUACUGUCUUUCCCACG 49 19409 MI0005350 mdo-let-7a-3 Monodelphis domestica let-7a-3 stem-loop GGGGUGAGGUAGUAGGUUGUAUAGUUUGGGGGUCGCUCCCUCUGUCUGUGAGAUAACUAUACAGUCUACUGUCUUUCCC 49 19410 MI0005351 mdo-let-7b Monodelphis domestica let-7b stem-loop GGCGGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGUAGUGAUUUUGCCCCAAUCAGAAGAUAACUAUACAACCUACUGCCUUCCCUGA 49 19411 MI0005352 mdo-mir-29b Monodelphis domestica miR-29b stem-loop GCUUCUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAACUACUGAGUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGAGGA 49 19412 MI0005353 mdo-mir-29a Monodelphis domestica miR-29a stem-loop AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUCAUUUUCUAGCACCAUUUGAAAUCGGUUAU 49 19413 MI0005354 mdo-mir-17 Monodelphis domestica miR-17 stem-loop GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAGUGAUAUGUAGAAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUAGUGAC 49 19414 MI0005355 mdo-mir-18 Monodelphis domestica miR-18 stem-loop UUGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCA 49 19415 MI0005356 mdo-mir-19a Monodelphis domestica miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUG 49 19416 MI0005357 mdo-mir-20 Monodelphis domestica miR-20 stem-loop UGAAAGGACAGCUUUUGUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUCUACUGCAUUAUGAGCACUUGAAGUACUGCUAGCUGUAGAACUAC 49 19417 MI0005358 mdo-mir-19b Monodelphis domestica miR-19b stem-loop GCACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUAUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUGGUGG 49 19418 MI0005359 mdo-mir-92 Monodelphis domestica miR-92 stem-loop CUUUCUACACAGGUUGGGAUCAGUUGCAAUGCUGUGUCUGUCUGUAGUAUUGCACUUGUCCCGGCCUGUUGAGUUUGG 49 19419 MI0005360 mdo-let-7a-1 Monodelphis domestica let-7a-1 stem-loop UCUCCACUGUGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCUUAAAG 49 19420 MI0005361 mdo-let-7f-1 Monodelphis domestica let-7f-1 stem-loop UCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUUCCCUGA 49 19421 MI0005362 mdo-let-7d Monodelphis domestica let-7d stem-loop AAUGGGCUCCUAGGAAGAGGUAGUAGGUUGCAUAGUUUUAGGGCAGGGAUUUUGCCCACAAGGAGUUAACUAUACAACCUGCUGCCUUUCUUAGGGCUCUAUUAUU 49 19422 MI0005363 mdo-mir-23a Monodelphis domestica miR-23a stem-loop CGGCUGGGGUUCCUGGGGAUGGGAUUUGAUUACUGCCACAAAUCACAUUGCCAGGGAUUUCCAACUGACCACU 49 19423 MI0005364 mdo-mir-27a Monodelphis domestica miR-27a stem-loop UGGCUUGAGGAGCAGGACUUAGCUGCCUUGUGAACAGAGUCAGCAUCAUAUUGUGUUCACAGUGGCUAAGUUCCGCUCCCCUUGCC 49 19424 MI0005365 mdo-mir-24-2 Monodelphis domestica miR-24-2 stem-loop GCCUCCUGUGCCUACUGAGCUGAAACACAGUUGCUUUGGAUAAACUGGCUCAGUUCAGCAGGAACAGGAGUCU 49 19425 MI0005366 mdo-mir-23b Monodelphis domestica miR-23b stem-loop GGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUAAGAUGAAAAUCACAUUGCCAGGGAUUACCACGCAGCC 49 19426 MI0005367 mdo-mir-27b Monodelphis domestica miR-27b stem-loop ACCUCUCUGACAAGGUGCAGAGCUUAGCCGAUUGGUGAACAGUCACUGAUUUCCUCUUUGUUCACAGUGGCUAAGUUCUGCACCUGAAGAGAAGGGG 49 19427 MI0005368 mdo-mir-24-1 Monodelphis domestica miR-24-1 stem-loop GGUGCCUACUGAGCUGAUAACAGUUCUGAUUUUACACACUGGCUCAGUUCAGCAGGA 49 19428 MI0005369 mdo-mir-93 Monodelphis domestica miR-93 stem-loop AGUCUUGGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUAACCUGACCUACUGCUGAGCUAGCACUUCCAGAGCCCCUGGGACA 49 19429 MI0005370 mdo-mir-25 Monodelphis domestica miR-25 stem-loop GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGAACUCUGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCUGGC 49 19430 MI0005371 mdo-mir-302b Monodelphis domestica miR-302b stem-loop CCCCUUCUACUUUAACAUGGAGGUACUUUCUGUGUUUAAAAAGGUAAGUGCUUCCAUGUUUUGGUAGGAGU 49 19431 MI0005372 mdo-mir-302c Monodelphis domestica miR-302c stem-loop GCUUUAACAUGGGGGUACCUGCUACGUAAUAAAAAGUAAGUGCUUCCAUGUUUCAGUGG 49 19432 MI0005373 mdo-mir-302a Monodelphis domestica miR-302a stem-loop CCCACUACUUAAACGUGGAUUUACUUGCUUUGUUUCUAAAAAAGUAAGUGCUUCCAUGUUUUAGUGAUGG 49 19433 MI0005374 mdo-mir-302d Monodelphis domestica miR-302d stem-loop CCUCUGCUUUAACAUGGAAGUGCUUGCUGUGAUUUUAAAAAAUUAAGUGCUUCCAUGUUUGAGUUGUGGUG 49 19434 MI0005375 mdo-mir-367 Monodelphis domestica miR-367 stem-loop ACUGUUGCUAACAUGCAACUCUGUUCUAUGUAAACGGGAAUUGCACUUUAGCAAUGGUGAUGG 49 19435 MI0005377 bmo-mir-31 Bombyx mori miR-31 stem-loop GUCGAGCCGGUGGCUGGGAAGGCAAGAAGUCGGCAUAGCUGUUUGAAUAAGAUACACGGCUGUGUCACUUCGAGCCAGCUCAAUCCGCCGGCUUUCUUCAAUUUCAAGAUUUGCGGAUGCU 46 19436 MI0005378 bmo-mir-71 Bombyx mori miR-71 stem-loop GCAAGAUGCUCUCUACCUCUUGAAAGACAUGGGUAGUGAGAUGUCCCGUACAUCUAAAAUUCUCACUACCUUGUCUUUCAUGCGGAUUGGGCAAAUAUCUUCACUCGGCUUCGGAAGAU 46 19437 MI0005379 ath-MIR822 Arabidopsis thaliana miR822 stem-loop CGACCUUAAGUAUAAGUAGAUAUAUGGGGAUGUAACGCAUGUUGUUUUCUGCGGGAAGCAUUUGCACAUGUUUCGUGGAGAAUGAAAUCACAUUCCAUACAUGAAUAAUAAUUACCUUUUAGAUAGAACAUCGUACUGCUUGAAAAAACAUGUUAAUGUCAUAAACUUUAUGAUGAAAACACCUAUAAAAAGCGUUUUUUCAAGCAUGUGCUAUCUAUGAAGGUAAUUACUAUUCAUGUAUAAAAUAUGAUUUUAUCCUCCAUAAAACAUGUGCAAAUGCUUUCUACAGGAAACAAUAUACGUUGCAUCCCCAUCUACUUACACUUAAGGUCGUUGU 1 19438 MI0005380 ath-MIR823 Arabidopsis thaliana miR823 stem-loop AAUUUCAGAGAUACUAAUCCAAGAGAUGGCGGAUACGUUUUACAAUCACGAAUCUUGUAUGAUCACUAACCAUUGGAACAAUAAGAGUAUAUAAUGAGUAUAUCACCAUUUAGUUCUAGUGGGUGGUGAUCAUAUAAGAUUGGUAAUGGUAACAGUGAAACAUAUCCCCCAUCUAUUGGGAUUAAUUAGUC 1 19439 MI0005381 ath-MIR825 Arabidopsis thaliana miR825 stem-loop CUUUCUAUAAUUACUUUUUGUAUAGAAUUCACUAGUUGAUUCCAUCGACUCGUUCAAGCACCAGCUCGAAGAAGCUUAGCUAAUUUAUCUUAGAAAAUAAUGAAAAAGCUAUGCUUCUCAAGAAGGUGCAUGAACAAGUUGAUGUAUAUUUUGAUGUGUAAAGACCAAAAUUGGAUCUCACAUGUG 1 19440 MI0005382 ath-MIR826 Arabidopsis thaliana miR826 stem-loop AGAGACGUGGAUGCUUCUCGUCCACAAGUUCUUUGGUGCCUCUAUGAUAUAGUCCGGUUUUGGAUACGUGAAAAUCAUAUCAUAUUGCUGCUGUGAAAAGUUAAUUUUCACGUGUCCAAAACCAGAUUAUCUCAUAUUGCUGCUGUGUAUCUUAUCAUCUUUUUCCUGCUACUCUUAC 1 19441 MI0005383 ath-MIR827 Arabidopsis thaliana miR827 stem-loop UUCCAUGAAACGUUAUAGGUUUUUUUCUUUCUCUCUUGCAACCCUUGAAUGUGUUUGUUGAUUGAUAUCUACACAUGUUGAUCAUCCUUGUGUUGAUCGAUUGGUUUAGAUGACCAUCAACAAACUCUUUCGUGGUUUUGCAUCGCUUCUUGGAAUCUCGAUCAUGUUUUUAGCAUC 1 19442 MI0005384 ath-MIR828 Arabidopsis thaliana miR828 stem-loop GUGACAAAGUCACAAAAGUGAUAAACUCUCCUUUCCACUUUCUAAUGUUUCUUGCUUAAAUGAGUAUUCCAUGUAAAAAUGAUUCACUCACUCGUAUGGGUGGGUUGGGUUUUCUCUUCAUGAGAUGCUCAUUUGAGCAAGCAAUGUUUGGAAGUGGGACUAUUUAAUAUCAUGUAUGAGUUUUAUCUUUU 1 19443 MI0005385 ath-MIR829 Arabidopsis thaliana miR829 stem-loop ACGUCAAAAUUGAUUAACAAAAAGUCAAUGAAUCAUUCUACCAAUUGACUUGUACUUUGAAGCUUUGAUUUGAACCUGUCAAUUGGUAUCAAAGCUUCUAAAUCUUUGAAGCUCUGAUACCAAAUGAUGGAAUCAAAUUAAAGCUUCAAGGUAGUAGUCAUCUUGGCAGAGAAAAGAAAAAGCACUUCGAGUUUACCAUCUUGAU 1 19444 MI0005386 ath-MIR830 Arabidopsis thaliana miR830 stem-loop CAGAGUCUCGCUAGUGUCUUUACUAAACACAAAAUCUGUAAACGCCUCGAUCUCCUCUUCUCCAAAUAGUUUAGGUUAGCUGACAUAUAAUAAUUCAAUAGACCCCAGUUUCUCCAGAUAACCUAACUAUUUUGAGAAGAAGUGAACGAAGAGCGAUUACAAGUUAGGAGAGUGCUUGAAUUUUGAAGAACAUCG 1 19445 MI0005387 ath-MIR831 Arabidopsis thaliana miR831 stem-loop GCACAAUGCGGACAGUGCUACAAGAAGAGAUUUAUAGAGUCUUAAGAGUCUCAAGAAGCGUACAAGGAGAUGAGGAGUGAAUCACCAAAACAAGUGGUUUUGGUUUGUGAAUCACCAAAACAAGUGGUUUUGGUUUGUGAAUCAGUAUGGUUUACCCAAAACACUUGUUUGGUGUGUUUACUUCUGAUCUCUUCGUACUCUUCUUGCGAUUCUAUGACACUCUACAUGUAACAUCGGCAUGGUUUACCAAAAAGCCU 1 19446 MI0005388 ath-MIR832 Arabidopsis thaliana miR832 stem-loop AAGAAAGAAAAAAUAAGUGACAAGUAACAAACAUGAGAAAGGUGAAACUUGCUGGGAUCGGGAAUCGAAAGAUCCGAAAGCCAGUCUUUAGAGGAUUCUGAACGGGCUAGUGAAAGUAAACUUGUGAUGUGACCAUAUUGUGCAAUAUGAAUGUAAGUUGGUGGUGUGGUCAUCUCACAAGGUGGCUAAGUCAUCUCACUUAUUUUCUUAACGAAAGCAUCAGCCCGUUUAGCAUCAUCUUCUUGAAGCUUGCCUUUCGCAUCUUUUGAUUCCCAAUCCAAGCAAGGUUCACCUUUUUUUUUGCCAUGACCUUUACAAAAUAUCCAAAUUUUG 1 19447 MI0005389 ath-MIR833 Arabidopsis thaliana miR833 stem-loop GGACGUAGAUGGUACUCUUACAGAUGGUGAUCGUGAAAACAAACGGAGGAGUUUGUUUGUUGUACUCGGUCUAGUUCAAACCAAAACAUCUUUGCAAAUAUGUAUGGUUUGAGCUAGACCGAUGUCAACAAACAAGCUGCUUCGUUUGUAUUCACCAUCAACAUCUUUAAGAAACGCUGCACCACUC 1 19448 MI0005390 ath-MIR834 Arabidopsis thaliana miR834 stem-loop UACAACAUAUGUUACCAGUUGUGCUAUCAUUUUUUUCAGCGACAGCCAAAAUCACCACCGCUUCUGCUACGAACAUGUUAAGCCAUCCUUUUAACCGUUGCUGCCACCACUAUUACGGCCAUCACAAGAAAAUUCAUGCAAGUGGAAACGGUGAUAGUAGCAGCUGGUAUGACACGUUGGUAGCAGUAGCGGUGGUAAUGCCGAUAGCGUGAGCGGCAAUGGAAGCAUUGGUGGUGUCAGAAGCAGUCA 1 19449 MI0005391 ath-MIR835 Arabidopsis thaliana miR835 stem-loop UGCUCGAUUCUUCAGAUAGAAAUUCUGGUCAUCUUUGUGUUUAGGCUUUUUCUUGCAUAUGUUCUUUAUCUCUAUUGAUUGAUAUUGUUCAAUGAGCAACAUACUUUUCUCUUCUACCUGGAUUUGUUUGAUGGUUUUAAGAACUCUGUUCUUUUUGACGUUUUACCCAACAAUAUAACUUCUGUUGUAGUCAUCUUCUGCUGCAACCCAUCCACAAAGCUUAUCAUGCAAGAUUAAACCCUUUCUCGAUGGGUUGCAAGAGAACAUCACUAAAAUAGAAGUAACAUUGUUGGGGAAAAACGUCACAAAUCCAGGUAUUAGAGAAUAGGAUGCUGAUCGUUGAAAAUAACUAUCUAUAAAGAUGGAGAAGAUACGCAAGAAAGAGUUGUAAACACAAAGC 1 19450 MI0005392 ath-MIR836 Arabidopsis thaliana miR836 stem-loop GCAAAGCUGCCAUUUUAUAGUCCAAAACUUAAAUUUCGUGUUUGCAAGUCUCCACCCAUCGAAGGAAACACUAGAAGAGAUAUAAUUUAUUUGAGGGGAGAAAUAUUUGACACGGAAGCAUAGCUCCAUAUCCUUCAAUGGAGGUGUGGUCCUUCAACAAAAAUACCCCCCUCUUGAAACUCUGUUUCACCACACCUCCAUUGAAGGACCUGAAGCUAUGCUUCCUUGUCAUAUUCCUUACCAUCAAAUAAAUGCUCUGUUUUCCUGUGUUUCCUUUGAUGCGUGGAGACUUUUAAAAACGAAAUUUAAGUUUGGGCUAAAAUAAACGGCAGUUUUG 1 19451 MI0005393 ath-MIR837 Arabidopsis thaliana miR837 stem-loop UUUUUGAUAAAUACUUUUGUUUGCUUACAAGUAUAAAGCCAUCAUGUUUUUUUCAUCAGUUUCUUGUUCGUUUCAAAAUUAUGAUUUUUGUUUACUUACACUCAUAAUCUUGAAACGAACAAAAAACUGAUGGAAAAACAUGAGGACUUUAUACUUGUAAAUAAAUAAAAAUAUUUAUUAGAAA 1 19452 MI0005394 ath-MIR838 Arabidopsis thaliana miR838 stem-loop UACUUUUCUAAUAUCACGAGGACUUACAUGGCCUCAAGUCACCUGUGGUGUUGUGCAAGAAGGAGAAGCAAAGUCUGUCUAUGUAUUAUGAGAUAGCUACUUCUAUGGCUAGGAUAUAUGUUGUACAAGACCGGCUUUUCUUCUACUUCUUGCACAACCUGAGGUUAUUGAGGCUAUACAAGUCUUCUUCUAUAAUGUUAUUUAUUA 1 19453 MI0005395 ath-MIR839 Arabidopsis thaliana miR839 stem-loop CUCACUCAUGUGAGCAGAAAGAGUAGCAUGAUAUUUUCUUCAAGGUCUUUACCAACCUUUCAUCGUUCCCUUCUUUGCAAUAACGCUGUUUUGCAAAACCGUGAUAGUGCUGAGCCGAUGAGCCUCUAAUGAAAUUAUAGACUCAUCGGCUCAGGACCAUUGCGGUUGUGCAAAACGGUGUUAUUGCUGAGAAGGGAACGCAUGAGAGGUUGGUAAAGACCUCAAUGGAAUCUUAUGGUACUCUUUUUGCUCACAUGAGUGAGU 1 19454 MI0005396 ath-MIR840 Arabidopsis thaliana miR840 stem-loop CGUAAAGCAGGUGAUUCACCAAUUUAGGUUUACAUCCACAGUGUGGAAGACACUGAAGGACCUAAACUAACAAAGGUAAACGGCUCAGUGUGCGGGGUAUUACACUCGGUUUAAUGUCUGAAUGCGAUAAUCCGCACGAUGAUCUCUUUAUCUUUGUUUGUUUAGGUCCCUUAGUUUCUUCUAUACCGUGAAUCCAAUCCUGUAUUGGAUGAGCUGGUUUAUGACC 1 19455 MI0005397 ath-MIR841 Arabidopsis thaliana miR841 stem-loop GCACCAACACUACUAUGUGCAGAAACUCUGUUCUUAAGUUGCUUGUGAAUACGAGCCACUUGAAACUGAAAGAAACAAAGAAACAAUAUCAGUAUAAAAUUUUAUCAAAUUAUACUACAAAAAAUGAAAUUUCUUUGUUUAUUUCAAUUUCUAGUGGGUCGUAUUCACAUGCAACUCAAGACUAGAGUAUCUACAACAUGGUCGACUUGGUG 1 19456 MI0005398 ath-MIR842 Arabidopsis thaliana miR842 stem-loop CAGUACCGUUCAGGGUGACAGAAACAUUUUCGAAAAGAGAGGCUAUAAGCGGGAUGAUGAAUCCGACCAUGAUGGUGUUGCAGAAAUUUAUGUAUGAUGUAGUUAUUGUCCAGGGAUCGAAACACCAUCAUGGUCAGAUCCGUCAUCCCACUUAUGUUUUCUUAGGUCAACAAAUAUGGACAAUUGAAAAGUGAAGCUC 1 19457 MI0005399 ath-MIR843 Arabidopsis thaliana miR843 stem-loop AAUGCCCAACAACUUCGCGUUAUUUCUGAAAACUUCAUAUCUAUUUUCUUUUAGGUCGAGCUUCAUUGGAACCAAAUGGUGGCUCAUCCAUCUAUUACUAAAGCUAUACAGCAGGUGGACAAGCCAUCAUCAUGUUCCUGUGAAGCUCGAUCUAAAAGACUACAGAUUUGAGAUUUUCAAAAAUAACAUGAAGUACAUUCUCCAC 1 19458 MI0005400 ath-MIR844 Arabidopsis thaliana miR844 stem-loop GGAAGGAGAUGUUUGCAGUUGGUUUAAUGAAUCUUUUACAUUGAAGAGAAGGAAUGGUAAGAUUGCUUAUAAGCUGGAUCUUGAGGGUGAGUGGUCUCUUCUACGCAUUGGGCUUAUAAGCCAUCUUACUAGUUCUUCUUUUCAAUGUUGUCUAAGGACGCUGCUUUUAUCAGGUGAUCAUUUGU MIR844 was first identified by Rajapopalan et al [1], with two mature products names miR844-5p and miR844-3p. Fahlgren et al identify a cleavage product for the 5' mature sequence, which is therefore assumed to be the dominant mature miRNA [2]. 1 19459 MI0005401 ath-MIR845a Arabidopsis thaliana miR845a stem-loop AGAUAAGGGAUUGCACGAUUUCUCAAUAGUUCCGUCGCUGCGUUUCCAUCACGUCGAUUGCUGUCAGAGCCACGCCUAUGAAGAAUUUGUGCGGCUCUGAUACCAAUUGAUGCUAUGGAAACAUCGAUAUUGCCUGAUUCCGUGUUUCCUUUUACCUUGUUGU 1 19460 MI0005402 ath-MIR846 Arabidopsis thaliana miR846 stem-loop CAAACAUCUUGAAUCCGUUGAGGUUGAUCACGAUGAUGCCACAUCCGGUUUCAUUCAAGGACUUCUAUUCAGAACAAACUUCAUGAUUUCUGAACUAAUUGGAUAUGAUAAAUGGUAACAAGUAUUCACUUGCAUUCAAGGGACAAAAAAUCAUUGGGAUAUAUGAUUAUGACAAACACGAUUGGAAGCUGAAUGGUUGCGGGAGGCAAGCAGUGGGAUAAUGAUCUGCAAGUGGAAACUUCUUACUUUUAUCAUAUCCCAUCAGCUCGAAAGUCUUGAUGUUAGUUUUGAAUUGAAGUGCUUGAAUUACACCAGAUUUAUUGUGCUCGUGUAUCCCGGUAAAUUCGACUAAUGACCAA 1 19461 MI0005403 ath-MIR848 Arabidopsis thaliana miR848 stem-loop AAAACUUUCAGAUUGCACAAGAGAAUAUGAAAAAGUAUUAACACAAGCCUUAUAGCUUGGCAAUCUCAUGUCAAAUAAGGAAAAGAAGAGGAACCCAAGGUAUGUUUCUCAUCUACCUUCUUUGACAUGGGACUGCCUAAGCUAAAGGCUUGCCAUGUUAUCACAUCCUUCUUUCAUUUCGUCGCAACCACUUUA 1 19462 MI0005404 ath-MIR849 Arabidopsis thaliana miR849 stem-loop UAAUUUGGUUAAAUGUUUUCAACAUUUUUUAUUUAUUUAUGAUUGGACAACUACUAGACCAAUGUUUAGUUAGUACAUCCAAUGUUAUAAGUACAAAAUAAUAUGUGUUGGAUCUACUAACUAAACAUUGGUGUAGUAGUUGUCCGACUCUAUUGUUGGGAGCGAGAAGAUUGAUCCCUGGUUUAAUUG 1 19463 MI0005405 ath-MIR850 Arabidopsis thaliana miR850 stem-loop UUUUAGAUAGUGUUAUGUAUUUAUUUCUUACCUAUAGAAACCUGUCAGCUAAGAUCCGGACUACAACAAAGCACGUCUACUCUACUAUAUUCUUUUGCGAUAAUCAAUAGAUUCUUCUAACAUCGUAAAGGAAGACAAAAGAGUAUACAUACUUAGUUGUCGUCGUAUCUUUGUUGAGAAGUUUCUAAAUGGCACAUAGAAAGUACAUAAAACUAUAUGAA 1 19464 MI0005406 ath-MIR851 Arabidopsis thaliana miR851 stem-loop UUUUCUUUCUUUUCCUUUUCGUUUGAUUUUGGAAAGCAAGGGACUGUCGUCUCGGUUCGCGAUCCACAAGUAAUCUUUUGUGGAGAUUAUGAAAACAAUCAUCACGAGAGGCUACGUGUGGGUGGCAAACAAAGACGACAAUCCCUAUUCCAGUUCCAUCAGAACUUGAAAUAUCAUGUGAACU 1 19465 MI0005407 ath-MIR852 Arabidopsis thaliana miR852 stem-loop UUUAUCCUAAACAUCCUAUUAAGUUUUUAUGCUGAAACAAAGCUCAAAGCUCAGAGCUAAGGCGCUUAUCUUCUUUGAUAUUGCAUGGAGUAUGCUUCUACUUCUCUAGGAGAUGCGUUUUAUGGAAAUAUCAAAGAAGAUAAGCGCCUUAGUUCUGAAGAUAAGCGCCUUAUUCACAAAAUGCAUAAGGUUGUAUUCUUUGUUAGGU 1 19466 MI0005408 ath-MIR853 Arabidopsis thaliana miR853 stem-loop GAGAGGAACAAUUAGGGUUGUUUCAAACAGGGUAAAGUGUUCCUGCUGCUCCCCUCUUUAGCUUGGAGAAGCCAGUAAAUAUCUUUCUCUUCAAGGAACUUGUGGGCCUCAAGAAAACCUGCUAUAAUUCUAGUUUUUCAACAUUCCUCCUUCUGAUAUCAGCAACAACUCCUUACCCUUAAGAAUGGAGAAUGGAACUUCCUCAAAGAUAUUUACUUGGCCUCUGCAACCGGAAAGGGGAGCAGCAUGAAACUCUUUUAACCCUUACCCUGUAUUUGUCAAAAACAGAU 1 19467 MI0005409 ath-MIR824 Arabidopsis thaliana miR824 stem-loop UAUCACCAUUUGUACUUGAGUUGUCUCUCAUGUCUAGACCAUUUGUGAGAAGGGAGUUUUUGUUUACACCAAUACCCCCCAGUCUCUAAAUUUGUAAGAAGUAUUAUGCUCAAUUAAGGAACAUAGCUAGUUCGACAUACCAUACUACCCUUUUUAAAACUAUCCUAUAUGUUUGAUGCUAGCAUAGCGUAAUUUUGUGUUCUCAUGGUGCAGCAGGGUUAGUUUAUUGUGUACCUCUAGAUAUAUAUUCUCUUGCUGCGUAGGGUUCCCAAGCUGCCAAAAACUUUUAAAAAUUAGUGAUCUGUUCCCCAAACCCCCAUUCAAUAAGAAAGGUCUACCUGUAGCUCACAGUCACAGCUAUUAGAGCUGUCCUUGCUUCUUUGGGUUUACUGUUUUAGUUAAUUAGUUACCCUAUGAAAGUCUGAUCCUUCAGAAGUUAGGUAUAGAAGUAAGUCGAUUAAGUUCAUUCAUGACUUUUCCAGAUGUUGCAUACAUAACUUUUUUUAUUUGUAUUCGAACUAGUCCAAGCCGAUUCUCAAAAUCAUAUAAAAUCAUUUACACCUUGGUCAUGGUAGCUAAGAAUAUUGUAUCUAAAAUUGGGGAGUGGGGAGAUGUUUGGUUAUAUUCCCUUCUCAUCGAUGGUCUAGAUGUGCGAGGUGACUCUCAUGGAGGUAAAGAACAAUGGUGAU 1 19468 MI0005410 ath-MIR847 Arabidopsis thaliana miR847 stem-loop CAUUUUCUUGUAUUCAAAGUAUCUUAAGUUAAGAAGAGAAUAAGAUUCUUACAUCUUGAUGAAGAGGAAUGGGAAGCCGAAAUCUAAACUGAAACAGAGGCGUCACCCAAUUAUCAAUUGGUAAGUGAUAUCUAUGUUUCGAUCUGUAUCUCGGCCUUUCACUCCUCUUCUUCUUGAUGUAAGAAUUUGUUAUUCGACACAUUAGAUGGAGUGAAAAAUCUGUUAGAUAU 1 19469 MI0005411 ath-MIR855 Arabidopsis thaliana miR855 stem-loop UUUUGGAGCAAAAGCUAAGGAAAAGGAAGAUAAGGACGAUUUUGGUUCUGGAAUUAGCGAGGAGUGUCGAUCGACACACUCUUGGUGUCGAUCGACACCAGUUUCGGCCCAGCAAAAACCCUAGACGCUUUCGAGUUUACAAGAGCUCAAGUUUGCCCUAGAAGAUUUCAUUAUUUGCAUUAUUAGUCCGUGGACGUUUUUAGGGUCUAUAUAUAUUGUUUUUAGACCUAAGUUUCUUUUAUCAAGUCUUUUAUCAAGCUUUUGCAAAACCA 1 19470 MI0005412 ath-MIR854a Arabidopsis thaliana miR854a stem-loop CGGAUGAGGAUAGGGAGGAGGAGUAUGAUACGAGCAUGUAUCAUUUCAGUGAGCACGUACCUCCAGCGCGGGAGAGCAAGAGCUUGAGUGAAGCUCAUAGAAACAACAGUAAGUUGCAGAGGUGGUGCAAGAAACAAGAUAGGCUACUUAUCAAGUGCUUCAAAGCCAUCACGUUUCUGACGGACAAGAUAAGCUGCUUCUCUUCUACUACAGCUAUUCCG 1 19471 MI0005413 ath-MIR854b Arabidopsis thaliana miR854b stem-loop CGGAUGAGGAUAGGGAGGAGGAGUAUGAUACGAGCAUGUAUCAUUUCAGUGAGCACGUACCUCCAGCGCGGGAGAGCAAGAGCUUGAGUGAAGCUCACAGAAACAACAGUAAGUUGCAGAGGUGGUGCAAGAAACAAGAUAGGUUACUUAUCAAGUGCUUCAAGGCCAUCACGUUUCUGACGGACAAGAUAAGUUGCUUCUCUUCUACCACAGCUAUUCCG 1 19472 MI0005414 ath-MIR854c Arabidopsis thaliana miR854c stem-loop CGGAUGAGGAUAGGGAGGAGGAGUAUGAUACGAGCAUGUAUCAUUUCAGUGAGCACGUACCUCCAGCGCGGGAGAGCAAGAGCUUGAGUGAAGCUCACAGAACCAACAGUAAGUUGCAGAGGUGGUGCAAGAAACAAGAUAGGCUACUUAUCAAGUGCUUCAAAGCCAUCACGUUUCUGACAGACAAGAUAAGCUGCUUCUCUUCUACUACAGCUAUUCCG 1 19473 MI0005415 ath-MIR854d Arabidopsis thaliana miR854d stem-loop CGGAUGAGGAUAGGGAGGAGGAGUAUGAUACGAGCAUGUAUCAUUUCAGUGAGCACGUACCUCCAGCGCGGGAGAGCAAGAGCUUGAGUGAAGCUCACAGAAACAACAGUAAGUUGCAGAGGUGGUGCAAGAAACAAGAUAGGUUACUUAUCAAGUGCUUCAAGGCCAUCACGUUUCUGACGGACAAGAUAAGUUGCUUCUCUUCUACCACAGCUAUUCCG 1 19474 MI0005416 hsa-mir-675 Homo sapiens miR-675 stem-loop CCCAGGGUCUGGUGCGGAGAGGGCCCACAGUGGACUUGGUGACGCUGUAUGCCCUCACCGCUCAGCCCCUGGG 5 19475 MI0005417 cbr-mir-784 Caenorhabditis briggsae miR-784 stem-loop CUACCAAGUGGCACAAUACCUGUAUGUAGAUAGUGAAGUAAUAUUGUUCUACAUACACCUAUUGAGCCACCUGGUGG 2 19476 MI0005418 cbr-mir-785 Caenorhabditis briggsae miR-785 stem-loop UUGCUCUUUCGCAACCGUCAGCACAGAGUGCUUCGACUUACACAGAAUUCGUAAAACCAACUGAUGUAAGUGAAUACUCUGUGUUGAUGGUGAUGAUGCUGAA 2 19477 MI0005419 cbr-mir-786 Caenorhabditis briggsae miR-786 stem-loop GGGACCCUUCCCAACAAAAUCUCAAAUAGUGGCAUUUACACAAGCAAUGGUAUGUAAUGCCCUGUACGAGAUUUGGUUGGUGAGAAGUCUC 2 19478 MI0005420 cbr-mir-787 Caenorhabditis briggsae miR-787 stem-loop CCUCAAAAUGGAGAAGAAGGAAACUAGACAAUCUUACAUAGCUCAAAAUAAUCUGUAAGCUCGUCUUAGUUUUCCUCUCCUCUCUAGGGA 2 19479 MI0005421 cbr-mir-788 Caenorhabditis briggsae miR-788 stem-loop ACUAACUUUUCCGCUUCUCAAUGCUCCAUUUGCAAAAUCAAAUUGAUUUUCUUGCAAAUGGGAUGAGAACCGGAAACGUUUGA 2 19480 MI0005422 cbr-mir-789a Caenorhabditis briggsae miR-789a stem-loop GAAACGUGGCCUUGUGGCCUAAUGGAUAAGGCGUCUGACUUCUAAUCAGAAGAUUGCAGGUUCGAUCCCUGCCUGGGUCAAAUGUUUUUGUUUU 2 19481 MI0005423 cbr-mir-789b Caenorhabditis briggsae miR-789b stem-loop UUGCCCGACUUCGGAUUCACGUGGUCAUCCAGGCGGUGCACGUUAAAAGAUAUAAAUGCCCUGCCUGGGUCACCAUGUGAAUAGGGAAUACGGUCA 2 19482 MI0005424 cbr-mir-790-1 Caenorhabditis briggsae miR-790-1 stem-loop AAGUCCCUUCCGAUUGCUUGGCACUCGCGAACACCGCGAUCACUUCCAAUAUCGAUCCGCGGAGUUAGCCAGUGUCAACCAAAUGGAUGUUUGAGACUU 2 19483 MI0005425 cbr-mir-790-2 Caenorhabditis briggsae miR-790-2 stem-loop GACUGCUUGGCACUCGCGAACACCGCGGUCGAAGUUACUCGCGGAGUUAGCCAGUGUCAACCAGAUG 2 19484 MI0005426 cbr-mir-791 Caenorhabditis briggsae miR-791 stem-loop GAAUUCUCGAUCACCGUAUCACGUGUGGCCAAAGUCAAAUCCAUUAUUGAACAUUGGCACUCCGCUGAUUUGGUGAUCGACUUUUC 2 19485 MI0005427 cbr-mir-792 Caenorhabditis briggsae miR-792 stem-loop GAAAACAUCGAAAAAUGAGAAAAUUAUAAUUGUUGGAGGUUGUGACACAAAACUAUGAAAUUGAAAUUUUUUCUAUUUUCGGUCCUUUUUC 2 19486 MI0005428 cbr-mir-235 Caenorhabditis briggsae miR-235 stem-loop UCCGAUCCGGCCAUGGCCAAUUGCAUAUAUUGCUUUUACUUUUUCAAAAUGCGAAUAUUGCACUUUCCCUGGCCAGAUCUGA 2 19487 MI0005429 cbr-mir-242 Caenorhabditis briggsae miR-242 stem-loop CAAUUCUUCUAAGCCAAAAAAAGAAUAUUGCGUAGGCCUUUGUUUCGAAAGACCCAAAAAUUGUUCGCAGCAAUCUCCUUCGCAAUAUUUUUUGGAAGAGGAAAUG 2 19488 MI0005430 cbr-mir-255 Caenorhabditis briggsae miR-255 stem-loop GAUGUCUCUUCAUUAUCAGGUAAGAAAUCUUUGUAGUUUUCCGCGAGUCAACGUGAAAACUGAAGAGAUUUUUUACAGAUUCCGGAGGAGCAUC 2 19489 MI0005431 cbr-mir-359 Caenorhabditis briggsae miR-359 stem-loop GACAAAUCUUCAUCCGUCAGAGCAUAUCUCAGUUACACAACUUCCUAAAUAGUGUCACUGGUUAUCCUCUGUCGAAAUGAAGAUGUC 2 19490 MI0005432 cbr-mir-392 Caenorhabditis briggsae miR-392 stem-loop AAAUCCUGCAUUUAUCUGACAUCUCACAUUAUUGAGGAUAUAAACUAAAUAAAGAAAUAUCAUCGAUCAUGUGAGCUGUUAGAUUAUCAGAUUU 2 19491 MI0005433 ath-MIR856 Arabidopsis thaliana miR856 stem-loop AUGUAUAAGAGGUGAGACUGUUGGCUUUAAUCCUACCAAUAACUUCAGCUGCAUCAUGAAGAGUAGACAGAGAUUCUGGCGGUUGAGGGUUUCUUCGUAGAGGUUGAUCGAUUCUUAAUGUCCUGUGGAUUUUAAGUUCCCAAAACUGUUGCUUAGGACAUACAAGAUCGUUCAAUGUCCAAGAAGAAACCUGAGCCGCUACAAUCAUCGGUCUAAUCUCUUUAGCAGAUGAAGUUAUUUGUGGUAUAAAACCCACAGUUUUAUCAUGCAU 1 19492 MI0005434 ath-MIR857 Arabidopsis thaliana miR857 stem-loop UUCGACUCCUACAACAAACUUUCACCAUACAAAAUAAUGAAGAAAACACCCAAAAAGGUUUGAAUGUGUGAGGUUAGUCUCAUUUUUAAAAUAGUGACUUGUUUUUUUUAAAAUGUUUUUUAAGAAUGUUUUUUCAGCUUUUUAUUUUAUUUUAAACCUAAAGGUAGCGUGACUAUUGUGGAGAAAUAAAGAAACAUAAGAAAAAAUAUUUUUGGUUUAUAGUAAGAUGUUGUUUUAAAAUAUAUAUUUAAAAACAAUGUCACUAUUUUAAACGGAAUAUAGACAUUUUCUAUUAAUGAGAUUAACGUCGAGCAUUUGAAUUUCUAGAUUUUUUUCUAAGUUAUUUUGUAUGUUGAAGGUGUAUUGUAGGAAUCGGA 1 19493 MI0005435 ath-MIR858 Arabidopsis thaliana miR858 stem-loop CUCAUCUUUGUUUCGUUGUCUGUUCGACCUUGGUCUCGAUCUCUCCUCAAAACCCUAAUACGCGCUUUAUCGUUUAUUUCAUUCAUCCAUCCUUCUUAUGAUCAUCAUAAACUAACGUACAUGGUUUAUCGGUUUGUUAUUGAUGGGGAUUGGGGUAGAUAGACGAUCGAAACUUUUGAUUUCUGAG 1 19494 MI0005436 ath-MIR859 Arabidopsis thaliana miR859 stem-loop AAAGGUAGAUGUCGAAAUCUCUCUGUUGUGAAGUCAAACAUGAGUAUGAAUUAACAUUAAUGGAUCUUUUUGAUUCAUAAUACUCAUGUUUGGUUUCACAGUAGAUAGAUAUCGACGUCUAUCUUU 1 19495 MI0005437 ath-MIR860 Arabidopsis thaliana miR860 stem-loop AUGUCUUGGUUAAAUUCAAUAUAUAUAGUCCAAUCUAUUGAAGUACUAGUACACCAGCUCUAAUAAGCUGAUGUGGGUAAGUAGUUCAAUAGAUUGGACUAUGUAUAUUAAAUUUGACUAAGAGAU 1 19496 MI0005438 ath-MIR861 Arabidopsis thaliana miR861 stem-loop GUAUCAUUGUUUUCGAACGAUGUCCUUGGAGAAAUAUGCGUCAAUGGAGUCCGUCUUCUUGAGAAGCAUUUUUGAGUGAGAAUGAUUCUCAUGAUGGAUAUGUCUUCAAGGACUUCUUUCAAACAAUGGUAC 1 19497 MI0005439 ath-MIR862 Arabidopsis thaliana miR862 stem-loop ACAGUAGUUUUCCAAUAGGUCGAGCAUGUGCUGAAACUGUGUGUACAGAGUUCUCAUAAACACACAGUUUCAGCAUAUGCUGGAUCUACUUGAAGACUACUGU 1 19498 MI0005440 ath-MIR863 Arabidopsis thaliana miR863 stem-loop CUCAUAAGAUGUAGAAACUAGAGAAGAGUUUGGGGGAAAACUCUUUCUUAUGUCUUGUUGAUCUCAAUAGCAUUGAUACAAUGUAUAUAUAUGCAAUUUAGAAUAUGUUUUUCCUAAUUUGAAUAAGAAAUAGAUAAACAUGAAUAAGUAUAUAUAUAUUUCCUAUUUAGAAUAUUUAUUUAUUCAAAUUAGGUGAAACAUAAUCUAGGUUGUAUAUAUAUAUGUUAUACCAAUGCGAUUGAGAGCAACAAGACAUAAUAAAGAGUUUUCGAAAACUUUUUUCUAGUUUCUACAUAAGAGGAG 1 19499 MI0005441 ath-MIR864 Arabidopsis thaliana miR864 stem-loop GCUUCAGGUAUGAUUGACUUCAAAAAAUACCUUGAAACUAUAAACCUCAGUUUCUUUGAAUUUGAUUUUUAAAGUCAAUAAUACCUUGAAGC 1 19500 MI0005442 ath-MIR865 Arabidopsis thaliana miR865 stem-loop GAUCUGGGAUGAAUUUGGAUCUAAUUGAGCAAAAAAUUGUGUUUUUUCAAUCUAUUGAAUUUCACAUCCUUAAACCCUUGCAUAUUCAAUCUAUUGAAUUUCGCAUAUUUUUCCUCAAAUUUAUCCAAAAUCAUCCCAAAUC 1 19501 MI0005443 ath-MIR866 Arabidopsis thaliana miR866 stem-loop UCAUCUAUUCUUACUUUUCAAGGAACGGAUUUUGUUAACUAAAUGAUUCACACCCUUGAAGAAACACGAUCUCGUGUGAAUCAUUUCGUUAACAAAAUCCGUCUUUGAAGAGUAAGUAUAUUGUGA 1 19502 MI0005444 ath-MIR845b Arabidopsis thaliana miR845b stem-loop AGUCGGUUUCCAUCACGUCAAUUGCUAUCAGAGCAACGCAUGAUGUAUAAUAACUAAGCGUCGCUCUGAUACCAAAUUGAUGCAAUGGAAACAUCGAUU 1 19503 MI0005445 ath-MIR867 Arabidopsis thaliana miR867 stem-loop ACACAUAAAACUAGUAUAUUGCCUUGAACAUGGUUUAUUAGGAAAGACAUGAGAACAUAUCUGAACAUAGUUUUUCCUUAUAUACAAUGUUCAAAGUAAUGAAUUAGUUUUAUUUUGU 1 19504 MI0005446 ath-MIR868 Arabidopsis thaliana miR868 stem-loop GAAUAAGCAUUGUCGGCACUUGAGAAUGUAAAGUGAUGAUCAGCUAUCGUAUUUCAUGUCGUAAUAGUAGUCACGUUAGGGUGAUAUAACGAGGCGAGAGUUAUAUCAUCAUAGUGCGAUUUCUAUUAUGACAUAAAAUACGUUUUGGAUUUUAAAACACUUGACCUUCUUAAGUGCUGAUAAUGCUUCUUUC 1 19505 MI0005447 ath-MIR869 Arabidopsis thaliana miR869 stem-loop GCCCACCAUACAGAUUUCCAUACGGUAGAAGAAAGUAUCACCUAUCUCAACUCCAGGAUUGGACCAGUACUAGGCUCAUCAUAGUUAAGCCACAAUCCACGAUUCCUCAUCAGCUAUAAAAGCAAAACCUUCAUAUCUAUCCUUGUUUCUAAACCAGUCUCAUAGAUAUGAAGGCUUUGUUUCUGAUGAAGGAUUGUGGGAUUGUUGCUUAACACUGAUGAGCAUAUUAUUGGUUCAAUUCUGGUGUUGAGAUAGUUGACACUUCUUAUACCGUAUGAAAACAUGUGUGGUGGGC 1 19506 MI0005448 ath-MIR870 Arabidopsis thaliana miR870 stem-loop GAUCGAAGAACAUCAAAUUAGAAUGUGAUGCAAAACUUAGACUCCUAACAUUUGCAACACAAUCUAAUUUGGUGUUUCUUCGAUC 1 19507 MI0005450 mmu-mir-181d Mus musculus miR-181d stem-loop ACAAUUAACAUUCAUUGUUGUCGGUGGGUUGUGAGGAGGCAGCCAGACCCACCGGGGGAUGAAUGUCACUGU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. 6 19508 MI0005451 bta-let-7a-2 Bos taurus let-7a-2 stem-loop AGGUUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACAUCAAGGGAGAUAACUGUACAGCCUCCUAGCUUUCCU 44 19509 MI0005452 bta-let-7a-3 Bos taurus let-7a-3 stem-loop GGGUGAGGUAGUAGGUUGUAUAGUUUGGGGCUCUGCCCUGCUAUGGGAUAACUAUACAAUCUACUGUCUUUCCU 44 19510 MI0005453 bta-let-7b Bos taurus let-7b stem-loop CGGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGUAGUGAUGUUGCCCCUCGGAAGAUAACUAUACAACCUACUGCCUUCCCUG The 3' end of the bovine let-7b hairpin precursor falls in a gap in the genome assembly. The sequence shown here is predicted from human. 44 19511 MI0005454 bta-let-7c Bos taurus let-7c stem-loop GCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGC 44 19512 MI0005455 bta-let-7e Bos taurus let-7e stem-loop CCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGAGGACACCCAAGGAGAUCACUAUACGGCCUCCUAGCUUUCCCCAGG 44 19513 MI0005456 bta-mir-103-2 Bos taurus miR-103-2 stem-loop UUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUAGCAUUCAGGUCAAGCAGCAUUGUACAGGGCUAUGAAAGAAC 44 19514 MI0005457 bta-mir-125b-2 Bos taurus miR-125b-2 stem-loop GACUUUUCCUAGUCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAGCAUCACAAGUCAGGCUCUUGGGACCUAGGCGGAGGGGA 44 19515 MI0005458 bta-mir-15a Bos taurus miR-15a stem-loop CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG 44 19516 MI0005459 bta-mir-195 Bos taurus miR-195 stem-loop AGCUCCCCUGGCUCUAGCAGCACAGAAAUAUUGGCACUGGGAAGAAAGCCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUGGUG 44 19517 MI0005460 bta-mir-19a Bos taurus miR-19a stem-loop GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC 44 19518 MI0005461 bta-mir-19b Bos taurus miR-19b stem-loop CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAGUG 44 19519 MI0005462 bta-mir-204 Bos taurus miR-204 stem-loop UUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCAC 44 19520 MI0005463 bta-mir-331 Bos taurus miR-331 stem-loop GAGUUUGGUUUUGUUUGGGUUUGUUCUAGGUAUGGUCCCAGGGAUCCCAGAUCAAACCAGGCCCCUGGGCCUAUCCUAGAACCAACCUAA 44 19521 MI0005464 bta-mir-34a Bos taurus miR-34a stem-loop GGCCAGCUGUGAGUGUUUCUUUGGCAGUGUCUUAGCUGGUUGUUGUGAGUAAUAAUGCAGGAAGCAAUCAGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGGG 44 19522 MI0005465 bta-mir-365 Bos taurus miR-365 stem-loop ACCGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUGCAUUCCACUAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCA 44 19523 MI0005466 bta-mir-374 Bos taurus miR-374 stem-loop UACAUCGGCCAUUAUAAUACAACCUGAUAAGUGUUACAGCACUUAUCAGGUUGUAUUGUAAUUGUCUGUGUA 44 19524 MI0005467 bta-mir-497 Bos taurus miR-497 stem-loop CCACCCCAGUCCUGCUCCCGCCCCAGCAGCACACUGUGGUUUGUACGGCACUGUGGCCACGUCCAAACCACACUGUGGUGUUAGAGCGAGGGUGGGGGAGGCACCGCUGAGG 44 19525 MI0005468 bta-mir-660 Bos taurus miR-660 stem-loop CUGCUCCUUCUCCCGUACCCAUUGCAUAUCGGAGCUGUGAAUUCUCAAAGCACCUCCUAUGUGCAUGGAUUACAGGAGGG 44 19526 MI0005469 bta-mir-99b Bos taurus miR-99b stem-loop GGCACCCACCCGUAGAACCGACCUUGCGGGGCCUUCGCCGCACACAAGCUCGUGUCUGUGGGUCCGUGUC 44 19527 MI0005470 mmu-mir-743b Mus musculus miR-743b stem-loop UGCAGUGCUGUGUUCAGACUGGUGUCCAUCAUGUGAAAUAUUUGUGAAAGACAUCAUGCUGAAUAGAGUAAGGCCCA 6 19528 MI0005471 mmu-mir-871 Mus musculus miR-871 stem-loop UGCAGUGCUCUAUUCAGAUUAGUGCCAGUCAUGUGAAAUACAUAUGACUGGCACCAUUCUGGAUAAUGUAAUGCUCA 6 19529 MI0005472 mmu-mir-879 Mus musculus miR-879 stem-loop UUCUAGGUCCAGAGGCUUAUAGCUCUAAGCCUUGGAUGAAAGAGGCUUAUGGCUUCAAGCUUUCGGAGCUGGAGAC 6 19530 MI0005473 mmu-mir-880 Mus musculus miR-880 stem-loop UGCACUGCAAUACUCAGAUUGAUAUGAGUCACUUCCUAUUGCAUGUUACUCCAUCCUCUCUGAGUAGAGUAAGGCACA 6 19531 MI0005474 mmu-mir-881 Mus musculus miR-881 stem-loop UGCAGUACAAUAUUCAGAGAGAUAACAGUCACAUCUUUUCUAAAGUAACUGUGUCUUUUCUGAAUAGAGUAAUGUUCA 6 19532 MI0005475 mmu-mir-882 Mus musculus miR-882 stem-loop CAGCAGUACCAGGAGAGAGUUAGCGCAUUAGUGCAAUAGUUAGUCCUGAUUUCUGGGUUUUUCUAAUGGCUGCUCUU 6 19533 MI0005476 mmu-mir-883a Mus musculus miR-883a stem-loop GCACUAUAAUGCUGAGAGAAGUAGCAGUUACUUUAUUCUAUAAGUAACUGCAACAGCUCUCAGUAUUGUAAGGCUC 6 19534 MI0005477 mmu-mir-883b Mus musculus miR-883b stem-loop UGCAAUGCAUUACUGAGAAUGGGUAGCAGUCACUUUGUACUAUGAGUAACUGCAACAUCUCUCAGUAUUGUAAGGUUC 6 19535 MI0005478 mmu-mir-190b Mus musculus miR-190b stem-loop UGCUUCUGUGUGAUAUGUUUGAUAUUGGGUUGUUAAAUUAUGAACCAACUGAAUGUCAAGCAUACUCUCACAGCAGUAAG 6 19536 MI0005479 mmu-mir-874 Mus musculus miR-874 stem-loop UUAGCCCUGCGGCCCCACGCACCAGGGUAAGAGAGACUCACUUCCUGCCCUGGCCCGAGGGACCGACUGGCUGGGC 6 19537 MI0005480 mmu-mir-876 Mus musculus miR-876 stem-loop UCACGUGCUAUGGAUUUCUCUGUGAAUCACUAUAUCAAAUCUAGUGUGGUAGUGGUUUACAAAGUAAUUCAUAGUGCUUCA 6 19538 MI0005481 mmu-mir-105 Mus musculus miR-105 stem-loop UGCAUUUUAGCCAAGUGCUCAGAUGCUUGUGGUGGCUGCUUAUGCACCACGAAUGCUUGAGCAUGUGCUAUGGUACCUAC 6 19539 MI0005482 mmu-mir-147 Mus musculus miR-147 stem-loop UAUGAAUCUAGUGGAAACAUUUCUGCACAAACUAGAUGUUGAUGCCAGUGUGCGGAAAUGCUUCUGCUACAUUUGUAGG 6 19540 MI0005483 mmu-mir-18b Mus musculus miR-18b stem-loop UCUCUUGUGUUAAGGUGCAUCUAGUGCUGUUAGUGAAGCAGCUUACAAUCUACUGCCCUAAAUGCCCCUUCUCGCACAGGCUA 6 19541 MI0005484 mmu-mir-193b Mus musculus miR-193b stem-loop GGCCCAGAAUCGGGGUUUUGAGGGCGAGAUGAGUUUGUGUUUUAUCCAACUGGCCCACAAAGUCCCGCUUUUGGGGUCA 6 19542 MI0005485 mmu-mir-197 Mus musculus miR-197 stem-loop GGGGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGCAUGGCCGGCA 6 19543 MI0005487 mmu-mir-220 Mus musculus miR-220 stem-loop UUGUAGGGCUCCACCACAGUGUCAGACACUUUGGGUGAGGGCACCACACUGAAGGUGUUCAUGAUGCGGUCGGGAUACUCCUCACG 6 19544 MI0005488 mmu-mir-297a-3 Mus musculus miR-297a-3 stem-loop CUGUGUGUAUAUGUAUGUGUGCAUGUGCAUGUGUGUAUAUGAAUAUACAUAUACAUACACACAUACCCAUACAAACAUGCACACAAACACACAGAAAAUUGA 6 19545 MI0005489 mmu-mir-297a-4 Mus musculus miR-297a-4 stem-loop CUGUGUGUAUAUGUAUGUGUGCAUGUGCAUGUGUGUAUAUGAGUAUACAUAUACAUACACACAUACCCAUACAAGCAUGCACACAAAUACACGCAAAA 6 19546 MI0005490 mmu-mir-297a-5 Mus musculus miR-297a-5 stem-loop CUGUGUGUAUAUGUAUGUGUGCAUGUGCAUGUGUGUAUAUGAGUAUACAUAUACAUACGCACAUACCCAUACAAGCAUGCACACAAACCC 6 19547 MI0005491 mmu-mir-297a-6 Mus musculus miR-297a-6 stem-loop AUGUGCAUGUGUGUAUGUGCAUGAGUGCAUGUGCAUGCAUGUGUGUGCGCAUGUAUGUGUGCAUGUGCAUGUAUGUGUGCAU 6 19548 MI0005492 mmu-mir-297c Mus musculus miR-297c stem-loop CUGUGUGUAUAUGUAUGUGUGCAUGUACAUGUGUGUAUAUGAAUAUACAUAUACAUACACACAUACCCAUACAAACAUGCAUACAAACACACAAAAAU 6 19549 MI0005493 mmu-mir-327 Mus musculus miR-327 stem-loop UGCCCUUAUAACUUGAGGGGCAUGAGGAUAGUCAGUAGUCCAACAUCCCUCUUGAUGGCACAUUGCACA 6 19550 MI0005494 mmu-mir-343 Mus musculus miR-343 stem-loop UGGGAUAGAGUGGGUGUGGCGGGGGUAGCAGAGCCCAGGGCAACCUCUCCCUUCAUGUGCCCAGAUCCUGCAUGC 6 19551 MI0005495 mmu-mir-344-2 Mus musculus miR-344-2 stem-loop UUUUUACCAGUCAGGCUCCUGGCUAGAUUCCAGGUACCAACUGGUACCUGAUCUAGCCAAAGCCUGACUGUAAGCUGCAA 6 19552 MI0005496 mmu-mir-421 Mus musculus miR-421 stem-loop CAUUGUAGGCCUCAUUAAAUGUUUGUUGAAUGAAAAAAUGAAUCAUCAACAGACAUUAAUUGGGCGCCUGCUCUGU 6 19553 MI0005497 mmu-mir-453 Mus musculus miR-453 stem-loop AGAAGAUGCAGGAGUGCUGUGAGAAGUGCCAUCCCCUGGUACUUGGAGGGAGGUUGCCUCAUAGUGAGCUUGCAUUAUUUAA 6 19554 MI0005498 mmu-mir-465b-1 Mus musculus miR-465b-1 stem-loop UGCAAUGCCCUAUUUAGAAUGGUGCUGAUCUGAUGAAAUAAAAAAUUGAUCAGGGCCUUUCUAAGUAGAGUAAGGCUUA 6 19555 MI0005499 mmu-mir-465b-2 Mus musculus miR-465b-2 stem-loop UGCAAUGCCCUAUUUAGAAUGGUGCUGAUCUGAUGAAAUAAAAAAUUGAUCAGGGCCUUUCUAAGUAGAGUAAGGCUUA 6 19556 MI0005500 mmu-mir-465c-1 Mus musculus miR-465c-1 stem-loop UGCAAUGCCCUAUUUAGAAUGGCGCUGAUCUGAUGAAUAAAAAAAAAAUGAUCAGGGCCUUUCUAAGUAGAGUAAGGCUUA 6 19557 MI0005501 mmu-mir-465c-2 Mus musculus miR-465c-2 stem-loop UGCAAUGCCCUAUUUAGAAUGGCGCUGAUCUGAUGAAUAAAAAAAAAAUGAUCAGGGCCUUUCUAAGUAGAGUAAGGCUUA 6 19558 MI0005502 mmu-mir-466b-1 Mus musculus miR-466b-1 stem-loop UGUAUGUGUUGAUGUGUGUGUACAUGUACAUGUGUGAAUAUGAUAUACAUAUACAUACACGCACACAUAAGACACAUAUGAG 6 19559 MI0005503 mmu-mir-466b-2 Mus musculus miR-466b-2 stem-loop UGUAUGUGUUGAUGUGUGUGUACAUGUACAUGUCUGAAUAUGAUAUACAUAUACAUACACGCACACAUAAGACACAUAUGAG 6 19560 MI0005504 mmu-mir-466b-3 Mus musculus miR-466b-3 stem-loop UAUAUGUGUUGAUGUGUGUGUACAUGUACAUGUGUGAAUAUGAUAUACAAAUACAUACACGCACACAUAAGACACAUAUGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [1]. The 5' end of the miRNA may be offset with respect to previous annotations. 6 19561 MI0005505 mmu-mir-466c Mus musculus miR-466c stem-loop GUAUAUGUGUUGAUGUGUGUGUGCAUGUACAUAUGUGAAUAUGAUAUACAUAUACAUACACGCACACAUAAGACACAUAUGAGC 6 19562 MI0005506 mmu-mir-466e Mus musculus miR-466e stem-loop GUGUAUGUGUUGAUGUGUGUGUACAUGUACAUAUGUGAAUAUGAUAUACAUAUACAUACACGCACACAUAAGACACAUAUGAGC 6 19563 MI0005507 mmu-mir-466f-1 Mus musculus miR-466f-1 stem-loop CAUGUGUGUUUACGUGUGUGUGCAUGUGCAUGUGUGUAUAUGAAUAUACAUACACAUACACACACACAUACACACACAUGCAACACACACAUAU Landgraf et al. identify several offset sequences which map to the 3' arm of the miR-466f hairpin precursors [1]. One sequence consistent with all three putative hairpin loci is shown here. 6 19564 MI0005508 mmu-mir-466f-2 Mus musculus miR-466f-2 stem-loop AAUGUGUGUUUACGUGUGUGUGCAUGUGCAUGUGUGUAUAUGAAUAUAUGUAUACAUACACACACACAUACACACUCAUGUAACACACACACAC Landgraf et al. identify several offset sequences which map to the 3' arm of the miR-466f hairpin precursors [1]. One sequence consistent with all three putative hairpin loci is shown here. 6 19565 MI0005509 mmu-mir-466f-3 Mus musculus miR-466f-3 stem-loop CAUGUGUGUUUACGUGUGUGUGCAUGUGCAUGUGUGUAUAUGAAUAUAUGUAUACAUACACACACACAUACACACGCACGCAACACACACACAC Landgraf et al. identify several offset sequences which map to the 3' arm of the miR-466f hairpin precursors [1]. One sequence consistent with all three putative hairpin loci is shown here. 6 19566 MI0005510 mmu-mir-466g Mus musculus miR-466g stem-loop UGUGUUUUCGUGUGUGUGCAUGUGGAUGUAUGUAUAUGAUUUUGCAUAUACAGACACAUGCACACACAUGCGGCACACAC 6 19567 MI0005511 mmu-mir-466h Mus musculus miR-466h stem-loop UGUAUAUUUGUGUGUGCAUGUGCUUGUGUGUAUGUGAAUAUAUAUAUCAUACGCACGCACACACACACACAAAUGCAAGCA 6 19568 MI0005512 mmu-mir-467c Mus musculus miR-467c stem-loop CCUUUGUGCAUAAGUGCGUGCAUGUAUAUGUGUGUAUAUUUUAUGCAUAUACAUACACACACCUAUACACACAUGCACACAGACAUGCGAGAAUGGC 6 19569 MI0005513 mmu-mir-467d Mus musculus miR-467d stem-loop CCUGUGUGCAUAAGUGCGCGCAUGUAUAUGCGUGUAUAUUUUAUGCAUAUACAUACACACACCUACACACACAUGCACACAGACA 6 19570 MI0005514 mmu-mir-493 Mus musculus miR-493 stem-loop CGCCAGGGCCUUGUACAUGGUAGGCUUUCAUUCAUUUUUUGCACAUUCGGUGAAGGUCCUACUGUGUGCCAGGCCCUGUGCCA 6 19571 MI0005515 mmu-mir-504 Mus musculus miR-504 stem-loop UCCUGUUGGGAGACCCUGGUCUGCACUCUAUCUGUAAACUUACUGAAGGGAGAGCAGGGCAGGGUUUCCCAUACAGAGG 6 19572 MI0005516 mmu-mir-509 Mus musculus miR-509 stem-loop GUGGUUCUUUACUCCAGAAUGUGGCAAUCAUGCAUAAUUAAAUGUGAUUGACAUUUCUGUAAUGGAGUAACACAU 6 19573 MI0005517 mmu-mir-568 Mus musculus miR-568 stem-loop ACACUAUAUUAUGUAUAAAUGUAUACACACUUCUAUAUAUGUCCACAUAUAUGCGGUGUGUGUAUUAUACAGGUAUAGGUGUG 6 19574 MI0005518 mmu-mir-574 Mus musculus miR-574 stem-loop UGCGGGCGUGUGAGUGUGUGUGUGUGAGUGUGUGUCGCUCCAAGUCCACGCUCAUGCACACACCCACACGCCCGCACG 6 19575 MI0005519 mmu-mir-590 Mus musculus miR-590 stem-loop AGUCAGAAAUGAGCUUAUUCAUAAAAGUGCAGUAUGGUGAAGUCAAUCUGUAAUUUUAUGUAUAAGCUAGUCUCUGAUUGA 6 19576 MI0005520 mmu-mir-654 Mus musculus miR-654 stem-loop CUCGGUAAGUGGGAAGAUGGUAAGCUGCAGAACAUGUGUGUUUCUCAUGUCAUAUGUCUGCUGACCAUCACCUUUGGGUCUCUG 6 19577 MI0005521 mmu-mir-92b Mus musculus miR-92b stem-loop GGUGGGCGGGAGGGACGGGACGUGGUGCAGUGUUGUUCUUUCCCCUGCCAAUAUUGCACUCGUCCCGGCCUCCGGCCCCCUCG 6 19578 MI0005523 hsa-mir-298 Homo sapiens miR-298 stem-loop UCAGGUCUUCAGCAGAAGCAGGGAGGUUCUCCCAGUGGUUUUCCUUGACUGUGAGGAACUAGCCUGCUGCUUUGCUCAGGAGUGAGCU 5 19579 MI0005524 hsa-mir-891a Homo sapiens miR-891a stem-loop CCUUAAUCCUUGCAACGAACCUGAGCCACUGAUUCAGUAAAAUACUCAGUGGCACAUGUUUGUUGUGAGGGUCAAAAGA 5 19580 MI0005525 hsa-mir-300 Homo sapiens miR-300 stem-loop UGCUACUUGAAGAGAGGUAAUCCUUCACGCAUUUGCUUUACUUGCAAUGAUUAUACAAGGGCAGACUCUCUCUGGGGAGCAAA 5 19581 MI0005527 hsa-mir-886 Homo sapiens miR-886 stem-loop CACUCCUACCCGGGUCGGAGUUAGCUCAAGCGGUUACCUCCUCAUGCCGGACUUUCUAUCUGUCCAUCUCUGUGCUGGGGUUCGAGACCCGCGGGUGCUUACUGACCCUUUUAUGCAAUAA 5 19582 MI0005528 hsa-mir-892a Homo sapiens miR-892a stem-loop GCAGUGCCUUACUCAGAAAGGUGCCAGUCACUUACACUACAUGUCACUGUGUCCUUUCUGCGUAGAGUAAGGCUC 5 19583 MI0005529 hsa-mir-220b Homo sapiens miR-220b stem-loop UUGUAGGGCUCCACCACCGUGUCUGACACUUUGGGCGAGGGCACCACGCUGAAGGUGUUCAUGAUGCGGUCUGGGAACUCCUCGCGG 5 19584 MI0005530 hsa-mir-509-2 Homo sapiens miR-509-2 stem-loop CAUGCUGUGUGUGGUACCCUACUGCAGACAGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUGGGUAGAGUACUGCAUGACAC The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [3]. The cloned miR-509-5p sequence from [3] includes a 1 nt extension at the 3' end (A), which is incompatible with the genome sequence. 5 19585 MI0005531 hsa-mir-450b Homo sapiens miR-450b stem-loop GCAGAAUUAUUUUUGCAAUAUGUUCCUGAAUAUGUAAUAUAAGUGUAUUGGGAUCAUUUUGCAUCCAUAGUUUUGUAU 5 19586 MI0005532 hsa-mir-874 Homo sapiens miR-874 stem-loop UUAGCCCUGCGGCCCCACGCACCAGGGUAAGAGAGACUCUCGCUUCCUGCCCUGGCCCGAGGGACCGACUGGCUGGGC 5 19587 MI0005533 hsa-mir-890 Homo sapiens miR-890 stem-loop GGAAGUGCCCUACUUGGAAAGGCAUCAGUUGCUUAGAUUACAUGUAACUAUUCCCUUUCUGAGUAGAGUAAGUCUUA 5 19588 MI0005534 hsa-mir-891b Homo sapiens miR-891b stem-loop CCUUAAUCCUUGCAACUUACCUGAGUCAUUGAUUCAGUAAAACAUUCAAUGGCACAUGUUUGUUGUUAGGGUCAAAAGA 5 19589 MI0005536 hsa-mir-220c Homo sapiens miR-220c stem-loop CACUGGGACCACACAGGGCUGUUGUGAAGACUCAGUGAGCUCAUCCCCACACAGCCUUCAGCACAGGGCCUGGCUCAGGGCAG 5 19590 MI0005537 hsa-mir-888 Homo sapiens miR-888 stem-loop GGCAGUGCUCUACUCAAAAAGCUGUCAGUCACUUAGAUUACAUGUGACUGACACCUCUUUGGGUGAAGGAAGGCUCA 5 19591 MI0005538 hsa-mir-892b Homo sapiens miR-892b stem-loop UGCAAUGCCCUACUCAGAAAGGUGCCAUUUAUGUAGAUUUUAUGUCACUGGCUCCUUUCUGGGUAGAGCAAGGCUCA 5 19592 MI0005539 hsa-mir-541 Homo sapiens miR-541 stem-loop ACGUCAGGGAAAGGAUUCUGCUGUCGGUCCCACUCCAAAGUUCACAGAAUGGGUGGUGGGCACAGAAUCUGGACUCUGCUUGUG 5 19593 MI0005540 hsa-mir-889 Homo sapiens miR-889 stem-loop GUGCUUAAAGAAUGGCUGUCCGUAGUAUGGUCUCUAUAUUUAUGAUGAUUAAUAUCGGACAACCAUUGUUUUAGUAUCC 5 19594 MI0005541 hsa-mir-875 Homo sapiens miR-875 stem-loop UUAGUGGUACUAUACCUCAGUUUUAUCAGGUGUUCUUAAAAUCACCUGGAAACACUGAGGUUGUGUCUCACUGAAC 5 19595 MI0005542 hsa-mir-876 Homo sapiens miR-876 stem-loop UGAAGUGCUGUGGAUUUCUUUGUGAAUCACCAUAUCUAAGCUAAUGUGGUGGUGGUUUACAAAGUAAUUCAUAGUGCUUCA 5 19596 MI0005543 hsa-mir-708 Homo sapiens miR-708 stem-loop AACUGCCCUCAAGGAGCUUACAAUCUAGCUGGGGGUAAAUGACUUGCACAUGAACACAACUAGACUGUGAGCUUCUAGAGGGCAGGGA 5 19597 MI0005544 hsa-mir-147b Homo sapiens miR-147b stem-loop UAUAAAUCUAGUGGAAACAUUUCUGCACAAACUAGAUUCUGGACACCAGUGUGCGGAAAUGCUUCUGCUACAUUUUUAGG 5 19598 MI0005545 hsa-mir-190b Homo sapiens miR-190b stem-loop UGCUUCUGUGUGAUAUGUUUGAUAUUGGGUUGUUUAAUUAGGAACCAACUAAAUGUCAAACAUAUUCUUACAGCAGCAG 5 19599 MI0005546 mmu-mir-466d Mus musculus miR-466d stem-loop CAUGUGUGUUUGUGUGUGCGUACAUGUACAUGUGUGUAUAUGAAUAUACAUAUACAUACACGCACACAUAGAUACGCACGCACACACACACACAGG miR-466d-3p reported in [1] has an additional 3' U base which is inconsistent with the current genome sequence (as shown here). 6 19600 MI0005547 mmu-mir-449b Mus musculus miR-449b stem-loop AGACUCGGGUAGGCAGUGUUGUUAGCUGGCUGCGUUGGGUCAGGCCAGCAGCCACAGCUACCCUGCCACUUCCUUCUGGC 6 19601 MI0005548 mmu-mir-878 Mus musculus miR-878 stem-loop UGCAAUGCUUUAUCUAGUUGGAUGUCAAGACACGUGAAACUUAAGUGCAUGACACCACACUGGGUAGAGGAGGGCUCA This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 6 19602 MI0005549 mmu-mir-872 Mus musculus miR-872 stem-loop AACUUGUUAGAAGGUUACUUGUUAGUUCAGGACCUCAUUACUUUCUGCCUGAACUAUUGCAGUAGCCUCCUAACUGGUUAU This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 6 19603 MI0005550 mmu-mir-873 Mus musculus miR-873 stem-loop GUGUGCAUUUGCAGGAACUUGUGAGUCUCCUAUUGAAAAUAGACAGGAGACUGACAAGUUCCCGGGAACACCCACAA This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 6 19604 MI0005551 mmu-mir-875 Mus musculus miR-875 stem-loop UCUGUGGUACUAUACCUCAGUUUUAUCAGGUGUUCAUUAAAAUCACCUGAAAAUACUGAGGCUAUGUUUCACUGAGCA This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was independently shown in human and rat [2]. 6 19605 MI0005552 mmu-mir-208b Mus musculus miR-208b stem-loop CCUCUCAGGGAAGCUUUUUGCUCGCGUUAUGUUUCUCAUCCGAAUAUAAGACGAACAAAAGGUUUGUCUGAGGGCUG This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 6 19606 MI0005553 mmu-mir-877 Mus musculus miR-877 stem-loop GUAGAGGAGAUGGCGCAGGGGACACAAGGUAGGCCUUGCGGGUCUGUGGACCCUUGGACAUGUGUCCUCUUCUCCCUCCUCCCAG This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 6 19607 MI0005554 mmu-mir-511 Mus musculus miR-511 stem-loop GAUACCCACCAUGCCUUUUGCUCUGCACUCAGUAAAUAAUAAUUUGUGAAUGUGUAGCAAAAGACAGGAUGGGGAUCCA This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was independently shown in human and rat [2]. 6 19608 MI0005555 mmu-mir-544 Mus musculus miR-544 stem-loop CACCUAGGGAUCUUGUUAAAAAGCAGAGUCUGAUUGAGGGGCCAAGAUUCUGCAUUUUUAGCAAGCUCUCAAGUGAUG This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was independently shown in human and rat [2]. 6 19609 MI0005556 mmu-mir-598 Mus musculus miR-598 stem-loop GCUGAUGCUGGCGGUGAUGCCGAUGGUGCGAGCUGAAAAUGGGCUGCUACGUCAUCGUCGUCAUCGUUAUCAUCAUCAU This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was independently shown in human and rat [2]. 6 19610 MI0005557 mmu-mir-653 Mus musculus miR-653 stem-loop CAUUCUUUCAGUGUUGAAACAAUCUCUACUGAACCAAGCUCCAAAGCGAGUUCACUGGAGUUUGUUUCAGUAUUGCAGGAGUGCU This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was independently shown in human and rat [2]. 6 19611 MI0005559 hsa-mir-744 Homo sapiens miR-744 stem-loop UUGGGCAAGGUGCGGGGCUAGGGCUAACAGCAGUCUUACUGAAGGUUUCCUGGAAACCACGCACAUGCUGUUGCCACUAACCUCAACCUUACUCGGUC This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19612 MI0005560 hsa-mir-885 Homo sapiens miR-885 stem-loop CCGCACUCUCUCCAUUACACUACCCUGCCUCUUCUCCAUGAGAGGCAGCGGGGUGUAGUGGAUAGAGCACGGGU This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19613 MI0005561 hsa-mir-877 Homo sapiens miR-877 stem-loop GUAGAGGAGAUGGCGCAGGGGACACGGGCAAAGACUUGGGGGUUCCUGGGACCCUCAGACGUGUGUCCUCUUCUCCCUCCUCCCAG This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19614 MI0005562 hsa-mir-887 Homo sapiens miR-887 stem-loop GUGCAGAUCCUUGGGAGCCCUGUUAGACUCUGGAUUUUACACUUGGAGUGAACGGGCGCCAUCCCGAGGCUUUGCACAG This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19615 MI0005563 hsa-mir-665 Homo sapiens miR-665 stem-loop UCUCCUCGAGGGGUCUCUGCCUCUACCCAGGACUCUUUCAUGACCAGGAGGCUGAGGCCCCUCACAGGCGGC This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19616 MI0005564 hsa-mir-873 Homo sapiens miR-873 stem-loop GUGUGCAUUUGCAGGAACUUGUGAGUCUCCUAUUGAAAAUGAACAGGAGACUGAUGAGUUCCCGGGAACACCCACAA This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19617 MI0005565 hsa-mir-543 Homo sapiens miR-543 stem-loop UACUUAAUGAGAAGUUGCCCGUGUUUUUUUCGCUUUAUUUGUGACGAAACAUUCGCGGUGCACUUCUUUUUCAGUAUC This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression has been independently confirmed in mouse and rat [2]. 5 19618 MI0005566 hsa-mir-374b Homo sapiens miR-374b stem-loop ACUCGGAUGGAUAUAAUACAACCUGCUAAGUGUCCUAGCACUUAGCAGGUUGUAUUAUCAUUGUCCGUGUCU This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19619 MI0005567 hsa-mir-760 Homo sapiens miR-760 stem-loop GGCGCGUCGCCCCCCUCAGUCCACCAGAGCCCGGAUACCUCAGAAAUUCGGCUCUGGGUCUGUGGGGAGCGAAAUGCAAC This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19620 MI0005568 hsa-mir-301b Homo sapiens miR-301b stem-loop GCCGCAGGUGCUCUGACGAGGUUGCACUACUGUGCUCUGAGAAGCAGUGCAAUGAUAUUGUCAAAGCAUCUGGGACCA This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19621 MI0005569 hsa-mir-216b Homo sapiens miR-216b stem-loop GCAGACUGGAAAAUCUCUGCAGGCAAAUGUGAUGUCACUGAGGAAAUCACACACUUACCCGUAGAGAUUCUACAGUCUGACA This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19622 MI0005570 hsa-mir-208b Homo sapiens miR-208b stem-loop CCUCUCAGGGAAGCUUUUUGCUCGAAUUAUGUUUCUGAUCCGAAUAUAAGACGAACAAAAGGUUUGUCUGAGGGCAG This sequence was identified as a miRNA candidate by Berezikov et al. using RAKE and MPSS techniques [1]. Expression was later confirmed by cloning [2]. 5 19623 MI0005638 ghr-MIR156a Gossypium hirsutum miR156a stem-loop AAGGGAGGUGACAGAAGAGAGUGAGCACACAGGGUACUUUCUUGCAUGCUUGAGCCUUUCAUGCUUGAAGCUCUGCGUGCUCACCCUCUAUCUGUCAUCCACUU 50 19624 MI0005639 ghr-MIR156b Gossypium hirsutum miR156b stem-loop GGUGACAGAAGAGAGUGAGCACACAGGGUACUUUCUUGCAUGCUUGAGCCUUUCAUGCUUGAAGCUCUGCGUGCUCACCCUCUAUCUGUCAUCCACUUUUCUCUCUCUCUCUC 50 19625 MI0005640 ghr-MIR156c Gossypium hirsutum miR156c stem-loop GGUGUCAGAAGAGAGUGAGCACACAGGGUUCUUUGUAGCAUGCUUGAGCCUUUCAUGCUAGAAGCUAUGUGUGCUCACCCUCUAUCUGUCAUCCACU 50 19626 MI0005641 ghr-MIR156d Gossypium hirsutum miR156d stem-loop GAGAGGUUUGACAGAAGAGAGUGAGCACACGCAGGCAGAUUGUAUGAAAGGCCAUACCUUUGCCCGCCGUGUGCUCACUUCUCUUCUGUCAGCUUA 50 19627 MI0005642 gra-MIR157a Gossypium rammindii miR157a stem-loop GUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGGUGUGCAAUUAGGAGUCUUGAAGCAAUGCAUCCCACUCCUUUGUGCUCUUUAUGCUUCUGUCAUCACC 51 19628 MI0005643 gra-MIR157b Gossypium rammindii miR157b stem-loop GUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGGUGUUGCCUAUGUGCAUGCAUCCCACUCCUUUGUGCUCUCUAUGCUUCUGUCAUCAUC 51 19629 MI0005644 ghr-MIR162a Gossypium hirsutum miR162a stem-loop UUUUUAGCGUUGGGGUAAAGACACUGGAGGCAGCGGUUCAUCGAUCUCUUCCUGAGAAUUUUGUUGUGAGAAUAACACAAAUACAUGAAUCGAUCGAUAAACCUCUGCAUCCAGCGCCUUAACUCUCCAUGAAGUUUUAUGUUAGUUA 50 19630 MI0005645 ghr-MIR166b Gossypium hirsutum miR166b stem-loop UGAGGGGAAUGUUGUCUGGACCGGGGACACUUGUGUUUCUAAUCCGUUUUCCCUGCAAUAUUGUUCUGAUUAACGUGGGGAUCUUUAUAUUGCUUAUUUUUGUAAUGGAUUAAGGUUGUACUAGUGUCGUCGGACCAGGCUUCAUUCCCCCCAA 50 19631 MI0005646 ghb-MIR169a Gossypium herbecium miR169a stem-loop UAUAGAGAGGAAGAAAAGGUCUAACAUGAAGAUAAAGAGUCUUGUUUGGUAGCCAAGGAUGACUUGCCUGCACCUAAUGUCCACGAGGUUUUAAUACAUCAAAAACCCUGGUUGGGUCCCAGGCAGUCACCUUGGCUAACUAGACAGGCUGUUUUCAUUCAUGCUAGGCCUCAUCUUCCGCCCCAUUGG 52 19632 MI0005647 ghr-MIR390a Gossypium hirsutum miR390a stem-loop UGGAAGAAUCUGUUAAGCUCAGGAGGGAUAGCGCCAUGGAUGAUCCAUCUUUCAAGCUUUCAUGCAUGUAUGUUAUUUGAUCCUCAUAUAGCGCUAUCCAUCCUGAGUUUCAUCGGUUCUUCUU 50 19633 MI0005648 ghr-MIR390b Gossypium hirsutum miR390b stem-loop GUAUGGAAGAAUCUGUUAAGCUCAGGAGGGAUAGCGCCAUGGAUGAUCCAUCUUUCAAGCUUUCAUGCAUGUAUGUUAUUUGAUCCUCAUAUAGCGCUAUCCAUCCUGAGUUUCAUCGGUUCUUCUUGCUUG 50 19634 MI0005649 ghr-MIR390c Gossypium hirsutum miR390c stem-loop AGAAUCUGUUAAGCUCAGGAGGGAUAGCGCCAUGGAUGAUCCAUCUUUCAAGCUUUCAUGCAUGUAUGUUAUUUGAUCCUCAUAUAGCGCUAUCCAUCCUGAGUUUCAUCGGUU 50 19635 MI0005650 ghr-MIR396a Gossypium hirsutum miR396a stem-loop CUUCGUAUUCUUCCACAGCUUUCUUGAACUGCAAUUUCAUGUAAUCAGAUCAUUCAUUCAUUCGUUGUCGUUGAUGGUGCUGCAUAUAUACGAGUACGUUGUUGCGGUUCAAUAAAGCUGUGGGAAGAUACAAACA 50 19636 MI0005651 ghr-MIR396b Gossypium hirsutum miR396b stem-loop CUUCGUAUUCUUCCACAGCUUUCUUGAACUGCAAUUUCAUGUAAUCAGAUCAUUCAUUCAUUCAUUGUCGUUGAUGGUGUUGCAUACAUACGAGUACGUUGUUGCGGUUCAAUAAAGCUGUGGGAAGAUACAAAC 50 19637 MI0005652 ghr-MIR399a Gossypium hirsutum miR399a stem-loop UGAGAUAUUACAGGGCAAAAUCUUCAGUGGCAGGCAGUAUAUGGCUCCAUUCAUCAGGCAUCAGCUGUAUGGAAAAUUGCAGUGUGUUCUCCGCCAAUGGAGAUUUGUCCGGUAAUUCCGGUUC 50 19638 MI0005653 ghr-MIR399b Gossypium hirsutum miR399b stem-loop UGAGAUAUUACAGGGCAAAAUCUUCAGUGGCAGGCAGCCAUUGUAUAUGGCUCCGUUCAUCAGGCAUCAGCUGUAUGGAAAAUUGCAGUGUGUUCUCCGCCAAUGGAGAUUUGUCCGGUAAUUCCGGU 50 19639 MI0005654 ppt-MIR156c Physcomitrella patens miR156c stem-loop GAGUGGGAGUGACAGAAGAGAGUGAGCACAGUUGAGCAUGUACGAGGGUGACGUACUUGCUGAAGUGUGCUCACUCUCUUCAUGUCACGCCUCUC 40 19640 MI0005655 ppt-MIR160a Physcomitrella patens miR160a stem-loop GGAGUGGAACUGCCUGGCUCCCUGUAUGCCACCUGCGGGGCUUGCCAAAGUGAUUGUCGAGCUGCAUAGCUGGCAUCCAGGGAGCCAGACAGACCUCCU 40 19641 MI0005656 ppt-MIR160b Physcomitrella patens miR160b stem-loop AUGCUAGAUCCGCCUGGCUCCCUGUAUGCCAACUGCGAGCCUUGCUAAAUAUUUGUUUGCCUUGAUUCAUAGCUGGCGUUCAGGGAGUCAAGCAGACCUUGCG 40 19642 MI0005657 ppt-MIR160c Physcomitrella patens miR160c stem-loop AUAUUGGAUCCGCCUGGCUCCCUGCAUGCCACUUGCGAAUCUUGCCAAACGUUUUGUCGGGGUUCAUGGCUGGCGUGUGGGGGGUCAGACAGGCCAUACA 40 19643 MI0005658 ppt-MIR160d Physcomitrella patens miR160d stem-loop AUGUUGGAUCCGCCUGGCUCCCUGCAUGCCGCCUGUGAAUGCUGUGAAGAGACUUACUAGAAUUCAUAGCUGGCGUGGAGGGAGCCAAGCAGACUCUGAA 40 19644 MI0005659 ppt-MIR166b Physcomitrella patens miR166b stem-loop CUUUGUUGUGAGGAAUGCCGCAUGGACCGAAGCCAUGCGCUCCACAUCUAGACGGUGAUUUGGACGCUAUGCUUCGGACCAGGCUUCAUUCCCCUCAGCACAG The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 40 19645 MI0005660 ppt-MIR166a Physcomitrella patens miR166a stem-loop UCUGCUGUGAGGAAUGCCCCCUGGCCCGAAGCCAUGUGCCUUUUCAUGUCCACGUGGGGUAAACAUUAAAGCUUCGGACCAGGCUUCAUUCCCCUCAGCACA 40 19646 MI0005661 ppt-MIR167 Physcomitrella patens miR167 stem-loop ACCAAAAGUUGGAAGCUGCCAGCAUGAUCCUUUAACUUUUCUAGAGGGAAAGAUCAGAUCAUCUGGCUGCUUUCAUCCUGUU 40 19647 MI0005665 ppt-MIR319e Physcomitrella patens miR319e stem-loop CUAGCCGUGGGAGCUCCUUCCGGUUCAAUAGUGGCUGAUGUGAGGUUGCACUGCUGCCGAUUCAAACUUCCGGCUUCCCUUUCUUAACACGACAGGGAAUCCGAAUGUCUGAUGCGGGAGCUGUGCGGUCUUCAACUUUAGCGCCUCUUGGACUGAAGGGAGCUCCCAAGUCUU 40 19648 MI0005667 ppt-MIR395 Physcomitrella patens miR395 stem-loop AAUUUUGAAACCUUCUUUUGCUUCAUAUUCUAGUCGUUGGUUUAUGGUGCCUAAGAAAAAUGGAUCGUUAUGUUUUAUUCAAGAUAUACAGCCAAUGAAUGUAGUAACUAUAAGAAAUGCAGGUAUAGGAUCUUUAAUAGAUGAGUUUGCUGAAGCGUUUGGGGGAAGGGCAAUUUAU The mature miRNA sequence reported in [1] has a 1-nt insertion with respect to the genome assembly sequence shown here. 40 19649 MI0005668 ppt-MIR408 Physcomitrella patens miR408 stem-loop ACAACCAGCACUGCACUGCAUCUUCCCUGUGCCAUCUUCGUCGAUUGUCUCGUACCGAAAGUGAUUCAACCACAGCGAGAUCAGACUCAACUGUUAAAGCUGAUGACACUGAUACGAGAUGAUGAAGACAUAGGCAGGGCAGCCAGUG 40 19650 MI0005669 ppt-MIR414 Physcomitrella patens miR414 stem-loop AGACGUUCAAGAACAAUUAGAGAAGACCAAUGCUAGAAUGUGGGGCUCACCAGAUUUUCCAACUGCAUUGGCUAGCUCUGCUAGCGCUUUGGCAGUAACCAUAUCUUUGUCAUCUUCAUCAUCGUCAUCUUCGUCAUCAUCUUCGUCAUCCUCAUCAUCCUCGUCCUCAGCAUCAG The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 40 19651 MI0005670 ppt-MIR419 Physcomitrella patens miR419 stem-loop GGUUGCCUGUGUUAGUUAUAGUUCUAACCGUAAGUCCACGUCGGAGGAGGCUGAUGAAUGAUGACGAUGUAUAGGCCUAUCU The status of this sequence as a miRNA has been questioned on the basis of lack of conservation in genomes other than Arabidopsis and rice, moderately poor precursor hairpin structure, lack of identified targets, and low Northern blot signal [2]. This sequence may therefore be removed in subsequent data releases. 40 19652 MI0005671 ppt-MIR477c Physcomitrella patens miR477c stem-loop GUUGAUUUUUCCUCUCCCUCAAAGGCUUCCAACGUCCUUUUUGUGAGCAAGCACGCUGGAAGUCUUUGUUGAAGAGGAGGAAACA This sequence was named miR473a in [1]. The miR477 family contains miRNAs previously called miR473, miR1210 and miR1213 here. The names and sequences are rationalised in [2]. The mature sequence shown here is the most abundant clone by deep-sequencing [2]. 40 19653 MI0005672 ppt-MIR477a Physcomitrella patens miR477a stem-loop GUUGCUUUUUCCUCUCCCUCAAAGGCUUCCAACAUGAUGUGCGUAAGCCACAACGUUAGAAGCCUUUGUGGGAGAGGAAGAAACA Talmor-Neiman et al. reported a mature miRNA derived from the 3' arm of this hairpin, and named it miR1210 [1]. A mature miRNA from the 5' arm was named miR473b [2]. This sequence was later determined to be a member of the miR477 family [3], and is therefore renamed here. The mature sequences shown here are the most abundant clones by deep-sequencing [3]. 40 19654 MI0005673 ppt-MIR477f Physcomitrella patens miR477f stem-loop GUGUUUGUUUUUCUCCCUCAAAGGCUUCCAACAACAGGAGGGUACAAUUCCAUUGUGGUUAUAACCCAUAGUUGAGGUGUUUUUGCUCUCUCUGCUGUCGGAAGCCUUCGAGGGAGAUGAAAGAAUU This sequence was named miR477a in [1]. The miR477 family contains miRNAs previously called miR473, miR1210 and miR1213 here. The names and sequences are rationalised in [2]. The mature sequence shown here is the most abundant clone by deep-sequencing [2]. 40 19655 MI0005674 ppt-MIR477g Physcomitrella patens miR477g stem-loop GUGUUCGUUUUUCUCCCUCAAAGGCUUCCAACAACAGUCGGAAUUAACUCUGAUGCGGCCAUUAUCACUGGUUGCAGUGAAUUAUUCUAGUUCUGCUGUUGGAAGCCUUCGUGGGAGACGAAAGAACC Talmor-Neiman et al. reported a mature miRNA derived from the 3' arm of this hairpin, and named it miR1213 [1]. A mature miRNA from the 5' arm was named miR477b [2]. Names of the miR477 family are rationalised in [3]. The mature sequences shown here are the most abundant clones by deep-sequencing [3]. 40 19656 MI0005675 ppt-MIR534b Physcomitrella patens miR534b stem-loop GCACUCAUGUAUGCAACUUGUAUGGACAGAGUGACUAGUCUAGUGUUCACGAGUGCCAAUUUUUGGAUGCCUUCUAUUGCUGUGCUGGUCUGUGAGGCGGCGUAACUCCUUGUUUUGCAACAGUUGACAGUGCACAAAGUAUAUGUGUGGCUGGUGACGUGCGACGCAUUGGGUAAGAUCUAUGUCUCUUCAGUGCGCGGGGAAGUUUGUCCGCCGACGGCAUUCAGAUUGCUAAACUAGACUCGUCAGUAUGUCCAUUACAGUUGCAUACUUGUGUGG 40 19657 MI0005676 ppt-MIR893 Physcomitrella patens miR893 stem-loop CUCUGCAUUGCUCUCAAACCUCCUCCCUCUUCCUUGUCCUAGCAUAGAUCCCAGUCCCUUCUUCCUUGUCUUGAUGCACGACCCAAUCCUCUCCUCUUCUUCUUUAUCCCGUCAUACCCAUACUAAGACAAGAAAGAGUUGGAAGAGAGAAUUGGGACUUGUGCUGGGACAAGGAAGAAAGGAACUACUACUUGCACCAAGACAAGGAAAAGGAGGAGGA 40 19658 MI0005677 ppt-MIR894 Physcomitrella patens miR894 stem-loop CAUAAUUCAAAUAAUCCAAAAAAAAUAAACCAAAUACCUUCCACCUCAAGCGUUUCACGUCGGGUUCACCAAAUAUGUUGUAUUAUGUGAAGUUUUGAUUGAGAAUGCACCGAGCACUUGGCUAUGGAAGGUAAAAGAAAAUUGCAACAAAAAGUCCUAACAAUCCAAUAGGAUUAUAGAAAAUUUAUAAUUAAACGUUAACAAUCAUAAUCAAACAAUA 40 19659 MI0005678 ppt-MIR895 Physcomitrella patens miR895 stem-loop GAUUCAUGUAAUUAUUGUUAACCUCUUUGUGUUCCGAGCUUUUAUGAUUGGUAGCUUAGCGAGGUGUUGGUAUGAUACCAAUCCCUGGUUUGCUUGUUCCUAAUUGAGUUAUGCUUGCACUCAAAUCUAGGGGAGCGGUAUUUUGGCUCACUCGCAAUGCUUUCAUGUACCCUUCCCGCAUUAUGAGUGCCACUUGGCUCCAUGGUGUGAUAUAUAAGUUUC 40 19660 MI0005680 ppt-MIR896 Physcomitrella patens miR896 stem-loop CCCACCCUGAGCGGGGGGGUCUGAUUGUGGUCGGUCGAGGGGCGCUGACCGUGUGGCCCAAUGGAUAAGGCGCUUGCCUACGGAGCAAGAGAUUCUGGGUUCGAUCCCCAGCAUGGUCGUGGGUCGCCGGAAUUGUAGAUUGUGGCGCGUGUCAAUUUGGCCGAGUGGUUAAGGCGGCAGACUCGAAAUCUGCUGGGGUUUCCCCGCGCAGGUUCAAAUCCUGCA 40 19661 MI0005681 ppt-MIR897 Physcomitrella patens miR897 stem-loop UCUUAGCAUUCAAAUGACCAAGGUGUCGAUGCCAAAUGCCAUUCUUAUCUUGAUCAAGUGGAAACUCAGCAAAUGCGGCCACUUCAACUCUAUUCACUAUCUUGCACUUGAUGAAGUAAAGAUUCCCAUCUCUAAAGCCUUUGGCAACAUCAUCUCUACCCAAUGUCUUUAUAAAGCAUCCAUUCUUAUCAAAUUAUAUCUUCUUGGUCACUUCAUAGGCAAG 40 19662 MI0005682 ppt-MIR899 Physcomitrella patens miR899 stem-loop ACGGCGUUUUUCUCGGAGAAAAAUACCAUCCUUUGGUUCAACAACGGUUGCUGCGUUUUCCACGUUCGGAUACAACCCUGCCCAGUUGCUGUGAGAGAUUGACGAGUGCAAGAAGACCCUCUUUCCAUGUUCCAGACGCAGGCCUUCGCCGAACUGAGAUACAUCGCAAUCGACACACCGGCCGCUUCAGAAUCAGUGACUAGCAUACCCAGCUGCUAUUGG 40 19663 MI0005683 ppt-MIR900 Physcomitrella patens miR900 stem-loop GAGUAAGAUAGAGCAAAACGCAGCCAAAGAAGAGUCGUCCAGUAGCCGACGUAGAUGGCAUGCAACUCCAACUUCGCAAUGAUACCCGCUCUAAGAUCGCGGUCUUCCCAGGUACAAGAACACAGCUCACCAGUAGUCGACCGCUGGUGAGCUGUGUUCUUGUACCUGGGAAGACCACCAGCGAAGAGAAUAGAAUAGAAUUGGCGAGUUGGAAUCCGAA 40 19664 MI0005684 ppt-MIR901 Physcomitrella patens miR901 stem-loop UAAAAAAAAUAAUAUGUUGAUAAUAUAUGUGAAAGUAAAUAAGUAUUACCUAAGAUAAGUUGCUAAAAGGUCAAAGGCAGCAAAGGUAAAAGUAAGUAACAAUGGUGGCGACUAGGUUUAUGAUGGCAGCUAGGAUUUAAGAGGCGGCUAGGUAAAGUGGCGGCUAGGUUAAGUGGCGACUAGGGUUUCAUCAAAUGGAUGUAGAUGAAGUUCAGCCAUAG 40 19665 MI0005685 ppt-MIR902a Physcomitrella patens miR902a stem-loop GCUCGUGACCCUCUGAAGGGAACUUUGGCCUGAGAAGAGCGUGGGAUUGUAGGAACAUGAGUGGAUCUACAGCAUUUGAGAUUAUUCAUUUGCAUCCGCUACGAUAUGAUGCAGAUUCUUCACCUGUGUGAUACUCUUGAGGUAUAACAGACGAAGGUCUGCAUCAUAGCCAAGCGAACGUAAAUCUGGUGCAUUCAACACUAGAUGCUUAAUUGAGGUGCAU 40 19666 MI0005686 ppt-MIR902b Physcomitrella patens miR902b stem-loop GGUUGUGAUAAAUCGGUUCCGUGUCGUCAUAAUCGCAAGUGUUGCAGGCAGUUAUGAGGAGAUGGAGAGCGUGCAGACUUGUUUCCUUCCUCUAGCCUAUGAUGCAGAUUCUUCAUCUGUUUGUUAUCGUUCUCAUGGUGUACAUAACAGACGAAGGUCUGCAUCAUAGCCAAGAGGAAGCAAAUCUUAAUACCUGGCUCGAAUUUGGCCUGCACGCAAUUUU 40 19667 MI0005687 ppt-MIR536c Physcomitrella patens miR536c stem-loop UUGUUCGACCAUUGCAGUUGCUUUUAGACGCCAAUGCUUGGCAUGAAUGUCUUGAGUGUCUGGUAGCCUAAAACAGAGAGAUGAUGCAAUUGGUAUGUGGAUCUUCUCUGGUUUUAGAGGAAUCGUUCGCUGGCCUCCAGGUUCGAGACAAUCGUGCCAAGCUUUGUGCUUUCAAGAGCCUUAAUGGUUUUGGACGAUGGGUUCUACUGGAUCUCUAACAUC 40 19668 MI0005688 ppt-MIR171a Physcomitrella patens miR171a stem-loop AGGCAUGUGAUAUUGGUGGCGCUCAAUCAGAUGACCAUGCCUGUGAUGCUGGCGUUGCCAUCAGAUUGAGCCGCGCCAAUAUCACAUCCUU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 40 19669 MI0005689 ppt-MIR171b Physcomitrella patens miR171b stem-loop AGGCAUGUGUUAUUGGGCCCGCUCAAUCAGAUGUCUUUUCCAGCAACGGCUGGUAUUGUCCUCAGAUUGAGCCGCGCCAAUAUCACAUCCUU 40 19670 MI0005690 ppt-MIR903 Physcomitrella patens miR903 stem-loop GAACGGCUUCGGCUGGUCUGCCGCUCAACGCGGGGCACUGGUCAGCGUGGGCUACUUCGGCGGGACAAGAGCAGGAUGUAGUUUCCUGCCCCCCAUGCCGCCGAGGUGGCCGAGGAACGAAGCGUGCGGCCCCCUCUCGGGGGGGUCGUGGGACUCGUCCCAACUGCACGCUCGGGACGCUGGCGUAUUGAGCUCUUCAUCCGACCCGUCUU 40 19671 MI0005691 ppt-MIR536b Physcomitrella patens miR536b stem-loop GUCGGCAGUUUUCGUAUUUCGCCGACUUCGGUGACUGCAGAAAGUCGAAACAGUAGAGAGCCUGUUGAAUUGCAGCGGUAGACUUGUCUGGCAUCAUUUGGUAGUCGUCAAACUUAUUCUCCCCGAGUUGUAGCGGAAUGAUACCAGAAAUUCGUGCCAAGCUGUGUGCAACCAAGGGGUUUGUUACUUAAGAUCCACAUGGGAGGAGCGUCCCUACCAGCA 40 19672 MI0005692 ppt-MIR904a Physcomitrella patens miR904a stem-loop UGUUGGAGUUCCUUCGGUGUGGUGUUGCAAUAUUUGUGAUGCUAAUAUGGUCUUGUCAAUGUUUAGGGGCAAAGGCCUGAUUAUGCAGAUGCUUGGUGUAAGCUUAUGCUUGUACAACUUUUGCUAUUGGCCUCCACCCCUAAAUCUUGGCAAGACCUAAUUAGCCCACAACAUUGAAUUGACCGGGACCGGCGACUAAUCAGUACGAGCUCAAGCAGGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 40 19673 MI0005693 ppt-MIR904b Physcomitrella patens miR904b stem-loop CUUUGGAGCGAUGUGUGUCAUGAUGGCGGUAUUUUGUGAUGCUAAUACGGUCUUGUCAAUGUUUAGGGGCAAAGGUGCAACUAUGCAACAUCCCUGGUGCGAGCUCUUGAUCGCGUAAGUGUUGCUAGUGCCCUCCACCCCUAAAUGUUGGCAAGACCUAAUUGGCGCACAACAUUGGGACCGACGCUGGAUCAGCAGAAGUCAAAAGACACAAUUGUGA The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 40 19674 MI0005694 ppt-MIR898b Physcomitrella patens miR898b stem-loop UACUGCAGAACUUAGUUACAGAUUCAUCUGCUUUGUUCAUUUCCGGCAUCUUGCUGUGCACUACUUAGUACGCGCGUAGUUGCAGGCAUUCCGGGUGCAGCAACUGACGCGGAAGACUUUUCCCAGAGUGUGCGCUUCAACUGGCGUGCUGAGUAGUGCACAGCAAUAUGCUGGGCAUGGACAGCUACCACCGCUGAGUUCGCUGUAUAGAACGUUUGCU The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 40 19675 MI0005695 ppt-MIR898a Physcomitrella patens miR898a stem-loop CGCAGCGAAGCUUAGCUACACACCAAACUCUCUUGUUUGUUUCCGGCGUAUUGCUGUGCACUACUUAGUACACGCGUAUCGGUUUGCACUCCAGAUGUAGCAAUUGAAAACGAAGAUAUUCCUGGAAAGUUUGCAACCGCGUGGGUGCUAGGCAGUGCACAGCGAUAUGCUGGGUAUGGACAGCUACUUUUGAACUCAAUCAUUUAGUAACUACAGCGCU Landgraf et al. show that the 5' miRNA is the predominant one [2]. The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies [2]. The ends of the miRNA may be offset with respect to previous annotations. 40 19676 MI0005696 ppt-MIR156b Physcomitrella patens miR156b stem-loop GUGAGGCUCGAGUGCAGACACUAUUCAAGUGUGGGCGGGGGGAGCGGGAGUGACAGAAGAGAGUGAGCACGGUUGCGCCUGUACGAGGAUAACGUACUUGCUCAAGUGUGCUCACUCUCUUCAUGUCGCGCCUCUCCCUCGUCGUUGUGACGUCAUUUGUGAUGAGAGGGUGGGGAGGGGGGUGUGUGAGGGAGGAGGAGGGGAGGUGAAGGGUGUGGUG 40 19677 MI0005697 cre-MIR918 Chlamydomonas reinhardtii miR918 stem-loop CCAAUACGAGACGUCUGCACCGCACAUGUCUCAGGAAGAGAUCGUCCGUAGUAGCAAGCUGCUGGAGGGUAUCUCGGUCAGCAUCUCGAUUGGCAAGACGUCCACUCCGGGUACGCGCCGCUCAUGCGAUGACGCCUUCAUCGCGUGAGCGGCGUGUACCUGAAGCGGACAUCUUGCCAAACGAAAUGCUGACCGAGAUACCCUGAAGUAGCUUGCUAAUAGUGGCGAUGUCCUCCUGAGACAUGUGCGGCGCAGACGUCCCGCAUUGG 53 19678 MI0005698 cre-MIR905 Chlamydomonas reinhardtii miR905 stem-loop UGCCGGGCUGGGGCCGGGCGGGCUGUGAUCGACCUGGAGGUCCCUGGAUAUGGCACCUUCGAGGUUGUGGUCACACACUCAGUCCGGGGACCUCGGCCCAGUUGCUGGUGCUAUGCUCUGACUACCCGACAAGCAAGCUUGGGGCCGCCCCCCACAUUGGUCCUGCGGUAGUCAGAACAGAGCACUAGCGACUGGGCCGAGGUAACCCGCACUGAGUGCGUGACCACAACCUCGAAGGUGCCAUAUCCAGGGACCUCCAGGUCGAUCACAGCCCGCCCGGCCCCAGCGCGGCA Molner et al. and Zhao et al agree that the predominant product from this hairpin precursor is from the 3' arm [1,2]. The product shown here is as described in [2], offset slightly from that described in [1]. Molner et al also identify a number of further offset and overlapping minor products, not shown here [2]. 53 19679 MI0005699 cre-MIR906 Chlamydomonas reinhardtii miR906 stem-loop GGCCUACAUACGGUUGGUGGGCGUGAUCAGCAGGGGGAAGCUUUAUCGGAAUUCGAUGUGCAGGGCGUGUGGGCACAUGCCCUGCACAUCGAUUUCCGAUAAAGCUUCCCCCUGCUGAUCACGCCCACCAACCGUAUGUAGGCC 53 19680 MI0005700 cre-MIR907 Chlamydomonas reinhardtii miR907 stem-loop CCAGCCCAGCGCUCGCACCGCUCGCAGAAGACAUCGCUGGCACCGUGUUGGCCGCCAUUUGAGCGCUUGGUCACAUCGCUGGCACCCACGGCUGGCACCGUGGCCGCCACUUGACCAAGCGCUAAAUAUCGGCCAACNCGGUGCCAGCGAUGUCUUCUGCGAGCGGUGCGAGCGCUGGGCUGG 53 19681 MI0005701 cre-MIR908 Chlamydomonas reinhardtii miR908 stem-loop GUGGGUUUUGAGAAGAUGCGGUCCGUUGGCUAUAAUGUUGACAGACCACCCGCUCCCUUACUGACGCAGUUGACGCGUUUGAUAGCAGGAUCAUAGUACGGGACCAGUUCCCCUACCAACUGGUCCCGUAACCACUAUGAUCCUGCUAUCAAAGGCGUCAACUACGUCAAUAAGGCAGCGGGUGGUCAAUAUACAUUAUUGCCAACGGACCGGUUCUCCUCAAAUGUCAC Zhao et al. identify a mature miRNA product from the 5' arm of the hairpin precursor, and named it miR908 [1]. Molner et al. identify 3 mature products, and suggest that an alternative 5' product is the predominant one, named cre-miR908.1 here [2]. The Zhao et al. product is renamed miR908.2 here. 53 19682 MI0005702 cre-MIR909 Chlamydomonas reinhardtii miR909 stem-loop GUUCCCGCACACGUGGCUGAAGGUCGCGGAGCUCUUUGCCGACACGGUGGCCAUGUGGUCCCGCAGCUCCUUGCCACACGGGCAUGCAAACAUGACCCUGAAUGGCCCUGCCUGCGGCCUGCCCCGCUCCAGGGCCUUCUGCUGCUGAUGGUGCAGAUGCGGCUGGUGCUGGUCAAACCGGUGGUGGUGGUGCUGGUGCUGUUCGGGCUCCUGCUGCACCGGCAGUAGCGCCAGCAGCUGGNGCAGGUACAGGGCGGCCGCCAGCGGCAGCACCACCACCACCACCACCGGUUCGACCAGCACCAGCCGCACCUGCACCACCAGCAGCGGAUAGAAGGCUCCGGAGCGGGGCAGGCCCAGGCAGGGCCAUUCAGGGUCAAGUUUGCAUGCCCGUGUGGCAAGACGCUGCGGUACCACAUGGCCACCGUGUCGGCGAAGGGCUCCGUGACCUUCAGCCACUUGUGCGGGAAC Zhao et al. identify a pair of mature miRNA product from the 5' and 3' arms of the hairpin precursor, and named them miR909-5p and miR909-3p [1]. Molner et al. suggest that an alternative 5' product is the predominant one, named cre-miR909.1 here [2]. The Zhao et al. products are renamed miR909.2 and miR909.3 here. Molner et al. also show a number of offset and overlapping minor products originating from the same hairpin [2], but not catalogued here. 53 19683 MI0005703 cre-MIR910 Chlamydomonas reinhardtii miR910 stem-loop CCGCUGCAGCCGGUCAGGUGCACCCGGAGGUGCCGGAGCGGUUGGGGUUGCGGGGCCCGCAGGUAGCUGCCGUUGAGCCCGACGCUGCUGCCGCCGCGCCGGUGCUGCUGCGCGGCAGCACCUGACCGGCUGCAGCAGCGUCGGGCUCGACCGCAGCCACCUGCGGGUCCCGCAGCCCCAGCAGCUACCGACUGCACCUGACCGGCUGCACCUGACCGGCUGCAGGG Molner et al. confirm that the mature miRNA product identified by Zhao et al. and shown here is the predominant one [2]. They also identify 2 further minor products from the 3' arm, not shown here. 53 19684 MI0005704 cre-MIR911 Chlamydomonas reinhardtii miR911 stem-loop AAAUGGCCGUACUACUAUUGUCAUGUCUGACUGCAUCAUGUGUCAUGAUGCAGUCAGACAUGACAAUGGUAGUACGGCCAUUU 53 19685 MI0005705 cre-MIR912 Chlamydomonas reinhardtii miR912 stem-loop GCCUAUGCCUCUGCCGGCCAUCAAUGGCGCUCACGACAAGGGUGCCAUCGUCACCGGUCUAAUCUAAUGCCAGGCAACCAGGGAAGACACAGGAUCCAUUUUCUAGUGCCUGGCUGGGAUCAAUGCAAGAUGAUAGUUGGAUCCUGGACGCCGAAGGCCAUCAUGCGGUGUCAACCGCAUGACGGCCGUUGGCGUCCAGGAUCUAGCUGUCGUCUUGGAUUGAUCCCAGCCAGGCGCUUGGAGAUGGACCCACGGUCUUCCCUCCCUUGUUGCCUGGGUUCCGAGCAGACCGGCGACGAUGGCACCACCGUCGUUGGCUCCAGGGCAUUGACGGCCCGGCGGAGAACCAGGC Molner et al. confirm that the mature miRNA product identified by Zhao et al. and shown here is the predominant one [2]. They also identify 3 further minor products from the same hairpin, not shown here. 53 19686 MI0005706 cre-MIR913 Chlamydomonas reinhardtii miR913 stem-loop GUAUCUGUGUCGCUCAUGCAAGGGACAGCCAACGAAUUCCCUCGCCACGUUUUGGGGGCUUGCACACUUGCGAGUCCGUGGCCGUGUUUCCAAGGAUGUAUACAAGCGAAGUCGAGACUUUGGUAUUACAUACUCCCACUUCGCUUUUAUACAUUCUUGGAGACACGGCCACGGACUCGCAGGUGUGCAAGCCCCCGAAACGUCGCCAGGGAAUUCUUUGGCUGUCCCUUGCAUGAGCGACACAGAUAC Zhao et al. identified a mature miRNA product from the 3' arm of this hairpin precursor, and named it miR913 [1]. Molner et al. show that predominant product originates from the 5' arm [2]. The 3' product is renamed miR913* here. Molner et al. also identify a number of minor products from the same hairpin, not catalogued here. 53 19687 MI0005707 cre-MIR914 Chlamydomonas reinhardtii miR914 stem-loop GCCGGACGUUACGGCAUGACGACUCACGGCGUGACGCUGAACUUGUGACGAUCGCCGUUUUAAUUCGGGGGACCUAUAGGCAUUUGUUAACUCAUAAUCGUUUUAAAUCGCUCCGGAUCUAUAGCGAGCUGGGUGCGGGCGACCAUCGCGCUCGAGCUGCAACUCGCCCGGGCACCUGCAAAGCUCGGCGAGCACCAUCGUUAAAUACUUCGUACCAUUCUAUCUCUGCACCUAAACGUGUGCAGCUGAGUCCGCGCGCGGCCCCUCGCUGCUGAUGCCGGGGGCGCCCCCCGCGCCUGUCCCCGCCUCCCCUCCACGGAUUCCGGCGCGCCCGGGGGUUGGUAAUGGGUGCUAAUGCGUGUGGCAGCACGGCGUACAUUUGCCAGUUGCAUCUGGAAUGCUCAGGGCUGGCCUGCUCUGCCCUAGCCUGGCCCUGCCCUUGCACAGGGCACCCCUGCUGCAGUCACUUGCUGCGGCUAAGCACGGCUGCAACCCGUGGGGGGCGCUGCCGAUUGACGCGAAUGCAAGAGAUCGGAGGCCCGGCACCCAUUACCAACCCCCGGGCGCGCCGGAAUCCGUGGAGGGGAGGCGGGGACAGGCGCGGGGGGCGCCCCCGGCAUCGGCAGCGAGGGGCCGCGCGCGGACUCAGCUGCACGCGUUUAGGUGCAGAGAUAGAAUGGUACGAAGUAUUUAACGAUGGUGCUCGCCGAGCUUUGCAGGUGCCCGGGCGAGUUGCAGCUCGAGCGCGAUGGUCGCCCGCACCCAGCUCGCUAUAGAUCCGGAGCGAUUUAAAACGAUUAUGAGUUAACAAAUGCCUAUAGGUCCCCCGAAUUAAAACGGCGAUCGUCACAAGUUCAGCGUCACGCCGUGAGUCGUCAUGCCGUGACGUCCGGC 53 19688 MI0005708 cre-MIR915 Chlamydomonas reinhardtii miR915 stem-loop CAACGCUGCCGCGGAGGCGCUCGGCGUGGACGGGGACGAGCUCGGCGACCUUCUCUUUACGCUGUCGAAACUAUCGGAGGAGCAGCUCAAAUUCUUUCCAAUAGCCGCUGGCAAUAAGGCAAUCGUUGCGUUUGGGUCCUCUCGCAGACUGCGCAACGCAACGAUUGCCUUAUUGUCAGCGCCUAUCGGAAAGAAUUCGAGCUGCCCCUCCGAUAGUUCCGACAGCGUAAAAAGAAGGUCGCCGAGCUCGGUGCCCGUCCACGCCGAGCCCUCCGCGGCAGCGUUG 53 19689 MI0005709 cre-MIR919 Chlamydomonas reinhardtii miR919 stem-loop AAUGCGGGACGUCUGCGCCGCACAUGUCUCAGGAGGACAUCGCCACUAUUAGCAAGCUACUUCAGGGUAUCUCGGUCAGCAUUUCGUUUGGCAAGAUGUCCGCUUCAGGUACACGCCGCUCACGCGAUGAAGGCGUCAUCGCAUGAGCGGCGCGUACCCGGAGUGGACGUCUUGCCAAUCGAGAUGCUGACCGAGAUACCCUCCAGCAGCUUGCUACUACGGACGAUCUCUUCCUGAGACAUGUGCGGUGCAGACGUCUCGUAUU Zhao et al. and Molner et al. independently identified a number of miR/miR* pairs expressed from this hairpin precursor [1,2]. The predominant product by extensive cloning is named here miR919.1 [2]. The second product (miR919.2) is also shown, but others are omitted for clarity. 53 19690 MI0005710 cre-MIR917 Chlamydomonas reinhardtii miR917 stem-loop GCAGCAACGGCUCCCAGAGCUGACCAAUGAGGCCAUUGACAACCGCCUGCCGAUUCUCUUUGAAGAAGGCGAGCGACUUGUCGCCCGAAUACAGCGCCCGAAAUUUUGUCACGAUCCAGUCACCGGCGUGCGCUUCGAUGUGCUGUAACACAGGUCGCGGCGUAGCUACUCUUAAGGCCUCAACCAAAGGGCCUUUGCGGCGUUUCACGGUUAUGUUCGAAGUCGGUACUAACAAUCUGAACCAAAGUCGGAGCCCAAGUCUGAACCAAAGUCGUUUGGUUCAGACUGUUAGUGCCGACUUUGGUUCAGACUGCUAGUGCCGACUUCGAACAUAACCGUGAAACGCCGCAAAGGCCCUUUGGUUGAGGACUUAAGAGUAGCUACGCCGCGACCUGUGUUACAGCACAUCGAAGCGCACGCCGGUGACUGGAUCGUGACAAAAUUUCGGGCGCUGUAUUCGGGCGACAAGUCGCUCGCCUUCUUCAAAGAGAAUCGGCAGGCGGUUGUCAAUGGCCUCAUUGGUCAGCUGUGGGAGCCGUUGCUGC 53 19691 MI0005711 cre-MIR916 Chlamydomonas reinhardtii miR916 stem-loop ACGGAAACGGUUGUACGGGGCGCCGUACGGUGGUUGUGGGAGAGGGGGGGGCUGGUGGAUAUGACGUGGGCCUGUUAGCUCAGUUGGUUAGAGCGUGGUGCUAAUAACGCCAAGGUCAUCGGUUCGAUCCCGAUACGGGCCAGCGGAAGCCUUUUGGGCCACGCGCCCACGCUGCAAUACGCGCACGAGAGGCCUUAAGGAUGUAAGGCCUAUAUGCCUGGUCGGACGGGCGGUCAGACGACAUUUGGGGGUUCGGGGGCGCUCGGGGCUAUGUAUGUUGUGGUGGGAGUCCUGUCAUGGUAUUGGGGAUGGAAAGGCACACAGACGGGAAACAUGCAAAGCUGUGGAGGGUAUGGAUAAGCCGCUGCAUGAACCACAUAACUGUGGAGGGCAGCCGCUGCAAGUACUGCAUUUUGCUUGUGCAGGUAACUGCACUACCAGCCGUGACUACCAGCCCGCAGAUAGCCAUGUGCAAGCAGUAUGCUAGCAGAUGCAUUGUUCUGUGCUGUUCAUUGCCGUGCCAACCACAAUCAAAAGGAGUGGCCUUCCCAUGCCCUUCUGGCAUGCAACUGGCCCACCAAGAACAAGGGAAAACAACAACGGCUGUGAUCCACAACGCCACCAUACUGCUUUCUGCUAAGAGGCCACCCCACUCCCACCACAACGUACACAACCUCGAGCGGCCCCGACCCUCCAAAUAAUGUUUGGCCGUCCGUCCUACCAGGCAAAUACCUUUUGGGCCUUGCCCGCGCACGUUACAGCGUCAGUCUGUGGCCCAAAAGGCUUCCGCUGGCCCGUAUCGGGAUCGAACCGAUGACCUUGGCGUUAUUAGCACCACGCUCUAACCAACUGAGCUAACAGGCCCACAUCAUAUCCCUCAGCCCCCCCCUCUCCCACAACCAGCGUACGGCGCUCCGUACAACCAUUUCCGU 53 19692 MI0005712 hsa-mir-920 Homo sapiens miR-920 stem-loop GUAGUUGUUCUACAGAAGACCUGGAUGUGUAGGAGCUAAGACACACUCCAGGGGAGCUGUGGAAGCAGUAACACG 5 19693 MI0005713 hsa-mir-921 Homo sapiens miR-921 stem-loop ACUAGUGAGGGACAGAACCAGGAUUCAGACUCAGGUCCAUGGGCCUGGAUCACUGG 5 19694 MI0005714 hsa-mir-922 Homo sapiens miR-922 stem-loop AUGGCGUUUUCCCUCUCCCUGUCCUGGACUGGGGUCAGACUGUGCCCCGAGGAGAAGCAGCAGAGAAUAGGACUACGUCAU 5 19695 MI0005715 hsa-mir-923 Homo sapiens miR-923 stem-loop UAUUUGUCAGCGGAGGAAAAGAAACUAACCAGGAUUCCCUCAGUAAUGGCGAGUG 5 19696 MI0005716 hsa-mir-924 Homo sapiens miR-924 stem-loop AAUAGAGUCUUGUGAUGUCUUGCUUAAGGGCCAUCCAACCUAGAGUCUACAAC 5 19697 MI0005717 hsa-mir-509-3 Homo sapiens miR-509-3 stem-loop GUGGUACCCUACUGCAGACGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUGGGUAGAGUACUGCAU 5 19698 MI0005718 rrv-miR-rR1-1 Rhesus monkey rhadinovirus miR-rR1-1 stem-loop GGGUCAGACCCCGCGAUCGCACCUUUGGCCGGCCGGCCUCUGCCCGGCCACCGAGGAUGCGGUCAAUGGGUCGAACCC 54 19699 MI0005719 rrv-miR-rR1-2 Rhesus monkey rhadinovirus miR-rR1-2 stem-loop CAGCCUCCCGCGACCAUGCUGCGCCCCGUAUUCGUGCGGAAGGCAAUUCGAAUAUACGGCGCUGCACGGUUGGAGGGCGGUUG 54 19700 MI0005720 rrv-miR-rR1-3 Rhesus monkey rhadinovirus miR-rR1-3 stem-loop CAGGGCCCGAUGAGCAGUUAGUCCGUGUUUAGUCGCGCUCCCUGUUGUGUUUAAAUUUAACAGGGUUUGCGACAGACACUGAUUCGCUGCCCAAAGUCGCCGUU The predicted stem-loop precursor for miR-rR1-3 does not meet the processing rules published by the same authors in [2], and therefore may be incorrect (Cullen BR, pers. comm.). 54 19701 MI0005721 rrv-miR-rR1-4 Rhesus monkey rhadinovirus miR-rR1-4 stem-loop CCGUGUUGUGAUUUGGGGAGGGCGGUCAGCGCGCGUUCCCGUGUUUAGGGAAUAUGUAUAUCGCUCGUUAACCGCCCUCCCGAGAUUACUGCUCGG 54 19702 MI0005722 rrv-miR-rR1-5 Rhesus monkey rhadinovirus miR-rR1-5 stem-loop CAUCGUAACGCCCCCGGAACCCAAAGACACGUGCCCGUGGUCUUAAGAUCGGGCGUGUUCUUUGGAUUCCGUCUCGUUACGAUG 54 19703 MI0005723 rrv-miR-rR1-6 Rhesus monkey rhadinovirus miR-rR1-6 stem-loop GCGGUGAACCGCGGAAAGGUGUGCACAUCGUAAAAUCACUACUGCGAUGUACGCCCUUUCGCAGUUUACUGC 54 19704 MI0005724 rrv-miR-rR1-7 Rhesus monkey rhadinovirus miR-rR1-7 stem-loop UGCGAUUCGUGGAGAGCAGUUAACGUGCGUUCCCGUCAAUUAAUACCGGCGCACGUCGAUUGCUCUCUAGGGAUCCCA 54 19705 MI0005725 cgr-mir-21 Cricetulus griseus miR-21 stem-loop UGUACCACCUUGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACAGCAGUCGAUGGGCUGUCUGACAUUUUGGUAUC 55 19706 MI0005726 ame-let-7 Apis mellifera let-7 stem-loop ACGAUGCCUGGGUGAGGUAGUAGGUUGUAUAGUAGGGAAUGGAAAUUCGCGAUAUACGAAGUCCACUGUACAACUUGCUAACUUUCCCGGUCGUCGACGC 18 19707 MI0005727 ame-mir-10 Apis mellifera miR-10 stem-loop CCCAGUUAAUGCUCUACAUCUACCCUGUAGAUCCGAAUUUGUUUGAUAAGAGGCGACAAAUUCGGUUCUAGAGAGGUUUGUGUGGUGCAUACAGAGCUAC 18 19708 MI0005728 ame-mir-100 Apis mellifera miR-100 stem-loop GCUAUACUUGAUGAUACUAACCCGUAGAUCCGAACUUGUGGGCUUUUUUAUAUGUAUACCGCAAGCUCCUAUCUACCGGUACAUGUAGUCAGGCCAGCAU 18 19709 MI0005729 ame-mir-137 Apis mellifera miR-137 stem-loop GACUUCAUAGGCCAGGUUGGCGACGCGUAUUCUUGGGGAAUUAACACACAUUUGCGCUGUUAUUGCUUGAGAAUACACGUAGUUUGCCUGGUCGUUCACU Weaver et al. identify a second variant mature miRNA sequence offset including an extra 2 nt (UG) at the 5' end, and 3 nt at the 3' end (GUU) [1] 18 19710 MI0005730 ame-mir-13a Apis mellifera miR-13a stem-loop ACCGAAAUGAAAAUACCUUUUGCGGUCCGAUACAUCAAAUUGGUUGUGGAAUGUUUCGAGUCAUAUCACAGCCAUUUUGAUGAGCUUGGCCCGCAGAAUC 18 19711 MI0005731 ame-mir-14 Apis mellifera miR-14 stem-loop CUUUUUCUCGGUCGCUAGGUCAGUGGGGGUGAGAAACUGGCUUGGCUCUCUGUGCUACGAUAGUCAGUCUUUUUCUCUCUCCUAUCGGCUUUGCGACAUA 18 19712 MI0005732 ame-mir-2-3 Apis mellifera miR-2-3 stem-loop AAAUAUCCCCGGACAAGGACAUGCUUUUACCAUCAAAGUUGGUUUGUCAUAGAGAUCGACUAUCACAGCCAGCUUUGAUGAGCAAAAUUGUGUCCGUCUA 18 19713 MI0005733 ame-mir-275 Apis mellifera miR-275 stem-loop AAACGUUACUUGUCGUGCGCAACGCGCGUUACUCGGGUACUUUAGGCUGUGCCAAUUUCGAAUCAGUCAGGUACCUGAAGUAGCGCGCGCUGCGGCGAAA 18 19714 MI0005734 ame-mir-279 Apis mellifera miR-279 stem-loop AGAAAAUGAAAAAAUUUCCUGAAUUUGCCAAAUGAGUGAAGGUCUAGUGCACAGAAAAUGAAAUUGUGACUAGAUCCACACUCAUUAAGUACGUUCAGGU 18 19715 MI0005735 ame-mir-283 Apis mellifera miR-283 stem-loop AAUAAUCUGGUGAUGUAGUCAAAUAUCAGCUGGUAAUUCUGGGAUUUUGACAAUAACCCAGGAUUCUUGCUGGUAUCCGGCUACGAACUGGACGAUCGCC 18 19716 MI0005736 ame-mir-29b Apis mellifera miR-29b stem-loop AUUUAAAGACAAUAAGAAGAUAGAGGUACUGACUUCUAUGCGUGCUGGGGUUUGUGCUAAAUCUCCUAGCACCAUUUGAAAUCAGUACUACUCUUCUUAG 18 19717 MI0005737 ame-mir-31a Apis mellifera miR-31a stem-loop AUCACGAUUCUAACUGGGCGCCUCGAAGGCAAGAUGUCGGCAUAGCUGAUGCGAUUUUAAAAUUCGGCUGUGUCACAUCCAGCCAACCGAACGCUCAGAC 18 19718 MI0005738 ame-mir-33 Apis mellifera miR-33 stem-loop UAUUUAUUUGAUUGCUUACCUGUUACAACUGUGCAUUGUAGUUGCAUUGCAUGAAAUAUAACUAUGCAAUACUUCUACAGUGCAACUCUUGUGGCAGAUU 18 19719 MI0005739 ame-mir-34 Apis mellifera miR-34 stem-loop UUUUUUUGCGAUUGGCAUGUUGGCAGUGUUGUUAGCUGGUUGUGUGGCUACAUUGUAUAUACGACCGCUAUCGGCACUGCAAUUAUGACGAUCGUAGGGU 18 19720 MI0005740 ame-mir-375 Apis mellifera miR-375 stem-loop AUCGAUUGAAUUAUCAGUUUGGUGCAUCGAUCCUAACGAUCAACAAACUUUUCACUUGAAAGUUUGUUCGUUCGGCUCGAGUUAUCAAACUGAAUGGAUG 18 19721 MI0005741 ame-mir-71 Apis mellifera miR-71 stem-loop GUCCUCCUUCGGGCGGAUUCCGUCUGAAAGACAUGGGUAGUGAGAUGUUCUCACGCUAUCGCGUCUCACUAUCUUGUCUUUCAUCCGGCGUUCGUUCUGC 18 19722 MI0005742 ame-mir-79 Apis mellifera miR-79 stem-loop UUCAAGACUGUCAAAGCUUUUGCCUUUACUUUGGUAAUAUAGCUCUAUGAUUUUAAUUAAGGAUCAUAAAGCUAGAUUACCAAAGCAAAGAGCACUAGCA 18 19723 MI0005743 ame-mir-87-1 Apis mellifera miR-87-1 stem-loop ACAGUACUCUUACGCCUGAAAUUUGCUUUUUACCUGGCCCUCGUGCUCUCUUACUUUGAGAAAAUAAAGGUGAGCAAAGUUUCAGGUGUGUGAGUGCGUU 18 19724 MI0005744 ame-mir-87-2 Apis mellifera miR-87-2 stem-loop UAUAAAGCAUCCGAACGUUACGGGCGGGCCUGACUCUUUGCUCUGCCCGUAUCUUUUUUUCCACUCUGGGUGAGCAAAGUUUCAGGUGUGUCCGUGACAG 18 19725 MI0005745 ame-mir-92a Apis mellifera miR-92a stem-loop UUAUUUUGCAUAGAAGAUAGGCCGAGAUUUGUGACAAUGUUUCGUGAUGAUGUAAUCUUCAAUAUUGCACUUGUCCCGGCCUAUCGGAAUGCAUUAUAUU 18 19726 MI0005746 ame-mir-925 Apis mellifera miR-925 stem-loop UCUGUCCUUGCAUGCAGGGAUUCGGUUUUGUAACAUUCGCAAAUAGUGCUGACGCGGACCGGGCACGUGAGAGGCUACACGGCACCGUGGUUGAGGGCAG 18 19727 MI0005747 ame-mir-926 Apis mellifera miR-926 stem-loop UCCGGCGAGUUAAUCGGCGCCACCAUCCUCUCCACCGUUAGAAAAGCGGCCAGGUUGGCGGUGUACGAGGAGAUUAGGAUCAGGGUGAAGAACCACCACA 18 19728 MI0005748 ame-mir-927 Apis mellifera miR-927 stem-loop AGAUAAAAGCGUGGUAUUUGUUUUAGAAUUCCUACGCUUUACCGAUGUUCGAAGUGGCAAAGCGUUUGAAAUCUGAAACGAAUGCGCAUAAACCUUCAUC 18 19729 MI0005749 ame-mir-928 Apis mellifera miR-928 stem-loop GUCCAGUAUUCCUGGCUGUGGAAGCUGGCGAACGUCACCCAGUCCCCGUACAGUUACCUGUGGACCAAUACCAGCACCGCGCCUGAAUUAGUUGCGGGAC 18 19730 MI0005750 ame-mir-190 Apis mellifera miR-190 stem-loop CAAACAAGUCGUCUGGUUUCCGUAAGAUAUGUUUGAUAUUCUUGGUUGUUUUUUAAAGAAUCGACCAGGAAUCAAACAUAUUAUUAUGGUGGUCAGAAAA Weaver et al. identify this bee homolog of human mir-190b [1]. They also report a second predicted hairpin on the opposite strand, with RT-PCR evidence for the expression of a second mature miRNA (UAAUAAUAUGUUUGAUUCCUGG). 18 19731 MI0005751 ame-mir-929 Apis mellifera miR-929 stem-loop ACUUAACUGGGGUCAAAUUGACUCUAGUAGGGAGUCCCUGCAUUCAAUAUGGCGACUUCCUAAUAGAGUCAGGCUGACUCCUUUUAAGACGUUCAACGGA 18 19732 MI0005752 ame-mir-930 Apis mellifera miR-930 stem-loop CACCUGACCUGAUCCUGGUUCGAUUUUUGUUGCAGGUGAAAAUCUGGUUCCAGAAUAGAAGGAGUAAAUACAAGAAGAUGAUGAAGGCGGCGCAGCAGGG 18 19733 MI0005753 ame-mir-931 Apis mellifera miR-931 stem-loop ACUUGCUCCUGGGACGGUUGUUGGGGCAUGUGCAGGCGGUUGAACACGACGCGGACGUCGGUCGCCGUCACCCAGUCCUGCAGCACCGGCGAGUUGUCGA 18 19734 MI0005754 ame-mir-932 Apis mellifera miR-932 stem-loop CAUCGCGUUGCCUCUUCAAUUCCGUAGUGCAUUGCAGAUGAUUGUUCGAAUUGACGAGAAAGAACCUGCAAGCACCGCGGGAGUGAGGUGGCCUCGCGUC 18 19735 MI0005755 hsa-mir-933 Homo sapiens miR-933 stem-loop ACUUGGGUCAGUUCAGAGGUCCUCGGGGCGCGCGUCGAGUCAGCCGUGUGCGCAGGGAGACCUCUCCCACCCACAGU 5 19736 MI0005756 hsa-mir-934 Homo sapiens miR-934 stem-loop AGAAAUAAGGCUUCUGUCUACUACUGGAGACACUGGUAGUAUAAAACCCAGAGUCUCCAGUAAUGGACGGGAGCCUUAUUUCU 5 19737 MI0005757 hsa-mir-935 Homo sapiens miR-935 stem-loop GGCGGGGGCGCGGGCGGCAGUGGCGGGAGCGGCCCCUCGGCCAUCCUCCGUCUGCCCAGUUACCGCUUCCGCUACCGCCGCCGCUCCCGCU 5 19738 MI0005758 hsa-mir-936 Homo sapiens miR-936 stem-loop UCAAGGCCACUGGGACAGUAGAGGGAGGAAUCGCAGAAAUCACUCCAGGAGCAACUGAGAGACCUUGCUUCUACUUUACCAGGUCCUGCUGGCCCAGA 5 19739 MI0005759 hsa-mir-937 Homo sapiens miR-937 stem-loop AGCACUGCCCCCGGUGAGUCAGGGUGGGGCUGGCCCCCUGCUUCGUGCCCAUCCGCGCUCUGACUCUCUGCCCACCUGCAGGAGCU 5 19740 MI0005760 hsa-mir-938 Homo sapiens miR-938 stem-loop GAAGGUGUACCAUGUGCCCUUAAAGGUGAACCCAGUGCACCUUCAUGAACCGUGGUACACCUUUAAGAACUUGGUAUGCCUUC 5 19741 MI0005761 hsa-mir-939 Homo sapiens miR-939 stem-loop UGUGGGCAGGGCCCUGGGGAGCUGAGGCUCUGGGGGUGGCCGGGGCUGACCCUGGGCCUCUGCUCCCCAGUGUCUGACCGCG 5 19742 MI0005762 hsa-mir-940 Homo sapiens miR-940 stem-loop GUGAGGUGUGGGCCCGGCCCCAGGAGCGGGGCCUGGGCAGCCCCGUGUGUUGAGGAAGGAAGGCAGGGCCCCCGCUCCCCGGGCCUGACCCCAC 5 19743 MI0005763 hsa-mir-941-1 Homo sapiens miR-941-1 stem-loop CCCGGCUGUGUGGACAUGUGCCCAGGGCCCGGGACAGCGCCACGGAAGAGGACGCACCCGGCUGUGUGCACAUGUGCCCAGGGCCCGGG 5 19744 MI0005764 hsa-mir-941-2 Homo sapiens miR-941-2 stem-loop CCCGGCUGUGUGCACAUGUGCCCAGGGCCCGGGACAGCGCCACGGAAGAGGACGCACCCGGCUGUGUGCACAUGUGCCCAGGGCCCGGG 5 19745 MI0005765 hsa-mir-941-3 Homo sapiens miR-941-3 stem-loop CCCGGCUGUGUGCACAUGUGCCCAGGGCCCGGGACAGCGCCACGGAAGAGGACGCACCCGGCUGUGUGCACAUGUGCCCAGGGCCCGGG 5 19746 MI0005766 hsa-mir-941-4 Homo sapiens miR-941-4 stem-loop ACGCACCCGGCUGUGUGCACAUGUGCCCAGGGCCCGGGACAGCGCCACGGAAGAGGACGCACCCGGCUGUGUGCACAUGUGCCCAGGGCCC 5 19747 MI0005767 hsa-mir-942 Homo sapiens miR-942 stem-loop AUUAGGAGAGUAUCUUCUCUGUUUUGGCCAUGUGUGUACUCACAGCCCCUCACACAUGGCCGAAACAGAGAAGUUACUUUCCUAAU 5 19748 MI0005768 hsa-mir-943 Homo sapiens miR-943 stem-loop GGGACGUUCUGAGCUCGGGGUGGGGGACGUUUGCCGGUCACUGCUGCUGGCGCCCUGACUGUUGCCGUCCUCCAGCCCCACUCAAAGGCAUCCC 5 19749 MI0005769 hsa-mir-944 Homo sapiens miR-944 stem-loop GUUCCAGACACAUCUCAUCUGAUAUACAAUAUUUUCUUAAAUUGUAUAAAGAGAAAUUAUUGUACAUCGGAUGAGCUGUGUCUGGGAU 5 19750 MI0005770 bna-MIR156a Brassica napus miR156a stem-loop UGACAGAAGAGAGUGAGCACACAAAAGUAAUCUGCAUAUACUGCAUUUGCUUCUCUUGCGUGCUCACUGCUCUUUCUGUCAG 57 19751 MI0005771 bna-MIR171 Brassica napus miR171 stem-loop GAUAUUGGCCUGGUUCACUCAGAUUACACACGUACUAUAUGCAUUCUCUUAGUUAUCUGAUUGAGCCGCGCCAAUAUCUC 57 19752 MI0005772 bna-MIR393 Brassica napus miR393 stem-loop UCCAAAGGGAUCGCAUUGAUCCUAAUCAAGCUGAGUUAUUCCCGAAUAAUUAUUUUAAUUUUUUCUCAAUGGAAAGAUAGAAAAAAAAAAUUUUGCUUCGUUUUCCGGAUCAUGCGAUCUCUUCGGA 57 19753 MI0005773 bna-MIR396a Brassica napus miR396a stem-loop UUCCACAGCUUUCUUGAACUUUCUUUUUCAUUUCCCUUAUUUUASAGCGAAAUUAAAUAACUAAAAAUCUCUAACAUUUAACACUCUASAAAAAAAAAGCUCAASAAAGCUGUGGGA 57 19754 MI0005774 bna-MIR399 Brassica napus miR399 stem-loop ACAGGGCAAGAUCUCUAUUGGCAGAAAACCAUUACUUAGAUCUUUGCAUCUCUUUCUGCAUUGAUUUGUAGUGAGUUCUCUGCCAAAGGAGAUUUGCCCGGU 57 19755 MI0005775 hsa-mir-297 Homo sapiens miR-297 stem-loop UGUAUGUAUGUGUGCAUGUGCAUGUAUGUGUAUAUACAUAUAUAUGUAUUAUGUACUCAUAUAUCA The extents of the mature sequence are not absolutely determined in [1], but are predicted from mouse miR-297. 5 19756 MI0005776 pta-MIR156a Pinus taeda miR156a stem-loop GAUGACAGAAGAUAGAGAGCACAUCCGCUCACAUGCCGGGACUCUGCGUUUGAGGUGUAUGUGGUCUCCAUGAUUCUGUCAUC 58 19757 MI0005777 pta-MIR156b Pinus taeda miR156b stem-loop GAUGACAGAAGAUAGAGAGCACAACCGCUCAGAUGCCGGCACUCUGCGUUUGAGGUGUAUGUGCUCUCGUUGAUUUUGUCAUC 58 19758 MI0005778 pta-MIR159a Pinus taeda miR159a stem-loop GAUGUGUUGGAGCUCCCUUCAGUCCAACCAAAGCUUGUGCAGCGGUGGUUCAGCUGCUGAUUCAUGCAUUCUACUUCCCUGUCCGUGACUCUCCAGCAGCCUGAACAAAUCAAUCAAUCGACCUGCAUGACAGGAUAGUGGUGUGCAUGACGCAGGAGAUGUACUGUCACUAAACACGCAUUUCUUGGAUUGAAGGGAGCUCCACUUAUC 58 19759 MI0005779 pta-MIR159b Pinus taeda miR159b stem-loop UUACGGGGAGCUUUCUUCAGUCCAACGAAAGGCCGUAUAGGGAUGAUUCAACUGCUGGUUCAUGGACUCUACUAUCUUGUAAUCCUCGAGGUUCAGUAUUGGCGGCAAGAUAAUGGUGUGCAUGACACGGGAGUCGUAUUGCCACUACGCUGUUUUUACUUGGAUUGAAGAGAGCUCCCAGAAA 58 19760 MI0005780 pta-MIR159c Pinus taeda miR159c stem-loop GAUGUGUGAAUGAUGCGGGAGCUGAUUUUGUCCAGGAAAUGUCUUUUCCUUGGAUUGAAGGGAGCUCCCUUAUGUAGCAUACAUU 58 19761 MI0005782 pta-MIR166a Pinus taeda miR166a stem-loop UUGAUUGAGGGGAAUGUUGUCUGGCUCGACUUCAUCCGGAUUUGGGCUCCAAUGUUCGGAUGCCGUCGGACCAGGCUUCAUUCCCCCCAAUCGG 58 19762 MI0005783 pta-MIR166b Pinus taeda miR166b stem-loop GGCAGAGUUGGGGUGAGGGGACUGCAGCCUGGCACGAGACCUGAAAACUUUUCUGACAAGCAGCCGGGCGGGCAGAGUCACGCAUGGUGUCGGACCAGGCUUCAUUCCCCUCACAACACUCUUCC 58 19763 MI0005784 pta-MIR166c Pinus taeda miR166c stem-loop ACCAAUCGAAUCCGGACCAGGCUUCAUCCCAGGCAUCUGGACCCAAUCGACAGCAGCUCCUUUAGCCUUUGAAAGGAACUCUGUCAAGGUCUCCUCUGCUAUAGACAGGAGUCCAGCGGGGCUAGCAUCUCUUGGGGGAUGCUGAGGUGUUGGAUUAUGUUGGU 58 19764 MI0005785 pta-MIR171 Pinus taeda miR171 stem-loop UGUGAUUGAGACGAGUCCAUAUCUUCUUCAGGCGAAGCCUCCACCACUCCAAAAGAACUGAAUGCAGGUUUCCGAUGCAUCAAUCUCAGUGCACUAGACAAUAUCAUGUUGGAGGGUACAGACAGUGCCGCCAUGUUUGGAUGGAGGAGACCCAGGUCUGUUAUUGUUCUCGAUACACA 58 19765 MI0005786 pta-MIR319 Pinus taeda miR319 stem-loop GAUAAGUGGAGCUCCCUUCAAUCCAAGAAAUGCGUGUUUAGUGACAGUACAUCUCCUGCGUCAUGCACACCACUAUCCUGUCAUGCAGGUCGAUUGAUUGAUUUGUUCAGGCUGCUGGAGAGUCACGGACAGGGAAGUAGAAUGCAUGAAUCAGCAGCUGAACCACCGCUGCACAAGCUUUGGUUGGACUGAAGGGAGCUCCAACA The cloned miR319 sequence in [1] has a 5' terminal G residue, which is incompatible with the genome sequence and the hairpin shown here. 58 19766 MI0005787 pta-MIR390 Pinus taeda miR390 stem-loop AAUUAUGAAGCCCAGGAUGGAUAGCGCCAGCCCCACUUGAAAUUUGCAGUGGGCGCUAUCCCUCUGAGCUUUGUAAUU 58 19767 MI0005788 pta-MIR396 Pinus taeda miR396 stem-loop GAAUCUUGUCAUACUUUUCCACAGCUUUCUUGAACUUUACGUGUACGGGACGAGGAGAUUCUGAUUUCUACGUCUGCGAUUAAAGUUCAAGAAAACUGUGGGAAAGCAUGGUAGGAUUC 58 19768 MI0005789 pta-MIR398 Pinus taeda miR398 stem-loop AGCAGAGGAGGUUUCCACCGGGGCGACCUGGGAACACGUCUACAUUAAUGUAAUCUCUUGAUUUCUCCAUGAGUCCUGUGAAUGUGAAUGUGUUCCAAGGUCACCCCAGUCGAGCCUACUCUCU 58 19769 MI0005790 pta-MIR408 Pinus taeda miR408 stem-loop GAGACAGGGACGAGUUAGGGCAUGGGAGUUGCAUAUGCAGAAACGUCUGCUUCUGCCAUUCUUAUGCACUGCCUCUUCCCUGGCUC 58 19770 MI0005791 pta-MIR482a Pinus taeda miR482a stem-loop GAGGUGUGGAAGGAUAGGGUAAGACUAAGGUUAAGGAGAAACUCUGCUUCAUUAAUUCUCUGCUCCAGUCUUCCCUACUCCUCCCAUUCCUU 58 19771 MI0005792 pta-MIR482b Pinus taeda miR482b stem-loop GAGGUGUGGAAGGAUAGGGUAAGACUAGGGUUAAGCAGAAACUCUGCUUCAUUAAUUCUCUGCUCCAGUCUUCCCUACUCCUCCCAUUCCUU 58 19772 MI0005793 pta-MIR783 Pinus taeda miR783 stem-loop UUCUUUUGAGGGAAGGGAGCUGGCGUGCAUUUCUUUUUCAGAUAUUUCAUUGCGUUCGCCAAGAUGCUUUGCUGGUUCAUUUUCCCUGAGAUGAA 58 19773 MI0005794 pta-MIR946a Pinus taeda miR946a stem-loop CAGAGUGUAUGGAUGUGGAUAGAGAAGGGUUAGUAAACGGUAGAAAACCCAUUUAUUGUAUGUCAUUGGCUGUUCGAGAUUAAGCAGCUGUAAUUCGAUGGCCAUACUCAUUAAAUGGGUUGGCUGUUUGCUCUGUACCAGCCCUUCUCCUAUCCACAAUUGUACUAGUUUG The cloned miR946 sequences in [1] has an additional 3' A residue, which is incompatible with the genomic sequence and hairpin shown here. 58 19774 MI0005795 pta-MIR946b Pinus taeda miR946b stem-loop CAGAGUGUAUGGAUGUGGAUAUGGAAGGGUUAGUAAACAGUACAAAACCCAUUUAAUAGAGAUUCCAUCGGAGCAUCAUUGUUGGCUGUUAGAUCAAGCAACUGUAUUUUGAUGGCCACACUCAUUGAAUGGGUUGCUUGUUUUGCUUUUAACCAGCCCUUUUUCUAUCCAACUGCCUGUAUUUUGAUGGCCAUGCUCAUUAAAUGGGUUACCUGUUAGCUAUUCACCAGCCCUUCUCCUAUCCACAACUGUACUAGUUUG The cloned miR946 sequences in [1] has an additional 3' A residue, which is incompatible with the genomic sequence and hairpin shown here. 58 19775 MI0005796 pta-MIR947 Pinus taeda miR947 stem-loop ACGCCUAAGGCGCAGCAGCAGAUUCUGAUAGAAGACUCAGGCAAAGCAUUUGUUGUUGGCAGGUUGAAUGCUUUCGGCAGAACCACCAAUAACAAGGGGGGCGCCUGGUGUCUUGCAUCGGAAUCUGUUACUGUUUCCUAGGCGU 58 19776 MI0005797 pta-MIR948 Pinus taeda miR948 stem-loop AAGUCAUGAAAUCAGGCUGUGUGGGAUCCGGUAACGCCACAGAGUAAGAUAGCAGCGUCAAAGUGACUGUAGGCAUUGGUGGAUAAAGUGAAGCGGUAUUGAUGAGGCCUCACAUUGUCCACCGAUGCCUACAGCCACUUUGACGUUCUCAUCUGAUUUUAUGACGGCCUCACUUCCUCCGCCAAUGCCUGAGGCGGUGUCAUCUGUUUUUGCGGCAUUACCGGAUCCUACAAACCCUGUUUUCAUGGGUU 58 19777 MI0005798 pta-MIR949 Pinus taeda miR949 stem-loop AGAGCCUCUCCGGGAAUCCAAUGCGCCUUCCUCUUGAACGCCUUUCAACGCGCGUGCUGUGCGUGAAAACGCGUUUAGGAGGAAGGUGUAUUGAUUUCCGGGGAAGCCCU 58 19778 MI0005799 pta-MIR950a Pinus taeda miR950a stem-loop GGAAGGUGAUCUUUACAUCAGGUCCUCGGUGGUUUAUUGCUCAUCGUUUGUUUAUAAUAAACCAUCGUGGAGCCGAUGAAAAGAGCACCUCC The most commonly cloned miR950 sequence in [1] has an additional 3' GA sequence, which is incompatible with the genomic sequence and hairpin shown here. 58 19779 MI0005800 pta-MIR950b Pinus taeda miR950b stem-loop GGAAGGUGAUCUUUACAUCAGGUCCUCGGUGGUUUAUUGCUCAUCGUUUGUUUACGAUAAACCAUCGUGGAGCAGAUGAAAAGAGCACCUCC The most commonly cloned miR950 sequence in [1] has an additional 3' GA sequence, which is incompatible with the genomic sequence and hairpin shown here. 58 19780 MI0005801 pta-MIR951 Pinus taeda miR951 stem-loop GAAGCGAUGGUGUUCUUGACGUCUGGACCACGAGGGUUUGCUUUACGUUGGGCAUGAAGAAACAAUCAUCUACCGCGGUUCAGUCAUCAAGAACACCUUUGCUUU 58 19781 MI0005802 pta-MIR952a Pinus taeda miR952a stem-loop GAACCAGUAGCGUAUUGAACAGAGCAUGCCGUUGGUUGAGUAAGUACGUCAAGGGACGAAACAGAAUUAAUUUUCAUUAACAUUUUAUUAACCUUCAACUCUGCCUUGGCCUAGGGCAGUUCCUGAAGGUCACAUUGACUGGGGCGUGAUACAACGCGUAGUCCGCUGGUUGCUGCGACCAUUGGGACUCCCCCAGCCUAUUCUCAGCUGCAACAUUCGCAAGUUAUUUACAGUGUUGCAGCCGAGAAUAAAAUGGGAAGAGUCAAAAGCGUGGCAACAACCAGCCAAUUACGCUUUGUAUCAGCGCCCCAACUGGUGUGAGCUUCGGGAAUUGCCAUAUGCCAAGCCAGAUUUGCAUGCUAAUAAAACAUUAUUCGAAAUUAAUUGCGUUUUGUUGGUUGACAGACUUCCUCCACCAAUGACACGCUCAGUUCAAUUUGCUGAUGGUUC 58 19782 MI0005803 pta-MIR952b Pinus taeda miR952b stem-loop GAACUACUCGCGCAUUGAACUGAGAAUGCCAUUGGUGGAGUAAGUACGUCAAGGGACGAAACAGAAUUAAUUUUGAUUAACAUUUUAUUAACCUUCAACUCUACCUUGGCUUAUGGAAGUUCGUGAAGGUCACAGGGCAAGGACUAGUCUGCUGGUUGCUGCCACAGUCAAUUGGGACUCUCCCAAGUUAUUCUCAGCUGCAGCAUUCCGAAGUUAUUCAAUGUUGCAGCCGAGAAUAUUAUGGGGACAGUCCAUUGGUCACAACAGCCAGCCGAUUACACCUUGUAUGAGUGCCCCAACUGGUGUGAGUUUCAUGAACUGCCAGAAGCCAAAACAGAGUUGCAACGCUAAUAAAACAUUAUGCAAAAUUAAUUCCAUUUUGUUGGUUGACAUACUUCAUCCGCUAAUAGCACGCUUAGUUCAAUUUGCUAAUGGUUC 58 19783 MI0005804 osa-MIR529b Oryza sativa miR529b stem-loop AUCGUGAAGGCUAAAUGGAGAAGAGAGAGAGUACAGCUUUGGGCGGUUUAGUUGUUAGAUGGUGGAAGUACUUGCGACGCCUACUACCCUUUUCACCAAGGCUGUACGCUCCCUCUUCUUCUCUUAGCUUUUUAUGAU 7 19784 MI0005805 dme-mir-iab-4as Drosophila melanogaster miR-iab-4as stem-loop UCGUGUUACGUAUACUGAAGGUAUACCGGAUAGGAUACACUCAGGAUACAUUCAGUAUACGUUUACGA 4 19785 MI0005806 dme-mir-954 Drosophila melanogaster miR-954 stem-loop UACAAACACAAGAUUUUCUGGGUGUUGCGUUGUGUGUACCUGUGUACAGGCGUAUUCACAUGCAACAUCCCUUACAUCUUGCUUGAU 4 19786 MI0005807 dme-mir-955 Drosophila melanogaster miR-955 stem-loop GGCCAGCUAAUCAACUCCAUCGUGCAGAGGUUUGAGUGUCCUGUGUUUUGCCUAAUCGCAUUCAAUUUCUGAACGGUAGAGAUGGUACGCUUAGAAA 4 19787 MI0005808 dme-mir-190 Drosophila melanogaster miR-190 stem-loop CGAACUAAUUGAUGGUUCCAGUGAGAUAUGUUUGAUAUUCUUGGUUGUUUCAUUCAAAAGUUCACCCAGGAAUCAAACAUAUUAUUACUGUGACCCUCGC 4 19788 MI0005809 dme-mir-193 Drosophila melanogaster miR-193 stem-loop UGUGUGCCCUUAUUAUGGUUGGGAUUUUUUAGAUCAGCAGUUAUUGCUAUAUAGCCAUAUUUAUAAAUCUUCUACUGGCCUACUAAGUCCCAACAUAAUGAGAGUAAA 4 19789 MI0005810 dme-mir-956 Drosophila melanogaster miR-956 stem-loop GAUCGUUAUCGUGUUUGGAAUGGUCUCGUUAGCUAACGGAUGAGCAAGUGCUCGGCUCACUGGCCCAAAUGCAGUUUGCCCGGAGACGCCGGUUAACCCAGCACUGAAAUGUGUAGUUUCGAGACCACUCUAAUCCAUUGCAGCAUUU 4 19790 MI0005811 dme-mir-957 Drosophila melanogaster miR-957 stem-loop UGUCCACAAUAGACCUUAGUUUUCGACGUGUUUUGGUGUGCUGGGGAGUUCUAUUCCGAUUGAAACCGUCCAAAACUGAGGCCAACUGUGAGGCGC 4 19791 MI0005812 dme-mir-958 Drosophila melanogaster miR-958 stem-loop GGCGUGUCUAUGGCAAGUAGAAUAGCAGGCUUAUCACAUGUUUAAUUCAAUCUGCUGUGAGAUUCUUCUAUUCUACUUUCGACAACACCCGU 4 19792 MI0005813 dme-mir-375 Drosophila melanogaster miR-375 stem-loop CCGGGCAGCGAAUUACUUGGGCCAAGGGAAUGCAAACUGUGAUCAUCCCGAAAGUUUGUUCGUUUGGCUUAAGUUAUUUUCAUGUCCGACU 4 19793 MI0005814 dme-mir-959 Drosophila melanogaster miR-959 stem-loop UUAACUUUGUUCUAUAUUCUUAGUACUCGGGUUGAUAAAGACCUUUUCUUCAGGGAGCCUUUGUCAUCGGGGGUAUUAUGAAAUAUAGUUUAAAGAAA 4 19794 MI0005815 dme-mir-960 Drosophila melanogaster miR-960 stem-loop GGGUUUUGUACCACAUUCUGAGUAUUCCAGAUUGCAUAGCUUUGUGCUACUAUUGCUAUACGGUCUGGGACACUUUUAACAUGGUAUCAAAUC 4 19795 MI0005816 dme-mir-961 Drosophila melanogaster miR-961 stem-loop UCAAGGGCCGAGUUACCUUUGAUCACCAGUAACUGAGAUUGUUUCUGAUACGGUUUCGUUUUCUGGCAAUCAAAAGAACUUGGACUCGA 4 19796 MI0005817 dme-mir-962 Drosophila melanogaster miR-962 stem-loop GAUGGGGCACUCAGGCUAUAAGGUAGAGAAAUUGAUGCUGUCUACACUAUUCAGACUUCAGUUUCAUUACCUUUCAAUUUGUUUGCCCCCAU 4 19797 MI0005818 dme-mir-963 Drosophila melanogaster miR-963 stem-loop UUAGUCUAAUCUAAAACAAGGUAAAUAUCAGGUUGUUUCCUGUAUUCGAUCGAAACAUCUGUAUAUACCUUUGUUCCGAUUGGACAAAA 4 19798 MI0005819 dme-mir-964 Drosophila melanogaster miR-964 stem-loop CAAUAACAUAUUGGUCCAACUUGCCUUAGAAUAGGGGAGCUUAACUUAUGUUUUUGAUGUUUAAGUUAAAAGCCUCUGUUCUAAGACAAUUUGAUGAUCA 4 19799 MI0005820 dme-mir-932 Drosophila melanogaster miR-932 stem-loop UUGGUUUUGAAGUUUUCAAUUCCGUAGUGCAUUGCAGUGUGUUUCAUUAUUUACUGCAAGCGCUGCGGAUUUGGCAACUUUGACGACCUUC 4 19800 MI0005821 dme-mir-965 Drosophila melanogaster miR-965 stem-loop GACAAUAUUGCUCAACAUUUUGGGGGGUAAAACUGUACGUUAUAUGUGCCCUUCUGUGAUAUUCAUAAGCGUAUAGCUUUUCCCCUUAAAAGUUAGAGCUAUUGCAA 4 19801 MI0005822 dme-mir-966 Drosophila melanogaster miR-966 stem-loop AACCUGAUCCGCUGCUGUGGGUUGUGGGCUGUGUGGCUGUGGUAUAGGUGCCGCCAGUUGAUAACCCCCAGCGUGGGCACGGACCCA 4 19802 MI0005823 dme-mir-967 Drosophila melanogaster miR-967 stem-loop CUUGGAGAGCAGAGAUACCUCUGGAGAAGCGCGUGACCUGACCCCAGCAGGAGAACCCAACCCGCUUUUCCACCUAGGUGUCUCUCUCUCUCUUUAU 4 19803 MI0005824 dme-mir-1002 Drosophila melanogaster miR-1002 stem-loop UAGAAAUUAUAUAUUUAAGUAGUGGAUACAAAGGGCGAUUUGAUAUAAAAGUGUCGCAUUGUAUGACCUACUUAACUAGCUGAUUUUGU 4 19804 MI0005825 dme-mir-968 Drosophila melanogaster miR-968 stem-loop UGAUGGAAGCUUCCUUAAGUAGUAUCCAUUAAAGGGUUGUUCUCAACAUGCAAAUCAACCUUUUGAUGUACUACUUUAAGAAUCUCCAGUUA 4 19805 MI0005826 dme-mir-969 Drosophila melanogaster miR-969 stem-loop AGUCUCUGUCCUACGUCCGAGUUCCACUAAGCAAGUUUUGAGAUCGUUUUAAAAACAAAAACUUGACACGUUGAGCUCGUUCGUGGGAUGGACU 4 19806 MI0005827 dme-mir-970 Drosophila melanogaster miR-970 stem-loop GAAAGGCAUCUGUUGCAGCUAGCGGGUGUUUUAUUUGGUAGCUGUAAUGAUUUGAAUCUAUCAUAAGACACACGCGGCUAUAACCGUUGUCUAAG 4 19807 MI0005828 dme-mir-971 Drosophila melanogaster miR-971 stem-loop UCCGUGGCUGGCAUCGCUCGCUGUAAAUUGUAAUCAUCAAAGCGUUUUCUCAGAGCCGCUUGGUGUUACUUCUUACAGUGAGUGUGCCAGUCCGUA 4 19808 MI0005829 dme-mir-972 Drosophila melanogaster miR-972 stem-loop AGAAUGAUAGGGAAAUUGCUAAAUAUUUUUUUUGUAUAAAUAACUUUUAACUUUUGUACAAUACGAAUAUUUAGGCAUUUCUCAAAUCAAA 4 19809 MI0005830 dme-mir-973 Drosophila melanogaster miR-973 stem-loop ACCGUCGUCGACUUUUCGUGGUUGGUGGUUGAACUUCGAUUUUAAGUAUUUAAAUAAAAUGAAAUCUGUUCAUUCUCCGACACAAGAAGUUCACGCAAAGG 4 19810 MI0005831 dme-mir-974 Drosophila melanogaster miR-974 stem-loop CAAUUGUCACCGGUCAUGUCCUCCAAGCGAGCAAAGAAGUAGUAUUUGUGUUUCCAAGAGCAAAUAUAACUUCAUUGGAAGCUAAGUGGAUUUGCCCAAAU 4 19811 MI0005832 dme-mir-975 Drosophila melanogaster miR-975 stem-loop UUGAAUUUUUGAUUUUAAACACUUCCUACAUCCUGUAUGUGUUUUGCAUCCGGUACAGAUGUGGGAGUCGUUUGCACUCAGAGAUUUCACA 4 19812 MI0005833 dme-mir-976 Drosophila melanogaster miR-976 stem-loop CAUCGCCAUGCAGUGCCGCGGCAUUGGUGAGGCCAUCUCCAAUGGAUUAGUUCUCAACAUUGGAUUAGUUAUCAUCAAUGCCGGUGCACUGCACCUA 4 19813 MI0005834 dme-mir-977 Drosophila melanogaster miR-977 stem-loop CGAAUCAACAAACAAGGUAUGCUUUAGAUAACUCGAAUAUCACAUCUUCAGUGUUCGAAAUCUGAUGAGAUAUUCACGUUGUCUAAAUCAUGUUUUGUA 4 19814 MI0005835 dme-mir-978 Drosophila melanogaster miR-978 stem-loop GUUGGCGGCACAAUCUGCAAUCUACGCCACUGGCUUACGUUGCAAUCGAAAAUCGUGUCCAGUGCCGUAAAUUGCAGUUGUGUGAACGCAAA 4 19815 MI0005836 dme-mir-979 Drosophila melanogaster miR-979 stem-loop UACAUGUGAGGAUGUCACAAAUACACUGAAUUUGGGGGGAAUUCUUAUGUAUAUACAAAUUCUUCCCGAACUCAGGCUAAUUUUGUGGCAUCCGU 4 19816 MI0005837 dme-mir-980 Drosophila melanogaster miR-980 stem-loop AGUUGAUUGUAUGUCAGUUUUUCAUUUGGCCUGGCUAGCUUACUCCUUUUUAAAUAUUGCUAGCUGCCUUGUGAAGGGCUUACGUGUAAUUGCAGUUC 4 19817 MI0005838 dme-mir-981 Drosophila melanogaster miR-981 stem-loop AAACAUCCUCACUGAAGUCGGGUUUCGUUAGCAGCGGGCUGUUUUAAUAAAUUCAACAAGUUCGUUGUCGACGAAACCUGCAUGCUGUGUGGAAAAU 4 19818 MI0005839 dme-mir-982 Drosophila melanogaster miR-982 stem-loop CGAAAUCAUGUUAGAUCCUGGACAAAUAUGAAGUAAAUUGUUUUUAUGCAUCAAUUACUUGAUAUUCAUCCUUGAACUAAAUGGUUUUAGAGC 4 19819 MI0005840 dme-mir-983-1 Drosophila melanogaster miR-983-1 stem-loop UAUAUUGCAAUAAUUAAAUAAUACGUUUCGAACUAAUGAUUUUCAGUUCAUUCAUUAGGUAGUUACGCAUUAUCUAGUUGUUGUAAACAUU 4 19820 MI0005841 dme-mir-983-2 Drosophila melanogaster miR-983-2 stem-loop UAUUAUAUUGCAAUAAUUAAAUAAUACGUUUCGAACUAAUGAUUUUCAGUUCAUUCAUUAGGUAGUUACGCAUUAUCUAGUUGUUGUAAACAUUCAACU 4 19821 MI0005842 dme-mir-984 Drosophila melanogaster miR-984 stem-loop AGAAACAAAUUUCAUUGAGGUAAAUACGGUUGGAAUUUUGUCUUUUAACUAUAAAUCCAACCGAAUUUGGCUCGGCGAAAUUUUUCAGUU 4 19822 MI0005843 dme-mir-927 Drosophila melanogaster miR-927 stem-loop UGGUUGCUGUAGAGUUUUAGAAUUCCUACGCUUUACCGUGGCAUACGAAAUUCGGCAAAGCGUUUGGAUUCUGAAACCCUACCGAUCCAUUA 4 19823 MI0005844 dme-mir-985 Drosophila melanogaster miR-985 stem-loop UAUAUAAUAGCACUGCUGGCUCAUUGGUACAUUUCAUAAGUACCUUAUCAAAUGUUCCAAUGGUCGGGCAGAGCUAUUAUUUGUCC 4 19824 MI0005845 dme-mir-986 Drosophila melanogaster miR-986 stem-loop CACACCUGAAAUUACCCAUCUCGAAUAGCGUUGUGACUGAGGUAACUGCGCAUCGAAUCUACUCAGCGGCGAGGCUAUUCAAGUAAGGUUAUUUUGGGCC 4 19825 MI0005846 dme-mir-987 Drosophila melanogaster miR-987 stem-loop UGUUGGACUGUGUUUAAAGUAAAUAGUCUGGAUUGAUGAAAGUUGCAUUCGAGAAUUCAUCAACAGGCAUUUACUUCAACUGCAGUUUGAACAA 4 19826 MI0005847 dme-mir-988 Drosophila melanogaster miR-988 stem-loop GACGGCGGUACCGGGCAUUUUGGGUGUGUGAUUUGUAGCAAAGUGAUAUGUAUUUGAUCAUCCCCUUGUUGCAAACCUCACGCCAAAGAUGAUCUGCGA 4 19827 MI0005848 dme-mir-989 Drosophila melanogaster miR-989 stem-loop AAAGAUUUUGGGAAUCGGCCACUACCUUGCAGUCACGUGAUGAAAAGACACAGGUGACACUGAUCCGGAUUUGGUAGUUGACAAAUCCUCCAUGCCGAGAUUAGUUUCAUUUUGCGUCUUUUGAAUUCGAAUAGUUCAUGUGAUGUGACGUAGUGGAACAUACCUGAAAUUACA 4 19828 MI0005849 dme-mir-137 Drosophila melanogaster miR-137 stem-loop CAAUCUCCAAUGGCCACGUGUAUGCUCGUAGCUAUAACCUGAAAUCCAAAUGUUAUUGCUUGAGAAUACACGUAGUUCACCGAGAUUUGUU 4 19829 MI0005850 dme-mir-990 Drosophila melanogaster miR-990 stem-loop UCUGCUCUGCGACAUUCACCGUUCUGAGUUGGCCCCAAGUGCACGUGGGCCAGCUUUCAGCUUCGGUGCCAUUUCACCCCGAGCAC 4 19830 MI0005851 dme-mir-991 Drosophila melanogaster miR-991 stem-loop UAUCACUGCAGUUUCAGGCUUUUCCCAACUACACCUAUUAAUACAUAUUUUAACGUCCUAUUAAAGUUGUAGUUUGGAAAGUUUUGGUUUUGCAUU 4 19831 MI0005852 dme-mir-992 Drosophila melanogaster miR-992 stem-loop AUUUUCCCAAGUGCCUGGUAUCAGCAAAGUGUUAUUUUUUAUGUUUAUGUAAAGUACACGUUUCUGGUACUAAGUACUUCGAGAAAGUUACC 4 19832 MI0005853 dme-mir-929 Drosophila melanogaster miR-929 stem-loop AGUCCUGGUGGAGCUCAAAUUGACUCUAGUAGGGAGUCCUUUAAUGAGCGACUCCCUAACGGAGUCAGAUUGAGCUGCAAAGGAGCGA 4 19833 MI0005854 dme-mir-993 Drosophila melanogaster miR-993 stem-loop AACGCUCCCGUGACCUACCCUGUAGUUCCGGGCUUUUGUUUAAAUGGCGUUCGGCACAUUGUCGGACUGCUGGCUCGAUUAUCAGAAGCUCGUCUCUACAGGUAUCUCACAGGGUAGAA 4 19834 MI0005855 dme-mir-994 Drosophila melanogaster miR-994 stem-loop UAUCGAGUUAUCUAAGGAAAUAGUAGCCGUGAUUUUACCCAAGAAUUUUUCACAUAUCACAGUUGCUGUUUCUUUUAGAUAGCUCUUUUGU 4 19835 MI0005856 dme-mir-995 Drosophila melanogaster miR-995 stem-loop CACCUGCACCCCGCAGCCCGAAUUAUGUGGGAGCUGCGCCGUUUCCGUAAUCCGUAGCACCACAUGAUUCGGCUUCGUGGUACAGGAUAU 4 19836 MI0005857 dme-mir-996 Drosophila melanogaster miR-996 stem-loop UCUGACUCUAUUUUGUCGGCGAACAUGGAUCUAGUGCACGGUGGUUCAUGAUUAAGUUCGUGACUAGAUUUCAUGCUCGUCUAUUAAGUUGGGUCAG 4 19837 MI0005858 dme-mir-252 Drosophila melanogaster miR-252 stem-loop ACCAAGUUCGCUUUCCUAAGUACUAGUGCCGCAGGAGUUAGGUUCGUGUCCGCAAUACCUCCUGCUGCCCAAGUGCUUAUUAAAGCGGCGAGU 4 19838 MI0005859 dme-mir-997 Drosophila melanogaster miR-997 stem-loop UUAUGGAUCCUCUUUCAAUGAAUUUAGUAUGCCCAAACUCGAAGGAGUUUCACCUCCAUAAGAGCGACAGUCCUGGAGAAGUUAUCAGAGCCAAAAAAAUUCAUAUGAUGAUGCAUUUUCCGUCUCUGAAAACGUCUUCAGCAGAAGUUGUUUUUAGCGAAGUGAAACUCAUUCGAUUUUGAUCAUACUAACGACAUUGGAUGCUUGGAUCGGCA 4 19839 MI0005860 dme-mir-998 Drosophila melanogaster miR-998 stem-loop CCUCGUGUCAAAUUCAUUUUGGAACUGAAUUCUCGUGGGUCUGCACUGACAACACUGACCGCUCCAGGGCAAAUUGUUCAUUUUGAAAUUGAAAUUCUGUAGCACCAUGAGAUUCAGCUCUGGCGUGAAUUUCAAACAUGCAU 4 19840 MI0005861 dme-mir-999 Drosophila melanogaster miR-999 stem-loop AAGGAUGCCGCUCAAUUACCCCGACAUAGUCAUACGGUGAAUGUUGUGUAUUGGAGACCAAUGUUAACUGUAAGACUGUGUCUCGGUGGUUGCCAGCCCAGCCAC 4 19841 MI0005862 dme-mir-1000 Drosophila melanogaster miR-1000 stem-loop GACGCUUGCCAUUGAUAUUGUCCUGUCACAGCAGUAUUGUAACACUAUAUUAUAGUUUACUGCUGGGUCGGGGCAUUAACAUUGUUGAGCGUCAUUAGCA 4 19842 MI0005863 dme-mir-1001 Drosophila melanogaster miR-1001 stem-loop AAGCUGGCCUGUCCCUGGGUAAACUCCCAAGGAUCAGGUGGAGAUUGAAUCCCGAUCCUUGGGUUUCUGCUCUCGGGCAAGGUCAGUAGU 4 19843 MI0005864 dme-mir-1003 Drosophila melanogaster miR-1003 stem-loop GUGGGUAUCUGGAUGUGGUUGGCUCUGGCGGUCCUCUCACAUUUACAUAUUCACAG 4 19844 MI0005865 dme-mir-1004 Drosophila melanogaster miR-1004 stem-loop GUUGGGGGACAUUGAUCUCGGAGACGGCGGUUUAACUGAUCCAUUCUCUCACAUCACUUCCCUCACAG 4 19845 MI0005866 dme-mir-1005 Drosophila melanogaster miR-1005 stem-loop GUGAGUUGAUCGAUUUCGAGGUUUUGGCACACGAAUAUAAUCUGGAAUCUUUAAUUCGCAG 4 19846 MI0005867 dme-mir-1006 Drosophila melanogaster miR-1006 stem-loop GUGAGUUUGAAAUUGAAAUGCGUAAAUUGUUUGGUACAAUUUAAAUUCGAUUUCUUAUUCAUAG 4 19847 MI0005868 dme-mir-1007 Drosophila melanogaster miR-1007 stem-loop GUAAGCAGUGUUUGAACUCGAUCUUGGUUCUUGGACUCUUGAUAAGCUCAAUUAACUGUUUGCAG 4 19848 MI0005869 dme-mir-1008 Drosophila melanogaster miR-1008 stem-loop GUAAAUAUCUAAAGUUGAACUUGGCCAAUGGCAAGUCACAGCUUUUUGUGUUUACAG 4 19849 MI0005870 dme-mir-1009 Drosophila melanogaster miR-1009 stem-loop GUAAGUGUAAGACUUUCUUGAGUUACCCGCGAUGAGUAUCUCAAAAAUUGUUACAUUUCAG 4 19850 MI0005871 dme-mir-1010 Drosophila melanogaster miR-1010 stem-loop GUAAGUGGUGUAGAUGAAACAAAUUUACCAACAAUUUUGUUGGAUUGUUUCACCUAUCGUUCCAUUUGCAG 4 19851 MI0005872 dme-mir-1011 Drosophila melanogaster miR-1011 stem-loop GUGAGUUUUUGAGCCAGGAAUAUAGUUCUUAUUAUUGGUUCAAAUCGCUCGCAG 4 19852 MI0005873 dme-mir-1012 Drosophila melanogaster miR-1012 stem-loop GUGGGUAGAACUUUGAUUAAUAUUGCUUGAAAAAUAUUAGUCAAAGAUUUUCCCCAUAG 4 19853 MI0005874 dme-mir-1013 Drosophila melanogaster miR-1013 stem-loop GUGAGUUUCGUACACUUAAUUAAUAGGAUCGGCCGUUAAUAAAAGUAUGCCGAACUCGCAG 4 19854 MI0005875 dme-mir-1014 Drosophila melanogaster miR-1014 stem-loop GUAUAAUGGAAAUAGAUUUUAAUCGCAGGCGCGUCAGUGGUUGAAUUAAAAUUCAUUUUCAUUUGCAG 4 19855 MI0005876 dme-mir-1015 Drosophila melanogaster miR-1015 stem-loop GUGAGUGAUGCUCCAGUUAGCUUGGCUGAGUGAGGAUUUAAGUCCUGGGACAUCUCUCUUGCAG 4 19856 MI0005877 dme-mir-1016 Drosophila melanogaster miR-1016 stem-loop GUAAGUAUAGAGAGGAUGUGAUUGGUAAAUUCCAAAGUUCACCUCUCUCCAUACUUAG 4 19857 MI0005878 dme-mir-1017 Drosophila melanogaster miR-1017 stem-loop GUGAGUUUAGUGGAGUUUAAAGCUUCCCAUCGCCAGCAAUUACGCGAAAGCUCUACCCAAACUCAUCCCCCGAAAAUGAUCCCUUUCUCCCCUUUUCCCAACACAUUUGUAUCCCACUUCCUGCGCGUCUUCGUGGAUUUGUAACUGCUUCAAUGGCUGGACGGUUUAG 4 19858 MI0005879 cel-mir-1018 Caenorhabditis elegans miR-1018 stem-loop GUAAGUUCAUGAUUUCUCCCAUAUAUUUUUCAUGAGAGAGAUCAUUGGACUUACAG 3 19859 MI0005880 cel-mir-1019 Caenorhabditis elegans miR-1019 stem-loop GUGAGCAUUGUUCGAGUUUCAUUUUUAAUAAAAUUUAUUUAAAAACUGUAAUUCCACAUUGCUUUCCAG The miR* sequence was erroneously named mir-803 in [2]. 3 19860 MI0005881 cel-mir-1020 Caenorhabditis elegans miR-1020 stem-loop GUAAGUGUUACAGAAUAAUCUUAGACAAAACAACUAAAAUUAAUGAAAAAUUAUUCUGUGACACUUUCAG 3 19861 MI0005882 mdv2-mir-M14 Mareks disease virus type 2 miR-M14 stem-loop CGUUGUGUGGUACGGUGCACCCUGAGAGAUGAUCUAUAUUCUCAGGAAGUUCCGUGCCCGAAACG 56 19862 MI0005883 mdv2-mir-M15 Mareks disease virus type 2 miR-M15 stem-loop UUGCGAUGGAAGGGAAAGGCAAACCGGAAAACUUAAGGCCGUUUGGUGUGUUUUUCCCUUCCAUCGCAG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19863 MI0005884 mdv2-mir-M16 Mareks disease virus type 2 miR-M16 stem-loop GAAACGCAUCCAGUCUGUUUUGGCAUCUGAGUGGCGCGUAGCCGUUGUCAGAUGCCAGAGAGACUGAAAUGUUUC The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19864 MI0005885 mdv2-mir-M17 Mareks disease virus type 2 miR-M17 stem-loop UCGUCCAGUCCUUCCCGGGUCCCCUAGAGGUGUCACGUUCUAGGACAACCGGGACGGACAGGGCGACGCGCGCGA The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19865 MI0005886 mdv2-mir-M18 Mareks disease virus type 2 miR-M18 stem-loop GUAUGUUUUCUCUCAGGCUGGCAUUGCACGUGUCAUUGCCGUUGUGCAAUGCCUGCGGAGAGAAAGACGAAU The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19866 MI0005887 mdv2-mir-M19 Mareks disease virus type 2 miR-M19 stem-loop CGUGUCCCCCCUCGGCGGUGUGCACGGGAGUAUCGGGCGCCGUCCUCAUGCCCCCCUCCGAGGGUAGCACG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19867 MI0005888 mdv2-mir-M20 Mareks disease virus type 2 miR-M20 stem-loop UCCGUCCUUAGCGUGGUGCCUGAGAUUUUAACACGUAUCGUCUCAAGUACUGCGCGCAAGGACCGA The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19868 MI0005889 mdv2-mir-M21 Mareks disease virus type 2 miR-M21 stem-loop CGCUUCCUCCUUCGCGGGGUGCUUGAGAUCACCGAAUGACGGGAUCGAGCACCACGCCGAUGGACGGAGAUGGCG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19869 MI0005890 mdv2-mir-M22 Mareks disease virus type 2 miR-M22 stem-loop CUGGGCCGUCUUACACGCACGUCACUCUGGUCGUAUCGGUAGUCCUAGUGGCUUGCUUGUAGGCUGUCC The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19870 MI0005891 mdv2-mir-M23 Mareks disease virus type 2 miR-M23 stem-loop UUCGGAUGGUCCGUGGUACGGUGUCCUGUGUUGUGUGAGAGGUCUCCGUACACCGGACCAUCGAA 56 19871 MI0005892 mdv2-mir-M24 Mareks disease virus type 2 miR-M24 stem-loop CCAUUUUUUCCCUUACGGUGCCUGACGUCGUAUUUUAACGGUUAGAUGCCGUCAGGGAAAGAUGG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19872 MI0005893 mdv2-mir-M25 Mareks disease virus type 2 miR-M25 stem-loop CGUGUCCUCCUUCGGACGAGUGCUUGCCGGGGAGUAACCGUCAUGCACUACUCCGGGGGUAGGACGCG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19873 MI0005894 mdv2-mir-M26 Mareks disease virus type 2 miR-M26 stem-loop CCGUCCUUUGUGCUGUGUGUGAGAGGUCGUCAUCCCUUCUCGGGCACCGCACCGAAGGAUGG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19874 MI0005895 mdv2-mir-M27 Mareks disease virus type 2 miR-M27 stem-loop UCCCUCCUUCGUCCGGUGUUCGAGGCGUGAGACUUUUGUAUUGCCGCGUCGAGCACCGUGCUGGAGGAAGGA The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19875 MI0005896 mdv2-mir-M28 Mareks disease virus type 2 miR-M28 stem-loop UCGCGAUUUUCUCGACGCCUACCCUCGGCGUUGUUCGUCGGCCGAGGGUAGGCGCAGAGGAAAUCGCGG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19876 MI0005897 mdv2-mir-M29 Mareks disease virus type 2 miR-M29 stem-loop UCUUCUUCACGUACCUCUCUAUGGCUGCAUCUUUAUGGCCAUAGUGAGGUACGUGUAGG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19877 MI0005898 mdv2-mir-M30 Mareks disease virus type 2 miR-M30 stem-loop CACAACACUCCCUCGGACGCAGCAGUGUCUGGGCUUCUGCUGACGUGCGAGGGAGUGCUCGCCACGCGAG The mature sequences shown here represent the longest cloned miRNAs from a distribution of lengths [1]. 56 19878 MI0005899 cel-mir-1021 Caenorhabditis elegans miR-1021 stem-loop UACUGUUUUGAAACAAGUGAGAUCAUGUGAAAUCCUCGGAGCUCGGAGCUUUGAAUUUUCCAAAUAUUCAUAUUUAAAUUAUUUGUUUCAAACAGUA 3 19879 MI0005900 cel-mir-1022 Caenorhabditis elegans miR-1022 stem-loop GGUCCAAAAUCGGCAAGAUCAUUGUUAGGACGCCAUCUUGAAGCAAUAUAAAGAUGAUAGUCCAAUGAUGAUCCAGCUGUUCAAGGCU 3 19880 MI0005901 ppt-MIR160e Physcomitrella patens miR160e stem-loop CUGCAGAAAUCAAUGGGGGAAACUGGCACUGCCUGGCUCCCUGUAUGCCACUUGCGAAUUUUGGCAAAACUUGUGGCAGGGUACGUAGCUGCCAUACAGGGAGUCAGACAGACCUUGCAUCUUCCCGGAUUCUCAUGA 40 19881 MI0005902 ppt-MIR160f Physcomitrella patens miR160f stem-loop GUUCAUGGUUGAACGGUGGGGAGUUGGACUGCCUGGCUCCCUGUAUGCCACCUGCGGGGCUUGUCAAAAUGAUUGCCAGGCUGCAUAGCUGGCAUCCAGGGAGCCAGACAGACCUUUCUCUUGCCUCAUCCGGGUCCC 40 19882 MI0005903 ppt-MIR160g Physcomitrella patens miR160g stem-loop CUCAUGAAAUCAAUGGGGAAUAUUGGACCUGCCUGGCUCCUUGUAUGCCAUCUGCGAAGCUUGACAAAACUAUUGCCAGGGUACAUAGCUGCCAUGCAGGGAGUCAGACAGACCGUACGUCUUCCCAGAUUUACAUGC 40 19883 MI0005904 ppt-MIR160h Physcomitrella patens miR160h stem-loop UUAGUUCAGCAUGGGGAGAUAUCGGAUCCGCCUGGCUCCUUGUAUGCCAACUGAGAAGCUUGUUGAACAUUUUGCCAGGAUUCAUAGCUGGCACUCAGGGAGUCAAGCAGGCCAUUGGUCUUGCCAUGACUUUCAC 40 19884 MI0005905 ppt-MIR160i Physcomitrella patens miR160i stem-loop CGUUAGCACGGAAUAUGGGAUACUGGAUCCGCCUGGCUCCCUGUAUGCCACCUGCGAAGCAUGCUAAAGGUUUUUGCCAGGAUUUGCAGCUGGCGUUCAGGGAGUCAAGCAGGCCUCAAGUCUUCCCGUAACCAGCGCC 40 19885 MI0005906 ppt-MIR166c Physcomitrella patens miR166c stem-loop ACUUGGUGCAACAUGGGACUUUAUCGUGGGGAAUGCCGUCUGGACCGGAGCUGUGUGUCCACUCUGCAUCAAAGCUUCGGACCAGGCUUCAUUCCCCUCGAGGGAGUUUCAUAGCAGUGCUAU 40 19886 MI0005907 ppt-MIR166d Physcomitrella patens miR166d stem-loop CAUAUUAGUCAUAUGCGGCUUGUCCUUGGGGAAUGAUGAUUGGACCGAAGUUUUUUAGCGUUGGUUUGCCCAAUUAAAGCUUCGGACCAGGCUUCAUUCCCCUCGUAGAAGUUGCAUGAUGAUGCAAU 40 19887 MI0005908 ppt-MIR166e Physcomitrella patens miR166e stem-loop AAUGUGCUUUUGGAGUUGUGAACCUUGCUGUGAGGAAUGCCGCAUGGACCGAAGCUAUGUGCUCCAUCUUAACGUGGUGGUAUUGAUACUACGUUUCGGACCAGGCUUCAUUCCCCUCAGCGCAGUUUCAUCAUGGUGAUGGACGG 40 19888 MI0005909 ppt-MIR166f Physcomitrella patens miR166f stem-loop AUGACCAGCAUACCAGUGGUGCUGUGCUGGGAGGAAUGCUGCAUGGUCUGAUGCUUUUGCUGCGACACAAGCCUCGGACCAGGCUUCAUUCCCCUCAGCUCAGUCUCAUAUUGACGGUUCAAG 40 19889 MI0005910 ppt-MIR166g Physcomitrella patens miR166g stem-loop GUGCGGAGGUGUUUAGGUGAAACUCUGCUGCGAGGAAUGCCCCCUGGCCCGAAGGCAUGUACUUCUCCCUCUUCGAAUGGUGUGAGCAUCAAGCUUCGGACCAGGCUUCAUUCCCCUCAGCGCAGUUACAUUUCGAUAUUCACGUC 40 19890 MI0005911 ppt-MIR166h Physcomitrella patens miR166h stem-loop AGUUCGACAAGACUAUGAGACUUUGUCAUGAGGAAUGACGAGUGGCCCAGAUUCGUUUCUGGUCUAGAAAUUGAAUUUCGGACCAGGCUUCAUUCCCCUUGGCACGGUUCCAUGGAGGUACUGUCA 40 19891 MI0005912 ppt-MIR166i Physcomitrella patens miR166i stem-loop CUUGGAGAUUGGAUGGGACUUUGUCGUGGGGAUUGACGCAUGGCACGAAGCUAACAUCCUGAGAUCAGUUGCUUCGGACCAGGCUUCAUUCCCCUUGCCUAAGUUGCAUCAUGUAGUGCU 40 19892 MI0005913 ppt-MIR166j Physcomitrella patens miR166j stem-loop GAAGAUGUUAUAUAUAUGUGACAUUGCCGUGAGGAAUGACGUGUGGCCCGAAGCCAUAUCUUGGGUUGCCUUGAUGAAGCUCCGGACCAGGCUUCAUUCCCCUCGGCAGAGUUGCAACAAGUGGGAAAGGG 40 19893 MI0005914 ppt-MIR166k Physcomitrella patens miR166k stem-loop GAAGAUGCUGGAUGUGCCUUUGCCGUGAGGAAUGACGUAUGGCCCGAAGCUAUCUCUUGGAUGGCCUUGAUGAAGCUCCGGACCAGGCUUCAUUCCCCUCGGCGGAGUUGCAAAUGUGGACAC 40 19894 MI0005915 ppt-MIR166l Physcomitrella patens miR166l stem-loop AAUUUGUGAAGCUGAAUGAAACGUUUUCGUGGGGAAUGACGUGUGGCCCGUAGCCAUGUAUCUUGGCAUGCCAGAAUUAUGCUCCGGACCAGGCUUCAUUCCCCUCGGCAACGUUGCAUGAUGGUAAUUAUGU 40 19895 MI0005916 ppt-MIR166m Physcomitrella patens miR166m stem-loop GCCGAGAACAGAGAUUGUGUAGCUCAGCUGUAAGGAAUGUGGCAUGGCUCGAUGCUGUUUGAGCAUGUCAAGUUCAGCCUCGGACCAGGCAUCAUUCCUUUCAUCUCAGUUACACAUUUGACAUCCAGGA 40 19896 MI0005917 ppt-MIR408b Physcomitrella patens miR408b stem-loop GUGGAAGAGAGAGAGUGGUGGAAGGGAGGGAAGCCAGCGUGAGGCAAUGCAUGACAACAGCAUGCCCAGGAGGUCCUGAGGGUGUUGUCCUCAUGCACUGCCUCUUCCCUGGCUUCCCUACAUAGCUCGCCAUUCUUGUGCUCU 40 19897 MI0005918 ppt-MIR477d Physcomitrella patens miR477d stem-loop GUUGAUUUCGAUUAAACAGAUUGCUUGUUCCUCUCCCUCAAAGGCUUCCAACAACAGGUACUUGGUCUUGUUUUCACCAGCAAAGCUAAGGCCCGUCCCAGAUGUUAGAAGCCUCUGGGGGUGACGAAGCAGCAGCUGUAUGGGUGGUUCCCAU 40 19898 MI0005919 ppt-MIR477e Physcomitrella patens miR477e stem-loop GAUGAGAAGAUUCCGAAAGGCGGUUGCUUAUCUCUCUCCCUCAAAGGCUUCCAACAUCAGGUGUAGAAGCCUUGCUAGAAGCCUUUGUGGGAGAGGGGGAAACAAACGCCUUGCAUUAUUGCCGUUC 40 19899 MI0005920 ppt-MIR477h Physcomitrella patens miR477h stem-loop UCAGAGGGAGUAUACUCAGGUGUUUGUUUUUCUCCCUCAAAGGCUUCCAACUACAUCAGCAUUCUAUUCCACUUCUGGCUUAAGAUGCAGUGAAUUUGCGUUGUUGUUGGAUGCCUUAGUGGGAGAUGUACAUACCCCUGUCAUUGAUGUGUUGC 40 19900 MI0005921 ppt-MIR529a Physcomitrella patens miR529a stem-loop CUCCCCUUUUCUACAUUCAAGCCGGGUUUCGAAGAGAGAGAGCACAGCCCUGGACUUUUCUCAUGUGACCGAUUUUAGCGGUACAUGGUGCACUGUCAUCGGGCUGUUCUCUCUCUCUUCUAGACCCUACUUGGAUGUGUUUCUACUGC 40 19901 MI0005922 ppt-MIR529b Physcomitrella patens miR529b stem-loop UUCAGCCGUACUACACCCAAGCCGGGAUUCGAAGAGAGAGAGCACAGCCCGUAACUUUCACUAAAGACCACUUAUUGUGGUUCAUUGGAGAUUUGAUGUCGGGCUGUGCUCUCUCUUUUCCAGUCCCUACUCGGAUGUGUCGCCAUCAC 40 19902 MI0005923 ppt-MIR529c Physcomitrella patens miR529c stem-loop UUCAGCUUUACUACAUCCAAGCCAGGAUUCGAAGAGAGAGAGCACAGCCCCGUUACUUUUGCUGAAAGAAUACUUCCUGUGAUCCAUUGGGAAUUUGAUGUUGGGCUGUGCUCUCUCUUUUCCAGUCCCUACCUGGAUGUGCUGCCAUUGC 40 19903 MI0005924 ppt-MIR529d Physcomitrella patens miR529d stem-loop CUAGCUUCUCCACAAUUUCUCACCCUCGUUGGGAUCAGAAGAGAGAGAGCACAGCCCGAUGUCCAAUGUUCAGGUCGAAUGGGCUGUGCUCUCUCUCUUCUUGCUCCAACUUGGGUGCUACACGCAUCUAGGGUAC 40 19904 MI0005925 ppt-MIR529e Physcomitrella patens miR529e stem-loop UCAGCAAUUUACUCACUCAUGCUGGGAUCAGAAGAGAGAGAGUACAGCCCAAGAGCAACCGCUUAGUUGGAAUGGGCUGUGCUCUCUCUCUUCUGGUUCCAACCUGAGUGCAUGUCGGUUGU 40 19905 MI0005926 ppt-MIR529f Physcomitrella patens miR529f stem-loop UGCACAAUUUUCUCACUCAUGCUGGGAUCAGAAGAGAGAGAGUACAGCCCAACGGCCGAUGUUCAGUUGGAACGGGCUGUGCUCUCUCUCUUCUUGUUCCAACCUGGGUGCAUUUCCGUUCU 40 19906 MI0005927 ppt-MIR529g Physcomitrella patens miR529g stem-loop UCACCUUUUUCUACAUUCAAGCUGGGGUUCGAAGAGAGAGAGCACAGUCCCAGACUUUUCACUCACGACCACUUUGAGUGUCUUAUGGUGAACAGUAGUCGGGCUGUACUCUCUCUUUUCCAGUCCCUACUCGAAUGUGUUUCUAUCGC 40 19907 MI0005928 ppt-MIR533c Physcomitrella patens miR533c stem-loop AGUGUUUGAAAGAGGGUUAGCGACAUUGAGAGCUGUUCAGACUAUGAGAAAGUGUGUGGAAGAGGAUUUGGUGACUUGAACUGGUGCUUCAAGGAAAGCCUAAAGUCCAAGUUCCACUCUUGCUCUCACAGUCUGCACAGCUCUCUGUAUCUCUUCCCCUAGUAUAUGUCU 40 19908 MI0005929 ppt-MIR533d Physcomitrella patens miR533d stem-loop CAGCAUCAGCUCAGGGGCAGUAGCAUGGAGAGCUGUUCAGACUCUGAGAGAGGGGUGUGGAAAACAUGUACUGUUGUAUCGACACUCGUCGCUCACAGUCUGCACAGCUCUCUGUGUUGCUCCCUCUAAUUGACUUCA 40 19909 MI0005930 ppt-MIR533e Physcomitrella patens miR533e stem-loop GAGUGGUUGUGCAUGACGAGGCAGCGACAGAGAGAGCUGGCCAGACUGUGAGGGAUGGAGCGAAUUUAGCUUGUGCCUUGUGUGGCUCACUCGUGCAGCUCCCUCACAGUCUGCAUGGCUCUCCGUGUCUCUUCCUCUUUUCGGCCACGUUGG 40 19910 MI0005932 ppt-MIR536d Physcomitrella patens miR536d stem-loop AGGGUGCAUUCCAAGUGCCGUCCCUUGGAAGCCGCAGUUUGGCACGAAGCCCUUUCUCCUGCCGCUACUGUUUUGUUAGUCAGGUUUGCAGCGUGUCUCGAUAUAGUGGUGUGCUUCCGUUGCUAUCCUUUCCCUCCAGGUAGGAAUUCUGUGGCAAACUAGUGGUUGGUUCGCUUAUCAAGUUGCAGUCCUUCAUACCUUGAUUUUGAAUUACUGCAGUCACACCCUUCUUGUCGGCAGUUUUUUUUUUUUUUGUGUGUCCUACCGACUGCACUGACUGCAGAAAGUCGAAGCAAUGGAGGUGUCGUUGCAUUUUCCUCAUAGUUUUGCUAGCUUCUACUUCUGGGUUGAUGUUGAACCCACUCCACCCACUUGUAGCGGAAAGAUGUUAGAAUUUCGUGCCAAGCUGUGUGCAACCAAGGGGUUUGUUACUUCAAAUCCAC 40 19911 MI0005933 ppt-MIR536e Physcomitrella patens miR536e stem-loop UGUGUGGAUCCUAAGUGUCUCCCCUUGGAAGCCGCAGUUUGGCAUGAAGCACUUAUUCCUUUGCGCAUCCAUUUUGUGACUGCUUGUAUUGAGUCGAAUCCAAUUCCUUGCCUUCUACUUCCUUCCAAUCUAGAUCACUCCUGGUUUUUCACAUUGUUUGGUUGUUGGGGGUCAUAUUGUUUGUAUACCUUUUUUCGCACGAAAUCUUCAAUUUGAAAGACGCUGUUGGAAACUCUAAUUUCGAAUUUCUGCAGCCACACCCAAUAGUUUGAGGUCUUGUCGGUAUCUUCCUUUGCGCGCCUACUUCAGUGACUGCAGAAAGUCACUGCAGUCACUACCGGGGACGAACAUACUAGCACUGUUAAUCUCACUAUACUCGUCAAUCUUCAGUUGUCCAUGCACGAUUUCUCCCUAAAAUUAUUGAGGGGAUAUCAGAGUUUCGUGCCAAGCUGUGUGCAACCAAG 40 19912 MI0005934 ppt-MIR536f Physcomitrella patens miR536f stem-loop UUCGACGUCGUGUUAAGUGUGAUUCCUUAGCAGCCAUAGUUUGGUAUGAAGCUCUCUCUGAACAUCAGAUAUCGGUCGGUAGAGUUGAGGUUUGUUCACAUGACCUUAGCUCUGUUUUCCGAGCGCUUCGUGCCAAGCUGUGUGCAUCUAAGGGAAUCUCACUUCUGAACAGAAAG 40 19913 MI0005935 ppt-MIR537c Physcomitrella patens miR537c stem-loop UCAUAUCUGGACUGUAGAAACACCUGAAGUGACUGAAGUUAGUCCGGUUUAGGUAUGAGAAUGAUUGGAGCACCUCUCCAGAUGUUCCAGAUGUAAUGAAACCGGUGCAAGCUUCAAGCUCUUGAGGUGUUUCUACAGGCUACAUAUGA 40 19914 MI0005936 ppt-MIR537d Physcomitrella patens miR537d stem-loop UUGAACAAUGUCAUUAUCAUACAUAGACUGUAGAAACACCUGAAGCUAUUGAUCUCUACUUUGUUGUAACCGAUCUUUAUGGAAAGUGCACGAAAAUGUGUAUGCUGUGAUCGCACGAUUGGUGACAUCAGUAACUUGAGGUGUUUCUACAGGCUACUUAUGCUUGAUGAUUAUCUUA 40 19915 MI0005937 ppt-MIR902c Physcomitrella patens miR902c stem-loop UCUAUUGGCGUAUGCUCAUUUCCUCCUUCUAGCGUAUGAUGCAGAUUCUUCAUCUGUUGAACUGAAUUUUUCUUAGUGAUGCAGACGAAGGUCUGCAUCAUAGUCAAGGGGGAGGAAAUAUAUAUCAUGAUUCU 40 19916 MI0005938 ppt-MIR902d Physcomitrella patens miR902d stem-loop AAGGAUCCUCCCAUUUGCGCCCACUGGGUUAUGAUGCAGAUUCUUCAUCUACUUCACUGGAGCUUCCACAAGUGGUGCACCAGAUGAAGGUCUGCAUCGUAGCCGAGAGGAAGCAAAUUCUUCUGGACC 40 19917 MI0005939 ppt-MIR902e Physcomitrella patens miR902e stem-loop GACAGCGUGCCGUCUCAUUUCCUUCCGCUAGUCUAUGAUGCAGAUUCUUCAUCUGUUUCGUGUGAUGCUUGUGCACGAGUCAGACGAAGGUCUGCAUCAUAGUCAAGAGGAAGCAAAUAUGAAAUUCAGGAGC 40 19918 MI0005940 ppt-MIR902f Physcomitrella patens miR902f stem-loop GAGAGAAUGCUCUUUUGCCUUCGCUAAGAUAUGAUGCAGAUUCUUCAUCUGCGGGAUAUUCUUGCGUGGUAUAACAGACGAAGAUCUGCAUCAUAACCAAGCGGGAGUAAACAUUGUGCUACC 40 19919 MI0005941 ppt-MIR902g Physcomitrella patens miR902g stem-loop GGUAGCAGGUUUGUUCAUUUUCUUCCGCUAGUCUAUGAUGCAGAUUCUUCAUCUGUUUAGCUGAAUCUGCGUCAGUGUUUCAGUGUUACAGACGAAGGUCUGCAUCAUAGUCAAGAGGAAUGAAAAUACAUUAUAGAUUAU 40 19920 MI0005942 ppt-MIR902h Physcomitrella patens miR902h stem-loop CCUGCACAACCCACAAAAUCGUGUUGAUCUAGAUUAUGAUGUAGAUUCUUCAUCUGGAAUUGAAUUUCGAUUUAAGAAGAAGGGUCUACAUCAUAAACUGGAUGAUUACGAUUGUUGGAUAACAGCAG 40 19921 MI0005943 ppt-MIR902i Physcomitrella patens miR902i stem-loop GACAACCUGCAGAGUUGUGUUGAUCUGGAUUAUGAUGUAGAUUCUUCAUCUAUGAGUGAAGCUCAAUCAAAGAUGGAGGAUCUGCAUCGUAAACUGGAUUAUCACGACUAUCGAACAACG 40 19922 MI0005944 ppt-MIR902j Physcomitrella patens miR902j stem-loop GCGGGUUAAAGUUGAACAGGUUGCCUCUCUCGUAUAUGUUGCAGAUUCUUCAUUUGUCUAGCUGAUCAACUAUAGUAUUGAUUUGUCUAGCUGAUCAACUAUAGUAUUGACUGUCAUGCAAAAGAAGGAUCUGCAACAUAGACAAGAAUAGGUGAUCGAUUUUUAUACACUCA 40 19923 MI0005945 ppt-MIR902k Physcomitrella patens miR902k stem-loop GUUGAUUUUGCUGCAUAGAUUAUCUUUCUAUUCUAUGUUGCAGAUUCUUCAUUUGCCGCUCUGCUGAAUGAUCAUAUUGCGGGUGAAGCAAACGAAGGAUCUGCAAUAUAAACCAGAAAAGGUAAUCGUAUUUUGGCCAAUA 40 19924 MI0005946 ppt-MIR902l Physcomitrella patens miR902l stem-loop AUUAGCAACUGCUGCACUGGUUAUCUCUCUCGUCUAUGUUGCAGAUUCUUCAUUUGCAAAACUGAUCAUAGAAGUUAAGUGAAAGAAGGAUCUGCAACAUAUACAAGAACGGAUAAUCGGAUGUGAUGAUGAGC 40 19925 MI0005947 ppt-MIR1222b Physcomitrella patens miR1222b stem-loop GUGCGUCGAUGCAACUGCUCUAAUCAUUUUCGUACCAGUGUAUUCCUUCAAACCUCUUCUCUUGACUGUAGUGGUGGCCUGAAGGAGUUCAUUGGUACACAAAUCUUGAGAGCAUGGAGGAAAAUAGA 40 19926 MI0005948 ppt-MIR1222c Physcomitrella patens miR1222c stem-loop CGAGCGUGAAAAAACUUGCUACAAUCAUUUUCGUACCAGUGCGUUCCUCCAAACCACCACGCUCACGUUGAUGCGAAGUUGGUCUGAAGGAGUUCAUUGGUACACAAAUCAUAAGAGCAUGGAGGACCGGAGAA 40 19927 MI0005949 ppt-MIR1222d Physcomitrella patens miR1222d stem-loop CUGAUGUUGUUAUUAUUGUUACGGGCAUUCGUGUGCUGGUGAACUCCUUCAUGCACAAGUGCGGCUCUUCGCGCACCAGCUUUAAGGGGUUCACUGGUAUAUGAAUGCACAUGGCAUGAUCUGAUCACGGG 40 19928 MI0005950 ppt-MIR1222e Physcomitrella patens miR1222e stem-loop AGUUGAAUGUGUGCGGUUGUGGGGAUAUUGACGUGCUGGUGAGCUCCUUCAAGCUCGAGUGUGCGUCUUGCCACGGCCUUGAAGGAGUUCAGUGGUACAUCAAUGUCCAUGGCAUACUCAAGGCGGGAC 40 19929 MI0005951 ppt-MIR1223b Physcomitrella patens miR1223b stem-loop UUAUAACAACUCUCCAAGGCUGGAUGUCCAGCAAGGGUGUGUGGCUCUAUAAUCUAGAGCUAAAGCUAGAAAUCCACUGCUGUUGCGAUCGAUUGUAGAGUCAUACACCUCUACUGGCCUUCCAGUCUGUUUGCUCACAGCUU 40 19930 MI0005952 ppt-MIR1223c Physcomitrella patens miR1223c stem-loop AGGUUCACUCUAUUCAAGGUUGGAUUGUCAGCAAAGGUGUGCGACUCUAUAAUCCAAAGCUUGUGGGAGGAAUUCACCUCGCCUGUGACCGAUUGUAGAGUCAUACACCUCUACUGACCUUCCAGUCUCUUUGCUCACAGCUU 40 19931 MI0005953 ppt-MIR1223d Physcomitrella patens miR1223d stem-loop GCGGCGAUGGAUACUAGACUCGAGGUCGAACAAGGGUGUGUGACCCUACAAUCCGAAACGCGAGACUUAAUGCUUCGCCUGCGAUUGUAGAGUCAUACACCUCUGCUAGCCUUCCGGUCUUCCGCUCUAAGCUA 40 19932 MI0005954 ppt-MIR1223e Physcomitrella patens miR1223e stem-loop UGACCAUGACAAGCAAUGGAGCUUCGACAAGGGUGUUUGACUCUACUACCCGUGAACCCCAUCAGAUGGAGAUAUGUGGUUGUAGAGUCAUGCACCUCUGCCGAGGCUCCUGCUUUUUACUCCUUU 40 19933 MI0005955 ppt-MIR1223f Physcomitrella patens miR1223f stem-loop CGCAAUGAAAUGGAACAGCAUGGAGCUUCAGCAAGGGUGCUUGACUUUAUAACCCGGCUUAAAUUAAUCGUGGUUGUAGAGUCAUGCACCUCUGCUGGCUCUCCUGCUUGGACAUUAUACUUGU 40 19934 MI0005956 ppt-MIR1223g Physcomitrella patens miR1223g stem-loop AGUGUAUUGAUCAGCGUGGAGCUUCAGCAUGGGUGUUUGACCUUACAACUCGGCAUUGAUCAAUCGUGGUUGUAGAGUCAUGCACCUCUGCCGACUCUCCGGCUCUGUGUACUGCU 40 19935 MI0005957 ppt-MIR1223h Physcomitrella patens miR1223h stem-loop GAGUGAGUGGGUCAGCAGCAUGGAGGUUCGACAAGGGUGCUUGGCCCUACUACCCGUGAACCCACCCAAGGAGAGACGUGGUUGUAGAGUCACGCACCUCUGCCGAGCCUCCUGCUCGUUGUGCUUCUUCUU 40 19936 MI0005958 ppt-MIR1223i Physcomitrella patens miR1223i stem-loop CAAGCCUCGUUCAGCAGGGUGCUUCAGCAAGGGUGCUUGAUUCUACUACCCGUCGACCCAUUAGAGGAGCGACGCGGUUGUAGAGUCACGCACCUCUGUUGAGCACCCUGCUCGGAGUAAAGAU 40 19937 MI0005959 ppt-MIR1223j Physcomitrella patens miR1223j stem-loop CCCUUCAACACAAGGCUGAAGGGUCAGCAAGGGUGUGUGACUCUACUAUCUGAACUGUGCGAUUUGAUUGCCUCGUAAUGAGGCGUACAUAAAGCUUUUGAUUGUAGAGUCAUGCACCUCUACUGGGCCUUCAGUCUAAUUUUUCUGC 40 19938 MI0005960 ppt-MIR1023a Physcomitrella patens miR1023a stem-loop GGGAGCGAUUGGACCACCUUGCAGUUUCAUGGCACACUCUCUCCAUUUCUCUACCGUUCAUGCAGCGGUUGAUCGAUUGGGUUGCUGGUUGAUUGAUCGAUCGAUGGUCAGGAGUUGGAAGAGAAUUGGAGAGAGUGCAUUGUGAAUUGCGGGGUUGACGAGGCGGAGGG 40 19939 MI0005961 ppt-MIR1023b Physcomitrella patens miR1023b stem-loop GAAGCGCGGCGGGCCAGCUUGCAAUUUCAUGACACACUCUCUCCAUUUCUCUGCCUGUCAUGACUUGGUUGAUCGAUGGAGCGGUGGUUUUCAUUGCCCGAUUGAGGAUCAGGAGUUGGGGAGAGAAUUGAAGAGAGUGCAUUGUGAAUUGCAAGCUCCUCCUUUCUUUUCG 40 19940 MI0005962 ppt-MIR1023c Physcomitrella patens miR1023c stem-loop GCGCAGUUACACAGCUUGCAUUUCGGUGUCCACUCUCUCCGUUUCCCUUCCCAUGAUGGCUAGCCUUGAGUAAGUACAUAUGUUUUGAACACAUGUAUGCUUGCUUAAAAUCCUUUGUCGGAGGGAAUCGGAAAGAGUGUACAAUGAAUUGCAAGCUUGAUUGAUUCG 40 19941 MI0005963 ppt-MIR1023d Physcomitrella patens miR1023d stem-loop UGUAGAAGAUGCAGCUUGCAGAUUAUCAUCCACUCUCUCCGUUUCCCUUCCCACAGCUAUCAUCCGGACUAGCAUUUCCUGUACAUACUAGGGAAGGGAAAUGGAGAGAGUGUAUAAUGAAUUGCAUGCUUGAUUGCUGAG 40 19942 MI0005964 ppt-MIR1024a Physcomitrella patens miR1024a stem-loop GGACGAGAUCGCGGCCGUCAUGAGUUUUGUCGACGCCCUGCAAUUCAAGCAGACUCGAUUACAAUGUUUGCCGCCGACGUCACGCAUGUCACGUGGUUAUUUGUACUUCAGUCUGGUUGGAUUGUAGGCCUCCGCAAGGCUUCAUGACUCACUCAACUGCUG 40 19943 MI0005965 ppt-MIR1024b Physcomitrella patens miR1024b stem-loop GUAGACGCCUUGCAAUUCAAGCAGACUCUAUUAUGCGGCUGCCGCGGACACUACGUGGUUUGUUGUGCUUCAGUCUGGUUGGAUUGUAGGCCUCCGCAAAACUUCAUGACCAUCGCAACUACUG 40 19944 MI0005966 ppt-MIR1025 Physcomitrella patens miR1025 stem-loop GUUCCGGUGCAAGGUCGUGUUGAGGAGUCGUGUUUUUAGUUUUGUUGUGGGCUGUAAGGGUGGCUGCGGGAGAAAUUAUUAUCAUUCUGCGGGAUGUCCUCUACCCACUCCGCCUUCCCUGUCUGUUGUCGAGUGGGGGUCUCGCCUGCUCCUUCCUUCUGCCACAACAAAGCUAAUAACUCGACUCAUCCUGACACCACGUCUCUGGCU 40 19945 MI0005967 ppt-MIR1026a Physcomitrella patens miR1026a stem-loop AUGAAAGUUCUUGAGACACUCUCUAGGUCUGAGAAAGACUUGAGAGGACACUCCUACAAUAGCCUCGGGAACUGCAUGACGUUUUUCAUUAGAUGAGGUGGUUCCCUGAGCAUUUGCAGGACAGUUCUUUCAAGCCUUCCUCGGACUUUGGAUUGUUUGUUCCAUAUCAUG 40 19946 MI0005968 ppt-MIR1026b Physcomitrella patens miR1026b stem-loop CAGGAACAUAAUUGAGACUCUCUGAACUCUGAGAAAGACUUGAGAGGACACUCCUGCAACAACUGUGGCAAUUCCAUGCAGUUAUAGCAGCAUCUGCAGCGGCGGUUCUCUCUAGUCUUUCUUGGACUUUGGAUGGCUUCUUCUGCAACAUC 40 19947 MI0005969 ppt-MIR1027a Physcomitrella patens miR1027a stem-loop GUGCAAGAGCAGAUACUUAAGUCGAAGAGCAUCUUUCUAUCUUCUCUUCCAAUCUAUUGAUCUGCCCUUCCAAUACUAUCAGAUCAAUAGAUUGGAAGAGCAGAUCGAAAAAUGCUCUCACCUUAAGGAGAGACAGCGACUC 40 19948 MI0005970 ppt-MIR1027b Physcomitrella patens miR1027b stem-loop GUGCAAGAGCAGAUACUUAAGUCGAAGAGCAUCUUUCUAUCUUCUCUUCCAAUCUAUUGAUCUGCCCUUCCAAUACUAUCAGAUCAAUAGAUUGGAAGAGCAGAUCGAAAAAUGCUCUCACCUUAAGGAGAGACAGCGACUC 40 19949 MI0005971 ppt-MIR1028a Physcomitrella patens miR1028a stem-loop ACCCGAUUUACCUUCACAUCUGUUCCAGCUCUUAGAUCUACAAUGUCACAUGAACACAUACUUGGUAACGAAUCUGGCAGUAAGACUUCAUUUAUAUGGGUCCAUUCCGCUCCAAGCUUUCACAUCUGUGACAGAUUUAGCAAUAUAGUGAAAAUCUGACCGUUGGUGAUGCAACUGAAGCAAGUUUUCACGUGACAUUGUAGAUCUACGUGCCGGAUUAGUGGUGAAAGCCUCAAGUU 40 19950 MI0005972 ppt-MIR1028b Physcomitrella patens miR1028b stem-loop CAAACAAGCAAAUCCAUUCUUGGACUAGUUCUUAGAUCUACAAUGCCACCUACAACAGCAAUACUUAAGGUUAUGAGAAGAUAUCUAUCAUGCUCUCUGGAGUGUGGUCCUCUUCUUACAAUCUUAAAUUUUAAAUUUCUUGAAAGGCGGCAUUGUGGACCUAAGACCUUGGUCAAGUGUGGAAUAAGGCUAAA 40 19951 MI0005973 ppt-MIR1028c Physcomitrella patens miR1028c stem-loop CGAAGACAUGGAAGAUUUCAUCCGCGACCUUGCUCUUAGAUCUACAAUGCCUCUUGCGAAACUGACAGCGGAAUACCGGACUUUUAUUUGAUCAUGAUGGAAUCCACAUGUGCCUCAUACUUCAGGAAUCCAUGCGGUCCACCAUGUGGCAUUGUAGGUUUAAGAGCUGUGCCGCGGGUGGAUUGAUGAUCACCUGU 40 19952 MI0005974 ppt-MIR1029 Physcomitrella patens miR1029 stem-loop GCACACAAUGUGCACACGUUACAUCACUAUCAGUAUUUUUGGUUUGAGAGAAAGGAGGACAGGAGGCUACGAGAUUUGUUUGUGUUUGAUUCUUGGGCGAACUCCUCUCUCUCAACCAACCAUACUGAUACUAAUUGACGUUCGAAGUUUGUGCUU 40 19953 MI0005975 ppt-MIR1030a Physcomitrella patens miR1030a stem-loop AAGGUACGCAAUUAAAGCUGCACCGUCACAUUUCUGCAUCUGCACCUGCACCAAAACGCGACUUUGAGGUUGUGAUGGAAUUCUGCAGUCACACCCAGCCAUUUGCAAGAGUGUUCUGCCGGUGUUGGAUUGUGGCAAUGGAUUGCAUUCACAGGCUUGUGUACUGGUGCAGUGCUUAUGCAGAAAUGUUGCGUUGUAGCUCAAACUGGAUUGAG 40 19954 MI0005976 ppt-MIR1030b Physcomitrella patens miR1030b stem-loop UGUCAUGCAUCUGCAUCUGCACCUGCACCACAAUGUGAUCGCGGCGAUCUCUGUUCCGGAGGUUCAGCCCGGUAGUUUUACAUGCGGCCCUGCAUUCAGCGCUGGCAUCUUCCGUGGACAAGUUUCGUAGCUCACAUUCCGAUGGUGCAGUGCUUAUGCAGAAGCGUUGC 40 19955 MI0005977 ppt-MIR1030c Physcomitrella patens miR1030c stem-loop UACUCCUUGCUCUGCUGCAUCGUAAUGCAUCUGCAUCUGCACCUGCACCACGUUGUGAUAGGAACAAAACUCUGUCUUGCUGAUUCCCUGCACACAUGCCUUUGUUACCCAGCAUUCUCGAAUACGGCGUCGGUGCUAUCCUCAGAUAAGUAGAGUUGUCCUCACUAGGUUGGUGAGGUGCAUAUGCAGAGGCGUUACAUUGCAGCUGCUUAAUAUUG 40 19956 MI0005978 ppt-MIR1030d Physcomitrella patens miR1030d stem-loop AGUCCUCCGCUCUGCUGCAAUGUAAUGUGUCUGCAUCUGCACCUGCACCACGGUGUAACAGUGGCGACGCUUUUUCUUGCGGAUAUCAGGCACUCAUGCCGUUGCUUCCCUGCAUUUUCCAAUGUGGCGUUGGUGCAAUCCGCAGACAAUCAGUGUCUCUCACAUUACGAUGGUGAGAUGCAGAUGCAGAGGUGUUACAUUGCAACUGACCCUCAAUU 40 19957 MI0005979 ppt-MIR1030e Physcomitrella patens miR1030e stem-loop GAAAAUCCUUGAAGCUGCAACGCUACUUUUCUGCAUCUGCACCUGCACCAAGAUGCGAUAACAUGUACAGAUGAACCAAAUACACAGUUGUACUGUCAUGCCCAGUUAGCCACUGGACUUGAUUUGUUGAACAAUUAUUUGUACUCGCUUUAUCGCGUACUGGUGCAGUGCCUAUGCAGACAUGUAGUGUUGUAGCUGGAUGCAGAUC 40 19958 MI0005980 ppt-MIR1030f Physcomitrella patens miR1030f stem-loop CCUCUACAUAACUACUCCAAUGCCACGUAUCUGCAUCUGCACCUGCACCAAAGUUUUGUAAUUCUACGGCUCGUGGUAGUCUGUUGUUGUGAAGGUGGGAUGUAGCUGAGUGUAUUACUCGGUGUUCAUUUGAUCAUUAUUACCCGAUGGUGCGGGUUCUUAUGCAGAGCCGUGGCAUUGGAGUAAUCCUCUACUU 40 19959 MI0005981 ppt-MIR1030g Physcomitrella patens miR1030g stem-loop CCCCUGCAUUACUGCUUCAAUGCCACGUAUCUGCAUCUGCACCUGCACCAAAGUUUCGAAAUGCUAAGCUCUAAUGUGAAUGAUGACACUUUUUUUGUACCCAAAGUGGGCAUGAAGCUGUGUGUUCUGCUUGGUGAUCGUUUCACAGUUACGACUCGAUGGUGCGGGUUCUUAUGCAGAACCGUGGCAUUGGAGCAAUCCCUUUUAA 40 19960 MI0005982 ppt-MIR1030h Physcomitrella patens miR1030h stem-loop GCUACGUUACCUAUCUGCAUCUGCACCUGCACCGAGAUUCGAAGAGUAAUGAAGAAUCAUAUACGCAGUUGCAGUCAUUUCCAGUUCAUCACUGGACCUGACAAAUUGAAGCAAUGAUGCAAUUCUCAUUCUCGCUUAUCGGUGCAGUGCUUAUGCAGAUAUGUGGCGUUG 40 19961 MI0005983 ppt-MIR1030i Physcomitrella patens miR1030i stem-loop AAUUCUCCUCUUCAUCGCUGUAAUGCCAUGUUCCUGCAUCUGCACCUGCACCGCACUGCCUCACGAGAAUGUGCACGAAUGGAUCAGAGCGGUGUUGUGCAAAUCCUGCUUUCAGUCAAUCACUGAGCUUGAGUUUUAGCAAUUCUUAUUUCCUCUGAACUUUCUUCUGGCAUUAUAGUGGUGGAGGUGCUUAUGCAGAAAUAUUGCAUUGCGGCUGAGAGCCACUAAUG 40 19962 MI0005984 ppt-MIR1030j Physcomitrella patens miR1030j stem-loop AGCCUCCUCUUCAGCGCUGUAAUGCCAUGUUCCUGCAUCUGCACCUGCACCACACUUCUACGAGAGAAUGUGCAGAAGUCAGAGCGGUGUUGUGCGAAUCCUGCUCUCAGUCAAUUGCUGGGAUUGCGUUUCUCCAAUCUUCUUUCUCUGGGCUUUUCUCUGGCAUUGUGGUGGUGUAGGUGCUUAUGCAGAAAUAUUGCCUUGCAGCUUGCAGUUACUAGU 40 19963 MI0005985 ppt-MIR1031a Physcomitrella patens miR1031a stem-loop ACUGCGAAAUUUCUGGAUCAUAAAUUUGCUCAAUGCUCUCUGGAGCUUCUGUGUUACCACGUUGGAGAGAGUGUUGAUUUGGACUCCCUGAUAGGGCUUAGGCAUCUUUCAGCCCUUGCUUCGGGUUUUCGUCCUUAUUGGCCUCCCUCAUUGGGCCUCAGAAGCUUCACAGAACAUUGACUUGAUUUGUGACCCUGUGAUGAGGAAG 40 19964 MI0005986 ppt-MIR1031b Physcomitrella patens miR1031b stem-loop ACGGCGGAAGUUCUGGAUCACAAAUUUGCUCAAUGCUCUCUGGAGCUUCUGUGCCGUUGCUUUGGGGAGUGUGGGUUUGUCCCCCUGGACAGGUCUGCAGAACCUGACGGCCUUGGCCCUGAUCUGCAUCCCUCUCUUAAUUGAACCUCAGAAGCUUCAUAGGACAUUGACUUGAUUUGUGACCCUGUGAUGAAGAAA 40 19965 MI0005987 ppt-MIR1032 Physcomitrella patens miR1032 stem-loop ACUAGCAAGAGCCAUGCCUCUGCCCAGGCAGGUGACUGCCUGGAAUUGGGCAUAAAUGCCCAAUUGGACUCCCAAGUGCCCAAUUCCAGGCAAGCCCCUGUCUGGGCAGGAGCAUGAUUUCUUCCAG 40 19966 MI0005988 ppt-MIR1033a Physcomitrella patens miR1033a stem-loop UGAUCAGAUACAAUCCGGCGGUGGCAUUGGGAAUGUCCAUCACAACCUGCCAACAUUCCAGGUUAUGUUGACGGGUCGUGAUGGGCACUCUCAGCGUCUCAUGUCACAAAAACGCAGAC 40 19967 MI0005989 ppt-MIR1033b Physcomitrella patens miR1033b stem-loop GUGACCAAGAUGGAGAUGAUGGGAUGUUGGGCAUGCUCAACACGAUCUGUCAACAUUCUAGAGUAUAUUGACGGGUCGUGAUGGGCACUCUCAAUGUCCACUUCAUGGUUUUGUGACGU 40 19968 MI0005990 ppt-MIR1033c Physcomitrella patens miR1033c stem-loop GAGAUGAAGAUGGAAUUGAUGGGAUGUUGGGCAUGCCCAACACGAUCUGUCAACAUUCUAUGUUAUAUUGACGGGUCGUGAUGGGCACUCUCAAUGUCCACUUCAUGAUAAUAUAACUC 40 19969 MI0005991 ppt-MIR1033d Physcomitrella patens miR1033d stem-loop AAGUAUUUACAAGGCUGGCAGUCGCAUUGGGAAUGUCCAUGACGAUCUGUCAACAUUUCAGGUUAUGUUGACGGGUCGUGAUGGGCACUCUCACUGUCUCAUGCUGAUGAUGAUUCGUG 40 19970 MI0005992 ppt-MIR1033e Physcomitrella patens miR1033e stem-loop GACUAAGAUAACAUUCGGCAGGGGUGUUGGGAAUGUCCAGCACAACCUGUCAACAUUCCAGGUUAUGUUGACGGGUCGUGAUGGGCACUCUCAGCGUCCCAUGCCCAAACUGCACAUCA 40 19971 MI0005993 ppt-MIR1034 Physcomitrella patens miR1034 stem-loop GCGUUUCAAGGCUCAUAACCUCAUUCUUGCAAGCACUACGCUGCCAAAGUCAUGACUGUCUUCCUUGCAGAAGCGACUGCAAUGUCGAUAUUCAUUACUUUGGCAGCGCUGUGCUUGCCGAAUUAAGCCUUUGAGUGUUCGUAGA 40 19972 MI0005994 ppt-MIR1035 Physcomitrella patens miR1035 stem-loop GGGUCUGAAAGCGAAGAAGUUUUUCAAACCGUCUUAGCCCACAAAACGAAUUGUUGUGAUUGUUUGAGAUCGUGUAUUCAUAUGGCAGCCUUGCAAGCUGUCACAGAUCUCUCUGUCACGAUUCGUUUUGUGAGCUAAGAAGGUUUGAAGAAGAGUAUUCUCCAUGUUGU 40 19973 MI0005995 ppt-MIR1036 Physcomitrella patens miR1036 stem-loop ACUGUAUGUGGCUUGAACGCCAAUAUCAGUGUGGAGUCCGUAAUUAGCUGCGAAAUUCAAUGGCAUUGUGGUGGUUGCAAGGGCGAAUUACACCAACGUGUGCACGCAGCUUCCUUUGUUGAAUUUCGCAGCUAAUUAAGGAUUCUACACAGCUUGGCGUUUGUAUUGUUAUACAGU 40 19974 MI0005996 ppt-MIR1037 Physcomitrella patens miR1037 stem-loop GUUACUAACCUAAUGCUUGCAAAAGCGGCAGCCAUCAAAUCCUAAUAAGGCUGACUCAACUACAACCUAGUUGCUUCAGCCUUAUUAGGAUUUGAUGGCUGCCACUAUUGCUACAACCUAGUUGCUGC 40 19975 MI0005997 ppt-MIR1038 Physcomitrella patens miR1038 stem-loop AGUGACAUGGACUCGUGACACGAGCAUCCUAGGUGCGUUUCCACCAAAGAGAGCACCAUCAUUUUGUGUACUCCAUGGUGGAAUCGCAUCCAGGAUGCCAUUGUUACGAUUAGCGAACGC 40 19976 MI0005998 ppt-MIR1039 Physcomitrella patens miR1039 stem-loop AGGAGCUUAUUGUGUCAGCCACAUUAGGGUCUUUGGGUCUUUCUCUCCUGAAAAUGUUAAGAGCUUGAGCGCUUAAUUUUUCAGGGGAGACGGGCUCAAGGAUCUUGAAGUGGUUGCCUGGGGAUGAUAA 40 19977 MI0005999 ppt-MIR1040 Physcomitrella patens miR1040 stem-loop AAGAGGUGAUCAUAUCCUUUCAGUAUAGAGGACGUGUUCAUUUGUGUUCACUACUCGAUGUUCAAGACUAUGCUACUUGAACAUCGAGUAGUGAACGCAAAUGAACAUGUUCCUUCAUACAGAAAGGGCUAGCACUGACAUG 40 19978 MI0006000 ppt-MIR1041 Physcomitrella patens miR1041 stem-loop UGGACAAGUCAUUUAUCUUUAAGUGUACUUUUUCGGGUGAGAGUGGUCCUGAGAAUGAUUGACCAGGAAACAUAACUUCCUCAAAAUCAUUUCAAAACCACCAUCACCUGAAAAACUACAAACUAAGAUAAACUCUGUAAUA 40 19979 MI0006001 ppt-MIR1042 Physcomitrella patens miR1042 stem-loop GUGAGAUUCUUCAAUACUGUGCAGAAGGGGCUGUGCAGGAACUAGAUAGGUCCAUUGCUGGAUAUGCUUGUCGACGGCAUUGGUCGUGUCUAGUCUCUCCACGGCCCGCUCUGUGUUUGAUUGCCACGCACUA 40 19980 MI0006002 ppt-MIR1043 Physcomitrella patens miR1043 stem-loop UGAGAAGAGAUUUAACUAGGAAACGGUUGGAGGCCUUCAACUUCAUGCGUGCAAACCCUGAAUGAUUUGGAUGGAUUUUUGCGCGUGAAUUUGAAGGCUCCCAUUCGUUGCUAGCAUGAAGAAUAAGAG 40 19981 MI0006003 ppt-MIR1044 Physcomitrella patens miR1044 stem-loop UGCUCAAAUUUUUUACCUGCUGCAAGAGAGCACAAAUAUGCACUACAAACUCAAAUGCUGUCAUUCAAAUGUUGAGCAUUUGAGUUUGUAGUGCAUAUUUGUUUUCCUUCGGUUUAAGGUUUCGCGUGAAAU 40 19982 MI0006004 ppt-MIR1045 Physcomitrella patens miR1045 stem-loop GAAGCGAUAAUGGGUGCACCCUCAACACGAAGUGCUGGCUUUUUGACGUUUUGCUACUAAAUGAAUAACCGUGCAGGUUAAAUUCACUAGCAGCAAGACGUCAAACAACCAGCACUUCGCCUUCAGGGCAACUAGUGUGUAUCGG 40 19983 MI0006005 ppt-MIR1046 Physcomitrella patens miR1046 stem-loop UCUAUAUCUUGAUGCUCAAAAUUCAGACGUGGAUUUCAUAUUUUUCACGUCAAGAAUCUCACAGGUACAAUUAAGUCAUGAGAUUCUUGUGGUGAAAAAUAUGAAAAAUCCACGUCUGAAUUUUGAAAGCGCUUGCCCUC 40 19984 MI0006006 ppt-MIR1047 Physcomitrella patens miR1047 stem-loop UUGCGUUAUGUGUGACCUAUGACCUCUUGGAUCACUAGGUAGUCCUUGAUUACAAAGGCCUUAAUUCUUUACAGCAAACGAGUUAAGGCCCCUGUGAUCAGCGAUGACCUAGUUGCUCAAUUGGGCACAGUGUCUCUUCGCGAGG 40 19985 MI0006007 ppt-MIR1048 Physcomitrella patens miR1048 stem-loop UUCCAUUACUGAUGCCUCGUCUACAAGUCUAGAACAUGAGUGUAGACGACUUAUGUGCUGCAACUGGCAUGCUGGAAGUUAUUAUCCAACACAUAUGUUGUCUACACUCAUGUUCUAGACUUGUAGACAAAUAGCAGCUGUUACU 40 19986 MI0006008 ppt-MIR1049 Physcomitrella patens miR1049 stem-loop AGCUGGGUGACAGAAUGGUGACUUCGCGAUCAGACCUGUUGGCGAAAGAGAGUCGCCUCUAUUUGGACAGAUCGCCCCUGUAUCGACGUCUCUCUUAGCCAAACAGUCUCGUCGCUUAGGGCCAGAAUAUCCAACGUCC 40 19987 MI0006009 ppt-MIR1050 Physcomitrella patens miR1050 stem-loop GUAGUUGGUCCUUCUCUUGUUGAUUUCUGUGACCACCUUGAUUCCGGCCUAAUUUGCGCUCAAUCAUCAGCAGCUGGAGGAUCAACUCGAUUAAUGCAAAACAGGCUGAUAUCAGGGUGGUCACAAAAUCAAUCCACGGUUACCCUUACAG 40 19988 MI0006010 ppt-MIR1051 Physcomitrella patens miR1051 stem-loop UUGGCGUCUCGUCUUGCGCCGAUACCUUAACGUGGUUCAAGUGAACAGGAAGAGGUUUGCGAGAAUGUUGUUCUGAAAGAAUUAACCUGGACAGAGUAGCGCAGAAUGCAACACUAGGGUUUCGGAGUAUCAUUCUAACAAAUCUCUUCCUGUCUACUUGAAGCCACAAUAAGGCUUGGUGCCUGCUAUGAGGUAAG 40 19989 MI0006011 ppt-MIR1052 Physcomitrella patens miR1052 stem-loop AUGGAGUGUGUUGAAUCCUUGGCCGUAUCCAUGCCGCAAUCAGUAAAAGGGAGUCACGCUGUGUUGUGAGCACUGCAGAGCCAGCAUUCGUGAGUCGAUAGUGAUACAUAUAGAUUGCUUGCUUCCUUUUAUUGAUUGUGGUAUAGAUGCGCUUGAGUGAUACCUUGUGUAAC 40 19990 MI0006012 ppt-MIR1053 Physcomitrella patens miR1053 stem-loop AACUUUUUAACUUCGAGCCAGCCUGUGAGAUGGGUUAUCUCAAAGUGGACUUUCUCUCUGUCUUGGCUUGAACUCUACUUUGACAUAGCCCACUUCAAAGGUAACUUGAAUACACUCAAAA 40 19991 MI0006013 ppt-MIR1054 Physcomitrella patens miR1054 stem-loop GCGACAUGGAUUCCAAUUUUGGAGGCAAAGGGAGGAGUAGAAGGGAGGGCUUAACUCGACAUCUGAAAGCAUUGGUUGCAUGCUGUGUUCUUCAACCUGACGGUGUUCUGCAGCAAUGCACACCUUCUGAUGACGUUGCUGCGGACACUCGGUUCAAGUAGGAUCACUGUUACCAACGCCGGUCUGUGUCACAGUAAACCCUCUCUCUAUUCCUGUCUUUGCCUUACAAACAUGUACCUGGGACG 40 19992 MI0006014 ppt-MIR1055 Physcomitrella patens miR1055 stem-loop UCCUCUCGGUUGCCUUAGAGCAUCCGCAGCCAGCCACUGGAAACACCCCUGAAUCACUAUACCAUACUAUUAUUGAUAUCAAGGUGUAACAAAUAUUGUGAUUUAGGGGUGUUUUCCAGUGACUUGCUGUAGAUGCUCUUACAUCUGUUGUCUA 40 19993 MI0006015 ppt-MIR1056 Physcomitrella patens miR1056 stem-loop GUCCAUGGUAGGAAACCUAAAACAAAGCCCAGGGUUAUGUUGCAAAAAUCCAGGUGAUGUAAGUAAAAGUCCAAGUGAAGAAACUUACCUCACCUGGAUCUUUGCAUCAUAACCCUGGGCUUUAUUUUGGUAAUCUUAUUACGGA 40 19994 MI0006016 ppt-MIR1057 Physcomitrella patens miR1057 stem-loop CGUUGAGUCUCACGUUAUGUGGAGAUUAUCAACCCCCAGCUAGAACAGAAGAAUAUGUAUACUAUUCUUGUGUUCUAGCUGGGGGUUGAUAAUGCAAACUAGACAAGAUUUCAGUA 40 19995 MI0006017 ppt-MIR1058 Physcomitrella patens miR1058 stem-loop UGUGAGCAGUGUCUUAUCAUGACAGUUUGCAGUGCUCUGUGAUGGAAUCUCUAGCGGUCUUGUAUACAGCUCGGCCACAUACAAGACCGCUAGAGAUUCCAUCACGAAGCACUGCAAACUGCCGCGAAGUACGCUUCAUGUA 40 19996 MI0006018 ppt-MIR1059 Physcomitrella patens miR1059 stem-loop UGCGAGGCAACCUUGAUCCCAUUACGACGUGAAAGUCCUUCACAAACAACAGUGUUUAAAGGAAUCACCUAGAAGUCAUUGUGUAGGAGCUUGGUGGGCGAUCUAAUUGCAAUCAAGGACCGCCCAGUCGCUACCAUUUAACGCCAUCCUCCGACCUGGGACUCGCGUUGUUUGUGGAGGACUUUCACGCCGUAAUGAGAUCACUAGUUCUGUUU 40 19997 MI0006019 ppt-MIR1060 Physcomitrella patens miR1060 stem-loop AGGAAGAUAUUCUGUACCAUUUUCGAACCUUUGUCAUAGGAUUACACACGCAGAAUUUUUUCUUGAUAAGACCAAUCACCUAACGUGAAAUCGCUGCGUGUGUAUUCCUAGACAAAAGGUUUGAAUGGAAGAUGCUCACACUAUC 40 19998 MI0006020 ppt-MIR1061 Physcomitrella patens miR1061 stem-loop GUGCUGGGCACGCAAUAAGCAUGUGAGCAUUAUUUCAUAGACUACUCAAACCUCUCAAAGGUAGGGAUAGACCUCUGAGAUGCUUUGAGUAGUCAAUGGAAUAAUGAUGCUGUCCAUAAACUUGAUGUGUGG 40 19999 MI0006021 ppt-MIR1062 Physcomitrella patens miR1062 stem-loop CGAGUUCGCUUUGCACGGGGUUGUUGUCGUCCCUCACGUGGUGUUUGCAGCUAGGAUGUCGGGAGGGGUCGAUGUGUUGUGGAAUGUUCCGCUCCUUGAAAUUUGAGUGACCCUUACCGUCUGCCAGUGAGGCCGCUUGCAAACACCCGUAUGGGACGACGAAGCUCUGGUGUUGCUCAACAUC 40 20000 MI0006022 ppt-MIR1063a Physcomitrella patens miR1063a stem-loop GAACGACGACAGGGUCCGUCGCUCACUUACAUCUUGGAGUACUGCAUCUUCGGAUCUGUUGCGCCUUCCGUGCCUGCUCUGGCAAUCGUCAUGAGCCGUUGGAAUGUGGAAAAUUCCUAUCGUGAAUCAUGGUGGUUUGAGAACCGCGCGGAAAGCAACAUUCAAAUUUGUGGAUGCAUUACUCCAAGAAGUGCGUGGGCAACGGGCUACUUGCAGCUG 40 20001 MI0006023 ppt-MIR1063b Physcomitrella patens miR1063b stem-loop AGAGUUACUUGUGCUUCGUAGUUCACUUACAUCUUGGAGUACUGCAUCUUCAGAUCUGUGAGUCUUCGCCGCCUAUUGCCUUCGCCACCAUGCUUGACGAAUGGUUUGAAACUGAUCACAUCCAACUUGAACGGAUAUCCUGCCCCUUCAUAGUGCUGUGAUUCCGUUCAAGCAGUUCAGUUGUCCGACAACCAUGGUGUGGUAGGACAGUAGUACUGCUAAGGCUUUGACAUUUUGAAGAUGCAGCACUACAAGAAGUGUGUGAGCAACGGGCUGGAUUCAAGAU 40 20002 MI0006024 ppt-MIR1063c Physcomitrella patens miR1063c stem-loop ACCAAGAAUUUUGCCGUGUUGCCCACUUUCAUCUUGGAGUACUGCAUCUUCACAACCGUCGCUUUUUCAAAUCUGAAUUCCAGUCACUGAAGCUCGGGCUAGAUUUAAGGGCUCUGGGGACGCAGGAAGGUGAGUUCAGUGGUACAAAUAAAAGAAUUAGUGAUAAUUUUCUGGAGCUUAGUAGUCGGAUGGCAGAGGGAAAACAAAAUUAGUAUACUUGACUUGCGUUUUAAGUGUAGAUCCAAAUAGAUUUUCAAAAGAAUAGGUCCUGUUGUCCCUCGAAUUGAAGCUCGUUUUGGAAUCUUACGGAGACGAAGAUGCAUUCCUCCAAGAAGUGAGUGGGUAACAGGCUACAUCAAACGG 40 20003 MI0006025 ppt-MIR1063d Physcomitrella patens miR1063d stem-loop ACUACACUUAUUGCCUUUUUGCCCACCCUCAUCUUGGAGUACUGCAUCUUCAUGUCGGCUGCUUUUCAUGUCUGGCUACGAGGUUGCUCAUGUGAUUAGGUUUGAUCCAUGUUAGGCUUUAGGUUGUAUCAGUGAAUUAGUGUCGACAGUUAGGAGUGAAACUUUUUUUAGCUGUUGAUACGCGGGAGUUAUGGGAUUCUCAUUUCAACACAAUGUAAUCUUGUGUCAAUCCAGCCUAUGCUUGUAGAGUUACUGAGUCACAUGAGCACAUCGAAUGCCUUUGAGGCUUUGAAAUUCUACCGACGAGUAGAUGCAGAACUACAAGAAGCGAGUGGGUAACAGGCUAUUUUUCAAGA 40 20004 MI0006026 ppt-MIR1063e Physcomitrella patens miR1063e stem-loop CACCGCAUGCUCGCCUUGCUGGUCACCCUCAUCUUGGAGUACUGCAUCUUCACAUCUGUAGCCCUUCAUCUAAGUCUCAGGCAGCACUAGUGCUGUAGUUUCAGCCGAAUUCUUGGUAUUCGAGAAUUUAUGAAUGAGGCACUGAGCACACCAAAAGAGGUCAGAGAUUGGGGAUUCUACUGAUGGGCAGAUGCAGAACUGCAAGAAGCGAGUGGGCAGCAGGCUAUGUUCAUUCG 40 20005 MI0006027 ppt-MIR1063f Physcomitrella patens miR1063f stem-loop GGAGGUUUUAAAGCUCUGUCGCUCACUUACAUCUUGGAGUACUGCAUCUUCACAUUCGUCAGAUUUUUCUAUCUGUUGUCAUAUCCCCGGAAUUUUGAAUCAGGUACAUACCUAGCAUCUUCAGAUAAGCACGUGAUCACGUUCAUACGGAUCAGUCGCUAACUCUCUUACGGAGAGCAUAGUGUGGUUUGAUAACAGUGGUGCAGAAGCUCUGCGAAGUUGAAGAUGCAGCACUACAAGAAGUGCGUGAGCGACGGGCUAUAUGAAAGAC 40 20006 MI0006028 ppt-MIR1063g Physcomitrella patens miR1063g stem-loop GACUGCGAGUUCGCUUUGUUGCUCACCCUCAUCUUGGAGUACUGCAUCUUCACAUCUCUGGGUUUCACAAUCUGCCUCAGGUUGUUAAAGUGCCGGAGUAAAAUUGUGUUAUUGGAUAUUCAGUAAAGAUGGGUGCGAAAAUGGAGUCAAUCCAUCAUUUGCAUAGUACUAGAGAUAAAGUGUUUACACACUUAUCAUAGUACAAAACUCGGGGCACUUGAGCACACCAUAUGGAAAGAAGGUUUGAAAUUCUUGUGAUGGGCAGAUGCAGAACUGCAAGAAGUGAGUGGGCAACAGGCUAUUUUCGAAGA 40 20007 MI0006029 ppt-MIR1063h Physcomitrella patens miR1063h stem-loop AAGAACGGCAAAGGUCCGUCGUCCACUUACAUCUUGGAGUACUGCAUCUUCAGAUCUGUUGCACGUUCACUGCCUGUUUUACCAGCCUCCAUGAACCAUUUGAAUUUGGGCUUCUCUAACGGAGGGAAUCAUGAAGAAUGCUGGUUUGAUAACAGCGCUAAACCUGCGUACAAAGAUGAAGAUGCUUUUCUCCGAGAAGUGCAUGGGCGACGGUCCACAUCUAGCGC 40 20008 MI0006030 ppt-MIR1064 Physcomitrella patens miR1064 stem-loop ACGUACAGGGCAAUCAACGAUUUCGAGGGCAUUCUGAGAAUAAUCAUCCGAAUGCAGCAGCCCGGGCGGGUGAUUAUUCUCAGAGUUCCCAAGGGAGCGUGGAUCGACCGGCGUA 40 20009 MI0006031 ppt-MIR1065 Physcomitrella patens miR1065 stem-loop GAUCCAUUGUACUGAUUCCGAAGGAGAAGACAGUCUCUGACUUCUCGCAGAGUGAGCCUGUUUCUGCAGUACUGGAACGAUUGGUUGAGACCACUGGCACUAGGCAAAAACCUUGUUUCUGGUGACUUGGUCUGGGAUCGUACAGAGCUGCAGAACGCUUGACAUGCGGGAAAUCAGAGACAGUCGCUUCCUUUGGUUUCUAAUUGUCACCA 40 20010 MI0006032 ppt-MIR1066 Physcomitrella patens miR1066 stem-loop GUUGAAGCGUCCGAGCAUGCGGUUACCACUCGUACCCCGCUCAGUAACAUGUGCGAACUUAUUAUCGCACAUGUUGCAGAGCGGGGUACAAGUGGUGGCCGCGUACUCUGCUACGAUUG 40 20011 MI0006033 ppt-MIR1067 Physcomitrella patens miR1067 stem-loop AGACUUGUUGUUUGCGGUUAAUUAAUUGCACAUACUGAAGUUUGAUGCCAUGUUCUGAUGAAUCCGGUCUUGAUUCCUGAAGGAAAGAAACAUGAAAUUGCCGCUGUGGCAUCUCUACAUGGCAUCAAACGUCAGCAUGUGUAAAUAGUUAAUUGCACGACACCAGAA 40 20012 MI0006034 ppt-MIR1068 Physcomitrella patens miR1068 stem-loop CUUUUCAACACCUUGGCGCUGGCCUUCGUAGCCAUUUGCUUGAAGGUCAACUCAGACGGGUGGAAGAGGCAAUGUAUUGACGUCUUCCUCCAUUUUCCGACCAUUCUCUAGGCACCACAGAGGCAUCAAUGCUCUGCCUGUUUCUGCCGUGUGGGUUGGUCCUCAAGCAACGGGCUACGAGGACCAAUGUCAAUAAGCAUCAAC 40 20013 MI0006035 ppt-MIR1069 Physcomitrella patens miR1069 stem-loop UGUUCUUCAAGCACAUGUCCACUUCAUGUUCUCAAGUCUUAUCAUUGGAUUGAGCACCUUGGUCUUUCAAAUAUUCUAUUAUGAUAUGUUGAUAUAUAAUUGGUCUUUCAAGUAUUUUCUCAUUAAUAUGAAAACAUAUUAUUACAAAAUAUUUUUGCAUAUUAUUGUAGUAUACUUGAUAAAUCAAAGUGCUCACUGUAAUGAUAAAGCUUGAGAACAUGAAGUCUACUUGACUUCUACUUUG 40 20014 MI0006036 ppt-MIR1070 Physcomitrella patens miR1070 stem-loop UUGGACCAUUUUCUCUGUGCUUCGUUGUAUCGGUUUCUAGUAAAACUUGCUGAAAAAUUCUCAACAAGUUUUACGAGCAACCGAUACAACGAAGCAACCGACUGUAUUGUAG 40 20015 MI0006037 ppt-MIR1071 Physcomitrella patens miR1071 stem-loop GUGAACUAUGUCGCGACGAGAUAGGACCCGCGCAAUUCCCGAACGGGUAGAAGAACCGGAUCUAAAAAUGCGCGGGUCGGGUUCUUCCACCCGUUCUGGAAUUGCGCGGGUUCCUGUCCCCACAAGCAACGAAAA 40 20016 MI0006038 ppt-MIR1072 Physcomitrella patens miR1072 stem-loop AAUUUGUUCUAAUCUUAUGAGAUGGAUAUGUUCAAGCUUCUAGUUUCACAAUGUGAUAAUUUUAAAUAAUUGUUUUUGUAAUCAAAGUAUGAAUUUUAUGAUUUUAUAUUUCAUUCUAAUUUCUUAAAAAUAAUGUUGGUUGUUUUUGUAGAAUUAUUUUAUAAAUACAUAUUGUAAAAUCUCUAUGUUAUAUGAAAAAAUAUCUUUUAAAAUUUAAAUCCCAAUAAAAAUAUGACAAUACAAUUAUUUUGAUAUUGCAUUGUGUUAUUUGAAGCUUGAAAAUAGGCCAUCUUUAAAAUUAGAACUAAU 40 20017 MI0006039 ppt-MIR1073 Physcomitrella patens miR1073 stem-loop GCAGACUGAUUUUAACGUGGAAGAAUGAACACAUGAAUGAUAUUAACGUCCACGAUGUAAAUCUAAUGCAGAAUUGUUGCUGGGAUUAACUUCAGUUUCAGACACAAAGUUAAUGACUGUGGAAACCCAGUUCACUACUGUGCUACUUCGUGGGCGUUAAUACAUUUCAUAUGUUCACUCUACCAUUCAAUCGUCUGGACU 40 20018 MI0006040 ppt-MIR1074 Physcomitrella patens miR1074 stem-loop GAGUUGCAGGUUUUGCUGGAUUUGUGGUCAGGGUUGUUAGUUGUGUUGAUGGGUUAAUUUCAUAACUAACAACAUCAACCCAUCAACACAACGAACAACCCUGACCACAAAUCCAACAAUUUUUUUCAGA 40 20019 MI0006041 ppt-MIR1075 Physcomitrella patens miR1075 stem-loop GGUUGGUUGAGUGAACUUGACAUCUAUAUUGGUAGGAACCAUGCCUGGAACAAGGCAAAACAACUACCCAAAGUGGGUAUUCUCUUUGCCUUGUUUCAGUCAUGGUUUCUACUGGUGCUUGUCGUUGAUCACUGUCUUUAUC 40 20020 MI0006042 ppt-MIR1076 Physcomitrella patens miR1076 stem-loop GCGAAAGCUAUUCAAACGUGGUGUUGUAUCACAAGGUGCGAUAAUUGCUCGAAGACAUUGGCAGUUAAGAUAUUUUAGCCCCAUGAAAAUGUGGGUUAGAUGUAAGAGUAGAAGUGUAGGGAUUUGUACGUAGUGUUAAUGUAGCUGUGCAUUGUCAAUUCUGAGUUCCAAAAUCUCCAAGCACUUAUCGCACCCUGCGAUACAACAUACACAGUUGCAAGAUGGAA 40 20021 MI0006043 ppt-MIR1077 Physcomitrella patens miR1077 stem-loop AAAAUUACCGAGAAACUUGACUCCUUUCAAAUGUUCGGAUGCGUGCGGCCCCGCGUUGGACUUGAGCGCGAAGCUAUAUGUUAGUUUCCACUCAAUACUCGAGGGAUGGACGUAUACGAGCCUGUGAAAGGAGACAAAAAUUUUGUACAAUU 40 20022 MI0006044 ppt-MIR1078 Physcomitrella patens miR1078 stem-loop CAACAACAAAACAAAAUACCUUGAUGCUUUUUGGAUGAUUCAAUUGUGAUAAAAACUAGUUUAUCACAAUUGAAUUAUCUAAAUAUCUUCAAUGUGUUUUUAUUACAACUA 40 20023 MI0006045 ppt-MIR1079 Physcomitrella patens miR1079 stem-loop GGCUUGUUAAAGUUUAGACUGAUGUUAGUGACUCACCGAGCUCUUCUUUUUGGAGGUGGGCACUGUGAUGUACGAGAAGUGUGACCUGCAAUAUCGACCACCAAAAGAAUAGCUAUGUGGUUCAUUCUUAUCAUUCUAAUUUUAAGCAAGC 40 20024 MI0006046 smo-MIR156a Selaginella moellendorffii miR156a stem-loop UUGUCACUGGCGACAGAAGAGAGUGAGCACACGGGGCCCCGUCCAUGGAUCGCAUGGAUUGAGCUUCGCGUGCUCACUCUCUGUCUGUCAGCUGUGCCUGUU 59 20025 MI0006047 smo-MIR156b Selaginella moellendorffii miR156b stem-loop UGGACUGCUGCUGACAGAAGAUAGAGAGCACAGACGUUUGGCUGCAAGAGCGGAAUCCAUAUCCAGCAGCUCUGCGUUCGUGCUCUCUAUUCUUCUGUCAUCAAUCUUUCGA 59 20026 MI0006048 smo-MIR156c Selaginella moellendorffii miR156c stem-loop GGAGACUGAUUUGACAGAAGAAAGAGAGCACAUUUGGCUGCACGCUCUUGGUUCUAGUGUGUCACUCAUGCGUGCUCUUCUUCUUCUGUCAUAUCGCAAC 59 20027 MI0006049 smo-MIR156d Selaginella moellendorffii miR156d stem-loop GGAUCUAUUGUUGACAGAAGACAGGGAGCACCAGCAGCCACCAGCUCUAGAGAGGCUUUUGGGUGCUUGUGCUCUCUAUUCUUCUGCCAUCAAUCCGACUCGG 59 20028 MI0006050 smo-MIR159 Selaginella moellendorffii miR159 stem-loop UUGCAGGGGGAGCUCCCUUCAAUUCAACUGAGGUCGGUGCGUCGCUGUUACUCGCUGCUGACUCAUGCAUUCGCCUGACAUGCCCGCAACCAUCAUCAGAUCGUGAUCAGGACACGCCGAAAACAUGCCCGUGAUCACCUCCGCAACUCUCUGAUCUCGGCGAGGUUGAUCACAGAAUCCCCCGAGUUUGAGGCAUGGCAGCCGUGUGCAUGAUGCAGGAGCAGGUGCGGCUUCGGCUCUGAACUUCCCUUGGAUUGAAGGGAGCUCCCUUCCAGAUUC 59 20029 MI0006051 smo-MIR160a Selaginella moellendorffii miR160a stem-loop AAAAUCACUCUGCCUGGCUCCCUGUAUGCCAUCUGGGGGGGAUUUAUCAGCUGACGAUGAUAAGCUCCAUAGCUGGCUUACGGGGAGCCACGCAGAGUUUCUCGCU 59 20030 MI0006052 smo-MIR160b Selaginella moellendorffii miR160b stem-loop ACAAACAAUCCCUGCCUGGCUCCCUGUAUGCCACCUGAGAAGCCCACCGAAGUGUUUCGGCAGGAUUCCUAGCUGGCGUGCGGGGAGCCAUGCAGAGCUUCUCUCUUU 59 20031 MI0006053 smo-MIR166a Selaginella moellendorffii miR166a stem-loop AGCAAGUCCUGGAUGUGGGGAUUGUUGCCUGGCUCGAGGGAGGCAUUCCUUUGAUCUUUUCUCUCCUGGGAAGUACUCCAGAAGAACUGUGCCAGAAAUGUGCGCUCUCGGACCAGGCUUCAUUCCCCUCAUCUGAGAUUGCACC 59 20032 MI0006054 smo-MIR166b Selaginella moellendorffii miR166b stem-loop UUCCUCAGUGAGAACCAGGAUGUGGGGAGUGUAGCCUAGCUCGAGAGAUUGAUUUGAUACUAAGGCUACGCACACAAGGUUGUGAUCACAGCUUUGUCUCGGACCAGGCUUCAUUCCCCUCAGUGUGGUGCUCACU 59 20033 MI0006055 smo-MIR166c Selaginella moellendorffii miR166c stem-loop UAUGUUGCGGGGAGUGCUGCCUGGCUCGAGACAGCAUCGCCGAGAUCUGAUCAAAUCGCAAAGUUGAGAAACAAGCAUCACAGUUUGAUCUGGAGAUCGUGUUGUGUCGGACCAGGCUUCAUUCCCCUCAGCUACAAA 59 20034 MI0006056 smo-MIR171a Selaginella moellendorffii miR171a stem-loop CGAGCGAGAGCGAUAUUGGCUCUGCUCAAUCGCAUGACGCUGCUGCAUCGCACGAAAAAUUUGCGAUGGGAAUGGAUCGAUGGAGUCGCAGCAGAGGCAUGAGAUUGAGCCGUGCCAAUAUCACUGGUGUUUUUC 59 20035 MI0006057 smo-MIR171b Selaginella moellendorffii miR171b stem-loop UGUGUCUGUGAUAUUGACAAGGCUCAAUCAGGCUGCAAUGCUACUCGAGCUAAUUAGUGAUGCUGCCAGCUUGAGCCGUGCCAAUAUCACAUAGAUAGCUAGC 59 20036 MI0006058 smo-MIR171c Selaginella moellendorffii miR171c stem-loop ACGGAUCAUCGAAAUCGAUGUGUGCUUUGAUAUUGGCAUGAUUCAAUCCCAUGACACCAUCUACAAACACCGAAAAGAGAAGCUUUACGAUGGUCUAGCAAAGUUCUUCUCGCGAAAGAGAAGCCUUACGAAGAUCUAGCCAAAAUUUCGUGGCAUGGACGAGCAAAGGGUGCUGGCAUUGGAUUGAGUCGCGCCAAUAUCAUGUGAUUGCGUUG 59 20037 MI0006059 smo-MIR171d Selaginella moellendorffii miR171d stem-loop UGCGAGGUAUGUGAUAUUGGGAUGGCUCAAUCAGAUGGCGUUCGCUGCAAUGCUCAGCCAGCGCUCUCAAAUUGAGCCGCGCCAAUAUCACAUCCUUGGAAAA 59 20038 MI0006060 smo-MIR396 Selaginella moellendorffii miR396 stem-loop UCUCAUGCUUUUCCACGGCUUUCUUGAACCUGGUGCUCUUCCAAGGCAGGAGGAUCAGAAAACGUUGUGGUAUUUCUCAUCUCCUCGUCUCGUCCUUGGUCUCCCCUUGAAAGAAACUCACCAGUAAGAGUACGAAGUUCAAGAAAGCUGUGGGAAACAAUGGCCGGA 59 20039 MI0006061 smo-MIR408 Selaginella moellendorffii miR408 stem-loop AUUUAGUAGUAGCUAGGGAGAGACAUUGCAUGAUAGCUACACCAAAGAGCAACCUCGGCUCCUUGUGUGGCUUUGAUGCACUGCCUCUUCCCUGGCUGCGGCCAAGUUA 59 20040 MI0006062 smo-MIR536 Selaginella moellendorffii miR536 stem-loop GUGUUUUUGAUGCACUCAGCUUGACACGGCCGUGCUUGGAAGUCUGGAAAGUUUUCUUUCACGCUCCACUGAUGCUGCUGCUGCAAUGCGUGCUGACUCUCUCUCUCUCUCUUGGUCGUGUCAAGCUGUGUGCAUCACAACGCAUUGCUCGUUUUCA 59 20041 MI0006063 smo-MIR1080 Selaginella moellendorffii miR1080 stem-loop UUUCAUCCAGAGGGUUUGCAGAUAGUGUGUGCCUGAUUCUAUGAUGUCUAGAUUUCGUUGGAUUGGACAUUCACUAUCUGCAAACACCUCUGAUGGAAUUC 59 20042 MI0006064 smo-MIR1081 Selaginella moellendorffii miR1081 stem-loop UCUUUUGUGAGGCUUGCCUUUGAUUCUCUGAGCUCUGGGAGGUGUGAUUCCCUCACCUCCUAGCUCUGAGAAUCAACAGCAAGCCUCACACACAUCGGCUGUUCUUUGAUCUCGUCUUGCAGGCGCGGGAUCCAGGACUUGUGAGGGUUGCCUUUGAUUUUCUGAGCUCUCGGAAGUGUGAUUCCCUCACCACCGAGCUCUGCACACAUCGAGAUCUUUGGCUGUUCUUUGAUCUCGUCUUGCAGGCGCGCGGGAUCCAGGAGCAGCGAUCUUUGUGAGGCUUGCCUUUGAUUCUCUGAGCUCUGGGAGGUGUGAUUCCCUCAGCUCCUAGCUUUGAGAGUCAAUUGCAAGCCUCGCACGCAUCGAGA 59 20043 MI0006065 smo-MIR1082a Selaginella moellendorffii miR1082a stem-loop CACACAUAAGAUUUUGAGGCAGGCGUUGGCCUGCUGGCCGGUGGCGAGCUCGCGAUCUUGAUUGAGAGCUCUCGCUCUCUCUCUCUCUCUCUCUCUCUCUCCUCGCAUCGCCUCGCCUCGCCGUCCAGCAGGCCAAUACCUCACUCGAGAUCUUGUUGGA 59 20044 MI0006066 smo-MIR1082b Selaginella moellendorffii miR1082b stem-loop UUUGAGGCAGGUGUUGGCCUGCUGGCCGGCGACGAGCUCUAGUGCCCGCGCAACGCUUCGCCGUCCAGCAGGCCAAUACCUCACUCGAGAUCUUGUUUCU 59 20045 MI0006067 smo-MIR1083 Selaginella moellendorffii miR1083 stem-loop UGGGAGCUCAUAGCCUGGAACGAAGCACGGUUGUGCUUGGUUUCUCGAGCCAUCCAUAAAAUCGCGCUUCGUUUCAUGCUAUGCGCGUCCAUGAU 59 20046 MI0006068 smo-MIR1084 Selaginella moellendorffii miR1084 stem-loop CAUGACAAUGCUAACUCAGGUGGUAUGUUCCCAUCCAACAAAACGUUUCAUGGAAUUCCACUCGCAGGUUUGAUUGAGUGGGAGCAUACCACUGUGUUAGGAUUGUCACAAAGAAGC 59 20047 MI0006069 smo-MIR1085 Selaginella moellendorffii miR1085 stem-loop AUCUCUCGAGCCCCUACAAGAGAUAUCAAUCACGCCACUGCUCCCUGUAAGUUACAGCGAGCAGUGCAUGAUUGAUAUGUCUUGUAGGGACUUAGAGAGAU 59 20048 MI0006070 smo-MIR1086 Selaginella moellendorffii miR1086 stem-loop GAGCACGAACUAGUGCCGUGGUCCUUUUGGCCCCGUGAGGAGUGAAGUGAGCUUCACUGCUAAGCGGAGCCAAAAGCUCUGCGGCACUAAGCUUGUCUGCAA 59 20049 MI0006071 smo-MIR1087 Selaginella moellendorffii miR1087 stem-loop CGUUAACAUCUUGGAUGAAGUGCUUGCGAAAGCGCUAGCACUAGUUUGCAAACUCUCCGUAGUAAAUUAAUUUCAGAAAUCAAAGGAAAAAAAACACUCACCAUGGUGGCUAAAGCGGCGGAAUGGCUAAAUGAGCUAGUAACUUUCACUAGCGAGUCAUUUGAGACCACUUUAACUGCCAUGGUGAGUGUUUAUUUUCCUUUGAUUUUUGUAAUUGGUUUGUUGCAGAGAGUUUACAGAUUGGUGUUAGUGCUUCCACAAGCGC 59 20050 MI0006072 smo-MIR1088 Selaginella moellendorffii miR1088 stem-loop CGAGCAGGCCUCUAGACAGAAGAAAGAGAGCACGCAUGAACACUGCCUCUGAUUGCAGCCUCGAUGCGUGCUCUUUUUCUUCUGUCGGGAGUCCCU 59 20051 MI0006073 smo-MIR1089 Selaginella moellendorffii miR1089 stem-loop GACGACCUCAAGGAUCAUCUUGCUGCUGUGCAAACAAUCCUAAAUGAUCUUAAGGAUGUGGGAGCAAGCAUAAAGGAUGGAGGAAGGGUGACGAGCACCAACUCUGCUUCUUCUUCAUCCUCUAUAUUUGCUUCCCCAUCCUUCAGAUCAUCUAGGAUUGUUUGCACAGUAGCAAGAUGAUCU 59 20052 MI0006074 smo-MIR1090 Selaginella moellendorffii miR1090 stem-loop GCGCCAGAGUUGAAAGCCAUUCUCAACAAAAUUGUAGUACUCUCGUGAUCAUACUGGACAGCUGCGCUCUUGUUAAGAAUGGCUUUCGAGCCUGCGCUCA 59 20053 MI0006075 smo-MIR1091 Selaginella moellendorffii miR1091 stem-loop GGCCUCUGGCAUUCGUGCGGCAGUGAGGGAGGAUUUGCCAAUAAUCCAUAGUGCCAUAAAGGAAGAUGUUGCUGUGGUUCCUUCACUGUGUCAUGAAGUGCCUGGAGGUCCUCCUUGAUUGCAGCACGCAUAACCGCAACAUUCACUGCUCUAGCCAUGGCAACCACAUCCUCCUUCAAUGCACCAUGGAUCGCUUGCAAAUCCUCCCUCACUGCUGCACGAAUGGAUCCCAUUC 59 20054 MI0006076 smo-MIR1092 Selaginella moellendorffii miR1092 stem-loop GUUAUGUGUUUGGCGACGAGGUUUGACAGGAAUGCAUUGGUGUUCUUUUCACCAAAAUGCGAACGCCAUGAAAAAAACGUUCAACAGUGGAAGUCAAUUGAUGUGGGGCGCUUUGGUGAAAAUAAUGCCAAAGCAUUCCUGUCAAGCUUCGUCACC 59 20055 MI0006077 smo-MIR1093 Selaginella moellendorffii miR1093 stem-loop UUUCACCACACCAUUGGUGAUGGAGGUGUCGUUGCCAAGGAAACUUUCCUUAGCUUUCCUUGGCGCCGACACCUCUGCCAUCACCAAUGG 59 20056 MI0006078 smo-MIR1094a Selaginella moellendorffii miR1094a stem-loop AUGUCACAGUACUGUGGUACAGAGAAGCACAUCGCACUGGAGGUGAUUUGUUUCAUUACCUGCGGCUCCAUGUACUUCUCCGUGCCACAGUACUGGAAACGAAA 59 20057 MI0006079 smo-MIR1094b Selaginella moellendorffii miR1094b stem-loop UACGUCACAGUACUGUGGUCCAGAGAAGCACAUCGCACUGGAGGUGAUUUCCAUCACCUGUGGCUCCAUGUACUUCUCUGUUCCACAGUACUGGAAACGAAAAGG 59 20058 MI0006080 smo-MIR1094c Selaginella moellendorffii miR1094c stem-loop GCAUCACAGUACUGUGGUACAGAGAAGCACAUCGCACUGGAGGUGAUUUCUUCCAUCACCUGCGGCUCCAUGUACUUCGCUGUUCCACAGUACUGGAAACGAA 59 20059 MI0006081 smo-MIR1095a Selaginella moellendorffii miR1095a stem-loop UGUCUUGUGUUUGGGAAUAAAGGAACCUAGGAGGGCCGGGUUUGCGAACUUCCUGGGUGGUGAUAUGCUCCGCUGAGCUCGAGCAGUGUAAUUAUCACUUGCUUGCACCGCCGGAAGAAAUGUGAUCCUAGGUUCCCUUGUUUCCAAAUUCAAGGCCGGUG 59 20060 MI0006082 smo-MIR1095b Selaginella moellendorffii miR1095b stem-loop AGGUUUGAGCUUGGUAACAGGGGAACCUAGACUGUAAUUUGCUGCUUGCUUUGAUUCCCUUCGUCCUUCCACCGCCAUUCCAGUCUUUGCAGUCACUGUUUCCGAAAAGUUUCGAGAAAAGGAAGAACACUGCUUGGACGCAAGCUCGUCUUGACUCGUUGUGGUGGUUUGGAUUUGUGCAUUUGCGCCAAGGAUUUCGAGUUUCUUGUCUGCUUUCGUCUGGAGGAGAUCGAUGUAUGCUUGUGCUCUAGGUUCCCUUGUUUCCAAAUUCAAGUCUGGUA 59 20061 MI0006083 smo-MIR1096 Selaginella moellendorffii miR1096 stem-loop UAUGGGGAAUUUCUGAAGCAAGGCGGCAGCAAGAAACCUCCAUGAGAGACUCUCAUGGAGGUAUUUUGCUGCCUCUUUGCUUCAGGAAUUCUCUCCAAA 59 20062 MI0006084 smo-MIR1097 Selaginella moellendorffii miR1097 stem-loop GCUCAAGUCAUAGCCAUUGUUGUUGUUGGAAUUCCUCUGAAAAGACUCCUAGCCUCCUUGGCAGCCAUAGCAAAAAUGCCAUUAAUUUUUUUGUCGACAUUCUUCUUCCAGCCAGAUUAUCCAUUAGUGGGAGUGGCGGGAUCACAAGAACCAAAGGCAGUCUUCUUCCAUAGAUCAUCCAUCAGUGGCAGUGUUGGGAAUAGGGAACGUGGCAAGCUUGGUAGCAGUGCCUCUUGGGCUCUUGUGAUCUUGCCACUCCCACUGAUGGAUGAUUUGGCUGGAAGAAGAAUGUCGACAAAGGAAUCAACGGCACUGUUGCUAUAUCUGCUAAGGAGGCUAGAAGUCCUUCAAAAGGAAUUCCAACAGCAACAAUGGCUAUGA 59 20063 MI0006085 smo-MIR1098 Selaginella moellendorffii miR1098 stem-loop GUGGCCAUCGCUGAUGACGUUUGUGCUGAAAUUUGGGAAUGGGUAAAGGGCCUUCACCCGUUCCCAUAUUUCAUCACAAACGCCAUCACGGAACGUCUGCA 59 20064 MI0006086 smo-MIR1099 Selaginella moellendorffii miR1099 stem-loop GAUGGUUCUUCUUUGUCCCAAGCAUAUAGCAAUGGUGUUUUUGUCUACAAAGUGGGUGUCUUGGGGCAGGAGAGGCUCGAGAAUUUUAGUACCUGAAGAAAAUCUAUGCUACCUAGAAGAGAGUGGACUAGCAGCUAGGGUGAAGGUGUAGAUUUUUUCUACGUACUGAAAUUCUUGAUACAACCUCUCCCACCCCAAAACGCCUAACUUGUAAGCAAAGGCACUAUCGCUGUAUGCUUGGGACAAAGAAAGACUAUUAUCAAGUUAA 59 20065 MI0006087 smo-MIR1100 Selaginella moellendorffii miR1100 stem-loop AUACCAAGUUUCUGUCACGGACAGAACCCCACUCUCUACUUCGAGCGAUUGAUCCACUCUUUCCAUUCUCGAUGAAGUAAGGAGUGGGGUUCCUCCGCGACAGGCACUUGGUGU 59 20066 MI0006088 smo-MIR1101 Selaginella moellendorffii miR1101 stem-loop UGUGUGCUUGGGCAUUCUCUCGAAACAAGUGCAGCGAAAAACGCAGAGCUGCGUCUCCGCUACACUUGUUUGCAGAGAAUGCCCAACUGGAAAAAU 59 20067 MI0006089 smo-MIR1102 Selaginella moellendorffii miR1102 stem-loop AAGCAUGAUUUGGGAGUAGCUAUUGCCAGCGUCAAGCAUGAUGUGCGAGUAGUGUGCAUGAUGUGCAAUCCUGCUUGAUGCUAGUAAUAGCUACUGCACAGUCU 59 20068 MI0006090 smo-MIR319 Selaginella moellendorffii miR319 stem-loop UUGUUCGCGGGAGCUUCCUUUAGUUCAACUCAGGUGGAGCUGGAGAUGGUCCUGCUGCCGACUCAUGCAUCCGCGUACCUUGGAAAGUUACAAUGCCAGUUUCAGAAAGAGAGCUUCUUUUGUCCAGUGGUAGACGCUUGCAUGAUGCGGGAGCUGGUUCUCUCUCGAGCUUUGAUCGACCUGCCUUGGACUGAAGGGAGCUCCCUUGUUCCCAC 59 20069 MI0006091 smo-MIR1104 Selaginella moellendorffii miR1104 stem-loop GGAAUAUUGGCUGAAGGAGAAAGAGCGGCUGCAAAAGAAGGAAGAGCACCAUUACAUUGGAGGAGGAGGAGUUCCUUCUUCCGCAGCUGUUCUUUUUCCUUCCGCAGCUGUUC 59 20070 MI0006092 smo-MIR1105 Selaginella moellendorffii miR1105 stem-loop ACUCGUAUUCCAAAGCAGCAAUCUUCACGUCCAAAGCAGCAAUCUUCACAUUCAAAGCAGUGAUCUAACUUGGUGCAGCGGGAGCAGAUUGCUGCUUCGGAUGUGAAGAUCGCUGCUUGGGAAGACGAGAAGUC 59 20071 MI0006093 smo-MIR1106 Selaginella moellendorffii miR1106 stem-loop UUGAUCGAUCCCACAUUAAAACCUUUAAAGGUGAGUAUUUUGCGUGAAAGCUUGGAAAAGAUUGAGGGUCACGAAAUAGUAACCUUUAAAGGUGUUAAUGUGUGACAUAACGAAA 59 20072 MI0006094 smo-MIR1107 Selaginella moellendorffii miR1107 stem-loop AGGUUUCGGUGGUGCUGGUUCCAAUUCAGGUCGCGGCUGCGUUCCCUGUUGCUGGGCUCUGAAUUGAAAUCAGCGCCCUUGAAACUUUGC 59 20073 MI0006095 smo-MIR1108 Selaginella moellendorffii miR1108 stem-loop GUGAGUCUGUUUAGGCAAGUGAAUAUGUUGCUCUUGUAUUUGUUGCUCUGGACUAAGGUUGCCGCAAAUAGCCUUUGUAAAUGCCACAGUGGUCCUGAUGAGGGGUUAUGUUUCUCAGCUCAAGCCCAGCAUGACCUCUAGCUCCAGACCUUCUGGAAGCAAUGACCUUGAGCUGAGAGACAUAACCCCCCAGCAGGAUCAUUAUGCUGCCCCCAAACGCUAUUUGCGCUAAGUAUGUUGCACCCUACUCCAGGGCAGCCAAUACAAGAGCAACAUAUUUCACUUGCCUAAACAUGUU Axtell et al. report the alternative production of at least 2 miR/miR* duplexes from the MIR1108 hairpin [1]. The sequence of the most abundant clone is shown here. 59 20074 MI0006096 smo-MIR1109 Selaginella moellendorffii miR1109 stem-loop CAUUACUAACGUUGUGCAAGAUAGUGGGAGAUUUUGUGUAACUAAGACUUUUAGUUUUUGAUUAAGACUAAUAGUAUUAGCUACACAAAGUCUCUCACUAUCCUGCAUGGCAUUAGC 59 20075 MI0006097 smo-MIR1110 Selaginella moellendorffii miR1110 stem-loop CAACACAGGGUUGCUAGGGGCAGUGGUCAAGGAUCUGGGGGCCCAUGUACUGCCUUCCAUGGGCUCCUAGGUCCUUGAGCGCUGCCCCCAGCAACCCU 59 20076 MI0006098 smo-MIR1111 Selaginella moellendorffii miR1111 stem-loop UGCAACUGGCUUCCAUUGCUUAAUGUCUAUGUGACUUUAGAACCACUGCCGGAAAAGGUUGUCGAAGGUGUACAUAAUCACCACAACAGCCCGGUUUUGUUUGGUCAUGGCUAUGAAACAUCCCAGGAGGGCUAUGAAACAUCUUAGGAAGGUGCCUAUAUCCUGGUCCGACCAGGUCCUGGGAUGUUUCAUAGCCAUGACUAAGCAGGACCAGACUGUUGUGGUUAUGUCCACUUCUGAUGACAUUUUUUUGGCAGUGGUUUCAAAGUUACAUAGACGUUGAGCAGUGAAAGCCAGUUGUUGU Axtell et al. report the alternative production of at least 2 miR/miR* duplexes from the MIR1111 hairpin [1]. The sequence of the most abundant clone is shown here. 59 20077 MI0006099 smo-MIR1112 Selaginella moellendorffii miR1112 stem-loop AUCUACAGGGACUUUGUUAUGGCAUUCCUCGCUCAACUGCUACAGGGACUGCAGCAGUGGAGCGAGGAAUGCUAUAACAAAGUCAUGAUUACUUU 59 20078 MI0006100 smo-MIR1113 Selaginella moellendorffii miR1113 stem-loop CUUGUCUUUCUUGAGCAGUCAUAAGGUAGCCUUUGUGGAAAGCCCCAUUCGAUUCGUUCGUCUCAAUCAGCAUCAGCAGUAUGACGAUCUCUCGAUUCAGAGCAACAAAGUUCCUUGCAGGAAAACGAGAGAAAAAGAAGAAGUUGAAGUUGAAGAAGAAGCUUCAAAGUUCUUGUGGCAUUCUACAUGGACUGCCUUAUGACUGCUCAGCAGCAAGAUUC 59 20079 MI0006101 smo-MIR1114 Selaginella moellendorffii miR1114 stem-loop AUUCCAUUCCUGCUCAAUGUUUUGUCACUUGGCUCGAUGUUUCAAAGUNUCAUCCUCGAGCCAAGGGACAAAACAUUGAGCAGGAAUGGAAUCGAUCCAGAUC 59 20080 MI0006102 smo-MIR1115 Selaginella moellendorffii miR1115 stem-loop CCAGCAAGGUUGAGCUCAGGCACUUUGGUGGCCUGGGGGGCUAAGGUUAUUCAAAUAAUCUUAGCCCCUCAGGUCACCAAAGUGCCUGAGCUCAAGCUUGGGCU 59 20081 MI0006103 smo-MIR1103 Selaginella moellendorffii miR1103 stem-loop GCCCAUGAACAAGAGUGCACCCCCUUUCCAAUCGGUUAAAGGUCUUAGGAUAGUUGGAGUUUAAGCGUCCUUGGGUUUGAAUAGUACUGGGCUGGGUGACCUCCCGGGAAGUCCAAAUUCAGGAGCUUACAUUAACCCCAAGUAUUCCAAAACGCUUAAUCGAUUGGAAAAAGGAGGUGCAUUCUUGUUCAUAGGCCC 59 20082 MI0006104 hiv1-mir-N367 Human immunodeficiency virus 1 miR-N367 stem-loop UUGGCAGAAUUACACACCAGGGCCAGGGAUCAGAUAUCCACUGACCUUUGGAUGGUGCUUCAAGCUAGUA Extensive studies in two labs have failed to confirm the existence of any viral miRNAs in HIV [3,4]. This sequence should be considered at risk of deletion from future releases of miRBase. 60 20083 MI0006106 hiv1-mir-H1 Human immunodeficiency virus 1 miR-H1 stem-loop UCCAGGGAGGCGUGCCUGGGCGGGACUGGGGAGUGGCGCCCUCAGAUCCUGCAUAUAAGCAGCGCUUUUUUCGGUGCGUUA Extensive studies in two labs have failed to confirm the existence of any viral miRNAs in HIV [2,3]. This sequence should be considered at risk of deletion from future releases of miRBase. 60 20084 MI0006112 rno-mir-466b-1 Rattus norvegicus miR-466b-1 stem-loop CAUGUGUAUAUAUGUGUGUGUGUAUGUCCAUGUGUGUAUAUGAAUAUACAUACACACACACAUACACACACGUGCAAGCACACACA 8 20085 MI0006113 rno-mir-466b-2 Rattus norvegicus miR-466b-2 stem-loop CAUGUGUGUAUAUGUGUGUGUGUAUGUCCAUGUGUGUAUAUGAUUAUACAUAUACAUACACACAUACACAUAUACGCAAGCA 8 20086 MI0006114 rno-mir-466c Rattus norvegicus miR-466c stem-loop CCUGUGUGUAUGUGAUGUGUGCAUGUACAUGUGUGUAUAUGGAGAAACAUAUACAUGCACACAUACACACACACAGGCA 8 20087 MI0006115 rno-mir-743b Rattus norvegicus miR-743b stem-loop UGCAGUGCUGUGUUCAGACUGGUGUCCAUCAUGUGAAAUAUUUGUGAAAGACACCAUACUGAAUAGAGUAAGGCUCA 8 20088 MI0006116 rno-mir-871 Rattus norvegicus miR-871 stem-loop UGCAGUGCCCUAUUCAGAUUGGUGCCGGUCACAUGAAGUACAUAUGACUGGCACCAUACUGGAUAAUGUAAUGCUCA 8 20089 MI0006117 rno-mir-872 Rattus norvegicus miR-872 stem-loop AACUUGUUAGAAGGUUACUUGUUAGUUCAGGACCUCAUUACUUUCUGCCUGAACUAUUGCAGUAGCCUCCUAACUGGUUAU 8 20090 MI0006118 rno-mir-874 Rattus norvegicus miR-874 stem-loop UUAGCCCUGCGGCCCCACGCACCAGGGUAAGAGAGACUCGCUUCCUGCCCUGGCCCGAGGGACCGACUGGCUGGGC 8 20091 MI0006119 rno-mir-877 Rattus norvegicus miR-877 stem-loop GUAGAGGAGAUGGCGCAGGGGACACAAGGUAGGCCUUGCGGGUCUGUGGGCCCUUGGACAUGUGUCCUCUUCUCCCUCCUCCCAG 8 20092 MI0006120 rno-mir-878 Rattus norvegicus miR-878 stem-loop UGCAGUGCUUUAUCUAGUUGGCUGUCAGUCACGUGAAACUCAAGUGCAUGACACCAUACUGGGUAGAGGAGGGCUCA 8 20093 MI0006121 rno-mir-879 Rattus norvegicus miR-879 stem-loop UUCUAGAUCCAGAGGCUUAUAGCUCUAAGCCUUGGAUAAAAGAGGCUUAUGGCUUCAAGCUUUCGGAGCUGGCGAC 8 20094 MI0006122 rno-mir-880 Rattus norvegicus miR-880 stem-loop UGCACUGCAAUACUCAGAUUGGUAUGAGUCACUUCCUAAAACAUGUUACUCCAUUCAUUCUGAGUAGAGCAAGGCACA 8 20095 MI0006123 rno-mir-881 Rattus norvegicus miR-881 stem-loop UGCAGUACAAUAUUCAGAGUGGUAGCAGUCACUUUAUUCUAAAGUAACUGUGGCAUUUCUGAAUAGAGUAAUGUUCA 8 20096 MI0006126 rno-mir-883 Rattus norvegicus miR-883 stem-loop UGCACUCAAUGCUGAGAGAAGUAGCAGUUACUUUUUACUCUUAAGUAACUGCAACAUCUCUCAGUAUUGUAAGGCUC 8 20097 MI0006127 mmu-mir-582 Mus musculus miR-582 stem-loop ACUCUUUGGAUACAGUUGUUCAACCAGUUACUAAUCUAACUAAUUGUAACCUGUUGAACAACUGAACCCAAAGGGUGCAAA 6 20098 MI0006128 mmu-mir-467e Mus musculus miR-467e stem-loop GCCUGUGUGCAUAAGUGUGAGCAUGUAUAUGUGUGUAUAUUUUAUGCAUAUACAUACACACACCUAUAUACACAUGCACACAGACAU 6 20099 MI0006130 rno-mir-147 Rattus norvegicus miR-147 stem-loop UAUGAAUCUAGUGGAAACACUUCUGCACAAACUCGAUUUUGAUGCCAGUGUGCGGAAAUGCUUCUGCUACAUUUUUAGG 8 20100 MI0006131 rno-mir-17-2 Rattus norvegicus miR-17-2 stem-loop UUGGCCAUGUCAAAGUGCUUACAGUGCAGGUAGCUUCUUGAGAUCUACUGCACUGCAAGCACUUCUUACAUUACCAUG 8 20101 MI0006132 rno-mir-181d Rattus norvegicus miR-181d stem-loop GGUCACAAUUAACAUUCAUUGUUGUCGGUGGGUUGUGAGGAGAAGACCAGACCCACCGGGGGAUGAAUGUCACUGUGGCUGGG 8 20102 MI0006133 rno-mir-182 Rattus norvegicus miR-182 stem-loop UCCCACCGUUUUUGGCAAUGGUAGAACUCACACCGGUAAGGUACCGGGACCCGGUGGUUAUAGACUUGCCAACUAUGGUGUAAGU 8 20103 MI0006134 rno-mir-188 Rattus norvegicus miR-188 stem-loop CCCUCUCUCACAUCCCUUGCAUGGUGGAGGGCGAGCUCUCUGAAAACUCCUCCCACAUGCAGGGUUUGCAGGAUGGUGAG 8 20104 MI0006135 rno-mir-190b Rattus norvegicus miR-190b stem-loop UGCUUCUGUGUGAUAUGUUUGAUAUUAGGUUGUUAAAUUAUGAACCAACUAAAUGUCAAACAUUCUCACAGCAGUGAG 8 20105 MI0006136 rno-mir-196c Rattus norvegicus miR-196c stem-loop CUGAGUGAAGUAGGUAGUUUCGUGUUGUUGGGCCUGGCUUUCUGAACACAACAACACCAAACCACCUGAUUCACUGCAGU 8 20106 MI0006137 rno-mir-301b Rattus norvegicus miR-301b stem-loop GCUGCGGGUGCUCUGACUAGGUUGCACUACUGUGCUGUGGAAAGCAGUGCAAUGGUAUUGUCAAAGCAUCUGGGACCA 8 20107 MI0006140 rno-mir-375 Rattus norvegicus miR-375 stem-loop UCCGGCCCCGCGACGAGCCCCUCGCACAAACCGGACCUGAGCGUUUUGUUCGUUCGGCUCGCGUGAGGCAGGGGC 8 20108 MI0006141 rno-mir-380 Rattus norvegicus miR-380 stem-loop ACCUGAAAAGAUGGUUGACCAUAGAACAUGCGCUACUUCUGUGUCGUAUGUAGUAUGGUCCACAUCUUCUCAUUAUC 8 20109 MI0006142 rno-mir-384 Rattus norvegicus miR-384 stem-loop AAUCAGGAAUUGUAAACAAUUCCUAGGCAAUGUGUAUAAUGUUGGUAAGUCAUUCCUAGAAAUUGUUCACAAUGCCUGUAACA 8 20110 MI0006143 rno-mir-410 Rattus norvegicus miR-410 stem-loop ACUUGAGGAGAGGUUGUCUGUGAUGAGUUCGCUUUAUUAAUGACGAAUAUAACACAGAUGGCCUGUUUUCAAUACC 8 20111 MI0006144 rno-mir-411 Rattus norvegicus miR-411 stem-loop CUUGGAGAGAUAGUAGACCGUAUAGCGUACGCUUUAUCUGUGACGUAUGUAACACGGUCCACUAACCCUCAGUAUC 8 20112 MI0006145 rno-mir-423 Rattus norvegicus miR-423 stem-loop GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCU 8 20113 MI0006146 rno-mir-425 Rattus norvegicus miR-425 stem-loop AGUGCUUUGGAAUGACACGAUCACUCCCGUUGAGUGGGCACCCAAGAAGCCAUCGGGAAUAUCGUGUCCGCCCAGUGCUCUUU 8 20114 MI0006147 rno-mir-434 Rattus norvegicus miR-434 stem-loop GUUUGAACCACAGCUCGACUCAUGGUUUGAACCAUUGUCAAACUCGUGGUUUGAACCAUCACUCGACUCCUGGUUUGAAUC 8 20115 MI0006148 rno-mir-455 Rattus norvegicus miR-455 stem-loop GGUGUGAGCGUAUGUGCCUUUGGACUACAUCGUGGACGCAGCACCAUGCAGUCCACGGGCAUAUACACUUGCCUCAAG 8 20116 MI0006149 rno-mir-463 Rattus norvegicus miR-463 stem-loop ACCCUGUUUUACCUAAUUUGUUGUCCAUCAUGUAAAAUUUAAGUGAUGAUAGACGCCAAUUUGGGUAGAGGAAGGCUC 8 20117 MI0006150 rno-mir-471 Rattus norvegicus miR-471 stem-loop AGCAGUGCUUUACGUAGUAUAGUGCUUUUCACAUUACACAAAAAGUGAAAGGUGCCAUACUAUGUACAGGAAGGCUUA 8 20118 MI0006151 rno-mir-484 Rattus norvegicus miR-484 stem-loop GCAUGCAGGGAAGGGGGGGCGGGGCCUCGCGGCCCUGCUGCCUCGUCAGGCUCAGUCCCCUCCCGAUAAACCUCAAA 8 20119 MI0006152 rno-mir-495 Rattus norvegicus miR-495 stem-loop UACCUGAAAAGAAGUUGCCCAUGUUAUUUUUCGCUUUUAUUUGUGACGAAACAAACAUGGUGCACUUCUUUUUCGAUAUC 8 20120 MI0006153 rno-mir-500 Rattus norvegicus miR-500 stem-loop CCCCCUCUCUAAUCCUUGCUAUCUGGGUGCUUAGUGCUAUCUCAAUGCAAUGCACCUGGGCAAGGGUUCAGAGAAGGUGA 8 20121 MI0006154 rno-mir-532 Rattus norvegicus miR-532 stem-loop UUUUCUCUUCCAUGCCUUGAGUGUAGGACUGUUGACAUCUUAAUUACCCUCCCACACCCAAGGCUUGCAGGAGAGCAAG 8 20122 MI0006155 rno-mir-598 Rattus norvegicus miR-598 stem-loop GCUGAUGCUGGCGGUGAUGCCGAUGGUGCGAGCUGAAAAUGGGCUGCUACGUCAUCGUCGUCAUCGUUAUCAUCAUCAU 8 20123 MI0006156 rno-mir-671 Rattus norvegicus miR-671 stem-loop CAGGAAGAGGAGGAAGCCCUGGAGGGGCUGGAGGUGAUGGAUGUUUUCCUCCGGUUCUCAGGGCUCCACCUCUUUCGAGCC 8 20124 MI0006157 rno-mir-672 Rattus norvegicus miR-672 stem-loop CCUUUAGUUUUGAGGUUGGUGUACUGUGUGUGAGUAUACAUAUUUAUCACACACAGUCGCCAUCUUCGAAAGUGAGGGUG 8 20125 MI0006158 rno-mir-673 Rattus norvegicus miR-673 stem-loop GCCUGAGGGGCUCACAGCUCCGGUCCUUGGAGCUCCAGAGAAAAUGUUGCUCCGGGACUGAGUUCUGUGCACCCCCCUUGCCC 8 20126 MI0006159 rno-mir-674 Rattus norvegicus miR-674 stem-loop CCUGAGCCUUGCACUGAGAUGGGAGUGGUGUAAGGCUCAGGUAUGCACAGCUCCCAUCUCAGAACAAGGCUCGGGUG 8 20127 MI0006160 rno-mir-708 Rattus norvegicus miR-708 stem-loop GACUGCCCUCAAGGAGCUUACAAUCUAGCUGGGGGUAGAUGACUUGCACUUGAACACAACUAGACUGUGAGCUUCUAGAGGGCAGGGG 8 20128 MI0006161 rno-mir-742 Rattus norvegicus miR-742 stem-loop GGCAGUGCUUUACUCACAUGGUUGCUAAUCACGUGAAAUGUAAGUGAAAGCCACCAUGUUGGGUAAAGUAAAGCUCA 8 20129 MI0006162 rno-mir-743a Rattus norvegicus miR-743a stem-loop UGCAGUGCUGUAUUCAGAUUGGUGCCUGUCAUGUUUAUAAGAAUGAAAGACGCCAAACUGGGUAGAGUGGAGCUCA 8 20130 MI0006163 rno-mir-758 Rattus norvegicus miR-758 stem-loop GGUGCGUGAGGUGGUUGACCAGAGAGCACACGCUAUAUUUGUGCCGUUUGUGACCUGGUCCACUAACCCUCAGUAUCU 8 20131 MI0006164 rno-mir-760 Rattus norvegicus miR-760 stem-loop GGCGCGUCGCCCCCCUCAGGCCACCAGAGCCCGGAUACCUCAGAAAUUCGGCUCUGGGUCUGUGGGGAGCGAAAUGCAAC 8 20132 MI0006165 rno-mir-770 Rattus norvegicus miR-770 stem-loop CUGUGCCCCCAGCACCACGUGUCUGGGCCACGUGAGCAACGCCACGUGGGCCUGACGUGGAGCUGGGGCCGCAGGG 8 20133 MI0006166 rno-mir-873 Rattus norvegicus miR-873 stem-loop GUGUGCAUUUGCAGGAACUUGUGAGUCUCCUAUUGAAAAUGGACAGGAGACUGACAAGUUCCCGGGAACACCCACAA 8 20134 MI0006167 rno-mir-92b Rattus norvegicus miR-92b stem-loop GGUGGGCAGGAGGGACGGGACGCGGUGCAGUGUUGUUCUUUCCCCUGCCAAUAUUGCACUCGUCCCGGCCUCCGGCCCCCUCG 8 20135 MI0006168 rno-mir-488 Rattus norvegicus miR-488 stem-loop AAUCCUCUCUCCCAGAUAAUGGCACUCUCAAACAAGUUUCUACAUUGUUUGAAAGGCUGUUUCUUGGUCAGAAGACUCU The predominant miRNA cloned by Landgraf et al. has a 3' additional U residue, which is incompatible with the genome sequence [1]. 8 20136 MI0006169 rno-mir-652 Rattus norvegicus miR-652 stem-loop AUGCACUGCACAACCCUAGGAGGGGGUGCCAUUCACAUAGACUAUAAUUGAAUGGCGCCACUAGGGUUGUGCAGUGUACAA The predominant miRNA cloned by Landgraf et al. has a 3' additional U residue, which is incompatible with the genome sequence [1]. 8 20137 MI0006170 tae-MIR159a Triticum aestivum miR159a stem-loop GUGGAGCUCCUAUCAUUCCAAUGAAGGGUCUACCGGAAGGGUUUGUGCAGCUGCUCGUUCAUGGUUCCCACUAUCCUAUCUCCAUAGAAAACGAGGAGAGAGGCCUGUGGUUUGCAUGACCGAGGAGCCGCUUCGAUCCCUCGCUGACCGCUGUUUGGAUUGAAGGGAGCUCUGCAU 61 20138 MI0006171 tae-MIR159b Triticum aestivum miR159b stem-loop GAGCUCCUUUCGGUCCAAAAAGGGGUGUUGCUGUGGGUCGAUUGAGCUGCUGGGUCAUGGAUCCCGUUAGCCUACUCCAUGUUCAUCAUUCAGCUCGAGAUCUGAAAGAAACUACUCCAAUUUAUACUAAUAGUAUGUGUGUAGAUAGGAAAAUGAUGGAGUACUCGUUGUUGGGAUAGGCUUAUGGCUUGCAUGCCCCAGGAGCUGCAUCAACCCUACAUGGACCCUCUUUGGAUUGAAGGGAGCUCUGCAUCU 61 20139 MI0006172 tae-MIR160 Triticum aestivum miR160 stem-loop AGAGGUGAAAACAAUGGGAUAUGCCUGGCUCCCUGUAUGCCACUCGCGUAGCUGCCAACUCCCCAAACCUUGCGUUGGCUCUACCGCGGAUGGCGUGCGAGGAGCCAAGCAUGACCGUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCU 61 20140 MI0006173 tae-MIR164 Triticum aestivum miR164 stem-loop GGUGGAGAAGCAGGGCACGUGCAUCCAUUUCCAGCUCGGCAUUCCCGGCGUCCGGCCGGCCGGCUGCCGCGGCCUUGCCUGGCUGGGUAGUGCGUCGCUCGAUCCGGCCGUGCGCCGGCGGCCGGCCCUUGCAUGCAUGUGCCUUUCUUCUCCACC The mature sequence cloned in [1] has a U residue at position 14, which is incompatible with the EST assembly and the hairpin shown here. 61 20141 MI0006174 tae-MIR167 Triticum aestivum miR167 stem-loop CUGCCCAAGGGAACGAGUGAAGCUGCCAGCAUGAUCUAGCUCCGAGUGAUCAAACAAGAAACGCUGCGGCAGCCUCACUUCUUCCCGCCGUUGGGCACAACUACUUCU 61 20142 MI0006175 tae-MIR171 Triticum aestivum miR171 stem-loop UGGAAUGGUCACUAUGAUGUUGGCUCGACUCACUCAGACCACGCCUGCCGGCCGGCCGUAGCCAUGCAUCUGCAUGCGGUGGUGGCUCUGAUUGAGCCGUGCCAAUAUCUCAGUGCUCUUUCAUGCAUGC 61 20143 MI0006176 tae-MIR399 Triticum aestivum miR399 stem-loop UCGUGUGUGAAUCACAGGGCGCUUCUCCCUUGGCACGGUGGCAUGCAUGUACAUAUGAUGGUGGUAGCCUGGUGAGCGUGCGGUGCAGCUUGCUAGCAAGCCGUGCGUGCCAAAGGAGAAUUGCCC 61 20144 MI0006177 tae-MIR408 Triticum aestivum miR408 stem-loop AUUUUGUGAGUGGAGAGGGGGGAGGAGACAGGGAUGGAGCAGAGCAAGGGAUGAGGCAAGCAACAAAAUUUACCACCUGAUUAUGAGAAGAGGGAGAGAGUUGCCAGAGCUUCUGUUGCUGUUGUUGCUCCCUCCCUGCACUGCCUCUUCCCUGGCUCCCCUCCCAAAUCUCUCCCUCCCCCUCUCU 61 20145 MI0006178 tae-MIR444 Triticum aestivum miR444 stem-loop GACUCGAGAUAUGCAUGUGGCGGCACCGAGCAUGAGGCAACAACUGCAUUACUUGCGGGGAAGGCGCAAGUAGGACACCUGCAUUACUUGCAAACAAGGCGCAAAAUUAAUAGAAGAUCACCAUACUUGUGGCUUUCUUGCAAGUCAUGCAGUUGCUGCCUCAAGCUUGCUGCCUCCCUUUGCCAAAGCUAUCAGAAAAAACAUAAAGUUCUGUUAGUUUCCCUAAACUUUAAAAACAUAAAGUUCUGUUAGUUUCCCUAAACUUUAAAACAUGUUCUACAAAAUUGAUCUAGAAAUGAUUGGCUUACUGUGCUAAUUUAAAGCAAUAUAAUUACUCGACAACUGCAUAUGCACAUGUUAGAAGCAAGGCAGUAGAAUACUUAUGUUUUCAUCUACUGGCAGGUAGCAACAUGUAUAGAUAUAUCA 61 20146 MI0006179 tae-MIR1117 Triticum aestivum miR1117 stem-loop GUUUGAAAAUGGGACCUUUAGUACCGGUUCGUGGCACGAACCGGGACUAAAGGUCUUCAACCCCAUUAGUUCCGGUUCGUGCCACAAACCGCGACUAAAAGGGAGGAGCUUUAGUCGC Yao et al. misname this sequence miR501 in [1]. miR1117 is unrelated to mammalian miR-501; 61 20147 MI0006180 tae-MIR1118 Triticum aestivum miR1118 stem-loop GAAGCACGUGGAUAGAGGAAGCACUACAUUAUGGAAUGGAGGGAGUAUGUUGUAGGCAAUGAUUGUUUGCCUUGAAGAUUUUAUAGAUCCUGCUCUGGUCUUUCUGAUUUUGUCUGUUCCUUUUUUUUAUGUUUGGUUCG Yao et al. misname this sequence miR502 in [1]. miR1118 is unrelated to mammalian miR-502; 61 20148 MI0006181 tae-MIR1119 Triticum aestivum miR1119 stem-loop AGCGUCAGCGUGUGAUGCGCCAGCGCGCGCGGAGGAGGAGCUGGCUGGGUCAGCGUCGACGGCGGCGGCCGUGUGCUCCUACGUGGCACGGCGUGAUGCUGAGUCAGCCAGUGGAGUGGUGCUACUUUUUACUAGGUGUGGAGUGGGGAGUGCUAUGCGCGGGGUCGCGUGACGUGG Yao et al. misname this sequence miR503 in [1]. miR1119 is unrelated to mammalian miR-503; 61 20149 MI0006182 tae-MIR1120 Triticum aestivum miR1120 stem-loop GCGGCCGCCCGGGCAGGUACUCCCUCCGUCCCAUAAUAUAAGAACAUUUUUGACAGUGUAGUGUCAAAAACAUUCUUAUAUUAUGAGACGGAGGGAGUAUUUCCCAGCUCCUGAAUCAC Yao et al. misname this sequence miR504 in [1]. miR1120 is unrelated to mammalian miR-504; 61 20150 MI0006183 tae-MIR1121 Triticum aestivum miR1121 stem-loop UAUAUAUGUACUCCCUCUGUAAAGAAAUAUUAGAGUGUUUAGAUCACUUAAGUAGUGAUCUAAACGCUCUUAUAUUUCUUUACGGAGGGAGUACUGUA Yao et al. misname this sequence miR505 in [1]. miR1121 is unrelated to mammalian miR-505; 61 20151 MI0006184 tae-MIR1122 Triticum aestivum miR1122 stem-loop AUAAGUACUCCCUCUGUUCCUAAAUACUCCCUCCGUCCCAAAAAUUUUGGCUUAGAUUUGUCUAAAUACGUAUGUAUCAAGUCAUGUUUUAGUAUUAGAUACAUCCGUAUCUAGACUAAUCUAAGACAAGAAUUUUGGGACGGAGGGAGUAUAAGUCUUUUUAGAGAUUCCACUACAAACUACAUACGGAUGUAUAUAGACAUAUUUUAGAGUGUAGAUUCACUCAUUUUACUUCGUAUGUAGUCCAUAGUGGAAUCUCUAAGAAGGCAUAUAUUUAGGAACAGAGGGUGUACCA Yao et al. misname this sequence miR506 in [1]. miR1122 is unrelated to mammalian miR-506; 61 20152 MI0006185 tae-MIR1123 Triticum aestivum miR1123 stem-loop AAAAAAAUUAUAUGAGACCAGGUCUCAUAUAAAUCAGGUGAGACCCGCCCUGAUGAAUGACAUGUGGAAUUCACAAAUCACAAAGCAUCUAAUCUCUCCCCCCCUGAUUUCAGGUGGGGGGUGGGGUGGAUGCUUUGUGAUUUGUGAAUGACACGUGUCAUCCAUCAGGAUGGGUCUCACCUGCUAAUCCGUGAGACCUGGUCUCAUAGAAUUUUUUU Yao et al. misname this sequence miR507 in [1]. miR1123 is unrelated to mammalian miR-507; 61 20153 MI0006186 tae-MIR1124 Triticum aestivum miR1124 stem-loop AUUACAUGACUCAAAGGAACGGCCCUGGGAGCUCGAUCCUUCUCACAUCCCGCCACGCCAUUGUCGCGUCCAUCCCCACGACGCAGGACGUGAAGAGCGAGUCCAAGGCCGGAAGCUAGACUCGGUACU Yao et al. misname this sequence miR508 in [1]. miR1124 is unrelated to mammalian miR-508; 61 20154 MI0006187 tae-MIR1125 Triticum aestivum miR1125 stem-loop UUUGGCCGUAAAUUUAACCAACGAGACCAACUGCGGCGGGAACAAAAAUUAUAUCGCUGAAUUAUAUCAAAAAUACNAAUUCAGUAGCAUAGGUUUUGCUCCCGCCACAUUCGGUCUUGUUGGUUAAAUUUACGGUCAAA Yao et al. misname this sequence miR509 in [1]. miR1125 is unrelated to mammalian miR-509; 61 20155 MI0006188 tae-MIR1126 Triticum aestivum miR1126 stem-loop GUACUCUCUCCGUUCCUAAAUAUAAGUCUUUAUAGAAAUUCCACUAUGGACUACAUACGGAGCAAAAUAAAUGAAUCUACACUCUAAAAUGCAUCUACAUACAUUCGUAUGUGGUUCAUAGUAAAAUCUCUACAAAGACUUAUAUUUAGAAACGGAGGGAGUAU Yao et al. misname this sequence miR510 in [1]. miR1126 is unrelated to mammalian miR-510; 61 20156 MI0006189 tae-MIR1127 Triticum aestivum miR1127 stem-loop ACAUUAGAUGUACUCAACUACUCCUUCCGUUCGGAAUUACUCGUCCAAGAAAUAAAUGUAUCUAAAUGCAUUUUAGUUGUAGAUACAUCCAUUUUUAUCAUUUUUGUGACAAGUAAUUCCGAACGGAGGGAGUAUAUUCUAAUGUGGAUC Yao et al. misname this sequence miR511 in [1]. miR1127 is unrelated to mammalian miR-511; 61 20157 MI0006190 tae-MIR1128 Triticum aestivum miR1128 stem-loop AUAUGAGAGCAUGGGUGAGAGGUGCUUAGUUACUACUCCCUCCGUCCGAAAAUACUUGUCAUCAAAAUGAAUAAAAGGGGAUGUAUCUAGAACUAAAAUACAUCUAGAUACAUCCCCUUCUAUCCAUUUUGAUGACAACUAUUUCCGGACGGAGGGAGUAAUUGCUUCUUCUGGCUUGGCGUUUAUGU Yao et al. misname this sequence miR512 in [1]. miR1128 is unrelated to mammalian miR-512; 61 20158 MI0006191 tae-MIR1129 Triticum aestivum miR1129 stem-loop CGGCCGCCAUUCAGCCANAAGAAGCAGCGAGCCAGCGGAGACCGGCAGCCAACCAAGGGCGUCGUCGCUCCACCAUGGAAUCAGCUGCUGAUAUGCUCGAACACGACCUGCAAGCUUCAUGUAUCUGCAACACCCCUGCUCCUCAUCCACGACCCAAGUGACCUGAAAGAGCAAGCUGCUGCAGAGGGCAAUCCUCGAUAUCUAAGAAGACCUCGGGCUUAUUAGGGGAAGAGAGCUCGUGCCAGAUCCACUCCCAACUGCCUCCGUCCACCAUGGACGA Yao et al. misname this sequence miR513 in [1]. miR1129 is unrelated to mammalian miR-513; 61 20159 MI0006192 tae-MIR1130 Triticum aestivum miR1130 stem-loop AAAUGUCUUAUACUCCCUCCGUCUCGUAAUGUAAGACGUUUUUAUAAGCUAUGUUAGUCUGUAAAAAAAAGUCUUUGCAAAAACGUCUUACAUUAUGGGACGGAGUGGUAGUAUUUGCAACG Yao et al. misname this sequence miR514 in [1]. miR1130 is unrelated to mammalian miR-514; 61 20160 MI0006193 tae-MIR1131 Triticum aestivum miR1131 stem-loop CAUUAGUACCGGUUCGUGGCUAACCUUUAGCACCGGUUCGUGCCAGGAACCGGUACUAAUGAGGGUGGUGGCAGGAUGUUGUCAGUCUGGGCCCCCUCCA Yao et al. misname this sequence miR515 in [1]. miR1131 is unrelated to mammalian miR-515; 61 20161 MI0006194 tae-MIR1132 Triticum aestivum miR1132 stem-loop UACUCCCUCCGUUUCACAAUGUAAGUCAUUCUAGCAUUUUCCACAUUCAUAUAGGUGUUAAUGAAUCUAGACAUCUAUAUAUAUCUAGAUUCAUUAACACCUAUAUGAAUGUGGGAAAUGUUAGAAUGACUUACAUUAUGGAACGGAAGGAGUA Yao et al. misname this sequence miR516 in [1]. miR1132 is unrelated to mammalian miR-516; 61 20162 MI0006195 tae-MIR1133 Triticum aestivum miR1133 stem-loop ACUUCUUAGUGAUAGUGGUCAAUUACAUCAUAUACUCCCUCCGUCCGAAAAAGUUUGUCCCAAGCUUGUUCCUCAAAUGGAUGUAUCUAGCACUAACUUGAUGCUACAUACAUUCAUUUGAGGGACACGCUUUUUCGGAUGGAGGGAGUAGUAAUUUUGAUAUACACACUGAAGUUGCUA Yao et al. misname this sequence miR517 in [1]. miR1133 is unrelated to mammalian miR-517; 61 20163 MI0006196 tae-MIR1134 Triticum aestivum miR1134 stem-loop CCACGCGUCCGGCAUUCUUCUUCUUCUUGUUGUUGUUGUUGUAAUGGAUUUGGAGGAGGAGGAGGAGGAGGAGCUGCUGUUGAUGCUCCUAGUACAACAAAUAAGGAGGCGGCGGAGGAGGAGCAACAACAACAAGAAGAAGAAGAUUUGGGCUUGAAGCUGCAGCUGCAACAACAUGUA Yao et al. misname this sequence miR518 in [1]. miR1134 is unrelated to mammalian miR-518; 61 20164 MI0006197 tae-MIR1135 Triticum aestivum miR1135 stem-loop CUACUCCCUCCAUUCGGAAUUACUUGUCUCGGAUAUGGAUGUAUCUAGAACUAAAAUACGUCUAGAUACAUCUAUUUCUGCGACAAGUAAUUCCGAACGGAGGGAGUAG Yao et al. misname this sequence miR519 in [1]. miR1135 is unrelated to mammalian miR-519; 61 20165 MI0006198 tae-MIR1136 Triticum aestivum miR1136 stem-loop UACUCCCUCCGUUCCGAAUUACUUGUCGCAGGUAUGGAUGUAUCUAGAUGUAUUUUAGUUCUAAAUACAUCCAUUUCUGCGACGAGUAAUUUGAAACGGAGGGAGUA Yao et al. misname this sequence miR520 in [1]. miR1136 is unrelated to mammalian miR-520; 61 20166 MI0006199 tae-MIR1137 Triticum aestivum miR1137 stem-loop CACGAUGACGACGAUUACAUAGCCUUGUACUCCCUCCGUUCCAAAAUGGAUGACCCAAGUUUGUACUAAAGUUAGUACAAAGUUGAGUCAUCUAUUCUGGAACGGAGGGAGUAGUAGUAAUACAACGUUGCUAGUGAUAAGGAAAAUC Yao et al. misname this sequence miR521 in [1]. miR1137 is unrelated to mammalian miR-521; 61 20167 MI0006200 tae-MIR1138 Triticum aestivum miR1138 stem-loop AUCUUGUAUAGGUCUGUCUAGGACACAUCUAAAUGUGACAUAACUAUGUCACAUCUAAGCUGAUGUCAACUCUGUUUGUGGUCUAUUUUUUUUAUCCUAGUUUUUUUAUUUCUUAUUGCUACAUUAUAUAUUUGUAGGAGCUUAGAUGUGACAUCCUUAAAAACAUCUAGAUGUGAAUUAAACAAACUGAUCUU Yao et al. misname this sequence miR522 in [1]. miR1138 is unrelated to mammalian miR-522; 61 20168 MI0006201 tae-MIR1139 Triticum aestivum miR1139 stem-loop GCCACAGUGGAGAGUAACAUACACUAGUAACAUACACAUAUCCCUAGAACUAUAUAACUACCUUCAUAGKGGUAGCAACAUAAGUGUGGUAUCAUGCAAAGCUUCAUUUAUUAGGUUAUAGACUCAUAUUGCAUUGGGACAUGUGAUGUUAUAGUAACUAGCUAAGUUACUCAAACUACCUCUCUCCUCGAUGUUACUAUUGAAGUUACUCCCACU Yao et al. misname this sequence miR523 in [1]. miR1139 is unrelated to mammalian miR-523; 61 20169 MI0006202 ppt-MIR477b Physcomitrella patens miR477b stem-loop AUGUGUUGGAACUUGGGAAGCAGGUGCUUGAUCCUCUCCCUCAAAGGCUUCCAACAGCAUGAGCUAGUUUUAGUGUCUCAAAUAUUGUCUGUUGAGGCUAGCUCCUGUUCAGAUCUGUUAGAAGCCUCUGUGGGAGAGGAGCAAUCAGCUGCUGAGUGGCACCUCUGAUC 40 20170 MI0006203 cre-MIR1142 Chlamydomonas reinhardtii miR1142 stem-loop CGUGGCAGGGGUCAAGGUGUGGAUGCGGCAUGGGUGGCUAACCCCGCCCAUGCCCAGACCACGCUCCAGCCCCUGCCCCG 53 20171 MI0006204 cre-MIR1143 Chlamydomonas reinhardtii miR1143 stem-loop AGGACGUCCCCUUACGGGAAUAUAAAUAUUAGUGGCAGUGGUACCGCCACUGCCUAUAUUUAUAUACUCCGAAGGAACUUGUUAGCCGAUAGGCGAGGCAACAAAUUUAUUUAUUGUAUAUAAAUAUCCACUAAAAUUUAUUUGCCCGAAGGGGACGUCCU 53 20172 MI0006205 cre-MIR1144a Chlamydomonas reinhardtii miR1144a stem-loop CGGCGGCGUUGGACUGCUGGGGUGCAGCAGGCUUGGAACCGGGCACGCAGGAGGUGGGUUUUGUGGCGGCAGGNAGCAGGCAGCGCGGGGCUGCUGGUGGUGGUGGAGGAGGAUGAAGUUCGCCAUUCAAACAACCCUUUCUGCACCGGUCCUGUGCUGCCCGUUGCCUGCAGGAGCAAAACACACCCACUCCGUGUCCGGCUCCAAGAUUGCUGAACCCCUGUCGCUGGCUGCUGCCG The predominant product from this hairpin precursor is named cre-miR1144a.1 here [1]. 53 20173 MI0006206 cre-MIR1145 Chlamydomonas reinhardtii miR1145 stem-loop CCCAACGUGGAAGGGCAUGACCUCCUCCCUUCUGCAGACCUAGGUCAGAAGGACCAGGACCUGCUGGGCCCCAAGGUCAUGGUCGCAAUGCUGGUCAACGCCACCGAGAGGGUCAACACCACCCAGCAGCUCUGGGCGGACAUCAAGCAGAAGACGUCCUCCAGCGGGAGGCCGUCUUCUGCUUGAUGUCCGCCCACAGCUGCUGAUUGGCGUUGACCCUGUCGGUGGCCUUGACCAGCAUCGCGGCAAUGACCUUGGGGCCCAGCAGGUCCUGGUCCUUCUGACCAAGGUCUGCACAAGGGAGGAGGUCAUGAGUCCACGUGGG Molner et al. identified several expressed products from this hairpin locus -- the predominant 2 are shown [1]. 53 20174 MI0006207 cre-MIR1146 Chlamydomonas reinhardtii miR1146 stem-loop AUGGGUCCGAUCGGGAAGCUUUAUCACACUCGGCGUAUGAACAACAAGCUUCCCACAUGGGGCCCA 53 20175 MI0006208 cre-MIR1147 Chlamydomonas reinhardtii miR1147 stem-loop GCCAUAAUUAGUGCCAGCGCGCUCUCGGCCAAGUCUGGCAGAAGCGGAGGAGCCGCCGCUGCCAGACUUGGCCGAGAACGCGCUGGCACUAAUUGGGGC 53 20176 MI0006209 cre-MIR1148 Chlamydomonas reinhardtii miR1148 stem-loop CAGGGACUGUUUACCAACGUGCAGGGGGACAUGGUGGAGAUCCUCCUGUCCGGCUACCUGGAGCGCAAGCUGGGCGAGAGGUUUUAGCCAGACAGGAGGAUCUCCNCUAAGUCCCCCUGCACGUUGGUAAACAGUCCCUG 53 20177 MI0006210 cre-MIR1149 Chlamydomonas reinhardtii miR1149 stem-loop CGACCGCCUCGGGCCCGCUAUGUCGGACAACACCGACCCCCAGCCCGCCAACAAGGAGAUGGCGUUGGCGGGCUGGGGUCGGUGUUGUCUGACAUGGAGGGUCCCAGGCAGUCG 53 20178 MI0006211 cre-MIR1150 Chlamydomonas reinhardtii miR1150 stem-loop GGACGCGCAGCGGAGCAGAUCCCCGUCAUACCCCGCUUGGUGCAGCGCGUCAAUAUCCCUCUUGGCGAGCUUCGCAAAUAGAGUCGGCCCCAGUUUCCGCUGCAGCUGGGCUUCGUGCUUCCAGCUUCCUGCACGGCUCGCCGUCCGAGCGCCUUGCUUGCCGCCCGAUACGCAGUUCGGAUUCGUAUACGCAUAUCGAACUCAAUCCGAGUCGCGUAUCAUCGGGUGGCAAGGAAGGCGCUGGAAGCCUCUGACAGCGAGCCAUGCAGGAAGCUGAAAGCCUGAAAGCCCACCUGCAGCGGCGACUGGGGCCGACCCUGUUUGCAAAGCUCGCCGAGAGGGACAUUGAUGCGCUGCACCAAGCGGGGUAUGACGGGGAUACGCUCCGCUUCGCGUCC Molner et al. identified a number of offset and overlapping mature miRNA products frmo this hairpin precursor [1]. The predominant ones are named and shown here. 53 20179 MI0006212 cre-MIR1151a Chlamydomonas reinhardtii miR1151a stem-loop CCGGCCGCGGCAGUCCGGGGCUCAUAACCUGUUGACGCGCGCAGCCCGCGGGCAGUCCCUGCGGGCCGCGCGGCGCUAACGGGGUGUGGGACCCGGACUGACGCGGCCGG 53 20180 MI0006213 cre-MIR1151b Chlamydomonas reinhardtii miR1151b stem-loop GUGGUGUGUGCCGCUCACCGGCCACGGCAGUCCGGGGCUCAUAACCUGUUAACGCGCGCAGCCCGCAGGCAGUCCCUGCGGGCCGCGCGGUGCUAACGGGUUGUGGGACCCGGACUGACGCGGCUGGCAUGUGACAGGCCCCAC 53 20181 MI0006214 cre-MIR1152 Chlamydomonas reinhardtii miR1152 stem-loop GGGGGUAUUCACGGCACCGUCAAGACGGCGCACCUUCUUAACGUCCUUCGGUGCUUGCUUGCACACACUCAAGCAGGCACCGAAGGGCGUUAAGAAGGUGCGCUGUCUUGACGGUGCCGUGAAUACCUUC 53 20182 MI0006215 cre-MIR1153 Chlamydomonas reinhardtii miR1153 stem-loop CAAAUGGGCCAUCGUAUUACUAUCAGUGCUGCUAGCAACUACAAGGCGGGCAUGAAGGUCGAUUUGAUCCGAUCGACCUUCAUGACCGCCUUGUAAUUGCCGGUAGCACUGAUUGUAAUGCGAUGGCUCAUUUG Molner et al. identify two miR/miR* pairs from the same hairpin precursor [1]. 53 20183 MI0006216 cre-MIR1154 Chlamydomonas reinhardtii miR1154 stem-loop UGUAAUGCGGGAAAAUGGUAACUUAGUCAUCCCAAGGCGUGUAUCACCCAUGUUACGGGCGACCUGUAACACGGGUGAUACACGCCUUGUGACGACUAAGUUACCAUUUUCCCUCGUUACA 53 20184 MI0006217 cre-MIR1155 Chlamydomonas reinhardtii miR1155 stem-loop UGAGGCUCGUUCCUCAAGCAGGACUCAAAGAACCCGAUCAGCUUGUCGAGCACGACAAGGUGAUCGUGUUUUCUUAGUCCUGCACGAGGAAGGAGCCCCA 53 20185 MI0006218 cre-MIR1156 Chlamydomonas reinhardtii miR1156 stem-loop UCUGAUCUGCCUGAAGCUCCAGUUGAAACCUGGCAAGGUCGUGUGCCCUCUCCACCGACAUGCGAGGGUCCACCGCCGUGUGGCACAGGCUACCAUGGUAGCCAGUCUGCGCACCUGCAGCCAGCAGCUGAAUUCAUCAGCUGUCGGCUGCAGGUGCGCAGACUGGCUACCUUCGAAGCCUGGGCCUCACGGCGGUGGACCCUCGCAUGUCCGUGAAGGGGGCUCAUGACCCUACCCAGUUUCAGCUGGAGCUUCAGGCACAUCAGA 53 20186 MI0006219 cre-MIR1157 Chlamydomonas reinhardtii miR1157 stem-loop UCCUGGGCGCAGUGUUCCAGCUGCAGUACACCUGGUCCCGCUAUUUGAAUCUCGCUGAUCGGCACCAUGGGGGUGGUGGUGAUCAGCGCUAUUCAGGUAGCGGGACCAGGUGUACUGCAGCCGGAACACUGCCAGGA 53 20187 MI0006220 cre-MIR1158 Chlamydomonas reinhardtii miR1158 stem-loop GGCGUGCGCAGCGGCGGCCGCCGCGGCUGAGGAAGCCAUGAUCGAGGCAGCGCAGGCCACAUUGUAGGCCUGCCGCGCGGCUGUGUCACCUCUGACCAGGUGCGACGGGAAGCCGGGCUGCUGGGGCUGCUGCUGACCGCCAGUAGCCUCCUCCACGUCUUGUGCUAGCUCCGCAAGCACCGCGUCCUCUAUGUCCGUCAUGUCGGACUCGGCGUCGGAGCCAGGGCCCUCGGCUCGAGCAUCAGUCGUCCGCGCUGCUGCUGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCGACAUGACGGAUAUUGAGGACGCGGUGCUUGCGGAGCUAGCAGAGGACUUGGAGGAGGCCACUGGCGGUCAGCAGCAGCCCCAGCAGCCCAGCUUCCCGUCGCACCUGGUCAGCGGUGCGACAGCCGCGCGGCAAGCAUACAACGUGGCCUGCGCUGCCUCCAUCAUGGCUUCCUCAGCCGCGGCGGCCGCCGGCUUCGAGAGCC Molner et al. cloned a number of minor products (cloned only once) from the loop end of this hairpin precursor (not shown) [1]. 53 20188 MI0006221 cre-MIR1160 Chlamydomonas reinhardtii miR1160 stem-loop UUUGCAUGCUCUCGCCCGCUACACAAACACGAAUGCUCAAACGCUCCCUUCCCGCACGGGUCCUUCCGGCUGCGCCGGUCAAGCCUGCCCUGCUUAAAAAGGGCAAAGUUCGGGCUGACAAGGAAGCAGAGCGGAUCCUCCAGAGCCUCACAGACCUCAAGAAGGUCGGGUUCACAAGCAAAUGACGCCUGCUUAACCAGGUCGUUGCCGCCGGAAAAGUCGUCAGCAGCGUGGCAGCCUGCUUAGCAGGCGUCAUUUGCUUGUGAACCCGACCUUCUUGAGGUCUGUGAGGCUCUGGAGGAUCCGCUCUGCUUCCUUGUCAGCCCGAACUUUGCCCUUUUUAAGCAGGGCAGGCUUGACCGGCGCAGCCGGAAGGACCCGUGCGGGAAGGGAGCGUUUGAGCAUUCGUGUUUGUGUAGCGGGCGAGAGCAUGCAGA 53 20189 MI0006222 cre-MIR1161 Chlamydomonas reinhardtii miR1161 stem-loop GCCAGGUGACACCACACACCUACUGGAGUUCUCAACAGCUAGGUGACACCACACACCUACUGGAGUUCUCAACAGCUAGGUUUGGUUUGGU 53 20190 MI0006223 cre-MIR1162 Chlamydomonas reinhardtii miR1162 stem-loop GCGGGGCCCUGACACCACUGCGGCCGCCGGCCUAAAUUACUACAACACGCCGCGCCUGGACCCGAGGGAGGACCCCUCGGGACCCGGUACGUCGUGUUGUAGUAGUUUAGCCCUGCGGUCGCGGUGGGGUCAGGUCCUUCCGC 53 20191 MI0006224 cre-MIR1163 Chlamydomonas reinhardtii miR1163 stem-loop AUUGACAACGCGCCCGAGCGCCGGCGCACCGGCAAGAACAAGGACAAGUAUGAGAUGCUGCCGUACCCCGGCAACACGCUCAUGGAUGAGGCUGACCUGAAGGGCAUGCUGCGUGCCAUGGCGCCCUUCAUCGUGCGCGCAUAGGGUCUUAACUGCCAGGUUGAAGUCGCACACGCGGAAGACCUUGCUGCCAUCAGGCGCGAUGUCGUACAGCAGGUUGGCGGGCUUCAGGUCAAAGUGCAUGUAGCCGCGAGCGUUCAGGUGCUUUGAUGAAGAGCGCCAUGGCACGCAGCAUGCCCUUCAGGUCGGCCUCAUCCAUAAGCGUGUUGCCGGGGUACGGCAGCAUCUCAAACUUGUCCUUGUUCUUGCCGGUGCGCCGGCGCUCGGGCGCGUUGUCAAU 53 20192 MI0006225 cre-MIR1164 Chlamydomonas reinhardtii miR1164 stem-loop GGUGCUCUUCUGGUGCAACAGGCCAGUGGUUUGAGUGGUGGUCGACGGCAAUUGCUUCAGUCUUACUUGCUUGGCUUACGUACGUACGCCUCAAGCAAGUAAGACUGAAGCAAUUGCUGCCGACCACCGAUCAAACCACUGGCCUGUUGCACCAGCAGAGCACU 53 20193 MI0006226 cre-MIR1165 Chlamydomonas reinhardtii miR1165 stem-loop GCACUAUACCGUACAAGCGGUCCGUCCUGCGCCCCAUCCUGCGUUUGAAAACGCANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCAGGACGGACCGCUUGUACGGAUAUGGCGC 53 20194 MI0006227 cre-MIR1166 Chlamydomonas reinhardtii miR1166 stem-loop GCAACCACGCCGCGCCCUGCCGGUCCCCCACAGUGUAUGACUCCUUUUACCGCUACGAGGAUGGACUAGACAACCCACGCACCGCCUGGUGCCGCCGACUCUGCGCCGGGCCCAUGAGGUCAUGGACCUCGCGGCCCUGGAGGCCCUGGUAGCCGCCGCGCCAUGCCAGGCCGUCAGCGCGCCGGACGCGCCGACAGCCUGGAAUGGCGCGCCAUUCCAGGGCCGCCUCUAGGGCCGCGAGGUCCAUGACCUCAUGGGCCCGGCGCAGAGCCGGCUGGACCAGCCGGGGCGUGGGGUCAUCGAGGCCACCGGCAUAGCGGUAGAAUGAUUCGUAUAACCUAGGGCGCCGGCAGGGCGCGGCGGUGUAGUUGC Molner et al. cloned a number of additional minor products (cloned only once) from this hairpin precursor (not shown) [1]. 53 20195 MI0006228 cre-MIR1168 Chlamydomonas reinhardtii miR1168 stem-loop GCGGCUUGGUCUUUCCGCGGUGGCCUCCUCCUCAAUCUUGGCCUUGCGCGCUUCGGGCUUGGCCUGGUCUACACAGCAGGCAGGGUUGGGAAGCUCCCUUACCCUGCCUGCUGUGUGGACAAGGCCAAGUCCGAAGCACGGAAGGCGAAGAUUGAGGAGGAGCGUGCAGUGCGGGUCCAUGGGUCGUGCCUGC 53 20196 MI0006229 cre-MIR1169 Chlamydomonas reinhardtii miR1169 stem-loop UACGGUAUCCAGCAAGCAACAUCCACAUAAGCCGGGGUUGGUAGCAACACAUCUACCAACCCCGGCUUAUGUGGAUGUUGCUUGCUGGAUACCGUG 53 20197 MI0006230 cre-MIR1170 Chlamydomonas reinhardtii miR1170 stem-loop UAUGGGCAAUACUAAAACUGGCAACUUGGCGAUGGACAUGUCACAAUGUCAGUUCUGCCGUGUUCGGCUGAUUGAGCCUGGUCUCAGACCUCAAUCAGCUCAAUCAGCCAAACACGGCAGAACUGGCAUGUCCAUCGCCAAGUUGCCAGUUUCAGUACUGCCCAUA 53 20198 MI0006231 cre-MIR1171 Chlamydomonas reinhardtii miR1171 stem-loop GGGAGUGGAGUGGAGUGGAGUGGAGUGGAGUGGAGUGGGAGUGGGAGUGGGUGCAAGGGCGUGGGUGGGUGGGUGCGGCGGGCGCGCUUGUCGUGACACCUUGACUCAUCACCCCGCCUCCAACGCCUCCAACGCCUCGCUACUCCCCCUGCAACCCCCUUCCCCACGCCCCCGUCCCUCCGCUCCC 53 20199 MI0006232 cre-MIR1173 Chlamydomonas reinhardtii miR1173 stem-loop GUUUGGCCUGGUGUUUAAUUUGCUUCCACACAUUUGCAAUGCCAGCAAAUUGCGCAUGCCAAUGCAUUUAUAGGUUAUUGCAUACGCCCUGGAUUGGCAGCGUGAGUGAAAGUGUGCUGGGCUGCGUGCUACUGUAGAUGAGUGGGUACUUGCGAAAUGUAUUGGCGGCCAUUGUAUGGUUGCAAUAGAAAUCAUGCAGGGGAUACUGUGAAUUAUAUACCAUGUACCAUGUGCAAUGUUUCAGAUGUCCCUGCACUAGCAGGCAUUCAGACAUCCCAGCAUCCCAGCGCUGGCAGGCAUGCCUGAAACAUUGCACAUGGUACAUAAUUCACAGUAUCCCCUUCAUGAUUUCCAUUGUAACCAUACAAUGGCAGCCAAUACAUUUCUCAAGUACCCACUCAUCUGUACAGCAGCACGCACCUUCACUCAUGCUGCCAAUCCAGGGCGUAUGCUAUAACCUAUAAAUGCUUUGGCAUGCACAAUUUGCUGGCAUUACAACUGUGUGGAUGCAGAUUAACUUGUAACCACAAAC Molner et al. cloned a number of additional minor products (cloned only once) from this hairpin precursor (not shown) [1]. 53 20200 MI0006233 cre-MIR1172 Chlamydomonas reinhardtii miR1172 stem-loop CAGUAGGAUCGGAGACGCAGUGAAGCCCCCUUGCUGCUGCGAUUCUUUCCGACUUACAACGUGCUCGUGGCGAGCACAUUGUAGGUGUAGAGGAUUGCAGCAGCAACGGGGCUCCGCUGAGUGUCCGAAUCUACUG 53 20201 MI0006234 cre-MIR1167 Chlamydomonas reinhardtii miR1167 stem-loop GAGCAUCAUGCAUCGUUACACCCCCCACCGUGCACCUUCACGCUCAUGCGCAGCACUGUGCAUGCUUGGGGUGUGAUGAUUUGAAACUU 53 20202 MI0006235 cre-MIR1144b Chlamydomonas reinhardtii miR1144b stem-loop GUGCAGCAGGCUUGGUACCGGGCACGCCGGAGGUGGGUAGUGUGGCGGCAGGCAGCAGGCCUCGCGGGGCUGCUGGUGGUGGUGGAGCAGGACGACCGGCGCCCGUCCUCCUCCUCCUCCAACAGCGGCCCCGCGCUGCCAGCUGCCCGCAGCACAAUCACCAACCCCCAGCGUACCCGGCUAAACACCGUGGGCCCACAGCAC 53 20203 MI0006236 cre-MIR1159 Chlamydomonas reinhardtii miR1159 stem-loop CGUCGACAAUCGGGCACUGUGGCAAACUGCGACAAUGCCAAUGGAGACGGAUGAGACCGUGUUAUUCCAGCAGCCGCGACUCCUGGAAUGGUCACGCGGCUGAGGCACCCUUGCUGGGUACCCCAGCCGAUGCCGAUGUUCCAGCCGCAGUCACGGCGGCAGCCACAGCACGGCCUCAUCCGUCUCCAUUGGCAUUGUACACCGUCUGCCACAGUGCCCGAUUGCCGCCG 53 20204 MI0006237 aga-mir-1174 Anopheles gambiae miR-1174 stem-loop GCUACGAUCGUGGGUAUUUUAGAUCAUCGACAGACCAAGGCACUUUCGUCACUGGCAUUGUAAGGCCGAGCAGAUGCGGCCUCAACCCAAACCCUCACCCGUGGUUCGCAUCUGCUCCCGUCCAGUGCCCUGUCCAACCAUACUGUCAGAUCUACUUCAUACCCAUGAAUGGUGGCG 19 20205 MI0006238 aga-mir-1175 Anopheles gambiae miR-1175 stem-loop GAUAUGGAAUAAGUGGAGUAGUGGUCUCAUCGCUUAGCUUCAGAAAAGUGAGAUUCUACUUCUCCGACUUAAUUCAUAUC 19 20206 MI0006239 aga-mir-34 Anopheles gambiae miR-34 stem-loop GAGGCAAUAUACGCUCUGGCAGUGUGGUUAGCUGGUUGUGUGGUUUUCCCAUCUUCACAGCCACUAUCCGCCCUGCCGUCGCGCUAAUGC 19 20207 MI0006240 aga-mir-12 Anopheles gambiae miR-12 stem-loop CCGGGGUGAGUAUUACAUCAGGUACUGGUGUGUAAUUUAAACGACCAUCGGACAUGGGGGCUGCCCAACUCCUCUUCUGUCCCCGGUCAAGCUAUCAGUACUUGUGUUAUACUCUCC 19 20208 MI0006241 aga-mir-996 Anopheles gambiae miR-996 stem-loop GUAGGCGUGCAUGUUUUCUAGUACACGUUUUCAGUUAAAGUUUCGUGACUAGAUUACAUGCUCGUCUAU 19 20209 MI0006242 aga-mir-989 Anopheles gambiae miR-989 stem-loop GGACAGUACAGUGGCCACGGGGGUACGCCGCUACGUUGCUUUCACUUGGUACGCUCGUAUAGUAUAGAGCUAAAAGUAAACAUAGAUCCAUGUGAUGUGACGUAGUGGUACCCUCCCGUGUCUAUCACAAC 19 20210 MI0006243 aga-mir-306 Anopheles gambiae miR-306 stem-loop UCACAUGGUCAGGUACUGGAUGACUCUCAGUUGUGUGUAAAAGAUGCUGAGGGCCUUCUGGUACCUACCCCAGUGA 19 20211 MI0006244 ddi-mir-1176 Dictyostelium discoideum miR-1176 stem-loop CCCAAAGUCGUAUCAGGUGGCCAAUUUUUAUCAAGGAAAGCUGUAUCAUCAAGUGCCUCCCUCUGUCUCUUGAUGAUUCAGCCUUCCUUGACAAAAAUUGCCCACCUGAUACGACUGGGA 63 20212 MI0006245 ddi-mir-1177 Dictyostelium discoideum miR-1177 stem-loop AUCACCAAAUAAACUAAACCAGUUAGGGUUUAAUGGUUCUAUCUCAAUUGUUUUUUUUUGGAUCCCAAAUUUAAUCUAUUUUAAUUUAAAAAAUGAUUAUUUGUUAUCCAGGAAAAAUAACUGGAAAAGAACCGUUGAGCCCUUUCUGAUUUAUUAAUUAUUUGAUGAC 63 20213 MI0006246 mcmv-mir-m01-1 Mouse cytomegalovirus miR-m01-1 stem-loop CAAGAGGAGAAUAACGUCGAACGGUGAUUAAUCAUAGUUCUGUCAGACUUUAUUCUCUUCUCU 64 20214 MI0006247 mcmv-mir-m01-2 Mouse cytomegalovirus miR-m01-2 stem-loop GGAUGAAGAGAAUCGGGUUGGAACGGUGUUUCUUAAGUACGAGCUACCGUUCGACACGGUUUCCUUCGACU 64 20215 MI0006248 mcmv-mir-m01-3 Mouse cytomegalovirus miR-m01-3 stem-loop AGCGGUGAAGCGACUGUUGCCUCGAAACAUACGGCGGCGCUCGAGGAACGCUCGCUUCACGGCUC 64 20216 MI0006249 mcmv-mir-m01-4 Mouse cytomegalovirus miR-m01-4 stem-loop GAUUCCUAUGCUAACACGUGCGCGUGACACUACAUGUCUCUCGCGCCGCGUGGUAGCAUUAGAACC 64 20217 MI0006250 mcmv-mir-m21-1 Mouse cytomegalovirus miR-m21-1 stem-loop CCCCCGCUUGACCGAGGCCCCCAUCGUGCACACGCAGUAAACUACCACCGAUAGGGGACACGUUCAAGCCGGGG 64 20218 MI0006251 mcmv-mir-m22-1 Mouse cytomegalovirus miR-m22-1 stem-loop CUGGCCUCGGGCCGACGCAGGAGCCCGUUCACAAUACACACGGUUCCCCGUCCGUACCGAGGCCAGAC 64 20219 MI0006252 mcmv-mir-M23-1 Mouse cytomegalovirus miR-M23-1 stem-loop CUGGCCUCGGUACGGACGGGGAACCGUGUGUAUUGUGAACGGGCUCCUGCGUCGGCCCGAGGCCAG 64 20220 MI0006253 mcmv-mir-M23-2 Mouse cytomegalovirus miR-M23-2 stem-loop CCCCGGCUUGAACGUGUCCCCUAUCGGUGGUAGUUUACUGCGUGUGCACGAUGGGGGCCUCGGUCAAGCGGGG 64 20221 MI0006254 mcmv-mir-M44-1 Mouse cytomegalovirus miR-M44-1 stem-loop ACGACCGCGAGCUCCGGAGAAGGAAACUGUCGCUCCGAUCGUAUCUUUUUCCAGAGCCGCGGUCGU 64 20222 MI0006255 mcmv-mir-M55-1 Mouse cytomegalovirus miR-M55-1 stem-loop CCUGGUGAUCGGCGUGCUAGCCGUCGUGUAUCUCAUCUUCACGAGGCAGCGGUCGGCCGCCGCGAGG 64 20223 MI0006256 mcmv-mir-m59-1 Mouse cytomegalovirus miR-m59-1 stem-loop CUGUCGGCCGAGGCACUGCUCCUUUUGAGCGGUAGUGCAAAAUUUAGCAGUGCCUCGACCGUCAG 64 20224 MI0006257 mcmv-mir-m59-2 Mouse cytomegalovirus miR-m59-2 stem-loop UCCCGAAGAGCCCUCACAGAGCCUAAGUGUCCAUCGGACUUAGCCGCUGUCGGCCUCGGAAA 64 20225 MI0006258 mcmv-mir-M87-1 Mouse cytomegalovirus miR-M87-1 stem-loop CCGAGGCAGCCGUCGGCAGCGGCAGCGGCAGCGUUGAGGGCGCCGUCGCCGGCGGCACCUCUGG 64 20226 MI0006259 mcmv-mir-m88-1 Mouse cytomegalovirus miR-m88-1 stem-loop AUGACCGACCCCCUGACAUCGGCGGCGCGAGAUUUUUAUGCCGCAGAAGUCGAUGUCGGGGUCUCGGUCGU 64 20227 MI0006260 mcmv-mir-M95-1 Mouse cytomegalovirus miR-M95-1 stem-loop ACGGUCGUGGGCUUGUGUCGCUUGUUUGCAAUUUCAUCAUAGCGACGUCGGACCGCGACGGCGA 64 20228 MI0006261 mcmv-mir-m107-1 Mouse cytomegalovirus miR-m107-1 stem-loop CGACCGGUCACUCGUCUCGAGUCACCGUCCGUAGCGACUCGGUGCUCGCGUCGAGUGACCGCUCG 64 20229 MI0006262 mcmv-mir-m108-1 Mouse cytomegalovirus miR-m108-1 stem-loop CGUUCACGAGCAACCGCCCGAAAUGUGGGUCUUCCGCCUCGUUACGCACGUGUAAGUAUACGGCGUACGGAGCUCCGUUCGUUUCUGACGGUGGCUCGUGUCGAG 64 20230 MI0006263 mcmv-mir-m108-2 Mouse cytomegalovirus miR-m108-2 stem-loop GAUCACUCGUCGCGAGCGGUCACUCGACGCGAGCACCGAGUCGCUACGGACGGUGACUCGAGACGAGUGACCGGUCGACGAGCGUC Buck et al [1] and Dolken et al [2] cloned alternative offset mature miRNA sequences from the 5' arm of this hairpin precursor, named mir-m108-2-5p.1 and .2 here. 64 20231 MI0006264 xtr-mir-31b Xenopus tropicalis miR-31b stem-loop GUAACCACUAGGCAAGAUGCUGGCAAGCUAAUUACCUUUUACCUGGCUUUCCAUCUCAGUCUAGCAGCAUUAUUGG 43 20232 MI0006265 xtr-mir-146b Xenopus tropicalis miR-146b stem-loop CCAAUGGCAGGGCCCGGCUCUGAGAACUGAAUUCCAUGGACUGUUCCACUCACAGCACCCUCAGUCCACAGUGUUCAGUGCUCCAGUCUGGCUGCCACUA 43 20233 MI0006266 xtr-mir-320 Xenopus tropicalis miR-320 stem-loop UUCCCCCCUGCUAAGCAAUUAUGCCAAUCAACUUAGUGCAAUCACACGCUACAGUUGAUUGUAAUAAAGGAAAAGCUGGGUUGAGAGGUGACAUGAUUUGCUGGAGGUAUAAAGUUACUG 43 20234 MI0006267 xtr-mir-375 Xenopus tropicalis miR-375 stem-loop CCUGACGCCGAGCCUGACGUGCAAUGCUUUGUGUCAACGUUUUGUUCGUUCGGCUCGCGUUAAGCAGGUG 43 20235 MI0006268 xtr-mir-427-1 Xenopus tropicalis miR-427-1 stem-loop AGCACCCAAAACGGGGCUCUCUCUUGUGUAUGAAUUAUGGUGAGAAAGUGCUUUCUGUUUUGGGCGUUGU 43 20236 MI0006269 xtr-mir-427-2 Xenopus tropicalis miR-427-2 stem-loop AGCACCCAAAACGGGGCUCUCUCUUGUGUAUGAAUUAUGGUGAGAAAGUGCUUUCUGUUUUGGGCGUUGU 43 20237 MI0006270 xtr-mir-427-3 Xenopus tropicalis miR-427-3 stem-loop AGCACCCAAAACGGGGCUCUCUCUUGUGCAUGAAUUAUGGUGAGAAAGUGCUUUCUGUUUUGGGCGUUGU 43 20238 MI0006271 hsa-mir-1178 Homo sapiens miR-1178 stem-loop GCGUUGGCUGGCAGAGGAAGGGAAGGGUCCAGGGUCAGCUGAGCAUGCCCUCAGGUUGCUCACUGUUCUUCCCUAGAAUGUCAGGUGAUGU 5 20239 MI0006272 hsa-mir-1179 Homo sapiens miR-1179 stem-loop GGCUGGAAAGGAAGAAGCAUUCUUUCAUUGGUUGGUGUGUAUUGCCUUGUCAACCAAUAAGAGGAUGCCAUUUAUCCUUUUCUGACUAGCU 5 20240 MI0006273 hsa-mir-1180 Homo sapiens miR-1180 stem-loop GCUGCUGGACCCACCCGGCCGGGAAUAGUGCUCCUGGUUGUUUCCGGCUCGCGUGGGUGUGUCGGCGGC 5 20241 MI0006274 hsa-mir-1181 Homo sapiens miR-1181 stem-loop UCCACUGCUGCCGCCGUCGCCGCCACCCGAGCCGGAGCGGGCUGGGCCGCCAAGGCAAGAUGGUGGACUACAGCGUGUGGG 5 20242 MI0006275 hsa-mir-1182 Homo sapiens miR-1182 stem-loop GGGACUUGUCACUGCCUGUCUCCUCCCUCUCCAGCAGCGACUGGAUUCUGGAGUCCAUCUAGAGGGUCUUGGGAGGGAUGUGACUGUUGGGAAGCCC 5 20243 MI0006276 hsa-mir-1183 Homo sapiens miR-1183 stem-loop AUUAUUCAAAUGCUCGGAGACACAGAACAUUAGAGAAGACAGGAGUUCACUGUAGGUGAUGGUGAGAGUGGGCAUGGAGCAGGAGUGCC 5 20244 MI0006277 hsa-mir-1184 Homo sapiens miR-1184 stem-loop CUUGCAGAACGAGGUGAAGGAGGUGGUUCUGCUCAGCAGUCAACAGUGGCCACAUCUCCACCUGCAGCGACUUGAUGGCUUCCGUGUCCUUUUCGUGGG 5 20245 MI0006278 mmu-mir-466l Mus musculus miR-466l stem-loop CUAUGUAUGUGCAUGUGUGUUUGUGUGUACAUGUACAUGUAUAUAUAUAUUGAUAUACAUAUAAAUACAUGCACACAUAUUCAUGCAUGCACACGCACACAUUAAUGGCACUCUUAGAUCC 6 20246 MI0006279 mmu-mir-669k Mus musculus miR-669k stem-loop UCUUAUGCCCACCAAAAAUGUGCAUGUGUGUAUAGUUGUGUGCAUAUUCACUUCUCUAUAUGAAUAUGCAUAUACACGCAUGCAAACACAUUCAUAGGAAUGGCCAGAGCUAUAUCUCAGUUAGGAG 6 20247 MI0006280 mmu-mir-669g Mus musculus miR-669g stem-loop CAUGUGUGCUUACUUGUAUGUGCAUUGUAUGUGUUGACAUGAUAUACAUAACAUAAACACACGUGUAUCUGCAAGCACACACACACAGGAAAAAUUGCAUUCAUUUAUACGUUUGAAUGAUAU 6 20248 MI0006281 mmu-mir-669d Mus musculus miR-669d stem-loop CAGCCCGGGAUUUGUGUGUUGCUUGCUCUAUAUGUGUGUAUACUUGUGUGUGCAUGUAUAUGUGUGUAUAUGAAUAUACAUAUACAUACACACCCAUAUACACACGCAUGCAUGCACACAC 6 20249 MI0006282 mmu-mir-466i Mus musculus miR-466i stem-loop AGAGAUCAUGUCAGUGAACUGCCACAUUUUUGAUAUAUAUUAUGUAUGUAUGUGUGUGUGUGUGUGUGUGUGUAUAUAUAUACACACACACAUACACACUACAUGUAUGCAACAUAUAUAC 6 20250 MI0006283 mmu-mir-1-2-as Mus musculus miR-1-2-as stem-loop UUCCUUUAGCUUCUUCUUGGCGGACAUUACCUACCCAAAAUACAUACUUCUUUACAUUCCAUAGCACUGAAUGUUCAUAUGGGUACAUAAAGAAGUAUGUGCUCUGAGUAGGCACUCCUGCG Calabrese et al. report the detection of mature products from the antisense strand of mouse mir-1-2, at lower abundance than sense miR-1 [1]. 6 20251 MI0006284 mmu-mir-1186 Mus musculus miR-1186 stem-loop UCCACCUGUCUCUGCCUCCCGAGUGCUGGAAUUAAAGGCAUGCACCACCACUGCCCGGCAGGUUCUGUUAUUUCUGAGUGUGAGAAAUAUAUGGGGAAAAGUCUUCAUGGUGAGUCCAAAGG 6 20252 MI0006285 mmu-mir-1187 Mus musculus miR-1187 stem-loop UCAUAUAGUAUUAAACCGAACUGUUUUCCUUAUAGACACAAUUUAUUUUUACACACACACACACACACAUAUAUAUAUAUAUGUGUGUGUGUAUGUGUGUAAAUAACAAUGUUAAAAUAGUA 6 20253 MI0006286 mmu-mir-669j Mus musculus miR-669j stem-loop AGCAUGCGAUUCAUGUGAUGUCCACCAAGAAUGUGCAUGUGUGUAUAGUUGUGUACAUAUUCACUUUUGUAUAUGAAUAUGCAUAUACUCACAUGCAAACAUACUCCCACGAAUGGCCCGA 6 20254 MI0006287 mmu-mir-669f Mus musculus miR-669f stem-loop UGUAUGUGCCUGUGUGUAUAGUUGUGUGUGCAUGUGCAUGUGUGUAUAUGAAUAUACAUAUACAUACACACACACGUAUAAACGCAAGCACAAACACACACAGAGGAAUGGCACUCGUUGA 6 20255 MI0006288 mmu-mir-669i Mus musculus miR-669i stem-loop AUGUGAUGCCCACCAAUAAUGUGCAUGUGUGUAUAGUUGUGUGCAUAUUCAUUUCUCUAUAUGACUAUGCAUAUACACACAUGCAUACAAACUCACAUACAGGAAUGACAGUCAUAUAUCCUUUUGA 6 20256 MI0006289 mmu-mir-669h Mus musculus miR-669h stem-loop UGUGAUGCCCACCAAAAAUAUGCAUGGGUGUAUAGUUGAGUGCAUAUUCAUUUCUCUAUAUGAAUAUGCAUAUACACACAUGCACACACACACACACUCACACACAGGAAUGACACUCGUUUAUC 6 20257 MI0006290 mmu-mir-1188 Mus musculus miR-1188 stem-loop AUACUCACAGUCUCCCAGCUGGUGUGAGGUUGGGCCAGGAUGAAACCCAAGGCUCUCCGAGGCUCCCCACCACACCCUGCUGCUGAAGACUGCCUAGCAAGGCUGUGCCGAGUGGUGUGG 6 20258 MI0006291 mmu-mir-466f-4 Mus musculus miR-466f-4 stem-loop CAUCUGCAUCUGUGUGUCUACGUGUGUGUGCAUGUGCAUGUGUGUGUAUCUGUAUGUGAGUGUGUGCAUGCAUGUGUGUGCAUCUAUAUCUGUGUGUCUACUUGUGUGUGAAUGUGCAUAU 6 20259 MI0006292 mmu-mir-466k Mus musculus miR-466k stem-loop AUAUAUGUGUGUGUGUGUGUGUGUGUGUACAUGUACAUGUGAGUAUGUGUGUGUAUAUGUUUGUACAUGUGCAUGUGUGUGAGUAUGUGAAUAUAUGUGUAUAUGUGUGCAUGUGCAUGUGU 6 20260 MI0006293 mmu-mir-467f Mus musculus miR-467f stem-loop ACGGCUACAUAGAGAAAUCCUGUACCCAGAAAUCGAACGGGGGUGGGUGUGUGUGUAGGUGUGUGUGUGUGUAUGUAUGUAUAUACACACACACACCUACACACAGCUUUUUUGGAAUUU 6 20261 MI0006294 mmu-mir-1190 Mus musculus miR-1190 stem-loop GCUGACACUCUGAGAGUGUUGGUGAGCUCUGGGGCCUUUGCAGACGUGGGAAGGUCUCUGCUGGCCUGAUGCUUCCCCCGUCAGCUGAGGUUCCCCUCUGUCUGGGAUGCUGCCUUGAGUC 6 20262 MI0006295 mmu-mir-466j Mus musculus miR-466j stem-loop GUGUGUGUGUGUGUGCAUUCGUGUGUUUGUGCAUGUGUGUAUGUGUGCACAUUUAUGUGUGUGCAUGUGUAUGUAUGUGUGUGUGCAUGUGCAUGUGUGUAAUUGUGUAUAUAUGUGCAUAC 6 20263 MI0006296 mmu-mir-1191 Mus musculus miR-1191 stem-loop UGGAACCAGCCUGGUCUACAUAGCAACAUCUAAGCCAGCCAGGGCUACAUAGUGAGAACCUGCCUCAAAAGCAAAACAGCAGUCUUACUAUGUAGCCCUAGAUGGCCUAGAACUCCCUAU 6 20264 MI0006297 mmu-mir-1192 Mus musculus miR-1192 stem-loop CCUUCCAAACAGUAAAAACAAACAAACAAACAGACCAAAUUUGUCAUUGUUGUUUCGAUUUGCUCUUUUUGUUUGUUUGCUUUUGUGUUUUGAGACAGGGUCUGGCUUGUAUAGCUCAUGC 6 20265 MI0006298 mmu-mir-1193 Mus musculus miR-1193 stem-loop CUGAAGGGACAAUGAUGCCCACUGUUCUCGGGGUAGCUGUGUGGAUGGUAGACCGGUGACGUACACUUCAUUUAUGCUGUAGGUCACCCGUUUUACUAUCCACCAACACCCAGACCAUCUG 6 20266 MI0006299 mmu-mir-1194 Mus musculus miR-1194 stem-loop ACACCUUCUGCUGGAGACAAUAUAAGGACAUUGGAAGAAGGGAGUCUAGCUCUUGCUCCUUUGCCUGCUUGCUGCGUGAGAAUGAGUAACUGCUAGAUCCUUGGACUUCCAUUCACAGCUG 6 20267 MI0006300 mmu-mir-669e Mus musculus miR-669e stem-loop GCCUGGGAUUCAUGGGCUGUACCCUAUAUAUGGGCAGGUGUGUGUCUUGUGUGUGCAUGUUCAUUUGUGUAUAUGAAUAUGAAUAUACACACACUUACACACUCAUGCACACACACACA 6 20268 MI0006301 mmu-mir-467g Mus musculus miR-467g stem-loop GUCUUGUGCAUGCAUAUAUAUAUAUGUGUGUGUGUAUAUAUAUAUACAUAUAUAUACAUACAUACACAUGUAUAUGUAUAUAUACAUACACACACAUAUAUAUAUUCAUGUAUAUAUAUA 6 20269 MI0006302 mmu-mir-467h Mus musculus miR-467h stem-loop UUUUCACUUUUGUUUUUCUCAUGUAUAUGUGUAUGUGUGCGGUGUACAUAAUUAUAUCUAUGUGUGCAUGUAUGUGGACAUAAGUGUGUGCAUGUAUAUGUGUGUGUGUGGUGUACAUAAU 6 20270 MI0006303 mmu-mir-1195 Mus musculus miR-1195 stem-loop UAGAGGCAGGCAGAUCUCUGUGAGUUCGAGGCCAGCCUGCUCAACAGAAUGAGUUCUAGGGCAGCCAGGAACACACAGAGAAACCCUGUCUCAAGAAGGUAAAAAGUAAAAAAAAAAAAAAAA 6 20271 MI0006304 mmu-mir-1196 Mus musculus miR-1196 stem-loop UGCUGGUCUUGAACUCACAGAAAUCUACCUGCCUCUGCCUUCCAAGUACUGGGCAGUGUGCCACCAAAACCCUACAUUUUUGCUGGGCUGGGGGUGAGGGUGGUUUUUUUUUUUUUAAA 6 20272 MI0006305 mmu-mir-1197 Mus musculus miR-1197 stem-loop GUGAGCUGGAAUCAGCCAGCGUUACCUCAAGGUAUUUGAAGAUGCGGUUGACCAUGGUGUGUACGCUUUAUUUAUGACGUAGGACACAUGGUCUACUUCUUCUCAAUAUCACAUCUCGCC 6 20273 MI0006306 mmu-mir-1198 Mus musculus miR-1198 stem-loop UUUUUUUUCUUUUGUUUAUUUUGUUUGUGACAGUUGUCUGUUAUGUGUUCCUGGCUGGCUUGGUACUCAUGUGUAGCCCAAGCUAGCCUCUAACUCAUGGCAGUCAUCCUGUCUCAGUCUC 6 20274 MI0006307 mmu-mir-1199 Mus musculus miR-1199 stem-loop AGCCUGCGCCGGAGCCGGGGUCUGAGUCCCGGUCGCGCGGGCGAGGAACUCAUUGAGUUGCGCGUGCGGCCGGUGCUCAGUCGGCCCGGCUCCGGUACUCCGCUGCCGCGCGCCCUGGA 6 20275 MI0006308 cpa-MIR162a Carica papaya miR162a stem-loop AGGGUAAAGUCACUGGAGGCAGCGGUUCAUCGAUCUCUUCCUGGGAAUUUGGUGUGAAAAAUCACAGAACAUGAAUCGAUCGAUAAACCUCUGCAUCCAGCGUUACCCC cpa-MIR162a was identified within a 2699 bp putative pri-miRNA isolated from a Carica papaya root cDNA library (accession EF512306). 65 20276 MI0006309 ptr-mir-1224 Pan troglodytes miR-1224 stem-loop GUGAGGACUCGGGAGGUGGAGGGUGGUGCCGCCGGGGCCGGGCGCUGUUUCAGCUCGCUUCUCCCCCCACCUCCUCUCUCCUCAG 37 20277 MI0006310 mml-mir-1224 Macaca mulatta miR-1224 stem-loop GUGAGGACUCGGGAGGUGGAGGGUGGCGCCGCCGGGGCCAGGCGCUGUCUAAGCUCGCUUCUCCCCCCACCUCCUCUCUCCUCAG 32 20278 MI0006311 hsa-mir-1225 Homo sapiens miR-1225 stem-loop GUGGGUACGGCCCAGUGGGGGGGAGAGGGACACGCCCUGGGCUCUGCCCAGGGUGCAGCCGGACUGACUGAGCCCCUGUGCCGCCCCCAG 5 20279 MI0006312 mml-mir-1225 Macaca mulatta miR-1225 stem-loop GUGGGUACGGCCCAGUGGGGGGGAGAGGGACACGCCCUGGGCUCUGCCCAGGGUGCAGCCGGACUGACUGAGCCCCUGUGCCGCCCCCAG 32 20280 MI0006313 hsa-mir-1226 Homo sapiens miR-1226 stem-loop GUGAGGGCAUGCAGGCCUGGAUGGGGCAGCUGGGAUGGUCCAAAAGGGUGGCCUCACCAGCCCUGUGUUCCCUAG 5 20281 MI0006314 ptr-mir-1226 Pan troglodytes miR-1226 stem-loop GUGAGGGCAUGCAGGCCUGGAUGGGGCAGCUGGGAUGGUCCAAAAGGGUGGCCUCACCAGCCCUGUGUUCCCUAG 37 20282 MI0006315 mml-mir-1226 Macaca mulatta miR-1226 stem-loop GUGAGGGCAUGCAGGCCUGGAUGGGGCAGCUGGGAUGGUCCAAAAGGGUGGCCUCACCAGCCCUGUGUUCCCUAG 32 20283 MI0006316 hsa-mir-1227 Homo sapiens miR-1227 stem-loop GUGGGGCCAGGCGGUGGUGGGCACUGCUGGGGUGGGCACAGCAGCCAUGCAGAGCGGGCAUUUGACCCCGUGCCACCCUUUUCCCCAG 5 20284 MI0006317 mml-mir-1227 Macaca mulatta miR-1227 stem-loop GUGGGGCCAGGCGGUGGUGGGCACCGCUGGGGUGGGCACAGCAGCCAUGCAGAGCAGGCAGCUGACCCCGUGCCAUCCUCUUCCCCAG 32 20285 MI0006318 hsa-mir-1228 Homo sapiens miR-1228 stem-loop GUGGGCGGGGGCAGGUGUGUGGUGGGUGGUGGCCUGCGGUGAGCAGGGCCCUCACACCUGCCUCGCCCCCCAG 5 20286 MI0006319 hsa-mir-1229 Homo sapiens miR-1229 stem-loop GUGGGUAGGGUUUGGGGGAGAGCGUGGGCUGGGGUUCAGGGACACCCUCUCACCACUGCCCUCCCACAG 5 20287 MI0006320 mml-mir-1230 Macaca mulatta miR-1230 stem-loop GUGGGUGGGGGCAUCUCGGAGGAGGUGGGGGGUGUGGCGCCCAGCGGAUGACUCCGAGCGGCUCCUUUCCCAG 32 20288 MI0006321 hsa-mir-1231 Homo sapiens miR-1231 stem-loop GUCAGUGUCUGGGCGGACAGCUGCAGGAAAGGGAAGACCAAGGCUUGCUGUCUGUCCAGUCUGCCACCCUACCCUGUCUGUUCUUGCCACAG 5 20289 MI0006322 mml-mir-1232 Macaca mulatta miR-1232 stem-loop GUGGGGUGGCGGCGACAUGGCGGGGGCGGCGGGCCCUGCGGAGGCUGUGCGCCUGACCCCGACCACCCCGCAG 32 20290 MI0006323 hsa-mir-1233 Homo sapiens miR-1233 stem-loop GUGAGUGGGAGGCCAGGGCACGGCAGGGGGAGCUGCAGGGCUAUGGGAGGGGCCCCAGCGUCUGAGCCCUGUCCUCCCGCAG 5 20291 MI0006324 hsa-mir-1234 Homo sapiens miR-1234 stem-loop GUGAGUGUGGGGUGGCUGGGGGGGGGGGGGGGGGGCCGGGGACGGCUUGGGCCUGCCUAGUCGGCCUGACCACCCACCCCACAG 5 20292 MI0006325 mml-mir-1235 Macaca mulatta miR-1235 stem-loop GUGGGCCUGGGUCGGUGGGGACGGGGCGGCUGGGCGUGCCCUGCGGCCGCUGCUCUAACCGCACCGUCCCCCAG 32 20293 MI0006326 hsa-mir-1236 Homo sapiens miR-1236 stem-loop GUGAGUGACAGGGGAAAUGGGGAUGGACUGGAAGUGGGCAGCAUGGAGCUGACCUUCAUCAUGGCUUGGCCAACAUAAUGCCUCUUCCCCUUGUCUCUCCAG 5 20294 MI0006327 hsa-mir-1237 Homo sapiens miR-1237 stem-loop GUGGGAGGGCCCAGGCGCGGGCAGGGGUGGGGGUGGCAGAGCGCUGUCCCGGGGGCGGGGCCGAAGCGCGGCGACCGUAACUCCUUCUGCUCCGUCCCCCAG 5 20295 MI0006328 hsa-mir-1238 Homo sapiens miR-1238 stem-loop GUGAGUGGGAGCCCCAGUGUGUGGUUGGGGCCAUGGCGGGUGGGCAGCCCAGCCUCUGAGCCUUCCUCGUCUGUCUGCCCCAG 5 20296 MI0006329 mml-mir-1239 Macaca mulatta miR-1239 stem-loop GUGGGUGGGCAGGUGGGUGGGAAGCCCUGGGACGCUGCCUCCUCUCUCCUGGGGCCUCUCUCGGGCUGGGGGCUGGUCUCAGUUUCCCCAUUCUGCCUGGCCUAG 32 20297 MI0006330 mml-mir-1240 Macaca mulatta miR-1240 stem-loop GUGGGCCAGGGCCGCGGGGGGGAGCAAGCCAUCUAGCAUUCCUGGGAAACGCUUACAUCUCACCAUGACCCUGAUCCCACUAG 32 20298 MI0006331 mml-mir-1241 Macaca mulatta miR-1241 stem-loop GUGAGGGGGCUGGCAUGGCGAGGAGGCGCCAGAGAAGCCAUAGUGUGGGGAUGGGCUGCACACUCACCUCUCUGUGCCUUCCAG 32 20299 MI0006332 hsa-mir-1200 Homo sapiens miR-1200 stem-loop UGCUACUUCUCCUGAGCCAUUCUGAGCCUCAAUCACUUGCCAGAGAGAUUGGUUCAGGAAUUUGUCAGGGAUAGCC 5 20300 MI0006333 hsa-mir-1201 Homo sapiens miR-1201 stem-loop UUUACAGUUUGCCAUGAUGAAAUGCAUGUUAAGUCCGUGUUUCAGCUGAUCAGCCUGAUUAAACACAUGCUCUGAGCAGACUAAA 5 20301 MI0006334 hsa-mir-1202 Homo sapiens miR-1202 stem-loop CCUGCUGCAGAGGUGCCAGCUGCAGUGGGGGAGGCACUGCCAGGGCUGCCCACUCUGCUUAGCCAGCAGGUGCCAAGAACAGG 5 20302 MI0006335 hsa-mir-1203 Homo sapiens miR-1203 stem-loop UCCUCCCCGGAGCCAGGAUGCAGCUCAAGCCACAGCAGGGUGUUUAGCGCUCUUCAGUGGCUCCAGAUUGUGGCGCUGGUGCAGG 5 20303 MI0006336 hsa-mir-663b Homo sapiens miR-663b stem-loop GGUGCCGAGGGCCGUCCGGCAUCCUAGGCGGGUCGCUGCGGUACCUCCCUCCUGUCUGUGGCGGUGGGAUCCCGUGGCCGUGUUUUCCUGGUGGCCCGGCCGUGCCUGAGGUUUC 5 20304 MI0006337 hsa-mir-1204 Homo sapiens miR-1204 stem-loop ACCUCGUGGCCUGGUCUCCAUUAUUUGAGAUGAGUUACAUCUUGGAGGUGAGGACGUGCCUCGUGAU 5 20305 MI0006338 hsa-mir-1205 Homo sapiens miR-1205 stem-loop GAAGGCCUCUGCAGGGUUUGCUUUGAGGUACUUCCUUCCUGUCAACCCUGUUCUGGAGUCUGU 5 20306 MI0006339 hsa-mir-1206 Homo sapiens miR-1206 stem-loop CAGUGUUCAUGUAGAUGUUUAAGCUCUUGCAGUAGGUUUUUGCAAGCUAGUGAACGCUG 5 20307 MI0006340 hsa-mir-1207 Homo sapiens miR-1207 stem-loop GCAGGGCUGGCAGGGAGGCUGGGAGGGGCUGGCUGGGUCUGGUAGUGGGCAUCAGCUGGCCCUCAUUUCUUAAGACAGCACUUCUGU 5 20308 MI0006341 hsa-mir-1208 Homo sapiens miR-1208 stem-loop CACCGGCAGAAUCACUGUUCAGACAGGCGGAGACGGGUCUUUCUCGCCCUCUGAUGAGUCACCACUGUGGUGG 5 20309 MI0006342 rno-mir-146b Rattus norvegicus miR-146b stem-loop UGGCCACCUGGCCCUGAGAACUGAAUUCCAUAGGCUGUGAACUCUAGCAGAUGCCCUAGGGACUCAGUUCUGGUGCCUGGCUGUGCUA 8 20310 MI0006343 rno-mir-551b Rattus norvegicus miR-551b stem-loop GUGCUCUUGUGGCCCAUGAAAUCAAGCUUGGGUGAGACCUGGUACAGAACAGGAAGGCGACCCAUACUUGGUUUCAGUGGCUGCAAGAAUGGCUCUAU 8 20311 MI0006344 hsa-mir-548e Homo sapiens miR-548e stem-loop UUAUUAGGUUGGUACAAAAGCAAUCGCGGUUUUUGCUAUUACUUUUAAAGGCAAAAACUGAGACUACUUUUGCACCAACCUGAUAGAA 5 20312 MI0006345 hsa-mir-548j Homo sapiens miR-548j stem-loop GGGCAGCCAGUGAAUAGUUAGCUGGUGCAAAAGUAAUUGCGGUCUUUGGUAUUACUUUCAGUGGCAAAAACUGCAUUACUUUUGCACCAGCCUACUAGAACGCUGAGUUCAG 5 20313 MI0006346 hsa-mir-1285-1 Homo sapiens miR-1285-1 stem-loop UGUAGAGAUAGGAUCUCACUUUGUUGCCCAGGCUGGUCUCAAACUCCUGGUCUGGGCAACAAAGUGAGACCUUAUCUCUACAAG 5 20314 MI0006347 hsa-mir-1285-2 Homo sapiens miR-1285-2 stem-loop UUUGGGAGGCCGAGGCUGGUGCAUCACUUGAGCCCAGCAAUUUGAGACCAAUCUGGGCAACAAAGUGAGACCUCCGUCUCUACAAAGA 5 20315 MI0006348 hsa-mir-1286 Homo sapiens miR-1286 stem-loop UGUCCUCUGGGGACUCAGCUUGCUCUGGCUGCUGGAUUGAAUUAGCUGCAGGACCAAGAUGAGCCCUUGGUGGAGACA 5 20316 MI0006349 hsa-mir-1287 Homo sapiens miR-1287 stem-loop GUUGUGCUGUCCAGGUGCUGGAUCAGUGGUUCGAGUCUGAGCCUUUAAAAGCCACUCUAGCCACAGAUGCAGUGAUUGGAGCCAUGACAA 5 20317 MI0006350 hsa-mir-1289-1 Homo sapiens miR-1289-1 stem-loop UUCUCAAUUUUUAGUAGGAAUUAAAAACAAAACUGGUAAAUGCAGACUCUUGGUUUCCACCCCCAGAGAAUCCCUAAACCGGGGGUGGAGUCCAGGAAUCUGCAUUUUAGAAAGUACCCAGGGUGAUUCUGAUAAUUGGGAACA 5 20318 MI0006351 hsa-mir-1289-2 Homo sapiens miR-1289-2 stem-loop CCACGGUCCUAGUUAAAAAGGCACAUUCCUAGACCCUGCCUCAGAACUACUGAACAGAGUCACUGGGUGUGGAGUCCAGGAAUCUGCAUUUUUACCCCUAUCGCCCCCGCC 5 20319 MI0006352 hsa-mir-1290 Homo sapiens miR-1290 stem-loop GAGCGUCACGUUGACACUCAAAAAGUUUCAGAUUUUGGAACAUUUCGGAUUUUGGAUUUUUGGAUCAGGGAUGCUCAA 5 20320 MI0006353 hsa-mir-1291 Homo sapiens miR-1291 stem-loop GGUAGAAUUCCAGUGGCCCUGACUGAAGACCAGCAGUUGUACUGUGGCUGUUGGUUUCAAGCAGAGGCCUAAAGGACUGUCUUCCUG 5 20321 MI0006354 hsa-mir-548k Homo sapiens miR-548k stem-loop CUUUUCUCAAGUAUUGCUGUUAGGUUGGUGCAAAAGUACUUGCGGAUUUUGCUUUACUUUUAAUGGCAAAAACCGCAAUUAUUUUUGCUUCAACCUAAUAUGAUGCAAAAUUGGCU 5 20322 MI0006355 hsa-mir-1293 Homo sapiens miR-1293 stem-loop AGGUUGUUCUGGGUGGUCUGGAGAUUUGUGCAGCUUGUACCUGCACAAAUCUCCGGACCACUUAGUCUUUA 5 20323 MI0006356 hsa-mir-1294 Homo sapiens miR-1294 stem-loop CACCUAAUGUGUGCCAAGAUCUGUUCAUUUAUGAUCUCACCGAGUCCUGUGAGGUUGGCAUUGUUGUCUGGCAUUGUCUGAUAUACAACAGUGCCAACCUCACAGGACUCAGUGAGGUGAAACUGAGGAUUAGGAAGGUGUA 5 20324 MI0006357 hsa-mir-1295 Homo sapiens miR-1295 stem-loop AGGACAUUUUGCCCAGAUCCGUGGCCUAUUCAGAAAUGUGGCCUGUGAUUAGGCCGCAGAUCUGGGUGAAAUGUCCUCC 5 20325 MI0006358 hsa-mir-1297 Homo sapiens miR-1297 stem-loop UGUUUAUCUCUAGGGUUGAUCUAUUAGAAUUACUUAUCUGAGCCAAAGUAAUUCAAGUAAUUCAGGUGUAGUGAAAC 5 20326 MI0006359 hsa-mir-1299 Homo sapiens miR-1299 stem-loop CCUCAUGGCAGUGUUCUGGAAUCCUACGUGAGGGACAAUCAUUCAGACCCACGUAGCAGUGUUCUGGAAUUCUGUGUGAGGGA 5 20327 MI0006360 hsa-mir-1300 Homo sapiens miR-1300 stem-loop CCACCACUGCUGGCCAUCUGAUCUACAAAUGCAGUGGCAUUGACAAAAGAACCAUUGAAAAUUUGAGAAGGAGGCUGCUGAGAUGGGA 5 20328 MI0006361 hsa-mir-548l Homo sapiens miR-548l stem-loop UAUUAGGUUGGUGCAAAAGUAUUUGCGGGUUUUGUCGUAGAAAGUAAUGGCAAAAACUGCAGUUACUUGUGCACCAACCAAAUGCU 5 20329 MI0006362 hsa-mir-1302-1 Homo sapiens miR-1302-1 stem-loop CAGAAAGCCCAGUUAAAUUUGAAUUUCAAGUAAACAAUGAAUAAUUGUGUAUGUAAGAAUAUCCCAUACAAUAUUUGGGACAUACUUAUGCUAAAAAUUAUUCCUUGCUUAUCUGAAAUUCAAAUGUAACUAGGAUUCCUGUA 5 20330 MI0006363 hsa-mir-1302-2 Homo sapiens miR-1302-2 stem-loop GGAUGCCCAGCUAGUUUGAAUUUUAGAUAAACAACGAAUAAUUUCGUAGCAUAAAUAUGUCCCAAGCUUAGUUUGGGACAUACUUAUGCUAAAAAACAUUAUUGGUUGUUUAUCUGAGAUUCAGAAUUAAGCAUUUUA 5 20331 MI0006364 hsa-mir-1302-3 Homo sapiens miR-1302-3 stem-loop GGAUGCCCAGCUAGUUUGAAUUUUAGAUAAACAACGAAUAAUUUCGUAGCAUAAAUAUUUCCCAAGCUUAGUUUGGGACAUACUUAUGCUAAAAAACAUUAUUGGUUGUUUAUCUGAGAUUCAAAAUUAAGCAUUUUA 5 20332 MI0006365 hsa-mir-1302-4 Homo sapiens miR-1302-4 stem-loop AAUGCAGAAGCACAGCUAAAAUUUGAAUUUCAGAUAAACAAAUUUUUCUUAGAAUAAGUAUGUCUCCAUGCAACAUUUGGGACAUACUUAUGCUAAAAUAUUAUUUGUGUUUCAUCUGAAAUUCAAAUUCAACUGGACAUCCUGUAUUUU 5 20333 MI0006366 hsa-mir-1302-5 Homo sapiens miR-1302-5 stem-loop UGCCCGGCCUCCCAUUAAAUUGGUUUUUCAGACAAAUCACAAAUUUGUUUAGGUAUAAGUAUAUCCCAUGUAAUCUUUGGGACAUACUUAUGCUAAAAUAAUUGUUCCUUGUUGAUUGGAAAUUUUAAUUUUAAUUAGGUGUCCUGUAUU 5 20334 MI0006367 hsa-mir-1302-6 Homo sapiens miR-1302-6 stem-loop AACAAAUAAUUUGGUAAUAUAUGUAUGGCCCACACAAUAUUUAGGACAACAAUAUUUGGGACAUACUUAUGCUAAAAAAGUAUUUGUUGA 5 20335 MI0006368 hsa-mir-1302-7 Homo sapiens miR-1302-7 stem-loop ACAACAUGUUUUUAGGACAUGUAUGUCUGGUGCAAUAAUUGGGACAUACUUAUGCUAAAAAAAUUAGUGUUC 5 20336 MI0006369 hsa-mir-1302-8 Homo sapiens miR-1302-8 stem-loop CCCAUUUAAACUUGAAUUUCAUAUAAACACCGUAAUUUUCAGCAUUAGUGUAUCACAUGCAGUAUUUGGGACAUACUUAUGCUAAAAAAUUAGGUGGUGUUGAUCUGAAAUUCCAGUGUAGAUGGGCA 5 20337 MI0006370 hsa-mir-1303 Homo sapiens miR-1303 stem-loop GGCUGGGCAACAUAGCGAGACCUCAACUCUACAAUUUUUUUUUUUUUAAAUUUUAGAGACGGGGUCUUGCUCUGUUGCCAGGCUUU 5 20338 MI0006371 hsa-mir-1304 Homo sapiens miR-1304 stem-loop AAACACUUGAGCCCAGCGGUUUGAGGCUACAGUGAGAUGUGAUCCUGCCACAUCUCACUGUAGCCUCGAACCCCUGGGCUCAAGUGAUUCA 5 20339 MI0006372 hsa-mir-1305 Homo sapiens miR-1305 stem-loop AAGAUCCUGCUGUUUCUACCAUUAGUUUUGAAUGUUUAUUGUAAAGAUACUUUUCAACUCUAAUGGGAGAGACAGCAGGAUUCUCC 5 20340 MI0006373 hsa-mir-1243 Homo sapiens miR-1243 stem-loop CUAAAACUGGAUCAAUUAUAGGAGUGAAAUAAAGGUCCAUCUCCUGCCUAUUUAUUACUUUGCUUUGGUAAUAAAUCUAUUUUUAAAAGAACC 5 20341 MI0006374 hsa-mir-548f-1 Homo sapiens miR-548f-1 stem-loop AUUAGGUUGGUGCAAAAGUAAUCACAGUUUUUGACAUUACUUUCAAAGACAAAAACUGUAAUUACUUUUGGACCAACCUAAUAG 5 20342 MI0006375 hsa-mir-548f-2 Homo sapiens miR-548f-2 stem-loop UAAUAACUAUUAGGUUGGUGCGAACAUAAUUGCAGUUUUUAUCAUUACUUUUAAUGGCAAAAACUGUAAUUACUUUUGCACCAACCUAAUAUUUUAGU 5 20343 MI0006376 hsa-mir-548f-3 Homo sapiens miR-548f-3 stem-loop AUUAGGUUGGUGCAAACCUAAUUGCAAUUUUUGCAGUUUUUUUAAGUAAUUGCAAAAACUGUAAUUACUUUUGCACCAACCUAAUAC 5 20344 MI0006377 hsa-mir-548f-4 Homo sapiens miR-548f-4 stem-loop GAGUUCUAACGUAUUAGGUUGGUGCAAAAGUAAUAGUGGUUUUUGCCAUUAAAAGUAAUGACAAAAACUGUAAUUACUUUUGGAACAAUAUUAAUAGAAUUUCAG 5 20345 MI0006378 hsa-mir-548f-5 Homo sapiens miR-548f-5 stem-loop UAUUAGGUUGCUGCAAAAGUAAUCAUGUUUUUUUCCAUUGUAAGUAAUGGGAAAAACUGUAAUUACUUUUGUACCAACCUAAUAGC 5 20346 MI0006379 hsa-mir-1244 Homo sapiens miR-1244 stem-loop AUCUUAUUCCGAGCAUUCCAGUAACUUUUUUGUGUAUGUACUUAGCUGUACUAUAAGUAGUUGGUUUGUAUGAGAUGGUUAAAAA 5 20347 MI0006380 hsa-mir-1245 Homo sapiens miR-1245 stem-loop AUUUAUGUAUAGGCCUUUAGAUCAUCUGAUGUUGAAUACUCUUUAAGUGAUCUAAAGGCCUACAUAUAAA 5 20348 MI0006381 hsa-mir-1246 Homo sapiens miR-1246 stem-loop UGUAUCCUUGAAUGGAUUUUUGGAGCAGGAGUGGACACCUGACCCAAAGGAAAUCAAUCCAUAGGCUAGCAAU 5 20349 MI0006382 hsa-mir-1247 Homo sapiens miR-1247 stem-loop CCGCUUGCCUCGCCCAGCGCAGCCCCGGCCGCUGGGCGCACCCGUCCCGUUCGUCCCCGGACGUUGCUCUCUACCCCGGGAACGUCGAGACUGGAGCGCCCGAACUGAGCCACCUUCGCGGACCCCGAGAGCGGCG 5 20350 MI0006383 hsa-mir-1248 Homo sapiens miR-1248 stem-loop UUUACCUUCUUGUAUAAGCACUGUGCUAAAAUUGCAGACACUAGGACCAUGUCUUGGUUUUUGCAAUAAUGCUAGCAGAGUACACACAAGAAGAAAAGUAACAGCA 5 20351 MI0006384 hsa-mir-1249 Homo sapiens miR-1249 stem-loop GGGAGGAGGGAGGAGAUGGGCCAAGUUCCCUCUGGCUGGAACGCCCUUCCCCCCCUUCUUCACCUG 5 20352 MI0006385 hsa-mir-1250 Homo sapiens miR-1250 stem-loop CUGUCCCGCUGGCCUGGCAGGUGACGGUGCUGGAUGUGGCCUUUUUGCCUUUUCUAAAGGCCACAUUUUCCAGCCCAUUCAACCUUCCAGAGCCCUCUGAAGUGGCCACAGGC 5 20353 MI0006386 hsa-mir-1251 Homo sapiens miR-1251 stem-loop GUGGACUCUAGCUGCCAAAGGCGCUUCUCCUUCUGAACAGAGCGCUUUGCUCAGCCAGUGUAGACAUGGC 5 20354 MI0006387 hsa-mir-1253 Homo sapiens miR-1253 stem-loop AGCAGCAAGAGAUAGAAUCCAAAAGAGAAGAAGAUCAGCCUGCAGAUGUGGACUGCUAAAUGCAGGCUGAUCUUCUCCCCUUUGGGAUUCUCUUAUGAGAAGCCA 5 20355 MI0006388 hsa-mir-1254 Homo sapiens miR-1254 stem-loop GGUGGGAGGAUUGCUUGAGCCUGGAAGCUGGAGCCUGCAGUGAACUAUCAUUGUGCCACUGUACUCCAGCCUAGGCAACAAAAUGAAAUCCUGUCUA 5 20356 MI0006389 hsa-mir-1255a Homo sapiens miR-1255a stem-loop AUUGGAAAUCCUUUGAGUUGCUUCUCAAGGAUGAGCAAAGAAAGUAGAUUUUUUAGAUUCUAAAGAAACUAUCUUCUUUGCUCAUCCUUGAGAAGCAACUCCUUAUCCAUUAA 5 20357 MI0006390 hsa-mir-1256 Homo sapiens miR-1256 stem-loop AGUCAGCCUGUUGAAGCUUUGAAGCUUUGAUGCCAGGCAUUGACUUCUCACUAGCUGUGAAAGUCCUAGCUAAAGAGAAGUCAAUGCAUGACAUCUUGUUUCAAUAGAUGGCUGUUUCA 5 20358 MI0006391 hsa-mir-1257 Homo sapiens miR-1257 stem-loop GCCCUGGGCUUGUGCUUGGGGAGUGAAUGAUGGGUUCUGACCCCCAUGCACCCCUGUGGGCCCCUGGCAUCACUGGCCCCAUCCUUCACCCCUGCCAACCACGCUUGCCCUGUGCCU 5 20359 MI0006392 hsa-mir-1258 Homo sapiens miR-1258 stem-loop CUGUGGCUUCCACGACCUAAUCCUAACUCCUGCGAGUCCCUGGAGUUAGGAUUAGGUCGUGGAAGCCACAGGA 5 20360 MI0006393 hsa-mir-1259 Homo sapiens miR-1259 stem-loop GAACUUCCUGCUGGCAUAUAUGAUGACUUAGCUUUUUUCCCCGACAGAUCGACUAUGUUGAUCUAACUUUUCUAAGCCAGUUUCUGUCUGAUAUGCCAGCUUGAGCAGCUC 5 20361 MI0006394 hsa-mir-1260 Homo sapiens miR-1260 stem-loop ACCUUUCCAGCUCAUCCCACCUCUGCCACCAAAACACUCAUCGCGGGGUCAGAGGGAGUGCCAAAAAAGGUAA 5 20362 MI0006395 hsa-mir-548g Homo sapiens miR-548g stem-loop AGUUAUUAGAUUAGUGCAAAAGUAAUUGCAGUUUUUGCAUUACGUUCUAUGGCAAAACUGUAAUUACUUUUGUACCAACAUAAUACUUC 5 20363 MI0006396 hsa-mir-1261 Homo sapiens miR-1261 stem-loop UGCUAUGGAUAAGGCUUUGGCUUAUGGGGAUAUUGUGGUUGAUCUGUUCUAUCCAGAUGACUGAAACUUUCUCCAUAGCAGC 5 20364 MI0006397 hsa-mir-1262 Homo sapiens miR-1262 stem-loop AUCUACAAUGGUGAUGGGUGAAUUUGUAGAAGGAUGAAAGUCAAAGAAUCCUUCUGGGAACUAAUUUUUGGCCUUCAACAAGAAUUGUGAUAU 5 20365 MI0006398 hsa-mir-1263 Homo sapiens miR-1263 stem-loop CUACCCCAAAAUAUGGUACCCUGGCAUACUGAGUAUUUUAAUACUGGCAUACUCAGUAUGCCAUGUUGCCAUAUUUUGGGGUAGCA 5 20366 MI0006399 hsa-mir-548n Homo sapiens miR-548n stem-loop AGGUUGGUGCAAAAGUAAUUGUGGAUUUUGUCGUUAAAAAUAGCAAAACCCGCAAUUACUUUUGCACCAACCUAA 5 20367 MI0006400 hsa-mir-548m Homo sapiens miR-548m stem-loop AUAUUAGGUUGGUGCAAAGGUAUUUGUGGUUUUUGUCAUUAAAGUAAUGCAAAAGCCACAAAUACCUUUGCACCAACCUAAUAUUA 5 20368 MI0006401 hsa-mir-1265 Homo sapiens miR-1265 stem-loop AUGGUUUGGGACUCAGGAUGUGGUCAAGUGUUGUUAAGGCAUGUUCAGGAACAAUACUUGACCACAUUUUGAAUUCCAAACCAUAU 5 20369 MI0006402 hsa-mir-548o Homo sapiens miR-548o stem-loop UGGUGAAAAUGUGUUGAUUGUAAUGGUUCCUAUUCUGAUCAAUAAACAUGGUUUGAGCCUAGUUACAAUGAUCUAAAAUUCACGGUCCAAAACUGCAGUUACUUUUGCACCAAC 5 20370 MI0006403 hsa-mir-1266 Homo sapiens miR-1266 stem-loop ACAGGUAGUGUCCCUCAGGGCUGUAGAACAGGGCUGGGAUUACUAAAGCCCUGUUCUAUGCCCUGAGGGACACUGAGCAUGUCA 5 20371 MI0006404 hsa-mir-1267 Homo sapiens miR-1267 stem-loop CUCCCAAAUCUCCUGUUGAAGUGUAAUCCCCACCUCCAGCAUUGGGGAUUACAUUUCAACAUGAGAUUUGGAUGAGGA 5 20372 MI0006405 hsa-mir-1268 Homo sapiens miR-1268 stem-loop UAGCCGGGCGUGGUGGUGGGGGCCUGUGGUCCCAGCUACUUUGGAGGCUGAG 5 20373 MI0006406 hsa-mir-1269 Homo sapiens miR-1269 stem-loop UGGAUUGCCUAGACCAGGGAAGCCAGUUGGCAUGGCUCAGUCCAAGUCUGACCACCUGAGGAAUGCCUGGACUGAGCCGUGCUACUGGCUUCCCUGGUCUCCAGC 5 20374 MI0006407 hsa-mir-1270 Homo sapiens miR-1270 stem-loop CACAGAGUUAUACUGGAGAUAUGGAAGAGCUGUGUUGGGUAUAAGUAACAGGCUUUUCUUUAUCUUCUAUGUGGCUCUUUGCA 5 20375 MI0006408 hsa-mir-1272 Homo sapiens miR-1272 stem-loop CCAGAUCAGAUCUGGGUGCGAUGAUGAUGGCAGCAAAUUCUGAAAACGUGCUCAGUGUCUUUAUAACAGGAAAGCCGUAAACUUAGAAAUGUAGGCUGCAGCUCGUGUGCUCUGUGGUCUGGGCUGGUA 5 20376 MI0006409 hsa-mir-1273 Homo sapiens miR-1273 stem-loop UGAGGCAGGAGAAUUGCUUGAACCCGGGUGGUGGAGGUUGCAGUGAGCCAAGAUUGCGCCACUGCACUCCAGCCUGGGCGACAAAGCAAGACUCUUUCUUGGA 5 20377 MI0006410 hsa-mir-1274a Homo sapiens miR-1274a stem-loop GAUGUCCCUGUUUGUCCCUGUUCAGGCGCCACCUGUGGCUGUCUGCCACAAGUACUAUUUGAGACCAUCAC 5 20378 MI0006411 hsa-mir-548h-1 Homo sapiens miR-548h-1 stem-loop UCUGUCCAUUAGGUGGGUGCAAAAGUAAUCGCGGUUUUUGUCAUUACUUUUAAUGGUAAAAACUGGAAUUACUUUUGCACUGACCUAAUAUUAAGCCAGAUA 5 20379 MI0006412 hsa-mir-548h-2 Homo sapiens miR-548h-2 stem-loop GUAUUAGGUUGGUGCAAAAGUAAUCGCGGUUUUUGUCAUUACUUUCAAUGGCAAACACCACAAUUACUUUUGCACCAACCUAAUAUAA 5 20380 MI0006413 hsa-mir-548h-3 Homo sapiens miR-548h-3 stem-loop UCUGAUUCUGCAUGUAUUAGGUUGGUGCAAAAGUAAUCGCGGUUUUUGUCAUUGAAAGUAAUAGCAAAAACUGCAAUUACUUUUGCACCAACCUAAAAGUAGUCACUGUCUUCAGAUA 5 20381 MI0006414 hsa-mir-548h-4 Homo sapiens miR-548h-4 stem-loop GCUAUUAGGUUGGUGCAAAAGUAAUCGCGGUUUUUGUCAUUACUUUAAUUACUUUACGUUUCAUUAAUGACAAAAACCGCAAUUACUUUUGCACCAACCUAAUACUUGCUA 5 20382 MI0006415 hsa-mir-1275 Homo sapiens miR-1275 stem-loop CCUCUGUGAGAAAGGGUGUGGGGGAGAGGCUGUCUUGUGUCUGUAAGUAUGCCAAACUUAUUUUCCCCAAGGCAGAGGGA 5 20383 MI0006416 hsa-mir-1276 Homo sapiens miR-1276 stem-loop CCCCAGCUAGGUAAAGAGCCCUGUGGAGACACCUGGAUUCAGAGAACAUGUCUCCACUGAGCACUUGGGCCUUGAUGGCGGCU 5 20384 MI0006417 hsa-mir-302e Homo sapiens miR-302e stem-loop UUGGGUAAGUGCUUCCAUGCUUCAGUUUCCUUACUGGUAAGAUGGAUGUAGUAAUAGCACCUACCUUAUAGA 5 20385 MI0006418 hsa-mir-302f Homo sapiens miR-302f stem-loop UCUGUGUAAACCUGGCAAUUUUCACUUAAUUGCUUCCAUGUUUAUAAAAGA 5 20386 MI0006419 hsa-mir-1277 Homo sapiens miR-1277 stem-loop ACCUCCCAAAUAUAUAUAUAUAUGUACGUAUGUGUAUAUAAAUGUAUACGUAGAUAUAUAUGUAUUUUUGGUGGGUUU 5 20387 MI0006420 hsa-mir-548p Homo sapiens miR-548p stem-loop AUUAGGUUGGUAUAAAAUUAAUUGCAGUUUUUGUCAUUACUUUCAAUAGCAAAAACUGCAGUUACUUUUGCACCAAUGUAAUAC 5 20388 MI0006421 hsa-mir-548i-1 Homo sapiens miR-548i-1 stem-loop CAGAUGGCUCUGAAGUUUGCACCCUAUUAGGUUGGUGCAAAAGUAAUUGCGGAUUUUGCCAUUAAAAGUAAUGGCAAAAAUAGCAAUUAUUUUUGUACCAGCCUAGUAUCUUUUCUCCUUCUACCAAACUUUGUCCCUGAGCCAUCUCA 5 20389 MI0006422 hsa-mir-548i-2 Homo sapiens miR-548i-2 stem-loop UAGAUGGCUCCGAAGUUUGCAUCCUAUUAGUUUGGUGCAAAAGUAAUUGCGGAUUUUGCCAUUAAAAGUAAUGGCAAAAAUAGCAAUUAUUUUUGUACCAGCCUAGUAUCUUUUCUCCUUCUAACAAAGUUCGUCCCUGAUCCAUCUCA 5 20390 MI0006423 hsa-mir-548i-3 Homo sapiens miR-548i-3 stem-loop CAGAUGGCUCCGAAGUUUACAUCCUAUUAGGUUUGUGCAAAAGUAAUUGCGGAUUUUGCCAUUAAAAGUAAUGGCAAAAAUAGCAAUUAUUUUUGUACCAGCCUAGUAUCUUUUCUCCUUCUACCAAACUUUGUCCCUGAGCCAUCUCA 5 20391 MI0006424 hsa-mir-548i-4 Homo sapiens miR-548i-4 stem-loop AGGUUGGUGCAAAAGUAAUUGCGGAUUUUGCCAUACUUUUAACGGCAAAAACCACAAAUAUUAUUGCACCAACCUAU 5 20392 MI0006425 hsa-mir-1278 Homo sapiens miR-1278 stem-loop AUUUGCUCAUAGAUGAUAUGCAUAGUACUCCCAGAACUCAUUAAGUUGGUAGUACUGUGCAUAUCAUCUAUGAGCGAAUAG 5 20393 MI0006426 hsa-mir-1279 Homo sapiens miR-1279 stem-loop AUAUUCACAAAAAUUCAUAUUGCUUCUUUCUAAUGCCAAGAAAGAAGAGUAUAAGAACUUCC 5 20394 MI0006427 hsa-mir-1274b Homo sapiens miR-1274b stem-loop CUUCUUCACUCACGUCCCUGUUCGGGCGCCACUUGUGGCUGUCGGUUCGGGACUGAAUGAAGAAGGA 5 20395 MI0006428 hsa-mir-1281 Homo sapiens miR-1281 stem-loop AGGGGGCACCGGGAGGAGGUGAGUGUCUCUUGUCGCCUCCUCCUCUCCCCCCUU 5 20396 MI0006429 hsa-mir-1282 Homo sapiens miR-1282 stem-loop CCUUCUUCUCGUUUGCCUUUUUCUGCUUCUGCUGCAUGAUCUCCGAGUCCCUGGGGGUAGAGAUGAUGGGGCACUGGGAGGUACCAGAGGGCAAAAAGGAC 5 20397 MI0006430 hsa-mir-1283-2 Homo sapiens miR-1283-2 stem-loop CUCAAGCUGUGAGUCUACAAAGGAAAGCGCUUUCUGUUGUCUGAAAGAAAAGAAAUCGCUUCCCUUUGGAGUGUUACGGUUUGAGAA 5 20398 MI0006431 hsa-mir-1284 Homo sapiens miR-1284 stem-loop AUUUUGAUAUAUAAGCCAGUUUAAUGUUUUCUAUACAGACCCUGGCUUUUCUUAAAUUUUAUAUAUUGGAAAGCCCAUGUUUGUAUUGGAAACUGCUGGUUUCUUUCAUACUGAAAAUCU 5 20399 MI0006432 hsa-mir-1288 Homo sapiens miR-1288 stem-loop GAGGGUGUUGAUCAGCAGAUCAGGACUGUAACUCACCAUAGUGGUGGACUGCCCUGAUCUGGAGACCACUGCCUU 5 20400 MI0006433 hsa-mir-1292 Homo sapiens miR-1292 stem-loop CCUGGGAACGGGUUCCGGCAGACGCUGAGGUUGCGUUGACGCUCGCGCCCCGGCUCCCGUUCCAGG 5 20401 MI0006434 hsa-mir-1252 Homo sapiens miR-1252 stem-loop AGAAAGAAGGAAAUUGAAUUCAUUUAGAAAAGAGAAUUCCAAAUGAGCUUAAUUUCCUUUUUUCU 5 20402 MI0006435 hsa-mir-1255b-1 Homo sapiens miR-1255b-1 stem-loop UACGGAUGAGCAAAGAAAGUGGUUUCUUAAAAUGGAAUCUACUCUUUGUGAAGAUGCUGUGAA 5 20403 MI0006436 hsa-mir-1255b-2 Homo sapiens miR-1255b-2 stem-loop UCUUACGGAUGAGCAAAGAAAGUGGUUUGCGCCUCAAGAAACCACUUUCUUUGCUCAUCCAUAAGGA 5 20404 MI0006437 hsa-mir-1280 Homo sapiens miR-1280 stem-loop UCUGUCCCACCGCUGCCACCCUCCCCUCUGCCUCAGUGUGCCAGGCAUCAGCACUCACUCACAGAGGCAGGCUGGAUGGCGGGUGGGACAACAG 5 20405 MI0006438 bol-MIR824 Brassica oleracea miR824 stem-loop CCUCGAGUUGUCUUUCAUGUCUAGACCAUUUGUGAGAAGGGAUUUUUUGUUUGCACCGUUCACCCCACUUUCAAUCUGUAGUGAGUAUUAAGGAAAAUAGCUUGUUCAACAUAUCACACUACUCUUUUAGAAACAAUACUAUAUUUUAGAUGCUUUUCCAGCUUGAUAUACGUUGUUUUGUUAUGUAUAUCUGUAUUAUCCCGGCUACCAAAACGUUAAGAAAUAAGGUGAACAUCCUAAAACCUGCAUCCAAUUAGAAAGGUCUAGGUCACAGAUAUUACUUGUUAUCUCUUGAUUAAGCUAUUUUAUUUCUAUCAGCAUGAUCAGAUCAUUCAGGAGUUAAGUAUAAACUAAAAUACAUUAAGUCCAUUCAUGACAUUUCUGGAUGCUGCAUACAUAAUAUUUUCCUUGUUUUUGGACUAUGCCACACUUCGGACAGACAUUUUGCCUAAGAGAUGUCAAACCUCUGUCUGGAGUGUUAGAGGUAUUUCAUGAUAGCUAAGAACUUGAAUCUUGCACUACUUAGCUACACUAGAUUACUUCAUAGUAAAUAACUUGGGGAGUGGGGGAAGGUGCUGGGNUAUUAUUCCCUUCUCAUCGAUGGUCUAGAUGUGCGAGGUGACUCUCAUUGAGG 68 20406 MI0006439 bra-MIR824 Brassica rapa miR824 stem-loop CCUCGAGUUGUCUUUCAUGUCUAGACCAUUUGUGAGAAGGGAUUUUUUGUUUGCACCGUUCACCCCACUCUCAAUCUGUAGUGAGUAUUAAGGAAAAUAGCUUGUUCAACAUAUCACACUACUCUUUUAGAAACAAAACUAUAUUUUAGAUGCUUUUCCAGCUUGAUAUACGUUGUUUUGUUAUGUAUACCUGUAUUCUCCCGGCUACCAAAACGUUAAGAAAUAAGGUGAACAUCUCCCCAAAACCUGCAUCCAAUUAGAAAGGUCUAGGUCACAGCCAUUACUUGCUAUCUCUCGAUUAAGCUAUUUUAUUUCUAUCAUCAUCAUCAGAUCAUUCAGGAGUUAAGUAUAAAAUAAAAUACAUUAAGUCCAUUCAUGACAUUUCUGGAUGCUGCAUACAUAAUAUUUUGUUUUUGGACUAUGCCACACUUCGGACAGACAUUUUUCCUACGAGAUGUCAAACCUCUGUCUGGAGUGUUAGAGGUAUUUCAUGAUAGCUAAGAACUUGAAUCUUGCACUACUUAGCUACACUAGUUUACUUCAUAGUAAAUAACUUGGGGAGUGGGGAAGGUGCUGGGUUAUUAGUCCCUUCUCAUCGAUGGUCUAGAUGUGCGAGGUGACUCUCAUUGAGG 69 20407 MI0006440 bna-MIR824 Brassica napus miR824 stem-loop CCUCGAGUUGUCUUUCAUGUCUAGACCAUUUGUGAGAAGGGAUUUUUUGUUUGCACCGUUCACCCCACUCUCAAUCUGUAGUGAGUAUUAAGGAAAAUAGCUUGUUCAACAUAUCACACUACUCUUUUAGAAACAAAACUAUAUUUUAGAUGCUUUUCCAGCUUGAUAUACGUUGUUUUGUUAUGUAUACCUGUAUUCUCCCGGCUACCAAAACGUUAAGAAAUAAGGUGAACAUCUCCCCAAAACCUGCAUCCAAUUAGAAAGGUCUAGGUCACAGCCAUUACUUGCUAUCUCUCGAUUAAGCUAUUUUAUUUCUAUCAUCAUCAUCAGAUCAUUCAGGAGUUAAGUAUAAAAUAAAAUACAUUAAGUCCAUUCAUGACAUUUCUGGAUGCUGCAUACAUAAUAUUUUGUUUUUGGACUAUGCCACACUUCGGACAGACAUUUUUCCUACGAGAUGUCAAACCUCUGUCUGGAGUGUUAGAGGUAUUUCAUGAUAGCUAAGAACUUGAAUCUUGCACUACUUAGCUACACUAGUUUACUUCAUAGUAAAUAACUUGGGGAGUGGGGAAGGUGCUGGGUUAUUAGUCCCUUCUCAUCGAUGGUCUAGAUGUGCGAGGUGACUCUCAUUGAGG 57 20408 MI0006441 hsa-mir-1308 Homo sapiens miR-1308 stem-loop CCCCGCAUGGGUGGUUCAGUGGCAGAAUUCUCAAAUUGUAAUCCCCAUAAUCCC 5 20409 MI0006442 hsa-mir-664 Homo sapiens miR-664 stem-loop GAACAUUGAAACUGGCUAGGGAAAAUGAUUGGAUAGAAACUAUUAUUCUAUUCAUUUAUCCCCAGCCUACAAAAUGAAAAAA This miRNA sequence overlaps an annotated snoRNA, ACA38b. However, both miR and miR* sequences are identified in reference [1], and the sequence is homologous with rat mir-664. 5 20410 MI0006443 hsa-mir-1306 Homo sapiens miR-1306 stem-loop GUGAGCAGUCUCCACCACCUCCCCUGCAAACGUCCAGUGGUGCAGAGGUAAUGGACGUUGGCUCUGGUGGUGAUGGACAGUCCGA 5 20411 MI0006444 hsa-mir-1307 Homo sapiens miR-1307 stem-loop CAUCAAGACCCAGCUGAGUCACUGUCACUGCCUACCAAUCUCGACCGGACCUCGACCGGCUCGUCUGUGUUGCCAAUCGACUCGGCGUGGCGUCGGUCGUGGUAGAUAGGCGGUCAUGCAUACGAAUUUUCAGCUCUUGUUCUGGUGAC 5 20412 MI0006445 bna-MIR397a Brassica napus miR397a stem-loop GAACAUCAUUGAGUGCAGCGUUGAUGUGAUUUACUUCUCUUUUUCAUUGUUGAAUGGAUUAAAGCAAUUUACAUCAACGUUGGCUCAAUUAUGUUU 57 20413 MI0006446 bna-MIR397b Brassica napus miR397b stem-loop GAACAUCAUUGAGUGCAGCGUUGAUGUGAUUUACUUAUCUUUUUCAUUGUUGAAUGGAUUAAAGCAAUUUACAUCAACGUUGGCUCAAUUAUGUUU 57 20414 MI0006447 bna-MIR390a Brassica napus miR390a stem-loop AUUUCAGGUGAUGUAGUUGAGAAGUAGCUGUAAAGCUCAGGAGGGAUAGCGCCAUGUCUCACCGGUACUAUAAAAUGUUUGUAUAUCUAUAUUGGCGCUAUCCAUCCUGAGUUCUAUGGCUUCUUCUUGCUUUUAUCCUGAGAU 57 20415 MI0006448 bna-MIR390b Brassica napus miR390b stem-loop GUAGAGAAGAAUCUGUAAAGCUCAGGAGGGAUAGCGCCAUCAUGAUCACACACAUCGAUAUUUUUGGCGCUGUCCAUCCUGAGUUUCAUUGGCUCUUCUUACUAC 57 20416 MI0006449 bna-MIR390c Brassica napus miR390c stem-loop GCGUAGUAGAGAAGUAGCUGUAAAGCUCAGGAGGGAUAGCGCCAUGACUCAUCACCAUUACUAUAUGUCUUUGUAUAUGUAAUGGCGCUAUCCAUCCUGAGUUCCAUGGCUUCUUCUUGCUUUUAUGU 57 20417 MI0006450 bna-MIR171a Brassica napus miR171a stem-loop UGGUCAAGCGAGAUAUUAGUGCGGUUCAAUCAAAUAGUCUCACUCUUAGUUGAUAGAGAUUGAUUUUGUUCGAUUGAGCCGUGCCAAUAUCACGCAUAUAACCA 57 20418 MI0006451 bna-MIR171b Brassica napus miR171b stem-loop GGUAACGCGAGAUAUUAGUGCGGUUCAAUCAAAUAGUCGUGUUCUCACUUGAUAGAGAUCGGUUUUGUUCGAUUGAGCCGUGCCAAUAUCACGCGUCAACC 57 20419 MI0006452 bna-MIR171c Brassica napus miR171c stem-loop GCGAGAUAUUAGUGCGGUUCAAUCAAAUAGUCGUACUCUUAGCUAUUAGAGAUCGGUUUUGUUCGAUUGAGCCGUGCCAAUAUCACGC 57 20420 MI0006453 bna-MIR171d Brassica napus miR171d stem-loop ACAAUGCGAGAUAUUGGUGCGGUUCAAUCAGAAAUCCACACUCUUUUGUUGUAGAGAUCGGUUUGUUUGAUUGAGCCGUGCCAAUAUCACGAGUGU 57 20421 MI0006454 bna-MIR171e Brassica napus miR171e stem-loop CAAUACGAGAUAUUGGUGUGGUUCAAUCAGAAAACCACACUCUUUUGUUGUAGAGAUCGGUUUGUUUGAUUGAGCCGUGCCAAUAUCACGAG 57 20422 MI0006455 bna-MIR171f Brassica napus miR171f stem-loop ACGAAAGAGUCCUCUUUGAUAUUGGCCUGGUUCACUCAGAUCUUCCAGAUUACACACGUACUAUAUACAUUCUCUCAGUUAUCUGAUUGAGCCGCGCCAAUAUCUCAGUGCUCUCUCGU 57 20423 MI0006456 bna-MIR171g Brassica napus miR171g stem-loop AGCACGAAAGAGUCCUCUUUGAUAUUGGCCUGGUUCACUCAGAUUACACACGUACUAUAUGCAUUCUCUUAGUUAUCUGAUUGAGCCGCGCCAAUAUCUCAGUGCUCUCUCGUCU 57 20424 MI0006457 bna-MIR169a Brassica napus miR169a stem-loop UGUGACCAAAGUAGUGUGCAGCCAAGGAUGACUUGCCGAUUUAAAAUAUCUGAUAAGUAUUUUAUUUCGUAUUUUAAAGAAAAAAAUCAUGAUCGGCAAGUUGUCCUUGGCUAUACGUUUCUUUGUGUCGCG 57 20425 MI0006458 bna-MIR169b Brassica napus miR169b stem-loop GUGACCAAAGUAGUGUGCAGCCAAGGAUGACUUGCCGAUUUGAAAUAUAUUUUUAAUACUUUACUAAGACAUCUUUUCAGUUUCAAAUUUGUCUUGGAGAGGCUAGGAAGAAAUUACAAUUUAUUUCGUAGUUUAAAGAAAAAAUAUGAUCGGCAAGUUUUCCUUGGCUACAUGUUUCUUUGUGUCGC 57 20426 MI0006459 bna-MIR169c Brassica napus miR169c stem-loop AGAUGAAUAGAAGAAUCAUAUUUGGUAGCCAAGGAUGACUUGCCUAUUUCUUGAGAGUAAAAUGGGCAUGGUGUCAUGUUAAAAGUUACUGUAGGUAGUUUCAAUUUGACCAUUUUCCUUACAAAUGAUAUUAGGCAGUCUCCUUGGCUAUCCUUAUAUGUUCUUCUCUCUCAUCU 57 20427 MI0006460 bna-MIR169d Brassica napus miR169d stem-loop GAAGGAGAUGUCAAAGAUGAAUAGGAGAUUUCUAUUUGGUAGCCAAGGAUGACUUGCCUACUUCUUUGCGAAGGAAAAUGGUCACGGUGUCAUGUUUGAAAGUGAAUAUACAUUUUUAAGAGUAUAUCAAUUAGUGACCAUUUUGCGUAUAAAAAGAUAUUAGGCAGUCUCCUUGGCUAUCCUUAUAUGUUCUUCUUUCUCAUCUCAGACAUUUACCUUC 57 20428 MI0006461 bna-MIR169e Brassica napus miR169e stem-loop GUUUCAGGCAGUCUCCUUGGCUAUCUUGACAUGCUUUUUUCUUCCAUGUUAUACCUUCUUUCUUUGUAUUUUUCGAAUCCAAAUAAUAUUUUUUUCUAUAAAUUUACUACGAAAAUCCUUUAAACAAUCUCUAACAAAGUAUGUUAUUAGAAAACUACCACUUUUUGCAUUUAUUACAAAUGCAUGUACGUGGUGAGUGUAUGCAUUCUUUAGAAGGAAAUGUCAAAGGUGAAUAGAAGAUCAUAUUUGGUAGCCAAGGAUGACUUGCCUAUUUCU 57 20429 MI0006462 bna-MIR169f Brassica napus miR169f stem-loop GUCAAAGAUGAAUAGGAGAAUUCUAUUUGGUAGCCAAGGAUGACUUGCCUACUUCUUUGCGAAGGAAAAUGGUCACGGUGUCAUGUUUGAAAGUGAAUAUAUAUUUAUAAGAGUAUAUCAAUUAGUGACCAUUUUGCGUAUAAAAAGAUAUUAGGCAGUCUCCUUGGCUAUCCUUAUAUGUUCUUCUUUCUCAUCUCAGAC 57 20430 MI0006463 bna-MIR169g Brassica napus miR169g stem-loop GAGAAACGGUGACAUGAAGAAUGAGAAGUUGUGUGGUAGCCAAGGAUGACUUGCCUGCGUCUUUAACACCAUAUCAAAGACUUUAUCGAUAGUCUCUGAGUUGGUUAGGCUGUAGGCAGUCUCCUUGGCUAUUCAGACACUCCUCUUUCUCCUCAUUUCACAUUUCUC 57 20431 MI0006464 bna-MIR169h Brassica napus miR169h stem-loop GAGAAAUGGUGACAUGAAGAAUGAGAAGUUGUGUGGUAGCCAAGGAUGACUUGCCUGCGUCUUAGACCAUAUCUAUCAAAGACUAAAAGAUUGAUAGUCUUCGAUGAAUUGGUUAAUCGGUAGGCAGUCUCCUCGGCUAUUCAGACAGUUCUCUUUCUCCUCAUUUCACAUUUCUC 57 20432 MI0006465 bna-MIR169i Brassica napus miR169i stem-loop AGAGUCAUGUUUAGUAGCCAAGGAUGACUUGCCUGCUCUUUUUCACCUCCAUGAUUCAAUUUUAUGUACAGUUUUGGAUUACUAUGCUUCUAAAGAGUAUAGUAAUUCAAAAUCUUGUUGAAUCUUUGAGGGUAACAGUUUCAGGCAGUCUCCUUGGCUAUCUUGACAUGCUUU 57 20433 MI0006466 bna-MIR169j Brassica napus miR169j stem-loop GUGUUUAGUAGCCAAGGAUGACUUGCCUGCUCUUGUUCACCUCCACGAUUCAACUUUAUACGUUGAAGGGUUUUGGAUUAUUGUGCAUUCAACAUGUAUAAUAAUUUGAAAUCAUGUUGAAUCUUUGUGGGUUAGGUUUCAGGCAGUCUCCUUGGCUAUUUUGACAU 57 20434 MI0006467 bna-MIR169k Brassica napus miR169k stem-loop AAACGGUGACAUGAAGAAUGAGAAGUUGUGUGGUAGCCAAGGAUGACUUGCCUGCGUCUUAACACCAUAUCACAGACUUUAUCGAUAGUCUCUGAGUUGGUUAGGCUGUAGGCAGUCUCCUCGGCUAUUCAGACACUCCUCUUUCUCCUCAUUUC 57 20435 MI0006468 bna-MIR169l Brassica napus miR169l stem-loop CAUGGCGAAAAGAGUCGUGUUUAGUAGCCAAGGAUGACUUGCCUGCUCUUGUUCACCUCCACGAUUCAACUUUAUACGUUGAAGGGUUUUGGAUUAUUGUGCAUUCAACAUGUAUAAUAAUUUGAAAUCAUGUUGAAUCUUUGUGGGUUAGGUUUCAGGCAGUCUCCUUGGCUAUUUUGACAUACUUUUUUCAUCCAUG 57 20436 MI0006469 bna-MIR169m Brassica napus miR169m stem-loop UAUAUGUAUCAGAGAGUCAUGCAUGGGAAAAUAGAGAAUGAUAAUGAGCCAAAGAUGACUUGCCGAUUUUACCAAAGAAUUUAAAACUGAUAAUGGUGACUGGCAAGUCGACUUUGGCUCUGUUUCCUUCUCUUCUUUUCGAUGUAAGACUCUAGAUAUCUAU 57 20437 MI0006470 bna-MIR168 Brassica napus miR168 stem-loop UUACGGCGGCCUCUGACUCGCUUGGUGCAGGUCGGGAACUGAUUGGCUGACACCGCCACGUGGCUUUCCAUGGUUGGCUUGUGAGCAGGGAUCGGAUCCCGCCUUGUAUCAAGUGAAUCCGAGUCCGACGUGA 57 20438 MI0006471 bna-MIR167a Brassica napus miR167a stem-loop GGUGUACAGGCAUCUGAUGAAGCUGCCAGCAUGAUCUAAUUAACUUUCUUUCUCUGUUGAUUUUAUGACAAUGGAAAAGAGAUGAGUGUCGAUUAGAUCAUGUUCGCAGUUUCACCCAUUGACUGUCGCACC 57 20439 MI0006472 bna-MIR167b Brassica napus miR167b stem-loop GGCGCACCGGCAUCUGAUGAAGCUGCCAGCAUGAUCUAAUUAUCUUUCUUUCUCUGUUGACGAUGGAAAAGACAUGAGUGUUGAUUAGAUCAUGUUCGCAGUUUCACCCGUUGACUGUCUCGCC 57 20440 MI0006473 bna-MIR167c Brassica napus miR167c stem-loop GGUGCACCGGCAUCUGAUGAAGCUGCCAGCAUGAUCUAGUUAACUUUAUUUCUCCGUUGUUUAUCCAUGACAAUGGAAAAGGGAUAAGUGUCGAUUAGAUCAUGUUCGUAGUUUCACCCGUUGACUGUCGCAUC 57 20441 MI0006474 bna-MIR166a Brassica napus miR166a stem-loop UUGAGGGAAUGUUGUUUGGCUCGAAGACUCUAGCUUAUCAUGUUAGAUCUUCUUCGAUUUAAUCGAAUCAAACCUCCAUGUUUGAGAUCUGAUUUAGGAUUUUAGGGUCGUCGGACCAGGCUUCAUUCCCCCCAA 57 20442 MI0006475 bna-MIR166b Brassica napus miR166b stem-loop AAGUUCAGGUGGAUGAUGCUUGGCUCGAGACCAUUCAAUAUGAUCAUUGUGAUGAUGAUGAUGAUGAUGAUAAUGAUAAUGAUAAUGAUGUCGGACCAGGCUUCAUUCCCCUCAACUU 57 20443 MI0006476 bna-MIR166c Brassica napus miR166c stem-loop GAGCCAAAAGUUCAGGUGGAUGAUGCUUGGCUCGAGACCAUUAAAUAUGAUCAUUGUGAUGUUGAUGAUGAUGAUGAUAAUGAUAAUGAUAGUCGGACCAGGCUUCAUUCCCCUCAACUUACACGUUU 57 20444 MI0006477 bna-MIR166d Brassica napus miR166d stem-loop GUGGUGCGGUUUAGGGCUGAGAGGACUGUUGUCUGGCUCGAGGUCAUGAAGAAUGAAACCUAAACCUAAAUGAUUCUCGGACCAGGCUUCAUUCCCCCCAGCCGUUUUAUCGCCAUAUAUAUGCCCAC 57 20445 MI0006478 bna-MIR164 Brassica napus miR164 stem-loop CCACGUUGGAGAAGCAGGGCACGUGCAAACCAACAAACACGAGAUCUAUCUCAUGUAAUUUGCACGUGCUCCACUCCUCCAACAUG 57 20446 MI0006479 bna-MIR161 Brassica napus miR161 stem-loop UUUAUUGCUUCGAUCAAUGCACUGAAAGUGACUACACCAGGAUUUGUUUUUAAGUUUUUGCUCUCAUCUAUAUGAUAAAGAUGAAAAUUAGCCUCUGAUGUAGUCACUUUCAAUGCGUUGAUCAUAGCAUGGAAA 57 20447 MI0006480 bna-MIR159 Brassica napus miR159 stem-loop GUAGGGCUCCUUAUAGUUCAAACGAGAGUUUAGCAGGGUAAAGAAAAGCUGCUAAGCUAUGAAUCCCAUAAGCCCUAAUCCUUAUAUAUAAAAAGGAUUUGGUUAUAUGGCUUACAUAUCUCAGGAGCUUUAACUUGCCCUUUAAUUGCUUUUACUCUUCUUUGGAUUGAAGGGAGCUCUACA 57 20448 MI0006481 bna-MIR156b Brassica napus miR156b stem-loop UAGGUUUGAGAGUGAUGCUGGUUGUUGACAGAAGAUAGAGAGCACUAAGGAUGACAUGCAAGUACAUAUGUAUGUAUCAUCACACCGCCUGUGGAUGAUUACAAAAAUAAAACCAAUUCAAAAGAGAGAGAGAGAGAGCCUGCAUGUCUACUCUUUCGUGCUCUCUAUACUUCUGUCACCACCAUUAUUUCUUCUUCUUUCUUACCUA 57 20449 MI0006482 bna-MIR1140a Brassica napus miR1140a stem-loop CUCAAUCUUUUAUAUGGCUCCGAUUGGCUUUAGGCUGUUGUGGCUUUGACUUCUUUCUAAAGUCUUCAAAAUUUAGUUUUUCACAAUCACGUUAAAUUUUUUUAAAAGUCACAGCCACAACAGCCUAAACCAAUCGGAGCCAUGGUGAUG 57 20450 MI0006483 bna-MIR1140b Brassica napus miR1140b stem-loop CUCAAUCUUUUAUAUGGCUCCGAUUGGCUUUAGGCUGUUGUGGCUUUGACUUCUUUCUAAAGUCUUCAAAAUUUAGUUUUUCACAAUCACGUUAAAUUUUUUUAAAAGUCACAGCCACAACAGCCUAAACCAAUCGGAGCCAUGGUGAUG 57 20451 MI0006484 bna-MIR156c Brassica napus miR156c stem-loop GGGAGUGAUGCAGGUUGUUGACAGAAGAUAGAGAGCACUAAGGAUGACAUGCAAGUACAAGGAUAUAAGGAAAUUCAAGAAAGAGAGGAAAAAAGAGCCUGCAUCUUUACUCUUUUGUGCUCUCUAUACUUCUGUCAAUACCAUUAUUUAUUCCU 57 20452 MI0006485 vvi-MIR156a Vitis vinifera miR156a stem-loop AGAAAUAUGUUGACAGAAGAGAGGGAGCACAACCCAGCAUCAGCUAAAGACUCUUUGCUUUUCUUGGGAGUGUGCUCUCUCUUCUUCUGUCAUCAUCACACUCC 70 20453 MI0006486 vvi-MIR156b Vitis vinifera miR156b stem-loop CAUUGAAAACUGACAGAAGAGAGUGAGCACACAGAGGCAAUUGUAUAAGUUUAUGCUUUUGCUUUUGCGUGCUCAUUUCUCUUUCUGUCAGCUUCCAGUGCC 70 20454 MI0006487 vvi-MIR156c Vitis vinifera miR156c stem-loop AAGGAAUAGGUGACAGAAGAGAGUGAGCACACAUGGUCUGUUCUUGCAUGGGUCCAUGCUUGAAGCUCUGCGUGCUCACUCUCUAUCUGUCAUCUGUCCUCUCU 70 20455 MI0006488 vvi-MIR156d Vitis vinifera miR156d stem-loop AGAGAGAGACUGACAGAAGAGAGUGAGCACAUGCAGGCAAUUUGUAUAAGGGUAUACCUAUGCCGGUGCGUGCUCACCUCUCUUUCUGUCAGCUUCAGGUGCU 70 20456 MI0006489 vvi-MIR156e Vitis vinifera miR156e stem-loop GUAUGGUAGGUGACAGAGGAGAGUGAGCACUCAUGGUUCUUUUCUUGCAUGAAGUUUCUAUGCUUGAAGCUCUGUGUGCUUACUCCCUAUCUGUCACCCCUCAAGCAU 70 20457 MI0006490 vvi-MIR156f Vitis vinifera miR156f stem-loop UUAUGUUCUGUUGACAGAAGAUAGAGAGCACAACUGAACAUACCCAAGAGGGCUUGUGUUUGAGCAGUCUUGUCCUCUCUCUUCUCCUGUCAACAGAACUUGCUG 70 20458 MI0006491 vvi-MIR156g Vitis vinifera miR156g stem-loop GGUGAUGUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGAUGUGCAUGGAGUUUGCAUCUCACUCCUUUGUGCUCUCUAGACUUCUGUCAUCACCUCAGCCCC 70 20459 MI0006492 vvi-MIR156i Vitis vinifera miR156i stem-loop GGUGACGUUGUUGACAGAAGAUAGAGAGCACAGAUGAUGAAAUGCAAGGAGCCAGCAUCUCACUCCUUUGUGCUCUCUAUUCUUCUGUCAUCACCUUAAGGCC 70 20460 MI0006493 vvi-MIR159a Vitis vinifera miR159a stem-loop GGGUUUAUGGGAGCUCCUUUACGCUCCAGUUCUGAAAGGAGAUGAUGGUAUCCACAGCUGCUGGUUCAUGAGUACCUAUGGCUGCACAAUAUAUAUAGCAAUGUUGUGUGCAAACUAUGGGUGUGCAUGACCUCGGAGAAGUGGUUGCCUUGAUCUUUCUGGCCUUGGAGUGAAGGGAGCUCUCAUAACCCUUC 70 20461 MI0006494 vvi-MIR159b Vitis vinifera miR159b stem-loop GGGCUUGUGGGAGCUUCUUUACACUCCAGAACUGAAAGGAGAUACUACUGCUGGUUCAUGAAAACCUAUGGCUGCAUUCUCUAUACUGAAAUUUUGUAUACAAACUAUGGGUUUGCAUGAACUUGGAGAAGUGUUUGCUUUUAUCUUUUCUGGCCUUGGAGUGAAGGGAGCUCUCAUAACCGAUC 70 20462 MI0006495 vvi-MIR159c Vitis vinifera miR159c stem-loop UUUUGGAGUGGAGCUCCUUGAAGUCCAAUAGAGGGUCUUACUGGGUAGAUUGAGCUGCUGACUUAUGGAUCCCACAGCCCUAUCCCGUCAAUGGGGGGCAUUGGAUAGGCUUGUGGCUUGCAUAUCUCAGGAGCUGCAUUAUCCAAGUUUAGAUCCUUGUUUGGAUUGAAGGGAGCUCUACACCUCUCUC 70 20463 MI0006496 vvi-MIR160a Vitis vinifera miR160a stem-loop GGGGUUGAUCUGCCUGGCUCCCUGAAUGCCAUCUAAGAAGCUUGUCAAGGUUGUUGACUCUCUUCCUAGUUGGCAUCAGAGGAGUCAUGCAGGCCCCAACAUU 70 20464 MI0006497 vvi-MIR160b Vitis vinifera miR160b stem-loop AAUAUUGUUCUGCCUGGCUCCCUGAAUGCCAUCUAAGAAGCUUGUUAAAGAGUGUUGACAACCUUCCUAUUUGGCAUGAGGGGAGUCAAGCAGGCGAAACACUU 70 20465 MI0006498 vvi-MIR160c Vitis vinifera miR160c stem-loop AAAUGGGUUGUGCCUGGCUCCCUGUAUGCCACACGUAGAGACCACUCCCUUUCCCGGAUUGGCUAUUUGCGGGUGGCGUGCGAGGAGCCAAGCAUACCCACCAUUC 70 20466 MI0006499 vvi-MIR160d Vitis vinifera miR160d stem-loop CAUACUUACAUGCCUGGCUCCCUGUAUGCCAUUUGCAAAGUCCACCCGAGGAUUGGUAGCCUUCGCGGAUGGCGUGCGAGGAGCCAUGCAUGCAUCUUGCUU 70 20467 MI0006500 vvi-MIR160e Vitis vinifera miR160e stem-loop AAUAUUGUUCUGCCUGGCUCCCUGAAUGCCAUCUAAGAAGCUUGUUAAAGAGUGUUGACAACCUUCCUAUUUGGCAUGAGGGGAGUCAAGCAGGCGAAACACUU 70 20468 MI0006501 vvi-MIR160f Vitis vinifera miR160f stem-loop UAAGCAUAUAUGCCUGGCUCCCUGUAUGCCAUUUGCAGAGCCCACCGGCACAUCGAUGGCCUUCGUGGAUGGCGUAUGAGGAGCCAUGCAUAUGCCCCAUCU 70 20469 MI0006502 vvi-MIR162 Vitis vinifera miR162 stem-loop UGAAGUCACUGGAUGCAGCGGUUCAUCGAUCUCUUCCUGAAAUUGUUGUGAAAAAAGCAGAUCAAGAAUCGGUCGAUAAACCUCUGCAUCCAGCGUUCACUCC 70 20470 MI0006503 vvi-MIR164a Vitis vinifera miR164a stem-loop AGCUCCUUGUUGGAGAAGCAGGGCACGUGCAGAUUUGCCUCACUUUUCCCCCUUUUUUCUUCUUUACUCCCACCACCGCCCACAGGCUUGCACGUGCUCCCCUUCUCCAACAUGGGUUCCU 70 20471 MI0006504 vvi-MIR164b Vitis vinifera miR164b stem-loop UAAACCAUGCUGGAGAAGCAGGGCACAUGCUGGAUCAAUCAGCACCUGGAUCUGAGAUUUUACAUGUGCCCUGGCUCUCCCACUUGGAUCCUA 70 20472 MI0006505 vvi-MIR164c Vitis vinifera miR164c stem-loop UUGAGCAAGAUGGAGAAGCAGGGCACGUGCAUUACUAGCUCAUGCACCACAAACCAAUAAUCUUUUGCUCGAGUUAGACUCUUGCUUGCUGCUUUGA 70 20473 MI0006506 vvi-MIR164d Vitis vinifera miR164d stem-loop AAGCUCUUGAUGGAGAAGCAGGGCACGUGCAGUUCACAAAUUCUAAUCUGCUCUGCACGUGCAGUUCACAAAUUCUAAUCUGCUCUGCACGUGCUCCCCUUCUCCAACAUGGGUUCCU 70 20474 MI0006507 vvi-MIR166a Vitis vinifera miR166a stem-loop GCGGGUGUUUGGAAUGAGGUUUGAUCCAAGAUCCUUCCUUUUUCUCCAUUAAUUCCUUCAGUACUGGUCAUGAUUUAGUUACUUCAUAAUCGGUUGAUCUCGGACCAGGCUUCAUUCCUGACACCAAGCU 70 20475 MI0006508 vvi-MIR166b Vitis vinifera miR166b stem-loop GUUUUUUGAGGGGAAUGUUGGCUGGCUCGAGGCAUUCACAUAAGAAGAAGAUAUAUAAGUGAAGGUGUCGGACCAGGCUUCAUUCCUCUCAAAUAUACA 70 20476 MI0006509 vvi-MIR166c Vitis vinifera miR166c stem-loop CUAUUUUGAGGGGAAUGUUGUCUGGCUCGAGGACACUUACCUUAACUUUGAUCCGUUUCUCUAGAUCCAUAUCACCUAUAUAUAUGUAUUAUUGUAUUUUUAUUUGUACUGAGCAUGUGUUGGUGUCGUCGGACCAGGCUUCAUUCCCCCCAAUUAUCGC 70 20477 MI0006510 vvi-MIR166d Vitis vinifera miR166d stem-loop CUGCUUUGAGGGGAUUGUUGUCUGGCUCGAGGCCACCAACCAUCUUUGAUUGAUUCAAAUACUUUGAUCAGCUUCAACCCAUCUUCUCCUUCAAUUCAAUUCCACCCUCUGAUUAUGUGUUAGUGCCCUCGGACCAGGCUUCAUUCCCCUCAAUCACUGC 70 20478 MI0006511 vvi-MIR166e Vitis vinifera miR166e stem-loop GUGUUUUGAGGGGAAUGUUGUCUGGCUCGAGGACACCAACUAGAUCUAUGAUCUGCGUGUAAUUGUGAAUGGGUGAUCGUCUCUCAGUUUUGAAGGAGAGAUUUUGAGUGAUCUUUGAUCAUGGGUUGGUGUCGUCGGACCAGGCUUCAUUCCCCCCAAUUUAUUG 70 20479 MI0006512 vvi-MIR166f Vitis vinifera miR166f stem-loop UGUAGUUGUGGGGAAUGUUGGCUGGCUCGAGGCUUUCUUGAGUGAUUUUAUGUAUACCUCAAAAAGCUUCGGACCAGGCUUCAUUCCCCUCAACACACUU 70 20480 MI0006513 vvi-MIR166g Vitis vinifera miR166g stem-loop AACAGUUGAGGGGAAUGUUGUCUGGUUCGAGAUCCUUCGUAUGAAGCUCAAGCAGCGUUUGAAUGAUUUCGGACCAGGCUUCAUUCCCCUCAACCCAAAA 70 20481 MI0006514 vvi-MIR166h Vitis vinifera miR166h stem-loop AACAGUUGAGGGGAACGCUGUCUGGUUCGAGACCACUCGCUUCAAGUACAGACAUAAUCUGAAUGAUCUCGGACCAGGCUUCAUUCCCCCCAACUCAACA 70 20482 MI0006515 vvi-MIR167a Vitis vinifera miR167a stem-loop UUUGAGAGGUUGAAGCUGCCAGCAUGAUCUGGUGAAACAAACACCAUCUCUUUCUUCUCUAACCCCAUGUCUGGAUUCGUCCACCGAUCCAUUAUUAUAGACCAGGCCGCCCGUUUCCCAUGUAGUGAUCGAUAAUUAGGCUCGGGGUUUUCACUUUUUAGUGGGAUCUAAUCCUUAGGAUGGAUGUUUGUAUGGGUGGUAUAUAUCAUGGUGAGGUCUGUUUUCUAUUUUAAUUCUAACGGGGUUUUGAUUUAGCUGAGGGGGUAUAAUUCAUAGCCUAAUUCCAAAACCUAACUCCAUAGAGAUAGGGUUCCAUGAUCAGGUCAUCUUGCAGCUUCAAUCACUCACUCA 70 20483 MI0006516 vvi-MIR167b Vitis vinifera miR167b stem-loop CAAUAGCAGUUGAAGCUGCCAGCAUGAUCUAAGCUUUUCUGUUGCCCACCCUUUCUCCAGGAAAGACUAGAUCAUGUGGCAGUUUCACCUGUUGAUGGA 70 20484 MI0006517 vvi-MIR167c Vitis vinifera miR167c stem-loop CAGUAGCAGUUGAAGCUGCCAGCAUGAUCUCAACUUCCCUAUACAAGUCAAGGAAAGAUCAGAUCAUGUGGUAGCCUCACCUGUUGAUGGG 70 20485 MI0006518 vvi-MIR167d Vitis vinifera miR167d stem-loop AGGGAAUAAGUGAAGCUGCCAGCAUGAUCUAGCUUUGGCUAGGGAUACAGAGAAAGAGAGAGAUCAGAGCUAACCCUAGCUAGGUCAUGCCCUGACAGCCUCACUCCUUCCUUCU 70 20486 MI0006519 vvi-MIR167e Vitis vinifera miR167e stem-loop CACUAUCAGUUGAAGCUGCCAGCAUGAUCUAAACUUGCUUCCCUUUGUGAACAGAGAUCAGAUCAUGUGGCAGUUUCACCUGUUGUUGGU 70 20487 MI0006520 vvi-MIR168 Vitis vinifera miR168 stem-loop GGUCUCUAAUUCGCUUGGUGCAGGUCGGGAACCGACUUCGCCGCUCCGGCAGCGCCGGAGGCACGCGGCGGCCUACGAUUGGUUGCUGAGCGAAUUCCGAUCCCGCCUUGCAUCAACUGAAUCGGAGACGGC 70 20488 MI0006521 vvi-MIR169a Vitis vinifera miR169a stem-loop GAGAGUGGAAUGCAGCCAAGGAUGACUUGCCGGAAUUUAUAUAUAGUGAGAAGAGAAGAGGCUAUAUGCUUUCACAUAUAUAGUGAACCCUGGCAAGUUGUCCUUGGCUACAUUUGAUUCUCUU 70 20489 MI0006522 vvi-MIR169y Vitis vinifera miR169y stem-loop CGUUGUUUGGUAGCGAAGGAUGACUUGCCUACAGCCUCCUUAAGGUUUCAAAAUACCGAGCUUGUCUACCUUUGAUCAAAUGAUUCAAGAAACAAAAGAAAAGAAAGGCCAUGGCAGCCAUCCAUCAGAGUCAACAUGAGAAUCAUGUUCUAUAGAAAUUGGAGUCAUUCUUGAGAAUGAACACGACACUAUUAGCUUGGAAUCUAUAAUGUGGUUUAUGGCAAGUCUCCUUGGCACCUGAUGGCCUC 70 20490 MI0006523 vvi-MIR169c Vitis vinifera miR169c stem-loop GGGAGUAGAAUGCAGCCAAGGAUGACUUGCCGGAGAUGGGGCAUUCCUCGUUAAUCCGGCAAGUUGUCCUUGGCUACAUUGGGCUCUCUU 70 20491 MI0006524 vvi-MIR169d Vitis vinifera miR169d stem-loop GAGUGGAAUGCAGCCAAGAAUGAUUUGCCGGAAUUUAUAUAUAGUGAGAAGAGAAGAGGCUAUAGGCUUUCACAUAUAUAGUGAACCCUGGCAAGUUGUCCUUGGCUACAUUUGAUUCUC 70 20492 MI0006525 vvi-MIR169e Vitis vinifera miR169e stem-loop GUCUUGUCUGAUAGCCAAGGAUGACUUGCCUGCCCUAUCCCAAGUGGGUCAAUUUCUUUCUUUUUUCCAAGUAGUGUUUGAUAUUUGAUAUAUCAUGAAUCCGGUUGUUUGGGUUCCAGGCAGUCACCUUGGCUAAUUUUACAGGCUCU 70 20493 MI0006526 vvi-MIR169f Vitis vinifera miR169f stem-loop GAUAUUAUGGUGCAGCCAAGGAUGACUUGCCGAAAAUAAUUUGCUCGAUCGUUAAUGUGCUUCUCCAGUUUCUAUUGCAAUUUAUGCAUAGGGCAAUAUAUAUAUCCUUUAUAGCUUGUUAAUUCAGAUAUUGACUGAGGAAUCAAUAAUGGGCAAGUUGUGUUUGGCUACAUGUUUAUCUCAU 70 20494 MI0006527 vvi-MIR169g Vitis vinifera miR169g stem-loop GAAAGUAUGGUGCAGCCAAGGAUGACUUGCCGACUCUCUACUUAGCCAUCUGCCUUUCUCCAAGGAGGCUUGCAGUACUGAUGAAGCCGGCAAGUUGUCUUUGGCUACAUGCUUCUUUCUG 70 20495 MI0006528 vvi-MIR169j Vitis vinifera miR169j stem-loop GAGAGUGGAGUGCAGCCAAGGAUGACUUGCCGGAAUUCACAUAUAGAGUGGAAUGAGGCAAUAGACCGGCCUCUUCUCAUGGUGUCCCUGGCAGGUUGUCCUUGGCUACCUUUCGCUCUCUU 70 20496 MI0006529 vvi-MIR169k Vitis vinifera miR169k stem-loop GAGAGUGGAGUGCAGCCAAGGAUGACUUGCCGGAAUUCACAUAUAGAGUGGAAUGAGGCAAGAGGCCGGCCUCUUCCCAUGGUGUCCCUGGCAGGUUGUCCUUGGCUACCUUUCGUUCUCUU 70 20497 MI0006530 vvi-MIR169m Vitis vinifera miR169m stem-loop AGAGUGGAAGUGAGCCAAGGAUGACUUGCCGGCAGCUGCAGCAAGGCAUUAAGGUUUAACUGGCCAUAACUGGCAAGCAUCCGAGGCUCUGUUUCACCCUCU 70 20498 MI0006531 vvi-MIR169p Vitis vinifera miR169p stem-loop AGUGUGGAAUUGAGCCAAGGAUGACUUGCCGGCAGCUGCAGCAAGGCAUUAAGGUUUAACUGGCUAUAACUGGCAAGCAUCCGAGGCUCUGUUUCACCCUCU 70 20499 MI0006532 vvi-MIR169r Vitis vinifera miR169r stem-loop AGGGUGGAAUUGAGUCAAGGAUGACUUGCCGAUAUAUAUUUGCAGAAGGCAUGCAGGGGCUUUUAGCUAUGUGUAACCGGCAAGUUGACUUGACUCAGUUUGGCCCUCU 70 20500 MI0006533 vvi-MIR169s Vitis vinifera miR169s stem-loop GAAAGUGGAUUGCAGCCAAGGAUGACUUGCCGGCACUUGGCAUUAGGCACCAUCGAUCAUCUUCCCGGCAAGUUGUUCCUGGCUACAUUCUGCUCUCUU 70 20501 MI0006534 vvi-MIR169t Vitis vinifera miR169t stem-loop AGGGUGGAAUCGAGUCAAGGAUGACUUGCCGAUAUAUAUUUGCGGAAGGACUUGCAUGGGCCUUUAGCUAUGUGUAACCGGCAAGUUGACUUGACUCAGUUUGGCCCUCU 70 20502 MI0006535 vvi-MIR169u Vitis vinifera miR169u stem-loop AGGGUGGAAUUGAGUCAAGGAUGACUUGCCGUUAUAUAUUUGCAGAAGGGCACGCAGGGGCCUUUAGCUAUGUGUUACCGGCAAGUUGACUUGACUCUGUUUGGCCCUCU 70 20503 MI0006536 vvi-MIR171a Vitis vinifera miR171a stem-loop UGGUGGGAAGCGUGAUGUUGGGACGGCUCAAUCAAACCAAAGAUCUCAAUGGUUGAGUCCUUUAAUCUGAUUGAGCCGUGCCAAUAUCAUGUUCAAUAC 70 20504 MI0006537 vvi-MIR171b Vitis vinifera miR171b stem-loop UGGGGGGAGGUAUUGGCGUGCCUCAAUUUAAAGACAUGGUUAGAUGAAGAGAUAUUAGCCAUGUGAUUUGAUUGAGCCGCGUCAAUAUCUCCUUUUGCA 70 20505 MI0006538 vvi-MIR171c Vitis vinifera miR171c stem-loop UGGUAUUACGGGAUAUUGGUGCGGUUCAAUAAGAAAGCAGUGCUCGCAAUCUUUUUGAGUUCUGGUUUUUGAUUGAGCCGUGCCAAUAUCACGUGUCAUUGCU 70 20506 MI0006539 vvi-MIR171d Vitis vinifera miR171d stem-loop UAGAUACACGAGAUAUUGAUACGGUUCAAUUAGAAAGCUGUGUUCUAAGUUAAGAACUCUGUUGUUUGAUUGAGCCGUGCCAAUAUCACGUCCUACUUCU 70 20507 MI0006540 vvi-MIR171e Vitis vinifera miR171e stem-loop GGAAAGUAAGCGAUGUUGGUGAGGUUCAAUCCGAAGACGGAUUUACGAAGAGCCGUAAAGAACGAUCUCUGAUUGAGCCGCGCCAAUAUCACUUUCUGCUAAG 70 20508 MI0006541 vvi-MIR171f Vitis vinifera miR171f stem-loop UUGAAGAAAGCGAUGUUGGUGAGGUUCAAUCUGAAGAUUGAUUUAUGCUUGAAUGUAAAAACUGAUCUCAGAUUGAGCCGCGCCAAUAUCACUUUUCUGUGGC 70 20509 MI0006542 vvi-MIR171h Vitis vinifera miR171h stem-loop UUUCACGAGAUGUUGGUGCGGUUCAACCUAACUGUAGUGUCCAUGAAUGUAUCGACUCUGAUGUUUGGUUGAGCCGCGCCAAUAUCCCGUCUAUCU 70 20510 MI0006543 vvi-MIR171i Vitis vinifera miR171i stem-loop GAAGAAGGUGGGGAUGUUGGAAUGGCUCAAUCAAAUCAAAUCUCCCAAGGGUUUUGGGUCCUUUAAUCUGAUUGAGCCGUGCCAAUAUCAUCAUGUUCACUUC 70 20511 MI0006544 vvi-MIR172a Vitis vinifera miR172a stem-loop UAUUGCCGAUGCAGCAUCAUCAAGAUUCUCAUCCUUGAAAAGUUUGGCAGAGAUAACAUCACCACCGUGCAUUUGCAUGUGAAUCUUGAUGAUGCUACAUGCGCAAACAA 70 20512 MI0006545 vvi-MIR172b Vitis vinifera miR172b stem-loop UAUUGCCGAUGCAGCAUCAUCAAGAUUCUCAACCCCAAAACUUGAGGCAGCGAAGAUGGCAUCGCUGCCGCGCCGGGCUUUCGCAUGUGAAUCUUGAUGAUGCUACACCUGCAAACAA 70 20513 MI0006546 vvi-MIR172c Vitis vinifera miR172c stem-loop GUUUGCGGAUGGAGCAUCAUCAAGAUUCACAAGUAUUGAGACUCAGUGCGUGGUGGUGAUGGUGACUUUUGUGGUCCCUUCCUACACUCCGAUGGCUCUUUGAUGUGGGAAUCUUGAUGAUGCUGCAGCGGCAAUAAA 70 20514 MI0006547 vvi-MIR172d Vitis vinifera miR172d stem-loop GUUAGCUGAUGCAGCAUCAUCAAGAUUCACACCCAAUGGAAGGGCAGUGAUGCAAUCUCUGCCAAAGAUUUUGAGAUGAGAAUCUUGAUGAUGCUGCAUUCGCAGUGAA 70 20515 MI0006548 vvi-MIR319b Vitis vinifera miR319b stem-loop UGUGGAAGAAGGAGCUCUCUUUAGUCCAGUCCGAGACAGCUUCAAGGCUGAUACGUGGCUGCUGACUCGUUGCUUCAAGAACUCAUCACAUAGGCCUGGAAAAGAUGGAUGGUUUUUUGAUCCAACGAUGCAGGAGCUGCGUUCAGUUAUGGCUGUCACGUCUUGGACUGAAGGGAGCUCCCUUGUAUUCCACA 70 20516 MI0006549 vvi-MIR319c Vitis vinifera miR319c stem-loop UUACAUUGAAGAGAGCUUUCUUCAGUCCACUCAUGGGUGGCAGUAGGAUUGAAUUAGCUGCCGACUCAUUCAUCCAAAUACUGUGUUAAGGACUACCCAGUAAAUGAUUGAAUGAUGCGGGAGACAAAUUGGAUCUUAAGCUCCCUGUGCUUGGACUGAAGGGAGCUCCCUUCACUGCAAUC 70 20517 MI0006550 vvi-MIR319f Vitis vinifera miR319f stem-loop AGUGGUUUAAGAGAGCUUCCUUCAGUCCACUCAUGGAUGGGUUAGGGGUUUGGAUUAGCUGCCGACUCAUUCAUUCAAACACAGUAGAAUGGAAAUGGAGUUUACUACUGUGAAUGUGUGAAUGAUGCGGGAGGUAAAUUUCAUCCUUUUCUUGUCUGUGCUUGGACUGAAGGGAGCUCCCUUCUACUGUUUU 70 20518 MI0006551 vvi-MIR319g Vitis vinifera miR319g stem-loop GAACAGCUGAAGAGCUCCUUUUAGUCCAAUAAAGAGGGCUGAGGGGCGGCCAGAGCUGCCAUCUCAUGCACUUGGCUAUGCUUAUUCUUUUCUCAAUCAAUUCGGUUCGAGUAUGGCUGUGGAGUGACAAAUGCUAAGUUUAGCCUGAUGCAUGACAUGGGAGCAACUCCUCCGCACGCUUUGCCCACUCAUUGGACUGAAGGGAGCUCCCAGGGCAGAUCU 70 20519 MI0006552 vvi-MIR390 Vitis vinifera miR390 stem-loop AGAAUCUGUUAAGCUCAGGAGGGAUAGCGCCAUGAGCCAUGAUGAAAAUGAUUGUUGAGUUGAAAAUUUUUUCUAGCUUGUUUUUUGGGUCAUCAUUUUGUGUGUGUGGCGCUAUCUAUCCUGAGUUUCACGGGUUCUUC 70 20520 MI0006553 vvi-MIR393b Vitis vinifera miR393b stem-loop GGAGGAGGCAUCCAAAGGGAUCGCAUUGAUCCCAAACUCUCCAUGUCUUUGGAUCAUGCUAUCCCUUUGGAUUCCUCCUUUGG 70 20521 MI0006554 vvi-MIR394a Vitis vinifera miR394a stem-loop CAGAGCCAUUUUGGCAUUCUGUCCACCUCCAUGCACAUCAUGGGUCUAUAUUCUUUUGGAGGUGGCCAGCAUGCCAAAGUGGCUCUGUA 70 20522 MI0006555 vvi-MIR394b Vitis vinifera miR394b stem-loop ACAGAGUUUAUUGGCAUUCUGUCCACCUCCCAUCUCUUGAAAAUCUCUCUUUUCUCUCUGUGGAGGUGGGCAUACUGCCAACCAAGCUCUGUU 70 20523 MI0006556 vvi-MIR395a Vitis vinifera miR395a stem-loop GUCCCCUAGAGUUCCCUUGAUCACUUCACUAGGGAGCUUCGCUAGUUUUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUACCGA 70 20524 MI0006557 vvi-MIR395b Vitis vinifera miR395b stem-loop GUCCCCUAGAGUUCCCCUUACCACUUCACUGGGGAUCUUCUCUAAUGAAUGCCUACGUACUGAAGUGUUUGGGGGAACUCCUGGUGCCAU 70 20525 MI0006558 vvi-MIR395c Vitis vinifera miR395c stem-loop GUCCCCUAGAGUUCCCUUGACCACUUCACUGGGGACCUUCUCUAGUUAUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGCCAU 70 20526 MI0006559 vvi-MIR395d Vitis vinifera miR395d stem-loop GCCCCCUAGAGUUCCCCUGACCACUUCAUUGGGGAUCUUCUCUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCAU 70 20527 MI0006560 vvi-MIR395e Vitis vinifera miR395e stem-loop CUCCCCUAGAGUUCCCUUGACCACUUCACUGGGGACCUUCUCUAAUUAUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGCCAU 70 20528 MI0006561 vvi-MIR395f Vitis vinifera miR395f stem-loop GUACCCUAGAGUUCCCCUGACCACUUCACUGGGGAUCUUCUCUAAUGACUUCCCACUGAAGUGUUUGGGGGAACUCCUGGUGUCAU 70 20529 MI0006562 vvi-MIR395g Vitis vinifera miR395g stem-loop GUCCCCUAGAGUUCCCCUGAGCACUUCAUUGGGGAUCCUUAGUUUUCAAUUCCUACUGAAGUGUUUGGGGGAACUCCCGGUGUCAU 70 20530 MI0006563 vvi-MIR395h Vitis vinifera miR395h stem-loop GUCCCCUAGAGUUCCCUUGACCACUUCACUGGGGACCUUCUCUAAUUAUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGCUAU 70 20531 MI0006564 vvi-MIR395i Vitis vinifera miR395i stem-loop GCCCCCUAGAGUUCCCCUGACCACUUCACUGGGGAUCUUCUGUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCAU 70 20532 MI0006565 vvi-MIR395j Vitis vinifera miR395j stem-loop GCCCCCUAGAGUUCCCCUGACCACUUCACUGGGGAUCUUCUUUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCAU 70 20533 MI0006566 vvi-MIR395k Vitis vinifera miR395k stem-loop UCCCCUAGAGUUCCCUUGACCACUUCACUGGGGACCUUCUCUAAUUAUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGCCAUU 70 20534 MI0006567 vvi-MIR395l Vitis vinifera miR395l stem-loop GCCCCCUAGAGUUCCCCUGACCACUUCACUGGGGGAUCUUCUGUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGUCAU 70 20535 MI0006568 vvi-MIR395m Vitis vinifera miR395m stem-loop GUCCCCUAGAGUUCCCUUGAACACUUCACUGGGGACCUUCUCUAGUUAUAAUGACUUCCUACUGAAGUGUUUGGGGGAACUCCUGGUGCCAU 70 20536 MI0006569 vvi-MIR396a Vitis vinifera miR396a stem-loop UCCUGUCAUGCUUUUCCACAGCUUUCUUGAACUACUUUUCCAUCUACCUGUUUGAUGAUCUUCUUCAUAAGGAGUGUGAAAUAGAAGCUCAAGAAAGCUGUGGGAGGACAUGGCAA 70 20537 MI0006570 vvi-MIR396b Vitis vinifera miR396b stem-loop UCCUGCCAUGCUUUUCCACAGCUUUCUUGAACUUCUUCUCCCUGUUUGGUGGUCUCCUACGUUUACCCAUCCACUGAAGUUCAAGAAAGCUGUGGGAAACCAUGGCUU 70 20538 MI0006571 vvi-MIR396d Vitis vinifera miR396d stem-loop CUUUGUAUUCUUCCACAGCUUUCUUGAACUGCAUUUUUCAGACUACUGGUGUGUUUUUGUAUGCACUCAAAGUCAUUGUAACAGUUGCGGUUCAAUAAAGCUGUGGGAAGAUACCAACAG 70 20539 MI0006572 vvi-MIR398a Vitis vinifera miR398a stem-loop ACACCCCAAGGGAGUGGCACCUGAGAACACCGGUUGUGUUGGCUGCGCCAAGCUCUGCUAGCUAAUGCAUUUUGUGUUCUCAGGUCACCCCUUUGGGGCACCA 70 20540 MI0006573 vvi-MIR399a Vitis vinifera miR399a stem-loop GAGAAUAACAGUGUGAUUCUCCUUUGGCAGAGAUAUCACGCAUGGAGUAGAAGGCGGUAGCUGCUCUGCCAAAGGAGAAUUGCCCUGUUAUUCAAUU 70 20541 MI0006574 vvi-MIR399b Vitis vinifera miR399b stem-loop AUCAAUCAUAGGGCACCUCUUUCUUGGCAGGCACUGGCUCCUAUAUAUGAAUAUACAUAGCUUAGCUGCAGUAAAAAGAUGUGACUUGCCAAAGGAGAGUUGCCCUGUGACUGCUUC 70 20542 MI0006575 vvi-MIR399e Vitis vinifera miR399e stem-loop GCAUAUUACAGGGCAAAUUAUCUUUUGGCAGGCAGCCACUUAGAGACACAGCCAAGCCAUGCAUUCUUGUAGUGUGCCCUCUGCCAAAGGAGAUUUGCCCGGCAAUUCUUCU 70 20543 MI0006576 vvi-MIR399g Vitis vinifera miR399g stem-loop AUGAAUUGCUGGGCAAUACUCCAUUGGCAGUUGGCCACUCGGCUGACCGCGGUUGACUUCACAAGUAGCAGACUAAGCUCACUGCCAAAGGAGAUUUGCCCCUCAAUUCAGCU 70 20544 MI0006577 vvi-MIR399h Vitis vinifera miR399h stem-loop AGGAAUAACAGUGCAAUCCUCCUUUGGCAGAAAGAUCAUGCACAUGCAUACUUCUGUUUUGCCAAAGGAGAAUUGCCCUGCCAUUCGCUC 70 20545 MI0006578 vvi-MIR408 Vitis vinifera miR408 stem-loop AAGAGGAAGACGGGGACGAGGUAGUGCAUGGAUGGAACUAUUAACAGAAGAAUGUUAAGCUGUUUUUGCUCUACCCAUGCACUGCCUCUUCCCUGGCUCUGUCUCUC 70 20546 MI0006579 vvi-MIR479 Vitis vinifera miR479 stem-loop GUAGACAUGGUGUGGUAUUGGUUCGGCUCAUCUUCUUUCAUUCAUUUUCAUCGGCUCAAAGACGAGCCGAACCAAUAUCACUCUUGUAUGCUUC 70 20547 MI0006580 vvi-MIR535a Vitis vinifera miR535a stem-loop UGUAAUUGCUUGACAACGAGAGAGAGCACGCUAGUCAGCAUUCAUGCGAGGAACAUGACUGUGUACAGGCGUGCUCUCUCUCGCUGUCAUACAAUCUUCUC 70 20548 MI0006581 vvi-MIR535b Vitis vinifera miR535b stem-loop UGUAAUUGCUUGACAACGAGAGAGAGCACGCUAGUCAGCAUUCAUGCGAGGAACAUGACUGUGUACAGGCGUGCUCUCUCUCGCUGUCAUACAAUCUUCUC 70 20549 MI0006582 vvi-MIR535c Vitis vinifera miR535c stem-loop UGUAAUUGCUUGACAACGAGAGAGAGCACGCUAGUCAGCAUUCAUGCGAGGAACAUGACUGUGUACAGGCGUGCUCUCUCUCGCUGUCAUACAAUCUUCUC 70 20550 MI0006583 vvi-MIR535d Vitis vinifera miR535d stem-loop UGUAAUUGCUUGACAACGAGAGAGAGCACGCUAGUCUGCAUUCAUGCGAGGAACAUGACUGUGUACAGGCGUGCUCUCUGUCGCUGUCAUACAAUCUUCUC 70 20551 MI0006584 vvi-MIR535e Vitis vinifera miR535e stem-loop UGUAAUUGCUUGACAACGAGAGAGAGCACGCUAGUCUGCAUUCAUGCGAGGAACAUGACUGUGUACAGGCGUGCUCUCUGUCGCUGUCAUACAAUCUUCUC 70 20552 MI0006585 age-mir-506 Ateles geoffroyi miR-506 stem-loop CACGCUCUGUAUAGUACCUUAUUCAGGAAGGUGUUACCCAUACAGAUUAAUAUUUGAAUGGCGCCCUUCUGAGUAGAGUAAUGUGCAACACGGACCACAUUU 28 20553 MI0006586 age-mir-507 Ateles geoffroyi miR-507 stem-loop GUGCUGUGUGUAGUGCUUCACUUCAAUUAGUGCCAUUCAUGUGGCUAGAAAUUUGUUUGGCACUUUUUAGAGUGAAAUAAUGCACAACAGGUAC 28 20554 MI0006587 age-mir-508 Ateles geoffroyi miR-508 stem-loop UGAGUGUAGUGCCCUACUCCAGAGGGUGUCAAUCACAUAAACUAAAGCACGAUUGUCACCUUUUUGAGUAGAGUAAUACACAUCA 28 20555 MI0006588 age-mir-509a Ateles geoffroyi miR-509a stem-loop AAUGCUGUGUGUGGUACCCUGCUGCAGAGAGUGGCAAUUGUAUAUAAUUAAAAAUGAUUGACACGUCUGCAGGUAGAGUAAUGCAUGACACAUG 28 20556 MI0006589 age-mir-509b Ateles geoffroyi miR-509b stem-loop CAUGCUGUAUGUGGUACCCUGCUGCAGAGAGUGGCAAUCGUAUAUAAUUAAAAAUGAUUGACACGUCUGCAGAUAGAGUAAUGCAUGACACAUG 28 20557 MI0006590 age-mir-510 Ateles geoffroyi miR-510 stem-loop GCUAUAUGCGUGUGGUGCUCUACUCCAGAGAGUAGCAAUCACGUAUAAUUAAAGGUGAUUGAAACCUCUGAGAGUAGAGUAACACAUGACAUGUACUAC 28 20558 MI0006591 age-mir-513b Ateles geoffroyi miR-513b stem-loop CAGCGUGCAGUGCCCUUCACAAGGAGCUGUCAUUCAUGUGGACAAAAACAUGAAUGUCGCCUUCUUGAGAAGAGUAAUGUACAGCAUG 28 20559 MI0006592 age-mir-513c-1 Ateles geoffroyi miR-513c-1 stem-loop CAGCGUGCAGUGCCUUUCUCAAGAAGGUGUCAUUCAUGUGAACUAAAAUAUGAUGUCACCUUCUUGAGAAGAGUAAUGUACAGCAUG 28 20560 MI0006593 age-mir-513a-1 Ateles geoffroyi miR-513a-1 stem-loop CAGCGUGCAGUGCCCUUCACAAGGAGGUGUCAUUCAUGUGGACUAAAACACGAAUACUGCCUUCUUGAGAAGAGUAAUGUACAGCAUG 28 20561 MI0006594 age-mir-513d Ateles geoffroyi miR-513d stem-loop CAUUCAGCGUGCAGUGCCCUUCACAACGAGGUGUCAUUUAUGUAAACUGAAACAUAAAUGUCACCUUUUUGAGAAGAGUAAUGUACAGGAUG 28 20562 MI0006595 age-mir-513e-2 Ateles geoffroyi miR-513e-2 stem-loop CAUCCAGCAUGCAGUGCCCUUACAAGAAGGUGCCAUUCAUGUGAACUAAAAUAUGAAUGCCGCCUUCUUGAUAAGAGUAAUGUACGGCAUG 28 20563 MI0006596 age-mir-513a-2 Ateles geoffroyi miR-513a-2 stem-loop CAGCGUGCAGUGCCCUUCACAAGGAGGUGUCAUUCAUGUGGACAAAAACAUGAAUGCCGCCUUCUUGAGAUGAGUAAUGUACAGCAUG 28 20564 MI0006597 age-mir-513c-2 Ateles geoffroyi miR-513c-2 stem-loop CAGCGUGCAGUGCCUUUCUCAAGAAGGUGUCAUUCAUGUGAACUAAAAUAUGAAUGUCGCCUUCUUGAGAAGAGUAAUGUACAGCAUG 28 20565 MI0006598 age-mir-514 Ateles geoffroyi miR-514 stem-loop CAAGUUGUUUGUGGUACCCUACUCCGAAGAGUGUCAAUCAUGUGUAAUUCAAUUUGAUUGACACUUUUGUGAGUAGAGUAACAUACGACAUG 28 20566 MI0006599 ssy-mir-506 Symphalangus syndactylus miR-506 stem-loop CCAUGCUAUGUGUAGUGCCUUAUUCAGGAAGGUGUUACUUAAUAGAUUAAUAUUUGUAAGGCACCCUUCUGAGUAGAGUAAUGUGCAACAUGG 67 20567 MI0006600 ssy-mir-507 Symphalangus syndactylus miR-507 stem-loop GUGCUGUGUGUAGUGCUUCACUUCAAUAAGUGCCAUUCAUGUGUCUAGAAAUAUGUUUUGCACCUUUUGGAGUGAAAUAAUGCACAACAGGUAC 67 20568 MI0006601 ssy-mir-508 Symphalangus syndactylus miR-508 stem-loop UGAGUGUAGUGCCCUACUCCAGAGGGCGUCACUCACGUAAACUAACACAUGAUUGUAGCCCUUUUGAGUAGAGUAAUACACAUCA 67 20569 MI0006602 ssy-mir-509a Symphalangus syndactylus miR-509a stem-loop CAUGCUGUGUGUGGUACCCUACUACAGGCAGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUGGGUAGAGUACUGCAUGACACAUG 67 20570 MI0006603 ssy-mir-509b Symphalangus syndactylus miR-509b stem-loop CAUGCUGUGUGUGGUACCCUACUGCAGGCAGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUAGGUAGAGUACUGCAUGACACAUG 67 20571 MI0006604 ssy-mir-510 Symphalangus syndactylus miR-510 stem-loop CUGUGUGUGUGUGUGGUGUCCUACUCCGGAGAGUGGCAAUCACAUAUAAUUAAGUGUGAUUGAAACCUCUAAGAGUGGAAUAACACAUGACAUGUACU 67 20572 MI0006605 ssy-mir-513c Symphalangus syndactylus miR-513c stem-loop UGUACAGUGCCUUUCCCAAGGAGGUGUCAUUUACGUGAACUAAAAUAUAAAUUUCACCUUUCUGAGAAGAGUAAUGUACA 67 20573 MI0006606 ssy-mir-513b-1 Symphalangus syndactylus miR-513b-1 stem-loop AGUGUACAGUGCCUUUCACAAGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUGUGACCUUCUUGAGAAGAGUAAUGUACA 67 20574 MI0006607 ssy-mir-513a Symphalangus syndactylus miR-513a stem-loop UGUGCAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUUCUGAGAAGAGUAAUGUACA 67 20575 MI0006608 ssy-mir-513b-2 Symphalangus syndactylus miR-513b-2 stem-loop UGUGCAGUGCCUUUCACAAGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUUUUGAGAAGGGUAAUGUACA 67 20576 MI0006609 ssy-mir-514 Symphalangus syndactylus miR-514 stem-loop AUGUUGUCUGUGGUACCCUACUCUGGAUAGUGACAAUCAUGUGUAAUUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCAUGACACGU 67 20577 MI0006610 mml-mir-506 Macaca mulatta miR-506 stem-loop UGUCUAGUGCCGUUAUGUGUAGUGCCUUAUUCAGGAAGGUGUUACUUAAUAUAUUAAUAUUUGUAAGGCACCCUUCUGAGUAGAGUAAUGUGCAACAUGGACAUCAUUU 32 20578 MI0006611 mml-mir-507 Macaca mulatta miR-507 stem-loop GUGCUGUGUGUAGUGCUUCACUUCAAUAAGUGCCAUUCAUGUGUCUAGAAAUAUGUUUUGCACCUUUUGGAGUGAAAUAAUGCACAACAGGUAC 32 20579 MI0006612 mml-mir-508 Macaca mulatta miR-508 stem-loop UGAGUGUCGUGCUCUACUCCAGAGGGCGUCACUCACAUAAACUAAAACAUGAUUGUCGCCUUUUUGAGUAGAGUAAUACACAUCA 32 20580 MI0006613 mml-mir-509-1 Macaca mulatta miR-509-1 stem-loop CAUGUUGUGUGUGGUACCCUACUGCAGGCAGUGGCAAUUAUGUAUAGUUAAAAAUGAUUGGUAUGUCUGUGGGUAGAGUAAUGCAUGACACAUG 32 20581 MI0006614 mml-mir-509-2 Macaca mulatta miR-509-2 stem-loop CAUGCUGUGUGUGGUACCCUACUACAGGCAGUGGCAAUCAUGUAUAGUUAAAAAUGAUUGGUAUGUCUGUGGGUAGAGUAAUGCAUGACACAUG 32 20582 MI0006615 mml-mir-510 Macaca mulatta miR-510 stem-loop UGCUGUGUGUGUGUGGUAUCCUACUCCGGAGAGUGGCAAUCACAUAUAAUUAAGUGUGAUUGAAACCUCUAAGAGUGGAGUAACACAUGACAUGUACU 32 20583 MI0006616 mml-mir-513b-1 Macaca mulatta miR-513b-1 stem-loop UUUACAGUGCCUUUCACAAGGAGGUGUCAUUUAUGUGAACUAAACUAUAAAUGUCACCUUUUUGGGAAGAGUAAUGUACAA 32 20584 MI0006617 mml-mir-513b-2 Macaca mulatta miR-513b-2 stem-loop GUGUGCAGUGCCUUUCACAAGGAGGUGUCAUUUAUGUGAACUAAACUAUAAAUGUCACCUUUUUGGGAAGAGUAAUGUACA 32 20585 MI0006618 mml-mir-513a-1 Macaca mulatta miR-513a-1 stem-loop GUGUACAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAACUAUAAAUGUCACCUUUCUGCGAAGGGUAAUGUACAU 32 20586 MI0006619 mml-mir-513a-2 Macaca mulatta miR-513a-2 stem-loop UGUACAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUUCUGAGAAGAGUAAUGUACA 32 20587 MI0006620 mml-mir-513a-3 Macaca mulatta miR-513a-3 stem-loop CUGUACAUUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAACUAUAAAUGUCACUUUUCUGAGAAGAGUAAUGUACAG 32 20588 MI0006621 mml-mir-514-1 Macaca mulatta miR-514-1 stem-loop AUGUUGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAAUUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAAUGCAUGACACGU 32 20589 MI0006622 ptr-mir-506 Pan troglodytes miR-506 stem-loop CCAUACUAUGUGUAGUGCCUUAUUCAGGAAGGUGUUACUUAAUAGAUUAAUAUUUGUAAGGCACCCUUCUGAGUAGAGUAAUGUGCAACAUGG 37 20590 MI0006623 ptr-mir-507 Pan troglodytes miR-507 stem-loop GUGCUGUGUGUAGUGCUUCACUUCAAGAAGUGCCAUGCAUGUGUCUAGAAAUAUGUUUUGCACCUUUUGGAGUGAAAUAAUGCACAACAGAUAC 37 20591 MI0006624 ptr-mir-508 Pan troglodytes miR-508 stem-loop UGAGUGUAGUGCCCUACUCCAGAGGGCAUCAGUCAUGUAAACUAAAACAUGAUUGUAGCCUUUUUGAGUAGAGUAAUACACAUCA 37 20592 MI0006625 ptr-mir-509a-1 Pan troglodytes miR-509a-1 stem-loop CAUGCUGUGUGUGGUACCCUACUGCAGACAGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUGGAUAGAGUACUGCAUGACACAUG 37 20593 MI0006626 ptr-mir-509b Pan troglodytes miR-509b stem-loop CGUGCUGUGUGUGGUACCCUACUGCAGACGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUGAGUAGAGUACUGCAUGACACAUG 37 20594 MI0006627 ptr-mir-509a-2 Pan troglodytes miR-509a-2 stem-loop CAUGCUGUGUGUGGUACCCUACUGCAGACAGUGGCAAUCAUGUAUAAUUAAAAAUGAUUGGUACGUCUGUGGAUAGAGUACUGCAUGACACAUG 37 20595 MI0006628 ptr-mir-510 Pan troglodytes miR-510 stem-loop CUGUGUAUGUGUGUGGUGUCCUACCCAGGAGAGUGGCAAUCACAUAUAAUUAGGUGUGAUUGAAACCUCUAAGAGUGUAGUACACAUGACAUGUACU 37 20596 MI0006629 ptr-mir-513a-1 Pan troglodytes miR-513a-1 stem-loop UGUGCAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUGCUGAGAAGAGUAAUGUACA 37 20597 MI0006630 ptr-mir-513b Pan troglodytes miR-513b stem-loop UGUACAGUGCCUUUCACAAGGAGAUGUCAUUUAUGUGAACUAAAAUAUAAAUGUCACCUUUUUGAGAGGAGUAAUGUACA 37 20598 MI0006631 ptr-mir-513a-2 Pan troglodytes miR-513a-2 stem-loop UGUACAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUGCUGAGAAGAGUAAUGUACA 37 20599 MI0006632 ptr-mir-513a-3 Pan troglodytes miR-513a-3 stem-loop UGUGCAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUUUCACCUUUCUGAGAAGGGUAAUGUACA 37 20600 MI0006633 ptr-mir-514-1 Pan troglodytes miR-514-1 stem-loop UGUCUGUGGUACCCUACUCUGGAAAGUGACAAUCAUGUAUAAUUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCAUGACA 37 20601 MI0006634 ptr-mir-514-2 Pan troglodytes miR-514-2 stem-loop UGUUGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAACUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCAUGACA 37 20602 MI0006635 ptr-mir-514-3 Pan troglodytes miR-514-3 stem-loop UGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAACUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCAUGACA 37 20603 MI0006636 ptr-mir-514-4 Pan troglodytes miR-514-4 stem-loop UGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAACUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGCCUGACA 37 20604 MI0006637 pbi-mir-506 Pygathrix bieti miR-506 stem-loop UGUCUAGUGCCUUUAUGUGUAGUGCCUUAUUCAGGAAGGUGUUACUUAAUGUAUUAACAUUUGUAAGGCACCCUUCUGAGUAGAGUAAUGUGCAACAUGGAUAUCAUUU 66 20605 MI0006638 pbi-mir-507 Pygathrix bieti miR-507 stem-loop GUGCUGUGUGUAGUGCUUCACUUCAAUAAGUGCCAUUCAUGUGUCUAGAAAUAUGUUUUGCACCUUUUGGAGUGAAAUAAUGCACAACAGGUAC 66 20606 MI0006639 pbi-mir-508 Pygathrix bieti miR-508 stem-loop UGAGUGUAGUGCUCUACUCCAGAGGGCGUCAAUCACAUAAACUAAAACAUGAUUGUCACCUUUUUGAGUAGAGCAAUACACAUCA 66 20607 MI0006640 pbi-mir-509 Pygathrix bieti miR-509 stem-loop CAUGCUGUGUGUGGUACCCUACUUCAGGCAGUGGCAAUCCUGUAUAGUUAAAAAUGAUUGAUACGUCUGUGGGUAGAGUAAUGCAUGACACAUG 66 20608 MI0006641 pbi-mir-510 Pygathrix bieti miR-510 stem-loop UGCUGUGUGUGUGUGGUAUCCUACUCCGGAGAGUGGCAAUCACAUAUAAUUAAGUGUGAUUGAAACCUCUAAGAGUGGAGUAACACAUGACGUGUACU 66 20609 MI0006642 pbi-mir-513a-1 Pygathrix bieti miR-513a-1 stem-loop UGUACAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAACUAUAAAUGUCACCUUUCUGGGAAGAGUAAUGUACA 66 20610 MI0006643 pbi-mir-513b Pygathrix bieti miR-513b stem-loop UGUGCAGUGCCUUUCACAAGGAGGUGUCAUUUAUGUGAACUAAAGUAUAAAUGUCACCUUUUUGAGAAGAGUAAUGUACA 66 20611 MI0006644 pbi-mir-513c-1 Pygathrix bieti miR-513c-1 stem-loop UGUACAGUGCCUUUCACAGGGAGGUGUCAUUUGUGUGAACUAAACUAUAAAUGUCACCUUUCUGGGAAGUGUAAUGUACA 66 20612 MI0006645 pbi-mir-513a-2 Pygathrix bieti miR-513a-2 stem-loop UGUACAGUGCCUUUCACAGGGAGGUGUCAUUUAUGUGAACUAAACUAUAAAUGUCACCUUUCUGAGAAGAGUAAUGUACA 66 20613 MI0006646 pbi-mir-513c-2 Pygathrix bieti miR-513c-2 stem-loop UGUACAUUGCCUUUCACAGGGAGGUGUCAUUUGUGUGAACUAAACUAUAAAUGUCACCUUUCUGGGAAGAGUAAUGUACA 66 20614 MI0006647 pbi-mir-514 Pygathrix bieti miR-514 stem-loop AUGUUGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAAUUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAACGUAUGACACGU 66 20615 MI0006648 hsa-mir-513b Homo sapiens miR-513b stem-loop GUGUACAGUGCCUUUCACAAGGAGGUGUCAUUUAUGUGAACUAAAAUAUAAAUGUCACCUUUUUGAGAGGAGUAAUGUACAGCA 5 20616 MI0006649 hsa-mir-513c Homo sapiens miR-513c stem-loop GCGUACAGUGCCUUUCUCAAGGAGGUGUCGUUUAUGUGAACUAAAAUAUAAAUUUCACCUUUCUGAGAAGAGUAAUGUACAGCA 5 20617 MI0006650 age-mir-513e-1 Ateles geoffroyi miR-513e-1 stem-loop CAGCGUGCAGUGCCCUUACAAGAAGGUGCCAUUCAUGUGAACUAAAAUAUGAAUGCCGCCUUCUUGAGAAGAGUAAUGUACGGCAUG 28 20618 MI0006652 hsa-mir-1321 Homo sapiens miR-1321 stem-loop ACAUUAUGAAGCAAGUAUUAUUAUCCCUGUUUUACAAAUAAGGAAAUAAACUCAGGGAGGUGAAUGUGAUCAAAGAUAG Afanasyeva et al. refer to this sequence using the internal identifier MYCNAMP_NB2_241 [1]. Some additional sequences reported in [1] do not meet miRBase requirements for miRNA identification. 5 20619 MI0006653 hsa-mir-1322 Homo sapiens miR-1322 stem-loop AGUAUCAUGAAUUAGAAACCUACUUAUUACAUAGUUUACAUAAGAAGCGUGAUGAUGCUGCUGAUGCUGUA Afanasyeva et al. refer to this sequence using the internal identifier MYCNSC_NB2_237 [1]. Some additional sequences reported in [1] do not meet miRBase requirements for miRNA identification. 5 20620 MI0006654 hsa-mir-720 Homo sapiens miR-720 stem-loop CCGGAUCUCACACGGUGGUGUUAAUAUCUCGCUGGGGCCUCCAAAAUGUUGUGCCCAGGGGUGUUAGAGAAAACACCACACUUUGAGAUGAAUUAAGAGUCCUUUAUUAG 5 20621 MI0006656 hsa-mir-1197 Homo sapiens miR-1197 stem-loop ACUUCCUGGUAUUUGAAGAUGCGGUUGACCAUGGUGUGUACGCUUUAUUUGUGACGUAGGACACAUGGUCUACUUCUUCUCAAUAUCA Afanasyeva et al. refer to this sequence using the internal identifier MYCNSC_NB5_330 [1]. Some additional sequences reported in [1] do not meet miRBase requirements for miRNA identification. 5 20622 MI0006657 hsa-mir-1324 Homo sapiens miR-1324 stem-loop CCUGAAGAGGUGCAUGAAGCCUGGUCCUGCCCUCACUGGGAACCCCCUUCCCUCUGGGUACCAGACAGAAUUCUAUGCACUUUCCUGGAGGCUCCA Afanasyeva et al. refer to this sequence using the internal identifier MYCNSC_NB8_202 [1]. Some additional sequences reported in [1] do not meet miRBase requirements for miRNA identification. 5 20623 MI0006963 osa-MIR1423 Oryza sativa miR1423 stem-loop GCACAACACUAGUAUUUGGGAGGCAACUACACGUUGGGCGCUCGAUCCAGGGGUGGGAAAAUCGGGCGCCCACGUUUUCCCCACCCCCGGAUCGAGCGCCCAAGCGGUAGUUGUCUCCCAAAUACUUGUGCUGUGC 7 20624 MI0006964 osa-MIR1424 Oryza sativa miR1424 stem-loop CCAGCUAGUUUAGCUCCCAGGCCAGUCAAGGUAGAGGCAGCUCAAAGUGUAGUCAUCUCUUGAUCGUUGAUUGCUCCAGUCCUAUCCCAUGCUCCUCCUUGAGCUCCCAAUCAUUGAGCUCUCGGAUCCUCUCUGCUCUUCUCUGAUCUGGUGUCGUUCCAGUUUCCAAACAUGUUGCAGAAUGAAGAACACUGAACAACAAGAUUAUAAGGUAGGUAAGUAGUUGAUCAUUUCAGGUUUCCAGAGAUGAUAAAGCAAUCAGGGAUGCAUGCACACUGAUGCUGAUUGUACAAACUCCAA 7 20625 MI0006965 osa-MIR1425 Oryza sativa miR1425 stem-loop CUGUUGACUGCAUUAGGAUUCAAUCCUUGCUGCUAAAUGUAUUGCUUAUAUUCAGCAAUAUAAUGUUCAGCAGCAAGAACUGGAUCUUAAUAUAGUCGAUAG 7 20626 MI0006966 osa-MIR1426 Oryza sativa miR1426 stem-loop AAAUAGAAUCUUGAUGAUGAUUAAAAGGAGGGACGAUAGGCAGGCCGUGAAGCAAAUAUGUAAGACGGUUGCCGGGAAUUCUAGAAAGUGAAAAAAAAACCCCAUUGAUAAUCAUAUUCGAUUUUCAAAA 7 20627 MI0006967 osa-MIR1427 Oryza sativa miR1427 stem-loop UGGCUGCGCGCGACCGCGCCGUCCCGCAGGCCAGCGCCGCGCCACCGCGCGGUUCCGCAGCAGGGACAUGCGCCACCCGUUACAGCCAACUGAAAUCUGCACUGAUUUGAUUACAUGCGCACGUAUAUAUGCAGUGCAUGCAGCGAGUGUGCGCUGUUCCUGGAUUCGGUCGCGCGUGGCCGUGCUGCGGAACCGUGCGGUGGCGCGGCGCCGGCCUGCGGGACCGCGCAGUCGCGCGCAGCCAAGCCACGGGACCG 7 20628 MI0006968 osa-MIR1428 Oryza sativa miR1428 stem-loop GGUUAGUGCGUUUUGCAAAUUCGCAGGCCCUAUCUUGUGGUAUGAACUGAGUACGCGAUGAUUUAUCCUGCGUAUUGGGGGCUUACCAUAAGAUAAAGCCGUGAAUUUGCAAAACGUUCA 7 20629 MI0006969 osa-MIR1429 Oryza sativa miR1429 stem-loop GUAAUAUACUAAUCCGUGCAUCCAUCGUAUAUCUUACACGUCAUGUGAACGUGCAUCGGUUCAUAAUGUUGUGUUUAUAAAUGUUAAUGGUAUGUGUGGUUGCACGGGUUUGUAUGUUGC 7 20630 MI0006970 osa-MIR1430 Oryza sativa miR1430 stem-loop AUGAGGAGAUUGCCUCUGUUAGCCAAGAAUGGCUUGCCUAUCUCCACUAUUUGGUUCAUCACUGGAACACACUUGGGGUUCUCAGAUGGUGGAUGAAAUAUGGAAGAUGGUGAGCCUUCCUGGCUAAGAGAGUGAUUCUCAU 7 20631 MI0006971 osa-MIR1431 Oryza sativa miR1431 stem-loop GGGAUUCAGAAAGGAAAGACUUAGGGUUGCAAGCGGGUCAACCCGUGAACCCGCUUAUAGGCAAAAUUAGUAGGUAACCCGUAUAAAUGAGUUUAUGGAUCGACCCACUUGCAUCUCUAAGUGCGGCAAAUCGGACCACGACGUGAAAACACACGGGUUAUCACUUAUUUUACAUAUAAGUAGGUUUGCGAGUUGGCCCGCUUGCAUCCCUAGAUGCCGUCUUAGCUCUUAACAAGCAUG 7 20632 MI0006972 osa-MIR1432 Oryza sativa miR1432 stem-loop CCUGUGAUCAGGAGAGAUGACACCGACAUCGCCGGAAUUCGUUCUUGGUCUUGUGCCAUGAUGAAUUGAUGGUCCGUUUGAUGCAGGUGUCAUCUCCCCUGAACAUAGG 7 20633 MI0006973 osa-MIR1433 Oryza sativa miR1433 stem-loop AGGCCAUCUUCGAUAGCCAAGGAUGAUUUGCCUGUAGCCCCAUUGUCAUCAGCUCUCUCCGUCGAGAGCGACAACCGGGCUCUACUGGCAAGUCUCCUCGGCUACCCGAGUACCUCUUAUGCUAUCCCA 7 20634 MI0006974 osa-MIR444b Oryza sativa miR444b stem-loop AUGCAAGGGGAUGGUGACAAGCUUGUGGCAGCAACUGCACAUCUUGCAAGAAAAUCUUUAGGGUUUUUCAGACCAUACCGAUGAUUUUCUUGCAAGUUGUGCAGUUGUUGUCUCAAGCUUGCUGCCUCCCUUUGCCAA 7 20635 MI0006975 osa-MIR444c Oryza sativa miR444c stem-loop AGUUGCUGCAAGUGGAGGCGGCAAGCUAGAGACAGCAACUGCAUAUCUUGCAAGAAAAUCGGUUUUAUGGCCAUACCGAUGAUUUUCUUGCAAGCUGUGCAGUUGUUGUCUCAAGCUUGCUGCCUCCCUUUGCCAGAA 7 20636 MI0006976 osa-MIR444d Oryza sativa miR444d stem-loop AGUUAUUGCACAUGGUGGCACCAAGCAUGAGGCAACAACUGCAUUACUUGCAAGAAAGGCACAAAAUCAUUAGAUGAUUACUUGUGGCUUUCUUGCAAGUUGUGCAGUUGCUGCCUCAAGCUUGCUGCCUCCCUCUGCCAAAU 7 20637 MI0006977 osa-MIR444e Oryza sativa miR444e stem-loop GGUUUUGUAACCAGGGGCAAUAAGCUAGAGGCACCAACUGCAUAACUUGCGAGAAACUUGUUGGAUGAUGAUCUUGCCAAUGAUUUUGCCGCAAGUUAUGCAGUUGCUGCCUCAAGCUUACUGCCUUUGUUUGCUAAACC 7 20638 MI0006978 osa-MIR444f Oryza sativa miR444f stem-loop AUGGUGGCACCAAGCAUGAGGUUACAACUGCAUUACUUGCAAGGGAAUCACAAGUCACAAGAAACACAUGUUAUUACAAUGGAUAAUCAAUGGGUCAUCAUACUAUGACUUUCUUGCAAGUUGUGCAGUUGUUGCCUCAAGCUUGCUGCCUCCG 7 20639 MI0006986 osa-MIR810b Oryza sativa miR810b stem-loop AGCCCACCACAUGUGGCUCGCAUGCUUAAAUAACUAACGGCAUAAUUAGAUCACUUGAUGACGACGUAUAUCGGUGUUCGCUAUAUAUACUAUCUACUGGUAAGUAUAUCUUUAAUAUACUUACCAGUAGAUAGUAUAUAUAGUGAACACCGAUAUGCGUCAUCAUCAAGUGAUUUAAUUAUGCCGUUAGUUAAGCAUGCGAGCCACAUGUGGUGAGCUUACG 7 20640 MI0006987 mdv1-mir-M9 Mareks disease virus miR-M9 stem-loop GCGGUUUUUCUCCUUCCCCCCGGAGUUCACUGUAUCGUACGUUGUAAACUCCGAGGGCAGGAAAAAGUGC 48 20641 MI0006988 mdv1-mir-M10 Mareks disease virus miR-M10 stem-loop UGGCGUUGUCUCGUAGAGGUCCAGAUCUCUCCUGUUGGCAACUCGAAAUCUCUACGAGAUAACAGUUUG 48 20642 MI0006989 mdv1-mir-M11 Mareks disease virus miR-M11 stem-loop AAAUUUUCCUUACCGUGUAGCUUAGACUCGGAAGAACUAUUUUGAGUUACAUGGUCAGGGGAUUU 48 20643 MI0006990 mdv1-mir-M12 Mareks disease virus miR-M12 stem-loop GAUCAAGGCCCUCCGUAUAAUGUAAAUGUCCAAAGGUUUGCAUAAUACGGAGGGUUCUGAUC 48 20644 MI0006991 mdv1-mir-M13 Mareks disease virus miR-M13 stem-loop AGUUUUCCAGGAGAUUUCCCGGUUUCGACUGCCGAAGCAUGGAAACGUCCUGGGAAAAUCU 48 20645 MI0007021 osa-MIR1435 Oryza sativa miR1435 stem-loop ACUUUUCUUAAGUCAAACUUUUUUUUAGAUUUGAUCAAAUUUAUAAAAAAAAUAUAGCAAUAUUUUUAGAAAAAAAUAUGUUCAAUAUUAAAUGUAAUGAAACUAAUUUGGUGCUAUAACUGUUUUUAUAUUUUUCUAUAAUAAAUUUGAUUAAACUUUGAAGUAGUUUGACUUAAAAAAAGU 7 20646 MI0007022 osa-MIR1436 Oryza sativa miR1436 stem-loop AGUUUAUGUGCUACUCCCUCCGUCCCAUAAUAUUAAAACCUAGGACUGGAUAGGACGUUUCAUAGUACAAUGACUCAGAGUCAUUGUACUAUGAAACGUCCUAUCCAGUCCUAGGUUUUAACAUUAUGGGACGGAGGGAGUAGUCUCAACCUAUAUAAACU 7 20647 MI0007024 osa-MIR1437 Oryza sativa miR1437 stem-loop GCGCGCGGGGAGGGAGGGAACGGUGCCUAGUGCGGCACCGGAGCUCGCCAGCACGCAGGAGUGAGGUGAGGAGGACGGCGGCCAGGGCGCGGAGAGCUUGCCGGCGCUCCGCCACCGCCGCUACCUCCUUCCGCGUGCUGGCGAGCUCCGGCGCCGCACUAGGCACUGUUUCCUCCCUCCCCACGCGC 7 20648 MI0007025 osa-MIR1438 Oryza sativa miR1438 stem-loop GUUGUGAUAUAAGGUUUUAGGGUAAUUUUAUCAUUUUUAAGAAAACAAAAUUUAAUACCUUCAGAUAUUCGGUAUCUAUGUAAAAAAUUUUUAGAUCCCUCAAUAAAAUUUAAUACCUAAAAUCUAAACGUAUUAAAUUUUGUUUUCUUAAAAAUUAUAAAAUUACCCUAAUACAUAAUACCUCAAU 7 20649 MI0007028 osa-MIR1440 Oryza sativa miR1440 stem-loop AAAUGCCAAUGCUCAAAUACCACUCUCCUAAAUUUCCAUUCCCAAAUACCACCCGGGCCCACAUGUCAGCCUCAUCCAGCACAGGGUCCCACAUCACUUUUGUUUGAAUGGAAAGUGAGGCUGACAUGUGGGCCCGGAUGGUAUUUGGUAAUGAAAAUUUGGGAGAGUGGUAUUUGAGCACUGGCAUUU 7 20650 MI0007029 osa-MIR1441 Oryza sativa miR1441 stem-loop GUUUUUUCAUUCGUGUCCGAAAACUCCUUUUGAUAUCUGGUCAAACAUUCGAUGUGACAUCUAAAAAUUUUCUUUUCGCGAACUAAGGGCCUGUUUAGUUCGCGAAAAGAAAAUUUUUGGGUGUCACAUCGGACGUUUAACCGGAUGUCGGAAAAGGUUUUCAGACACGAAUAAAAAAAC 7 20651 MI0007030 osa-MIR1442 Oryza sativa miR1442 stem-loop UCUAUAUUCAUAGUACUAGAUGUGUCACAUCCAGUACUAGGUUGGUGUUUUAUGGGACGAAGGGAGUAGAUCUUUUGCUAAGUGGAGGCUAAAUUCUCAUCAUCAGAGGAGUAUACUACUCCAUCCGUCCCAUAAUAUAAGGGAUAAUGGGUGGAUGCGACACAUCCUAGUAAAAUGAAUCUGGA 7 20652 MI0007031 osa-MIR1439 Oryza sativa miR1439 stem-loop UAUUGUUUUGUUAUAAAUGUAAUACUACCUCCGUCCCAAAAUAUAGCCAUUUUUAGCUAUGAAUCUAGACAUUGUUUUUAGCUAUGAAUCUAGACAUACAAUGUCCAAAUUCAUAACUAAAAAUGCUUAUAUUUUGGAACGGAGUGAGUAUUAAAUUUGUAGUUUUGUGAUA 7 20653 MI0007032 ptc-MIR171l Populus trichocarpa miR171l stem-loop GGAGAAGUAGACACGGUGUGAUAUUGGUCCGGCUCAUCUUCUGUGCAUAAGCAUCUGAAGUUCUUCACUCAUGAAGACGAGCCGAAUCAAUAUCACUCUUGUAUGCUUCUUC 26 20654 MI0007033 ptc-MIR171m Populus trichocarpa miR171m stem-loop GAAGCAGACAUGGCGUGGUAUUGAUCCGGCUCAUCUUCUGUAUUUGCAUCAGAAGUUCUUCGCUGAAGACGAGCCGAAUCAAUAUCACUCUUGUACGCUUC 26 20655 MI0007034 ptc-MIR171n Populus trichocarpa miR171n stem-loop GAAGCAGACAUGGCGUGGUAUUGAUCCGGCUCUUCUUCUGUAUUUGCAUCAGAAGUUUUUCGCUGAAGACGAGCCGAAUCAAUAUCACUCUUGUACGCUUC 26 20656 MI0007035 ptc-MIR530a Populus trichocarpa miR530a stem-loop GCCAACAUGUUGCCUUUAUCUGCAUUUGCACCUGCACCUUACUUGUUUCUUUCUUUUGUUUUUGACUCCAAAACCAAAAGUAAGUUUGAAACAUUAAAACAAGCUUGAGGUGCAGGUGCAGGUGCAGGUGAAUGCCAUGUUGGU 26 20657 MI0007036 ptc-MIR530b Populus trichocarpa miR530b stem-loop GCCAAUAUGUUGCCUUUAUCUGCAUUUGCACCUGCAUCUUUUGCGUUUGUUUUGUUUUUGACUCCACAAACAAAAUCAAGUUCUGUCGAUACAGUAUGUGGGACAAUUAGAUAUGGAAACUAAUAAGCUUAGUUGAGGUGCAGGUGCAAGUGCAGGUGAAUGCCAUUUUGGU 26 20658 MI0007037 ptc-MIR1444a Populus trichocarpa miR1444a stem-loop GUUUAUCACUUGAAUGUUGACCGAAUAUGGAUGAAAAGUUGUUUUCUGUUUCCUUUCCUCCACAUUCGGUCAAUGUUCCAGUGAUGAGC 26 20659 MI0007038 ptc-MIR1444b Populus trichocarpa miR1444b stem-loop UUUAUCCCUCGAAUAUUGAUCGAAUAUGUAUGAAAUAUGAUGGUUAUAUGUUUCAUUCACAUUCGGUCAACGUUCGAGUGAUAAA 26 20660 MI0007039 ptc-MIR1444c Populus trichocarpa miR1444c stem-loop UUUAUCCCUCGAAUAUUGAUCGAAUAUGUAUGAAAUAUGAUGGUUAAAUGUUUCAUUCACAUUCGGUCAACGUUCGAGUGAUAAA 26 20661 MI0007040 ptc-MIR1445 Populus trichocarpa miR1445 stem-loop AAGCUAAUUAAUCUGAUUUCCCUAGUUUAUAAGUUGUUACAAUUGAAUGAACCUUGUUUGCAAGCAUAGGAUUAGUUGCCGCCCACCAUAAAUCCCUUGUAGACUAGAAAAAUCUAAUCUGAUUUGGUUU 26 20662 MI0007041 ptc-MIR827 Populus trichocarpa miR827 stem-loop CAUGAAUAUAUUUGUUGAUAGUCAUCUAGUGAACAUUGAAAGUCAUAUUAGAUGACCAUCAACGAAAACAUUCAUG 26 20663 MI0007042 ptc-MIR1446a Populus trichocarpa miR1446a stem-loop CCAACUUCUUCUGAACUCUCUCCCUCAACCGCUACUCUAGAGCUUGGCAAUCCUUGUCGAUUGUUUCUGUGUAGCGGUUGAGGUGAGGGGUUCAGAACAUGUUGG 26 20664 MI0007043 ptc-MIR1446b Populus trichocarpa miR1446b stem-loop CCAAUUUCUUCUGAACUCUCUCCCUCAACCGCCACUCUAGAGGUUGGCACCUUGUCAAUUGUUUCUGUGUAGCGGUCGAGGUGAGGGGUUCAGAACAUGUUGG 26 20665 MI0007044 ptc-MIR1446c Populus trichocarpa miR1446c stem-loop CCAACUUUUUCUGAACUCUCUCCCUCAACUGCUAUUCUAGAGCUUCCUGAGCUAACCCUUGUGUUUCUGUGUAGCAGUCAAGGUGGGAGGCUCAGAAAAUGUUGG 26 20666 MI0007045 ptc-MIR1446d Populus trichocarpa miR1446d stem-loop CCAACUUCUUCUGAACUCUCUCCCUCAACUGCUACUCUAGAUCUUGCCAAUCCCUGUCAAGUGUUUCUGUGUAGCAGUCGAGGUGAGAGGUUCAGGAAAUGUUGG 26 20667 MI0007046 ptc-MIR1446e Populus trichocarpa miR1446e stem-loop CCAACUUUUUCUGAACUCUCUCCCUCAACUGCUAUUCUAGAGCUUGUUAAUCCUUGUCAAGUGUUUCCCUGUAGCAGUCGAGGCGAGGGGGUUUCGGAAAAUGUUGG 26 20668 MI0007047 ptc-MIR1447 Populus trichocarpa miR1447 stem-loop GAGGCCCUAAUCAGGGCACUGCAAUUCUAAAUGUCUGUUGGCAAGUGGCGAUGCCAGACGUUUGAAAUUUACUUAUCAUUUAUUAGUCAGAAUUGCAGUGCCUUGAUUUGGGCUUU 26 20669 MI0007048 ptc-MIR1448 Populus trichocarpa miR1448 stem-loop GUUACGGGUAUGGGAGGAUUGGACAGUACUGCUUGGUUUUAAUUAACCAAAGUCUGUUCUUUCCAACGCCUCCCAUACCGGUAAU 26 20670 MI0007049 ptc-MIR1449 Populus trichocarpa miR1449 stem-loop GAUUAGUUGAGGUGCACGUAAGAUAACUCGAUGUUAAUUUAAAAAAACAAACAGGAUCUCAAUAAAAUAAAUUUAAAAAAUACAGAAGGGUAAAUAGUGCUUGCAUUAAUUAAUC 26 20671 MI0007050 ptc-MIR1450 Populus trichocarpa miR1450 stem-loop GAGUCAAUUAGGUCAGUUGUGUAGUCUGACCCGAGCCAUUGAAGACAAUCAUUUGUUGGUGUCUCAUUGGAUUUGUUACCUGACAGUGUUUAUCCAACAAAUGAUUCUCUUCAAUGGCUCGGUCAGGUUACACAAGCAAUCUAGUUGGCUC 26 20672 MI0007051 osa-MIR827 Oryza sativa miR827 stem-loop GAUUUUCGCUGACGGCCGAUUUAACACAGCCACCAGCGAAAAUGAAUUUUUGCUAGCGGCUGAUGUAAGAUGACCGCUAGCAAAGAUCCAUUUUUGCUGGUGGCUGGCUUAAGAUGACCAUCAGCGAAAAUG 7 20673 MI0007052 pta-MIR482c Pinus taeda miR482c stem-loop AGGAGUGGGAGGGUAGGAGAAGGCUCUGUGGUGAGGUCUCAGUCAUAAUCUCAUCAGUCUUCCCUAUUCCUCCCAUUCCU 58 20674 MI0007053 pta-MIR482d Pinus taeda miR482d stem-loop GAGGUGUGGAAGGAUAGGGUAAGACUAAGGUUAAGGAGAAACUCUGCUUCAUUAAUUCUCUGCUCCAGUCCUCCCUACUCCUCCCAUUCCUU 58 20675 MI0007073 hiv1-mir-TAR Human immunodeficiency virus 1 miR-TAR stem-loop GGGUCUCUCUGGUUAGACCAGAUCUGAGCCUGGGAGCUCUCUGGCUAACUAGGGAACCCAC 60 20676 MI0007077 ssc-mir-99b Sus scrofa miR-99b stem-loop GGCACCCACCCGUAGAACCGACCUUGCGGGGCCUUCGCCGCACACAAGCUCGUGUCUGUGGGUCCGUGUC 27 20677 MI0007079 odi-mir-1468 Oikopleura dioica miR-1468 stem-loop GAAGAUGAGUAAAAUUAAGGCGAGAUGAGGUCUUUGGACAGUUAAUUAAUGACCGAUGACCUACCGCCUCAAUUUAACUUGCUCUAAAUUCGACAGAGAGAUUUU 73 20678 MI0007080 odi-mir-1469 Oikopleura dioica miR-1469 stem-loop AGGCCGGAGAUCGUCAAUGGAGAACGCUUCAGCUUUGCGAGCAUCCUCUGUGGGACAAUCUUCUUUGGCAAGAUGGUCGCGAAACUUCCGGAGUCGAUUUCUAC 73 20679 MI0007081 odi-mir-1470 Oikopleura dioica miR-1470 stem-loop AAAGUGAUGCGAUGACACACCUUAACACCAGUGCGCUGAAGGGGAUCCAAUAUAACAAACCCUUCCGCGGACAGGUGUUAGGUGAAUCUUCACGUUGCAACUUU 73 20680 MI0007082 odi-mir-1471 Oikopleura dioica miR-1471 stem-loop UUAACUUGAAUAGAAUCACCUUGGUAUCAAAAUUUGCGCUGCUGGAAAUUAAAUAAAUUGUUAACAGACAAGUUUUGAUACAAGGUAACUCGAAACAAGUUAC 73 20681 MI0007083 odi-mir-1472 Oikopleura dioica miR-1472 stem-loop CGCUUUUCAAAUAGACUUGCUGAAAAGUAGAGAAAAUGAGCGGUUUUGAAAAUCCAGUGACAACUUGGCAGUAAGAUGAUUUAGUACCCUUAAUAAAACUUGU 73 20682 MI0007084 odi-mir-1473 Oikopleura dioica miR-1473 stem-loop AAUCCGCACUCCGUUAGAAUCUGGAGCCAUCGCAGAUUCGGACUUGUUGUUUGUUUCAAAUUCUGUCAAGCUCGGGUUUAUCGGUGUGCGGCGGGCUGCGCA 73 20683 MI0007085 odi-mir-1474 Oikopleura dioica miR-1474 stem-loop AAUGCAAUUGAAAAAUGUCAGGACUGAGGUUGUGCUUGAGCUUUAAUUGAGCAUAAUCACGCUCUUGAUUUUUGUCAUUGUAAAAGCUCGACGAGUAAACCC 73 20684 MI0007086 odi-mir-1475 Oikopleura dioica miR-1475 stem-loop GAUAAUGAGUCGCAUCCGUCCUAAGUUUAUUAUGUGACCUACAGAUCAAAAAGAUAAAAUGAUUCUCUGGGCACAGGUAAACUUUGACGAGCGAGCUCACG 73 20685 MI0007087 odi-mir-1476 Oikopleura dioica miR-1476 stem-loop AGCCGAGAAAUCUUUUCUGGGCAAAGGUAAAUGUAUGCGUAAGCAUCACUUACCCACAUCUUACAUGUACCGUUGCUCAGAGACGGUCUCGCGCUAUCAUCG 73 20686 MI0007088 odi-mir-1477 Oikopleura dioica miR-1477 stem-loop GACGUGUAUUUGGCAUGUGCAAAGCCCUAACAUUUCUAGUAGCCCGGGGGGAGUGUAUAGAAAUGGAGGGAGUAGCACCCGCCAAGCGUUUGAGCUUUCGACA 73 20687 MI0007089 odi-mir-1478 Oikopleura dioica miR-1478 stem-loop CACCAGUACCUAGCGUGGAACUAGUAUGGAGCAGGCUGACCUUACACAAGAAAAAGCCCUCAGUCCUUCAAGCUAGUACCCCUUUAGGGCUGGCACGAUCGAC 73 20688 MI0007090 odi-mir-1479 Oikopleura dioica miR-1479 stem-loop GUCGCGAGGUGGAGACAACGAGUCCUUGAAAUUACCGGCUGAGAACAGAAAAUAACCACUCAGCUGGUAUAUCAGGAUCGUUUCCUGCAUCCGUGAGCACUCG 73 20689 MI0007091 odi-mir-1480 Oikopleura dioica miR-1480 stem-loop UCUUCUUGUUGACUCGGUGGCUCAUUCUCGGCUUGUGUCAGAAUUAUUGCUGAUCCGAAAUGAUCGUGAUCAGAAGGAUAAAAAUGAUAACAAGCAUUCUAGAA 73 20690 MI0007092 odi-mir-1481 Oikopleura dioica miR-1481 stem-loop CUACCGCAAGAGGGGCCACAAUGAAGAUAGAAGAUGGCUUCAGAGUUUUAUUUGUACUGAGCCGACUUCUAUUCAUUGUCGCUUUUAAUGCGAGUACACUCGAC 73 20691 MI0007093 odi-mir-1482 Oikopleura dioica miR-1482 stem-loop UUGAUGCCGAGACGCUUGAACUUCUCAGGAACAGGCUAGACUGGUAUAUCCUGCAAACGAGAGAAGCCUAUUUCAGAGGUUUGAACACAUUAGCACAACAACUC 73 20692 MI0007094 odi-mir-1483 Oikopleura dioica miR-1483 stem-loop CAACCCAGUUUCUCGCGGCAGUGAGUCGAUAGCGCCCUUUCGGCGUAUCUAGAAAAUUUUCGAAAGGGCCAUCGCCUAUAUCUGCCCAAAGAAACUGGGAAUA 73 20693 MI0007095 odi-mir-1484 Oikopleura dioica miR-1484 stem-loop UCGCAGGGACCGGUCGACCAUAAUGCGUUGUUUGACCUUUUGGCUGGCUGAAGCCAGGAACGGGUGAAACUUCGUAGAUUUGGUCACUCGGCUCUAGAUCGAG 73 20694 MI0007096 odi-mir-1485 Oikopleura dioica miR-1485 stem-loop ACCGUUUUUUAGCUGAAGGUAAAGCUGGCUACAUAACGUUUGCGCUUAGACAGAAGACGUUAUGUUGUCCCUACCUACAGCUAGCUGCUCGCAUUUCGACAGAU 73 20695 MI0007097 odi-mir-1486 Oikopleura dioica miR-1486 stem-loop CUUAACCGGUUGCCACUAGGUGGUUUUUUCGAUGAAGGUGCCCAGUAAACUGGGUACCCUCCCGAAUUAAAACACUUACUAUUUAUAGUGAUAAAAAAUUUUAU 73 20696 MI0007098 odi-mir-1487 Oikopleura dioica miR-1487 stem-loop ACACGAGCGCCAGACUGGCAGUGGGGACAAGUUUAGGCCCUGAGGCGGAUUGAAAAAUGCCCCAAGGCCUGGGCCCACUUCUUGACUGGCCCCGUGACAAAC 73 20697 MI0007099 odi-mir-1489 Oikopleura dioica miR-1489 stem-loop UGAGCUGUUGUUAGAUAGGUAAACCACGGAUUGCUUAUUGAAAAAGAUAGUAAGCCGUCCCUGGAAUAUCUUCCCUAACACGUGCUUCUAUUCGACUAUCUU 73 20698 MI0007100 odi-mir-1490a-1 Oikopleura dioica miR-1490a-1 stem-loop GGCUCGUUUACAGUUAGGCAGUGAGUUGAUAGCGCCCUGAAAUGGAAAAAUCAGGGCCUCUCACCCACUACCAUGACUGUACUUGCCCUAUUCGACCCUCUC 73 20699 MI0007101 odi-mir-1490a-2 Oikopleura dioica miR-1490a-2 stem-loop UAUCGCCAGAAAAUUAGGCAGUGAGUUGAUAGCGCCCUGAACUGCGAAUUUCACCGUCCCGGGACUAUCGUUACUGUCCCAUUUUCUGGCCGAAUAUUCGAC 73 20700 MI0007102 odi-mir-1490b Oikopleura dioica miR-1490b stem-loop CGCCGGUCUUUCGCGAGGCAGUGAGUUGAUAGCGCCCUGUAGAGUGGGUUUAGAACUAAACGAGGCCUAUCCUUACUCGCCACAACGAAGCGCUGACUGUUC 73 20701 MI0007103 odi-mir-1491 Oikopleura dioica miR-1491 stem-loop UGGCUCGUUUCUGCGACCCUGAGUGCAGAAUCUUGGUCUGGUGGAACUAAAUAGAACCAACGCCGGACCAGGAAUUUGUCCGGGAAACAGAACGGGCCACU 73 20702 MI0007104 odi-mir-1492 Oikopleura dioica miR-1492 stem-loop CUAAUUAUGAGCAGAUCAGGCAGGACGUGGUUUUGUGCGAAACCGGCGAAAUCUGAGUUUGAUGGUAUUGCACAUACCCGGCCUUGCUGAUCUUGCUUUCA 73 20703 MI0007105 odi-mir-1493-1 Oikopleura dioica miR-1493-1 stem-loop UGUCACUCGAAAAGCAGAACUGUCUGAAUGGUUGGCUAAACGGGCUAAAACUCCCGAAACUAGCCAGUCUGCGAGACAGUUCCGUUUUUCAGCGACCUGA 73 20704 MI0007106 odi-mir-1493-2 Oikopleura dioica miR-1493-2 stem-loop UUGAGAUCAAGGAUGAGAACUGUCUGAAUGGUUGGCAGUCGGAAAUUUUAAUUUAUACCGACGCCAGCUAUGCACACAGUUUAAAUUCGAGAUCUACCAC 73 20705 MI0007107 odi-mir-1494 Oikopleura dioica miR-1494 stem-loop GGUUAUUGAAUGAUAAAGCAGCAAGGACAGUGUUUGGUGAUUUUGACCAACUGAAGACUAUCUUUGCUCGCUCCAUCAAGCUAGCCACGAACUACGAGAGAU 73 20706 MI0007108 odi-mir-1495 Oikopleura dioica miR-1495 stem-loop AGUGAAAAUUCGAGUUUCAGAAUUUGUUUCGUGCGGUAUUUCAGUUCUGUAUUUUCAAUCUUGGAAGUGUAAUACCCAUGGAAGCAUUUUCGAAUUUGACCAA 73 20707 MI0007109 odi-mir-1496 Oikopleura dioica miR-1496 stem-loop CAGGCAGCGAUUUGAUAGCAGUGAGAGUUUAGCAUUCGCAACAUUUUUUACUGUUGCGAUGCUGCUAACUGCUUUUGAGUUACUGUCACUAUCGACGACGGAUAACU 73 20708 MI0007110 odi-mir-1497a Oikopleura dioica miR-1497a stem-loop UCGAGAGUCUCUAGCUUUUGCGAAUCCGCUUCCUCAGUGCUUCCAUAAGUUUAAGUUCACGCUUAUUGAAGAACUGCAGGUGGUGGAUUUACUCUUGCAAUAA 73 20709 MI0007111 odi-mir-1497b Oikopleura dioica miR-1497b stem-loop AGUAGUCUUUUUGACAGAAAUUGGUCCUACCUGACUUUUCUUCGAUAAGCUAUUUGAUAAGGCUAUUGAAGAACUGCAGGUGGUGGUCCGACUUCUGCCAAAA 73 20710 MI0007112 odi-mir-1497c Oikopleura dioica miR-1497c stem-loop UUUUUCAGAAAAUGACAGUGGAUAGUCCUACCUGACUUUUUUCCAAUAAGCUGUUAAAAAUGCUAUUGAAGAAUUGCAGGUGGUGGUCCUUCUGAUGCCAAAG 73 20711 MI0007113 odi-mir-1497d-1 Oikopleura dioica miR-1497d-1 stem-loop CACUUUUUAUAAUUGUUGAUUGACUAUAAGCUAUCUAAAAUUCUUCUUUACUUUACAUUAGAGUAUUGAAGAAUUGCAGGUGGUGGAUAGUGUAUCAUCAUCU 73 20712 MI0007114 odi-mir-1497d-2 Oikopleura dioica miR-1497d-2 stem-loop AAAAAAGAACAUUCUUGAAUCACUCUCAACCAUCUAAUAUUUUUCCAUACGUUAAGAUAAAUGUAUUGAAGAAUUGCAGGUGGUGGAUAGUUUUUCAACCUUU 73 20713 MI0007115 odi-mir-1497e Oikopleura dioica miR-1497e stem-loop UACCCACAAUUGACUCUGUGUUUACACCUCCAUUUAAUUCUGAAAGACUCAAAAUUGACAAGGUUUUGAAGAAUUACAGGUGGUGGAAAUACAGUUGUCCACG 73 20714 MI0007116 odi-mir-1497f-1 Oikopleura dioica miR-1497f-1 stem-loop AACUAAAACAAAGGCCUAGACCCUGACCACCUUUCUUUUCUUGGAAAACUUAUAGAGUUAAGCUUUUGAAGAAUUGCAGGUGGUAGGGGGUCUACGCUGAUUG 73 20715 MI0007117 odi-mir-1497f-2 Oikopleura dioica miR-1497f-2 stem-loop UUGUUAAAUCCUUCUGGACCUCAAACACCUUGCUUUUCUUGAGAAACUCGAGUAAAAAUGAGCUUUUGAAGAAUUGCAGGUGGUAGGGGCCAGGGAAACAAUC 73 20716 MI0007118 odi-mir-1497g Oikopleura dioica miR-1497g stem-loop UGAAAAAACUUGCUUGGAAUUAGGUCCACCACCUUACAGUUCUGUCAAGGGUUGAGCCAUUGCUCUUGAAGAAUUGCAGGUGGUAGGUUCUGUCCAGGAAACA 73 20717 MI0007119 odi-mir-1497h Oikopleura dioica miR-1497h stem-loop AAAAGGUUGAAGAGCAUGAACACCCCUUUCCAAUUCUUAGAUGAGCUAUUUAAGUCACAAGCUUAUUGAAGAAUUGCAGGUGGUGGACAAGCCUUUCAAAAAU 73 20718 MI0007120 odi-mir-1498 Oikopleura dioica miR-1498 stem-loop CUGGCGAUUUUGCGAAGGAAUGUAGAAUUAGGAAUUCGGAUAGCUGUUUAUAAAUAGAUGCUUUCGAAUUUCAAUUUUCAUUCUCCCGCAAGGUCAGCCACAGA 73 20719 MI0007121 odi-mir-1499 Oikopleura dioica miR-1499 stem-loop CGGCUCGCGUCGAGGCACACCUUUACCAGUGCGCUGGAGCGAAUCGAACCUGAACCAGCCGCAUCGGUUAAGGUGCCACUCGACCGUAGGAAUAUCAUUGUA 73 20720 MI0007122 odi-mir-1500 Oikopleura dioica miR-1500 stem-loop AUCUUCAUUGCAUUAUUUUUAAUCAACUGCGUGAUCUUAUUCAAGUCUUUGGAAUAAUUUGAAACUUGAUAAGACUGUCAUUGAUGAAAAUUUAUGUAACCU 73 20721 MI0007123 odi-mir-1501 Oikopleura dioica miR-1501 stem-loop UGACGAUUCCGCGACCAGCUGAGUCUUUGAGAGUAGAGCAUGGAUCGAGCGGACGUUCUGCUUUCUAUGCUGUACUGCAAAGGCUCCGGUGGGAUAGCGCGG 73 20722 MI0007124 odi-mir-1502 Oikopleura dioica miR-1502 stem-loop GCAAGCUCGGAGCAGUGAACUUUACCAUGGAACCGGGACUAUUUCACAUAAUCACGUGACCCUGGUUUCGUUGUAAAGUUUUCUUUACUGAGCUGACCAAUC 73 20723 MI0007125 odi-mir-1503 Oikopleura dioica miR-1503 stem-loop CUCAGGUAGAAUCCUCUGAUCGAUGGGCGGUAGUGACGAUUUCUUUUUAGGGCGCAGAAGAGUCCCGAGGAAGAUCUUGUGGCAAUCAAUAAAAUCUUGG 73 20724 MI0007126 odi-mir-1504 Oikopleura dioica miR-1504 stem-loop GCAGCAAAUGAGCGGGCGCGCUCCUAACCCUAGUUGCAGGUACAAGCUUUCGCCUCGCAAGAUAAAGUGUACUUGGUGCUUGGGUUGUUCAAUUUGGGGCG 73 20725 MI0007127 odi-mir-1505 Oikopleura dioica miR-1505 stem-loop UUGAAGAACUCGCCUAGGUCAGUCUCUGUCUUUCUUCCUUUCACAGUUGGCUUCGGAAGAGCGGCAGUAGACUGACUCGGCGCCUCAUUUUUAGCCUCCUUCU 73 20726 MI0007128 odi-mir-1506 Oikopleura dioica miR-1506 stem-loop UUGAGAACUCGCCUUUGGCAGUACCUAAGUCCCUGAGCUCUAAAAAUGAUCAGAGACUUUUCUUACUGCCUCAGGCUGGUACCUCACCUUCGACGAAGCUA 73 20727 MI0007129 cin-mir-1473 Ciona intestinalis miR-1473 stem-loop GCGGCUCUGGCACCCACGUAUUCGAUCUUGCGAGAGAUAAAGGACAUCUCAAGCUCGGGUUUAUGGGUGUUGGACCAAGC 74 20728 MI0007130 cin-mir-1497 Ciona intestinalis miR-1497 stem-loop GCCGGAAUCUGGCUGUUAGCGCAACCACUUGUGAAUCUCCAACACUCGGCUUUGUCCACGACUUUGUUGAAGAAUUGCAGGUGGUAGGUGCUUUCAAGCCGUAU 74 20729 MI0007131 csa-mir-1473 Ciona savignyi miR-1473 stem-loop CGAAACAUCAUUAAAUAACCUACGUGGGUCUGGCUCCCAAAUCUUCGAUCUUGUGAGAUAUAUUCUCAAGCUCGGUUUUAUGGGUGCCGCAUCCAACGACA 72 20730 MI0007132 csa-mir-1497 Ciona savignyi miR-1497 stem-loop ACCAUCAGGCUGGUAUAAGCGUAACCUCUUGUAAAUCUCCAACACUAAGCUUGGUUACAGCUCUGUUGAAGAAUUGCAGGUGGUAGGUGCUAUCCAUGCAUUA 72 20731 MI0007133 odi-mir-1a Oikopleura dioica miR-1a stem-loop CAAAAUCAGCCGGAAAUCGCGAAGCCAUACUUUUUGACAUUCUUUGCUGAACUUUUAAAUGACGCUGGAAUGUUGAGAAGUGUGAUUUGGCGAUUUU 73 20732 MI0007134 odi-mir-1b Oikopleura dioica miR-1b stem-loop AAUAAAAGUCACGGUGCCUGUCCACAUUUACUGACAUUCUUUGCCUAUUUCAAAGUGCAAGGGCUUGGAAUGUUAAGAAGUGUGACUAGACAAGUGACUCUC 73 20733 MI0007135 odi-mir-1c Oikopleura dioica miR-1c stem-loop UGACAUGGCAGCCACGGUUUACGUACUCAUUUACAUUCUUUAAGACGCUGGUUUUAAUUUCCUUAUGGAAUGUAAAGAAGUAUGUGAAAGUGGGAUGCCCUU 73 20734 MI0007136 odi-let-7a Oikopleura dioica let-7a stem-loop AAAAUAUUGACGCAAUGAGGUAGUGGACUGUUUAGGAAGGAAAUUAAAAUAAAUCCAUUCCUAAACUUCACACUAACUCCUUAAGUCGCCCACACCAUCGCCG 73 20735 MI0007137 odi-let-7b Oikopleura dioica let-7b stem-loop UCGGCUUGGUGUCGUUGAGGUAGUGGUUGUAAUAGCUCAAGAAUAUACCCUCCCGAGCGCUAUUCCACAAUCUACUUCUCCAUCACCGAUCCACAGUCGACA 73 20736 MI0007138 odi-let-7c Oikopleura dioica let-7c stem-loop AGGACUAGUUCUGCAUGAGGUAGUAGGUUAUGCUGUUCGGAAAAUAAUAUAAACGGUAACAGCGUAAAAUGCGCCUCUCCAGAACUCAGUCCAUAUUCGACA 73 20737 MI0007139 odi-let-7d Oikopleura dioica let-7d stem-loop CGCCAGUUCCGUUUGAGGUAGUGGGUUGUAUCGCUGAGGGAACUAAAGUUUCACCCUGGCGCUGCAACAAACUACCCCCUACGGCGCGUGGUGCUACUCG 73 20738 MI0007140 odi-mir-7-1 Oikopleura dioica miR-7-1 stem-loop AUCUGGUUGACGGUUUGGAAGACUAGUGAUUUUGUUGACUUGGACAUAAUUGUCGUUUCUUGUCAACUCACACUAGUUUCCCGUACUGCAUCGGAUUCAAUC 73 20739 MI0007141 odi-mir-7-2 Oikopleura dioica miR-7-2 stem-loop AUCUGGUUGACGGUUUGGAAGACUAGUGAUUUUGUUGACUUGGACAUAAUUGUCGUUUCUUGUCAACUCACACUAGUUUCCCGUACUGCAUCGGAUUCAAUC 73 20740 MI0007142 odi-mir-31 Oikopleura dioica miR-31 stem-loop UGUCAAUUUGCGACGAGGCAAGAUGCUGGCAUUGCUGCCAGUCCCGCUAAAUGCGCUCUCGGCAGCUCGACGGCAUUUGCUUCAUCGCAUUGAUAACGCUCG 73 20741 MI0007143 odi-mir-92a Oikopleura dioica miR-92a stem-loop ACAGUAAUACUUGGUUGAGAUUCUAGGUCUAGUCAGAGUGGGUUUACAGACGAUUUUUAUAUCUGUAUUGCACUCGUCCCGGCCUUGGAAUACUUUAACUA 73 20742 MI0007144 odi-mir-92b Oikopleura dioica miR-92b stem-loop UAACCUUUUCGAAAGUCUACCAGUCGCGAUUAAGUGCUUUGUUAACUAAAACUAGAAUAUUAAAUAUUGCACUGGUCCCGACUAAUAGAAGUGCGAGAACA 73 20743 MI0007145 odi-mir-124a Oikopleura dioica miR-124a stem-loop UUUUGAACUAAGCUUACUGGGCAGUAUUCCGCUUGUGUGCUUGACAAUUUAAGUGUAGCACUUUGUAAGGCACGCGGUGAAUGCUAAGCAGUGAGCUAUUAC 73 20744 MI0007146 odi-mir-124b Oikopleura dioica miR-124b stem-loop CCGCUACCGGGCUUAAUUAGUAUUCGCAAGAGCUGCUUGAGAAGUGCUCGAUUCUAGCAUCGUUCUAAGGCACUCGGUGAAUGCUAAAUGAGCUCUGGAAUA 73 20745 MI0007147 odi-mir-219 Oikopleura dioica miR-219 stem-loop GAGUGAAAUAUUCGGUGAUUGUCCAAACGCAAUUAGUAGACGAAAGAGAAACGGAUUGACGUUUGGCCAAUCGGCCUAAAAUACUCUGCAGUCGACGGUAA 73 20746 MI0007148 odi-mir-281 Oikopleura dioica miR-281 stem-loop UUCAUUUAUCAAGGCUGAAAGCAAAAAGGAGGCAAAGUUCAUGAUUGUCGAAAGACAAGGAAUACUGUCAUGGAAUUGCUCUCUUGAUGCUCUUUGCAAAC 73 20747 MI0007149 cin-let-7a-1 Ciona intestinalis let-7a-1 stem-loop AUGGCCGUGACCACAAUGAGGUAGUAGGUUAUGCAGUUAUAGCCUCCCUUUUAUACUGAGUGGAGCACAGGAGAUACUGUGUAACCUUCUGCCUUUGUGGCUUCGUGUUU 74 20748 MI0007150 cin-let-7a-2 Ciona intestinalis let-7a-2 stem-loop AUAGUUGUCGAUAUUAUGAGGUAGUAGGUUAUGCAGUUUUGCGACAUUAUUCUCGUUGCGUUGGAGAUAACUGUGUAGCCUACUGACUCUAAUGUCUUCAGCUCUCUCUU 74 20749 MI0007151 cin-let-7b Ciona intestinalis let-7b stem-loop AGGUACACCUGCUGUUGAGGUAGUAGGUUAUGUUGUUGCACAUAAUACUGCAUUGGAGAUACACCAUGACCUUCUAACCUCUGCACCAUGUCUAUCACUUUCAACAUGG 74 20750 MI0007152 cin-let-7c Ciona intestinalis let-7c stem-loop UGAACUGAUUCAAGUUGAGGUAGUAGGUUAUAUCAGUUGAUUAUAUGAACCAGGAGAUAACUGUAUAGCCCACUAGCUUACUUGCAUGGUUUACUUUCAACCAAAAAGAG 74 20751 MI0007153 cin-let-7d Ciona intestinalis let-7d stem-loop UCAGCUAUUCGUGGCUGAGGUAGUUGGUUGUAUUGUUUCCCUUGUGUAAUGUUAACUAUACAGCCCGCUAGCUUAACCAUGGUUGCUAACUAUCCACGAAU 74 20752 MI0007154 cin-let-7e Ciona intestinalis let-7e stem-loop UCAGCUAUUCGUGGCUGAGGUAGUUGGUUGUAUCGGUUCCCUUGUGAAAUGUUAACUAUACAGCCCGCUAACUUAACCAUUGGUUGCUAACUAUCCAC 74 20753 MI0007155 cin-mir-7 Ciona intestinalis miR-7 stem-loop AUAUCCGCACCCGGUUGGAAGACUAGUGAUUUUGUUGUUAUAGCAACAACAAUCUAUGGUCUCCUGCACGGAAGUGGA 74 20754 MI0007156 cin-mir-31 Ciona intestinalis miR-31 stem-loop AUGUAACUGGUUCUAUGGCAAGAUGUUGGCAUAGCUAUUUCACAUGAUGUGAUAUAGUGUGCUAAUAUCUAGCUUUGGUACUAGCUUAAGAAAUCAACGCAA 74 20755 MI0007157 cin-mir-33 Ciona intestinalis miR-33 stem-loop UGGUAGUUUUCCCUUGUGCAUUGUAGUUGCAUUGCACUGUUGCAUUGUGGGUAAUGUGACAACAAUACAACCGGGAUUUCUGCACAGUCAUCAUAAAUUUG 74 20756 MI0007158 cin-mir-34 Ciona intestinalis miR-34 stem-loop UUUCACGUGAUUCUGAGGCAGUGUAGUUAGCUAGUUGUUUUCUUGCCGAGAUGGACUUGCAUCCCGAACGGUUUAUUUCGAACAACUGCUUUUUGCACUACCACGGAAAUCACUUGACU 74 20757 MI0007159 cin-mir-78 Ciona intestinalis miR-78 stem-loop AUUAGAUGUUGAGAAGGACACUUAUCGGGCAUCAAGUUUGUGAUGAACAGCGUCAUGGAUGAAACUGGAGGCCUGGUUGUUUCCUGUAUAGUUGAUAAUGG 74 20758 MI0007160 cin-mir-92a Ciona intestinalis miR-92a stem-loop GAAGCUUUAGUGAAGUUUGAUUAUAUAUUACUCGACGGCUGGUACAAGAGCACGAUCGAUUAGGAUAUUGCACUUGUCCCGGUCUUAGGGUGGUAUAAAAA Norden-Krichmar et al refer to this sequence as mir-25 [1]. 74 20759 MI0007161 cin-mir-92b Ciona intestinalis miR-92b stem-loop AAAAAGCUCCAUUUUCGCAGUUUACUUGCAGGUUUGGACCGGUGCACCAGAUUAUAUAAGAUUUCUAUUGCACUUGUCCCGGCCUUCAAAUACUGCUGAAC 74 20760 MI0007162 cin-mir-92c Ciona intestinalis miR-92c stem-loop UCCCAAACUUAUAAACUGUACCUGCAUACUUAGGCCUGGCGAAGUGCAUUGCGUUGUCAUGGUCGUAUUGCACUCGUCCCGGUCUAUGUAUCUGGUAAAAA 74 20761 MI0007163 cin-mir-101 Ciona intestinalis miR-101 stem-loop UUGAACCAUUUUUUCUUACAGAUUGGUGACGCUGACUGAUAUAUGUGAGAAAAGUGAACAUAUGGUACAGUACUGUGAUAAAUAUUUGACAGGAAGAAAAGG 74 20762 MI0007164 cin-mir-124-1 Ciona intestinalis miR-124-1 stem-loop UAUGUUCGGUAGUAUUUAUUGUGGACCUUGCUGUGUGACGUCACAAUAAGGCACGCGGUGAAUGCCAACGAAUUUUU 74 20763 MI0007165 cin-mir-124-2 Ciona intestinalis miR-124-2 stem-loop CGUAAUAUUUAAAGGGCGCUUAUGAGUCGUGUUUACUGUGGACCUUGCUGUGUGACGUCACAAUAAGGCACGCGGUGAAUGCCAAUCAAAAGUCGCCGC 74 20764 MI0007166 cin-mir-126 Ciona intestinalis miR-126 stem-loop UUUCGAUGCUGCCUUGUUACCUACGGUACCAGGUAGAAAGUAUGUCAUCUCGUACCGUGAGUAAUAAAGCAUUCUCGGGAG 74 20765 MI0007167 cin-mir-133 Ciona intestinalis miR-133 stem-loop AGAAAACAUUGCGGGUGUCGGUCGUUGGUAAAGUGGAAUCAAACCUUACGGUUUUAGUCCAUGGUUUGGUCCCCUUCAACCAGCUGCUGCUACCACGCACA 74 20766 MI0007168 cin-mir-141 Ciona intestinalis miR-141 stem-loop UGGUGUAUCUUGGUCAUAUAGUGUUGUAGAUUCAUGAUCUAACACUGUCUGGUAAAGAUGCAUUCGACGUGUCUC 74 20767 MI0007169 cin-mir-153 Ciona intestinalis miR-153 stem-loop UAAUAAAAUGAGAAUUCUGUGUACGUGUGUCAUUUUUCUAUUAUGCAACUUUUUUUUCAUGUUAGUUGCAUAGUAACAAAAGUGAUCAUACGUUCGCAUGAG 74 20768 MI0007170 cin-mir-155 Ciona intestinalis miR-155 stem-loop GGUUGAGAUUGAAUGUUAAUGCUAAUAGUGAUAGGGUUCAUAAACCUUAUAAAGUUUAUUAAUAUUCCAAAAUCACUCAAAAUGCCACCAAUAGUUUUCUC 74 20769 MI0007171 cin-mir-181 Ciona intestinalis miR-181 stem-loop AGAUGUUUGUGUAAUAACAUUCAACCUGUCGAGCAAGCCUGCUUAACUAGUCGUUGUUAUUUUUGACCUCGCUACUGCAGAUGUUGGACAUGUUUGGUGUAAGUAACAAUGUUG 74 20770 MI0007172 cin-mir-183 Ciona intestinalis miR-183 stem-loop CUGGUGUUUUCGGUGUAUGGCACUGGUAGAAUUCACUGCCAAGCCAGUGGUUCAACAAGCGCCGUAAGCUGGAAACACUA 74 20771 MI0007173 cin-mir-184 Ciona intestinalis miR-184 stem-loop GCGUAAUAGAACUUGCCACUUCUUCGCUUUCCAUCAUUUUGGGGUUAAAUCACCCAAGCCAUUGAUGGACGGAGAACUGAUAAGGGCUCUUGCGUUGGUCAA 74 20772 MI0007174 cin-mir-199 Ciona intestinalis miR-199 stem-loop UUGAUAGGACUUGAUGUGGCGGUAAAGGAUACACCUGCAGCAACUUUGCGGCACUUCGGCAUACGACAGUAGUCUGCACAUUGGGUGUCUAGCUGCUACAUG 74 20773 MI0007175 cin-mir-200 Ciona intestinalis miR-200 stem-loop UUCGUGCCAACCGAAUCACCAACCACGUAGUAUCGGAGCAUUGUGUGUCUAAUACUGCCUGGUAAUGGUGAUUGGGUGGAUACGUA 74 20774 MI0007176 cin-mir-216 Ciona intestinalis miR-216 stem-loop UUACUCGAGCCUGCUUAAUCUCAGCUGGCAAUCUGUGAUGUCAUAAUCAUCACGGGGCAAGAUGGGAUUUUGCUGACUAAGGGUUUAACGACUCAGCGUAUUAU 74 20775 MI0007177 cin-mir-217 Ciona intestinalis miR-217 stem-loop AUAGUUGUCGUGAUUUACUGCAUUAGGAACUGAUUGGUCCAAAAACCUCCAAUCAUAUCCUUGUGCAUUAUAUUUCGGGAACGACUCACUUCAAAGUUAAACA 74 20776 MI0007178 cin-mir-219 Ciona intestinalis miR-219 stem-loop AUGGCGUCUGUUUCGUGAUUGUCCAAACGCAAGCUCAGUUUUAAAAUACUGCGAUUGUGUCUGGACAUCUCAAAUCAGAAGGCUGCUGUCUUCAAAAACCAA 74 20777 MI0007179 cin-mir-281 Ciona intestinalis miR-281 stem-loop UUGGAAAAUAUAUAACUGUCCAGUGCGUGUCGGAGAGUAAUUUCAUGUUAGUGACAUCAUACUACUGUCAUGGAGUUGCUCUCUUAUUAGCGCUGAGGCCA 74 20778 MI0007180 cin-mir-672 Ciona intestinalis miR-672 stem-loop ACAUUGAUGGAGAUAUGAGUUUGGUGUACUGUGUGUUGCAUGUCGUCAAGCAUCCAAUGGCUCGACUUGCCCGACAUCCCACAACGGGUUCAUGGUUUCAA 74 20779 MI0007181 csa-let-7a Ciona savignyi let-7a stem-loop CAAAGCCGCUCAAAAUGAGGUAGUAGGUUAUAUCAGUUGAAUAUUUUACCAUGGUGAUAACUGUAUAACCAACUAGCUUUCUUAAACGGUUUACUAUCAGCA 72 20780 MI0007182 csa-let-7b Ciona savignyi let-7b stem-loop UAGUAGUCUUGUUGUUGAGGUAGUAGGUUAUGUUGUUGCGUGAAUUACAACACACAGGAGAUACAACAUGACUUACUCAUCUCUGCAGAAGGGCUACAGCUA 72 20781 MI0007183 csa-let-7c-1 Ciona savignyi let-7c-1 stem-loop GGGCUUCUCCCACAAUGAGGUAGUAGGUUAUGCAGUUUUUGCCUUGAAUGUUUUUAGAGGCACAGGAGCUACUGUGUAACCUUCUGCCUUUGUGGCAGAUG 72 20782 MI0007184 csa-let-7c-2 Ciona savignyi let-7c-2 stem-loop CUCUUGCUGAUAACAUGAGGUAGUAGGUUAUGCAGUUUGGCGACAAUAUUUCGUUGCAAAGGAGAUAACUGUGUAACUUGCUGGCUCUUUUAUCGACAACUC 72 20783 MI0007185 csa-let-7d Ciona savignyi let-7d stem-loop GAGGCUAUUCACAGAUGAGGUAGUUGGUUGUAUUGUUUUACACCUUCGGCGAUAACUAUACAGCCAGCUAACUUUACUGUGGUUGCUAAAUAUCGUCCAGCA 72 20784 MI0007186 csa-mir-7 Ciona savignyi miR-7 stem-loop CCGUCCUCUACCACGUGGAAGACUAGUGAUUUUGUUGUUUCAUCAACAACAAUCUUUAGUCUACUGCACGGUUGAUGGAUGCUAUCAUCAUUUCUUAUUUUUG 72 20785 MI0007187 csa-mir-31 Ciona savignyi miR-31 stem-loop AUGUGACUAGCACUAUGGCAAGAUGUUGGCAUAGCUAUAAAAAUGUUAAACAUAGUGUGCUAAUGUCUAGCCUUGGCGCUAG 72 20786 MI0007188 csa-mir-34 Ciona savignyi miR-34 stem-loop AUUCACGUGAUUCUGAGGCAGUGUAGUUAGCUAGUUGUUUUCUUAUCCGGGUGGGUUUGUACCCCACAUCGGUUUUCAUAUAAACAACUACUUUUUGCACUA 72 20787 MI0007189 csa-mir-92a Ciona savignyi miR-92a stem-loop AUCAUAACCACAACUAUGUAUCAAUAUGCCUAGACCAGACAAAGUGUAUUGCGUUGUUGCAAUCGUAUUGCACUUGUCCCGGUCUAAGCAUUUGGUAAGAAAG 72 20788 MI0007190 csa-mir-92b Ciona savignyi miR-92b stem-loop CCCAGCCUGACAAAGACCUACUGAAUACAGUGCUGCGGUCGGUUUAGGCGCAUUAUCUCUGUUGAUAUUGCACUUGUCCCGGUCUUAGUAAAGUAUGACU 72 20789 MI0007191 csa-mir-92c Ciona savignyi miR-92c stem-loop GUAUAUAGCAGUCAGGAACGGCCGAGUGUGGUGUAUUGUACUCGUAGAAAUAACAGUAUUGCACCUGUCCCGGCCGAUCUUGGGUGCGCCU 72 20790 MI0007192 csa-mir-124-1 Ciona savignyi miR-124-1 stem-loop UUAUAAUCGACGUCAUAGCCAAGUUCGAUCGUGUUUAUUGUGGACCUUGCCGUGUGACGUCACAGUAAGGCACGCGGUGAAUGCCAACGAACUCGCGCUGCAU 72 20791 MI0007193 csa-mir-124-2 Ciona savignyi miR-124-2 stem-loop GUGACGUAAAAUCAAUAAUGCGCUUCAUCCGCGUUUGCUGCGGACCUUCUUGUGUGACAUCACAAUAAGGCACGCGGUGAAUGCCAAUGAAACGUCAUCACU 72 20792 MI0007194 csa-mir-126 Ciona savignyi miR-126 stem-loop GUGUCAUAAUUAUGGUUUUCGAUGCUGCCUUGUUACCUACGGUACCAGGUAGAAAGUAAGUCAUCUCGUACCGUGAGUAAUAAAGCAUUCUCGGAGGCUCA 72 20793 MI0007195 csa-mir-133 Ciona savignyi miR-133 stem-loop UGAGUAAAAAAAACACUGCUUGUGACGGUUGUUGGUAAAGAGGAUCGAACCUGGAAAAUGAUGGUUUGGUCCCCUUCAACCAGCUACCGAUGCAACGCACG 72 20794 MI0007196 csa-mir-141 Ciona savignyi miR-141 stem-loop UUGGUCGUCGGUCGCAUCUUCAUCACGCGGUGUUCUAGAACUCAUUCUAACACUGUCUGGUAAAGAUGCGAUCGGCGGCUACUU 72 20795 MI0007197 csa-mir-153 Ciona savignyi miR-153 stem-loop GGAAAACAUUGUCUUUACUGUUCACGAGUGUCAUUUUAAUACUAUGCAGCUUUGAAUAAUGUUAGUUGCAUAGUAAUAAAAGUGAUCAUGCGUUUACAAGAA 72 20796 MI0007198 csa-mir-155 Ciona savignyi miR-155 stem-loop UAGCUAAUUGUACUACUCUUACUGACGUGUCACAUAAUUAACAGCAAUUACGGGACGGAUCACUGAGCUGUAGUGAUACAGAAAGUCAGCGCAUCUGUAAUUAAUGCUAAUAAGUGAUUUAUGGUUUCGUUCUACAAA 72 20797 MI0007199 csa-mir-183 Ciona savignyi miR-183 stem-loop ACAGUGUUGACGAAAUAUGGCACUAGUAGAAAUCACUGUAGCCAACACCCAGUGGUUUCACAGGUGCCAUAAAUUGGAAACACUACUUUCUACAGCGAUAACA 72 20798 MI0007200 csa-mir-200 Ciona savignyi miR-200 stem-loop GGUCACUGAAGCAUCAACCCGGUAGUACGAUAUGUGAGCUGUAUAAUACUGCCUGGUAAUGAUGAUUCAGUGGCGUCGCG 72 20799 MI0007201 csa-mir-216a Ciona savignyi miR-216a stem-loop UGUCCCGGCUCAUUCUAAUCUCAGCUGGCAAUCUGUGAUUGGCUGAAAAUCACAGAUGCAGAUGGGAUUCUGAUGAGUCGGGA 72 20800 MI0007202 csa-mir-216b Ciona savignyi miR-216b stem-loop GUGACGCUUGUCGUCUAAUCUCUGCAGGCAACUGUGAUGUCAUAGUCACAUAUGUGUGCAGAGGUUGGAUGAAAUGUAGUC 72 20801 MI0007203 csa-mir-217 Ciona savignyi miR-217 stem-loop GAAAGUGGGGCGAGAUACUGCAUUAGGAACUGAUUGGUUGUUAAUUUCACUCAGUUUCAGGUGCAUUAAAUUGCUACACUAUAUGUCAUCCACCAGUAUGAG 72 20802 MI0007204 csa-mir-219 Ciona savignyi miR-219 stem-loop AUGGCGACUGUUUCAUGAUUGUCCAAACGCAAUACAGGUGUUACAAUAAAUUCUGUGUUUUCGUAUGGACAUCGUAAUACAGAGUGUCACAUGCUUCAUCAA 72 20803 MI0007205 csa-mir-281 Ciona savignyi miR-281 stem-loop AAUUCGUUUAUUUUACAUGUCAAGUGCGUGUCGGAGGGUUAUUUCAUGCCGGUCUAGCAUUGCGCUGUCAUGGAGUUGCUCUCUCAUUGGCGCUAUGGCUUA 72 20804 MI0007263 mdo-mir-1540 Monodelphis domestica miR-1540 stem-loop UAGCGGGGGUGAUUCCAUAGAGCGCAUGUCCAUCCCCAGAGAGCCAGAGCAUAUGCUCCAUGGAAUCACCCCCACCA This sequence is referred to by the unofficial identifier Mdo-10 in [1]. 49 20805 MI0007264 mdo-mir-1541 Monodelphis domestica miR-1541 stem-loop AUGGAGCAGAUGGUGUGCUCGUUUGGAUGUGGCAGUUUGCGAGGGAUGGGCAUCCCAUGAUCCUCCAG This sequence is referred to by the unofficial identifier Mdo-27 in [1]. 49 20806 MI0007265 mdo-mir-1542-1 Monodelphis domestica miR-1542-1 stem-loop CCGGUGCCUGGCACAUAGGAGUUUCAUAAAUGUAUUUUCAUUAAUUUAUUGAUCUCCAAUGCCUAGCACAGU This sequence is referred to by the unofficial identifier Mdo-172a in [1]. 49 20807 MI0007266 mdo-mir-1542-2 Monodelphis domestica miR-1542-2 stem-loop UAGUACAGUGCCUGGCACAUAGGAGCUUCAUAAAUGUGUGUUGAUUUAUUUAUUGAUCUCCAAUGCCUAGCACUGUGCCU This sequence is referred to by the unofficial identifier Mdo-172b in [1]. 49 20808 MI0007267 mdo-mir-1543 Monodelphis domestica miR-1543 stem-loop GAUAGUGCUUUGCACCACUGAGAGUGGAUUAACUUCCUUUAUGAAGUUAGUCCUAGUCUAGGUGCACACAUGUC This sequence is referred to by the unofficial identifier Mdo-174 in [1]. 49 20809 MI0007268 mdo-mir-340 Monodelphis domestica miR-340 stem-loop UGGACGGUGAUCAAGGUGUGACUAUAAAGUAAUGAGAUUGAUUUCUGUGGUAUAGUAAAUGGAAAUCAGUUUCAUUACCUUACAGUCACAUCUAAUCUUCU This sequence is referred to by the unofficial identifier Mdo-182 in [1]. 49 20810 MI0007269 mdo-mir-1544 Monodelphis domestica miR-1544 stem-loop AGCAGCUGCCCCUGCACCCAGGGAUAGGAUAGCGGUUCACUUGGAAGCCCCCUUUUCUAUCCCUGGUACUGGCGCCGCUGCU This sequence is referred to by the unofficial identifier Mdo-202a in [1]. 49 20811 MI0007270 mdo-mir-1545 Monodelphis domestica miR-1545 stem-loop CCGGACACAGUGCGCAGGGAUAGAUAAGAGGUCACUUUAGAAUCCACUUUCCAUCCCUUGCACUGUUUCCGC This sequence is referred to by the unofficial identifier Mdo-253a in [1]. 49 20812 MI0007271 mdo-mir-1546 Monodelphis domestica miR-1546 stem-loop AUGCCUUGCCGGAAAUCAGGGAUUCUCAGGGAUGGAAGUGAGACAAAAUACCUUCCACCUCUCAGAAUCCCUAUUUUCUUUCAAGGCCC This sequence is referred to by the unofficial identifier Mdo-254 in [1]. 49 20813 MI0007272 mdo-mir-1547 Monodelphis domestica miR-1547 stem-loop UAAAGAACGUAUGAUGUAUCAGAGUCUUGGGUCCUUGUGUAGAUGCUUUGAGACUUCAAGGAUCCCUGACUUGAUCAUUGUGGGUUCUCCC This sequence is referred to by the unofficial identifier Mdo-302 in [1]. 49 20814 MI0007273 mdo-mir-1548 Monodelphis domestica miR-1548 stem-loop GAGGAGGGCUCACGCGGGCACGCACGCGGGCUGGUGUGCAUCCUGCAGCGGGCUCCCCUU This sequence is referred to by the unofficial identifier Mdo-305 in [1]. 49 20815 MI0007274 mdo-mir-1549 Monodelphis domestica miR-1549 stem-loop CUCGCCGGGCUCGUAGGUAGAAGCUGAGUUUUGUUUUGCUUCCGCCCUGCAAGCCCGGUAGCU This sequence is referred to by the unofficial identifier Mdo-315 in [1]. 49 20816 MI0007568 mml-mir-1-1 Macaca mulatta miR-1-1 stem-loop GCUUGGGAAACAUACUUCUUUAUAUGCCCAUAUGGACCUGCUAAGCUAUGGAAUGUAAAGAAGUAUGUAUCUCAGGC 32 20817 MI0007569 mml-mir-1-2 Macaca mulatta miR-1-2 stem-loop ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAUAUGAACAUACAAUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUUGGUAGGC 32 20818 MI0007570 mml-let-7a-1 Macaca mulatta let-7a-1 stem-loop UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCUA 32 20819 MI0007571 mml-let-7a-2 Macaca mulatta let-7a-2 stem-loop AGGCUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACAUCAAGGGAGAUAACUGUACAGCCUCCUAGCUUUCCU 32 20820 MI0007572 mml-let-7a-3 Macaca mulatta let-7a-3 stem-loop GGGUGAGGUAGUAGGUUGUAUAGUUUGGGGCUCUGCCCUGCUAUGGGAUAACUAUACAAUCUACUGUCUUUCCU 32 20821 MI0007573 mml-let-7b Macaca mulatta let-7b stem-loop CGGGGUGAGGUAGUAGGUUGUGUGGUUUCAGGGCAGUGAUGUUGCCCCUCAGAAGAUAACUAUACAACCUACUGCCUUCCCUG 32 20822 MI0007574 mml-let-7c Macaca mulatta let-7c stem-loop GCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGC 32 20823 MI0007575 mml-let-7d Macaca mulatta let-7d stem-loop CCUAGGAAGAGGUAGUAGGUUGCAUAGUUUUAGGGCAGGGAUUUUGCCCACAAGGAGGUAACUAUACGACCUGCUGCCUUUCUUAGG 32 20824 MI0007576 mml-let-7e Macaca mulatta let-7e stem-loop CCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGAGGACACCCAAGGAGAUCACUAUACGGCCUCCUAGCUUUCCCCAGG 32 20825 MI0007577 mml-let-7f-1 Macaca mulatta let-7f-1 stem-loop UCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUUCCCUGA 32 20826 MI0007578 mml-let-7f-2 Macaca mulatta let-7f-2 stem-loop UGUGGGAUGAGGUAGUAGAUUGUAUAGUUUUAGGGUCAUACCCCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCCCACG 32 20827 MI0007579 mml-let-7g Macaca mulatta let-7g stem-loop AGGCUGAGGUAGUAGUUUGUACAGUUUGAGGGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCCACUGCCUUGCCA 32 20828 MI0007580 mml-let-7i Macaca mulatta let-7i stem-loop CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUAG 32 20829 MI0007581 mml-mir-7-1 Macaca mulatta miR-7-1 stem-loop UUGGAUGUUGGCCUAGUUCUGUGUGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUUGACAACAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUACAG 32 20830 MI0007582 mml-mir-7-2 Macaca mulatta miR-7-2 stem-loop CUGGAUACAGAGUGAAGUGGCUGGCCCCGUCUGGAAGACUAGUGAUUUUGUUGUUGUCUUACUGCGCUCAACAACAAAUCCCAGUCUGCCGAAUGGUGCCAGCCAUUGCA 32 20831 MI0007583 mml-mir-7-3 Macaca mulatta miR-7-3 stem-loop AGAUUAGAGUGGCUAUGGUCUAGUGCUGUGUGGAAGACUAGUGAUUUUGUUGUUCUGAUGUGCUACGACAACAAAUCACAGCCGGCCUCAUAGCGCAGACUCCCUUCGAC 32 20832 MI0007584 mml-mir-9-1 Macaca mulatta miR-9-1 stem-loop CGGGGUUGGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGGUGUGGAGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAAUAACCCCA 32 20833 MI0007585 mml-mir-9-2 Macaca mulatta miR-9-2 stem-loop GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAAACUCCUUCA 32 20834 MI0007586 mml-mir-9-3 Macaca mulatta miR-9-3 stem-loop GGAGGCCCGUUUCUCUCUUUGGUUAUCUAGCUGUAUGAGUGCCACAGAGCCGCUCUCAAGCUAGAUAACCGAAAGUAGAAAUGACUCUCA 32 20835 MI0007587 mml-mir-10a Macaca mulatta miR-10a stem-loop GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUC 32 20836 MI0007588 mml-mir-10b Macaca mulatta miR-10b stem-loop CCAGAGGUUGUAACGUUGUCUAUAUAUACCCUGUAGAACCGAAUUUGUGUGGUAUCCAUAUAGUCACAGAUUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAACUUCA 32 20837 MI0007589 mml-mir-16-2 Macaca mulatta miR-16-2 stem-loop GUUCCACUCUAGCAGCACGUAAAUAUUGGCGUAGUGAAAUAUGUAUUAAACACCAAUAUUACUGUGCUGCUUCAGUGUGAC 32 20838 MI0007590 mml-mir-18b Macaca mulatta miR-18b stem-loop UGUGUUAAGGUGCAUCUAGUGCAGUUAGUGAAGCAGCUUAGAAUCUACUGCCCUAAAUGCCCCUUCUGGCA 32 20839 MI0007591 mml-mir-20b Macaca mulatta miR-20b stem-loop AGUACCAAAGUGCUCAUAGUGCAGGUAGUUUUGGCAUGACUCUACUGUAGUGUGGGCACUUCCAGUACU 32 20840 MI0007592 mml-mir-23b Macaca mulatta miR-23b stem-loop CUCAGGUGCUCUGGCUGCUUGGGUUCCUGGCAUGCUGAUUUGUGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAACCACGACCUUGGC 32 20841 MI0007593 mml-mir-26a-2 Macaca mulatta miR-26a-2 stem-loop GGCUGUGGCUGGAUUCAAGUAAUCCAGGAUAGGCUGUUUCCAUCUGUGAGGCCUAUUCUUGAUUACUUGUUUCUGGAGGCAGCU 32 20842 MI0007594 mml-mir-26b Macaca mulatta miR-26b stem-loop CCGGGACCCAGUUCAAGUAAUUCAGGAUAGGUUGUGUGCUGUCCAGCCUGUUCUCCAUUACUUGGCUCGGGGACCGG 32 20843 MI0007595 mml-mir-27b Macaca mulatta miR-27b stem-loop ACCUCUCUAACAAGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGGUUUCCGCUUUGUUCACAGUGGCUAAGUUCUGCACCUGAAGAGAAGGUG 32 20844 MI0007596 mml-mir-29b-1 Macaca mulatta miR-29b-1 stem-loop CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUUCUUGGGGG 32 20845 MI0007597 mml-mir-29b-2 Macaca mulatta miR-29b-2 stem-loop CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG 32 20846 MI0007598 mml-mir-29c Macaca mulatta miR-29c stem-loop AUCUCUUACACAGGCUGACCGAUUUCUCCUGGUGUUCAGAGUCUGUUUUUGUCUAGCACCAUUUGAAAUCGGUUAUGAUGUAGGGGGA 32 20847 MI0007599 mml-mir-30c-1 Macaca mulatta miR-30c-1 stem-loop ACCAUGCUGUAGUGUGUGUAAACAUCCUACACUCUCAGCUGUGAGCUCAAGGUGGCUGGGAGAGGGUUGUUUACUCCUUCUGCCAUGGA 32 20848 MI0007600 mml-mir-30c-2 Macaca mulatta miR-30c-2 stem-loop AGAUACUGUAAACAUCCUACACUCUCAGCUGUGGAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUCUCU 32 20849 MI0007601 mml-mir-30d Macaca mulatta miR-30d stem-loop UUGUUGUAAACAUCCCCGACUGGAAGCUGUAAGACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC 32 20850 MI0007602 mml-mir-30e Macaca mulatta miR-30e stem-loop GGGCAGUCUUCGCUACUGUAAACAUCCUUGACUGGAAGCUGUAAGGUGUUCAGAGGAGCUUUCAGUCGGAUGUUUACAGCGGCAGGCUGCCA 32 20851 MI0007603 mml-mir-33b Macaca mulatta miR-33b stem-loop GCGGGCGGCCCCGCGGUGCAUUGCUGUUGCAUUGCACGUGUGUGAGGCGGGUGCAGUGCCUCGGCAGUGCAGCCCGGAGCCGGCCCCUGGCACCGC 32 20852 MI0007604 mml-mir-34b Macaca mulatta miR-34b stem-loop GUGCUCGGUUUGUAGGCAGUGUCAUUAGCUGAUUGUACUGUGGUGGUUACAAUCACUAACUCCACUGCCAUCAAAACAAGGCAC 32 20853 MI0007605 mml-mir-34c Macaca mulatta miR-34c stem-loop AGUCUAGUUACCAGGCAGUGUAGUUAGCUGAUUGCUGAUAGUACCAAUCACUAACCACACGGCCAGGUAAAAAGAUU 32 20854 MI0007606 mml-mir-92a-2 Macaca mulatta miR-92a-2 stem-loop UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA 32 20855 MI0007607 mml-mir-92b Macaca mulatta miR-92b stem-loop CGGGCCCCGGGCGGGCGGGAGGGACGGGACGCGGUGCAGUGUUGUUCUUUCCCCCGCCAAUAUUGCACUCGUCCCGGCCUCCGGCCCCCCCGGCCC 32 20856 MI0007608 mml-mir-95 Macaca mulatta miR-95 stem-loop AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG 32 20857 MI0007609 mml-mir-99b Macaca mulatta miR-99b stem-loop GGCACCCACCCGUAGAACCGACCUUGCGGGGCCUUCGCCGCACACAAGCUCGUGUCUGUGGGUCCGUGUC 32 20858 MI0007610 mml-mir-101-2 Macaca mulatta miR-101-2 stem-loop ACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAUAUCUGAAAGGUACAGUACUGUGAUAACUGAAGAAUGGUGGU 32 20859 MI0007611 mml-mir-103-2 Macaca mulatta miR-103-2 stem-loop UUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUAGCAUUCAGGUCAAGCAGCAUUGUACAGGGCUAUGAAAGAACCA 32 20860 MI0007612 mml-mir-105-2 Macaca mulatta miR-105-2 stem-loop UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGUGGCUGCUUAUGCACCACGGAUGUUUGAGCAUGUGCUAUGGUGUCUA 32 20861 MI0007613 mml-mir-122a Macaca mulatta miR-122a stem-loop CCUUAGCAGAGCUGUGGAGUGUGACAAUGGUGUUUGUGUCUAAACUAUCAAACGCCAUUAUCACACUAAAUAGCUACUACUAGGC 32 20862 MI0007614 mml-mir-124a-2 Macaca mulatta miR-124a-2 stem-loop AGGCCUCUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCAAGAAUGGGGCUG 32 20863 MI0007615 mml-mir-125a Macaca mulatta miR-125a stem-loop UGCCAGUCUCUGGGUCCCUGAGACCCUUUAACCUGUGAGGACAUCCAGGGUCACAGGUGAGGUUCUUGGGAGCCUGGCGUCUGGCC 32 20864 MI0007616 mml-mir-126 Macaca mulatta miR-126 stem-loop CGCUGGUGAUGGGACAUUAUUACUUUUGGUACGCGCUGUGACACUUCAAACUCGUACCGUGAGUAAUAAUGCGCUGUCCACAGCA 32 20865 MI0007617 mml-mir-128b Macaca mulatta miR-128b stem-loop UGUGCAGUGGGAAGGGGGGCCGAUACACUGUACGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUUUCCCUACUGUGUC 32 20866 MI0007618 mml-mir-129 Macaca mulatta miR-129 stem-loop GGAUCUUUUUGCGGUCUGGGCUUGCUGUUCCUCUCAACAGUAGUCAGGAAGCCCUUACCCCAAAAAGUAUCU 32 20867 MI0007619 mml-mir-130b Macaca mulatta miR-130b stem-loop GGCCUGCCCGACACUCUUUCCCUGUUGCACUACUGUGGGCCACUGGGAAGCAGUGCAAUGAUGAAAGGGCAUCGGUCAGGUC 32 20868 MI0007620 mml-mir-132 Macaca mulatta miR-132 stem-loop CCGCCCCCGCGUCUCCAGGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAACUGGAGGUAACAGUCUACAGCCAUGGUCGCCCCGCAGCACGCCCACGCGC 32 20869 MI0007621 mml-mir-133c Macaca mulatta miR-133c stem-loop GGGAGCCAAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGACUGUCCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUGUGCAUUGAUGGCGCCG 32 20870 MI0007622 mml-mir-133b Macaca mulatta miR-133b stem-loop CCUCAGAAGAAAGAUGCCCCCUGCUCUGGCUGGUCAAACGGAACCAAGUCCGUCUUCCUGAGAGGUUUGGUCCCCUUCAACCAGCUACAGCAGGGCUGGCAAUUCCCAGUCCUUGGAGA 32 20871 MI0007623 mml-mir-134 Macaca mulatta miR-134 stem-loop CAGGGUGUGUGACUGGUUGACCAGAGGGGCGUGCACUGUGUUCACCCUGUGGGCCACCUAGUCACCAACCCUC 32 20872 MI0007624 mml-mir-135a-1 Macaca mulatta miR-135a-1 stem-loop AGGCCUCGCUGUUCUCUAUGGCUUUUUAUUCCUAUGUGAUUCUACUGCUCACUCAUAUAGGGAUUGGAGCCGUGGCGCACGGCGGGGACA 32 20873 MI0007625 mml-mir-135b Macaca mulatta miR-135b stem-loop CACUCUGCUGUGGCCUAUGGCUUUUCAUUCCUAUGUGAUUGCUGUCCCAAACUCAUGUAGGGCUAAAAGCCAUGGGCUACAGUGAGGGGCGAGCUCC 32 20874 MI0007626 mml-mir-136 Macaca mulatta miR-136 stem-loop UUGGAUGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCUAUCAU 32 20875 MI0007627 mml-mir-137 Macaca mulatta miR-137 stem-loop GGUCCUCUGACUCUCUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGUAGUCGAGGAGAGUACCAGCGGCA 32 20876 MI0007628 mml-mir-138 Macaca mulatta miR-138 stem-loop CGUUGCUGCAGCUGGUGUUGUGAAUCAGGCCGACGAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUGCAUCA 32 20877 MI0007629 mml-mir-139 Macaca mulatta miR-139 stem-loop GUGUAUUCUACAGUGCACGUGUCUCCAGUGUGGCUCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC 32 20878 MI0007630 mml-mir-140 Macaca mulatta miR-140 stem-loop UGUGUCUCUCUCUGUGUCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACCGGGGCACC 32 20879 MI0007631 mml-mir-142 Macaca mulatta miR-142 stem-loop GACAGUGCAGUCACCCAUAAAGUAGAAAGCACUACUAACAGCACUGGAGGGUGUAGUGUUUCCUACUUUAUGGAUGAGUGUACUGUG 32 20880 MI0007632 mml-mir-143 Macaca mulatta miR-143 stem-loop GCGCAGCGCCGUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUGUUCUGCAGC 32 20881 MI0007633 mml-mir-144 Macaca mulatta miR-144 stem-loop UGGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGUGAUGAGACACUACAGUAUAGAUGAUGUACUAGUCCGGGCACCCCC 32 20882 MI0007634 mml-mir-146a Macaca mulatta miR-146a stem-loop CCUAUGUGUAUCCUCAGCUUUGAGAACUGAAUUCCAUGGGUUGUGUCAGUGUCAGACCUGUGAAAUUCAGUUCUUCAGCUGGGAUAUCUCUGUCGUCGU 32 20883 MI0007635 mml-mir-146b Macaca mulatta miR-146b stem-loop CCUGGCACUGAGAACUGAAUUCCAUAGGCUGUGAGCUCUAGCAAUGCCCUGUGGACUCAGUUCUGGUGCCCGG 32 20884 MI0007636 mml-mir-147a Macaca mulatta miR-147a stem-loop AAUCUAAAGAAAACAUUUCUGCACACACACCAGACUAUUGAAGCCAGUGUGUGGAAAUGCUUCUGCUACAUU 32 20885 MI0007637 mml-mir-147b Macaca mulatta miR-147b stem-loop UAUAAAUCUAGUGGAAACAUUUCCGCACAAACUAGAUUCUGGACACCAGUGUGCGGAAGUGCUUCUGCUGCAUUUUUAGG 32 20886 MI0007638 mml-mir-148a Macaca mulatta miR-148a stem-loop GAGGCAAAGUUCUGAGACACUCCGACUCUGAGUAUGAUAGAAGUCAGUGCACUACAGAACUUUGUCUC 32 20887 MI0007639 mml-mir-148b Macaca mulatta miR-148b stem-loop CAAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUUAUACACUCAGGCUGUGGCUCUCUGAAAGUCAGUGCAUCACAGAACUUUGUCUCGAAAGCUUUCUA 32 20888 MI0007640 mml-mir-149 Macaca mulatta miR-149 stem-loop GCCGGCGCCCAAGCUCUGGCUCCGUGUCUUCACUCCCGUGUUUGUCCGAGGAGGGAGGGAGGGACGGGGGCUGUGCUGGGGCAGCCGGA 32 20889 MI0007641 mml-mir-150 Macaca mulatta miR-150 stem-loop CUCCCCAUGGCCCUGUCUCCCAACCCUUGUACCAGUGCUGGGCUCAGACCCUGGUACAGGCCUGGGGGACAGGGACCUGGGGAC 32 20890 MI0007642 mml-mir-151 Macaca mulatta miR-151 stem-loop UUUCCUGCCCUCGAGGAGCUCACAGUCUAGUAUGUCUCAUCCCCUACUAGACUGAAGCUCCUUGAGGACAGGGAUGGUCAUACUCACCUC 32 20891 MI0007643 mml-mir-152 Macaca mulatta miR-152 stem-loop UGUCCCCCCCGGCCCAGGUUCUGUGAUACACUCCGACUCGGGCUCUGGAGCAGUCAGUGCAUGACAGAACUUGGGCCCGGAAGGACC 32 20892 MI0007644 mml-mir-154 Macaca mulatta miR-154 stem-loop GAGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA 32 20893 MI0007645 mml-mir-155 Macaca mulatta miR-155 stem-loop CUGUUAAUGCUAAUCGUGAUAGGGGUUUUUACCUCCAACUGACUCCUACAUGUUAGCAUUAACAG 32 20894 MI0007646 mml-mir-181b-2 Macaca mulatta miR-181b-2 stem-loop CUGAUGGCUGCACUCAACAUUCAUUGCUGUCGGUGGGUUUGAGUCUGAAUCAACUCACUGAUCGAUGAAUGCAAACUGCGGACCAAACA 32 20895 MI0007647 mml-mir-181d Macaca mulatta miR-181d stem-loop GUCCCCUCCCCUAGGCCACAGCCAAGGUCACAAUCAACAUUCAUUGUUGUCGGUGGGUUGUGAGGACCGAGGCCAGACCCACCGGGGGAUGAAUGUCACUGUGGCUGGGCCAGACACGGCUUAAGGGGAAUGGGGAC 32 20896 MI0007648 mml-mir-184 Macaca mulatta miR-184 stem-loop UCAGUCACGUCCCCUUAUCACUUUUCCAGCCCAGCUUUAUGACUGUAAGUGUUGGACGGAGAACUGAUAAGGGUAGGUGAUUGA 32 20897 MI0007649 mml-mir-185 Macaca mulatta miR-185 stem-loop AGGGCGCGAGGGAUUGGAGAGAAAGGCAGUUCCUGAUGGUCCCCUCCUCAGGGGCUGGCUUUCCUCUGGUCCUUCCCUCCCA 32 20898 MI0007650 mml-mir-186 Macaca mulatta miR-186 stem-loop UGCUUGUAACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUGGUUUUAUUUUAAGCCCAAAGGUGAAUUUCUUGGGAAGUUUGAGCU 32 20899 MI0007651 mml-mir-187 Macaca mulatta miR-187 stem-loop GGUCAGGCUCACUAUGACACAGUGUGAGACCUCGGGCUACAACACAGGACCCGGGUGCUGCUCUGACCCCUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCCGCA 32 20900 MI0007652 mml-mir-190b Macaca mulatta miR-190b stem-loop UGCUUCUGUGUGAUAUGUUUGAUAUUGGGUUGUUUAAUUAGGAACCAACUAAAUGUCAAACAUAUUCUUACAGCAGCUG 32 20901 MI0007653 mml-mir-191 Macaca mulatta miR-191 stem-loop CGGCUGGACAGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCGCUUGGAUUUCGUCCCCUGCUCUCCUGCCU 32 20902 MI0007654 mml-mir-192 Macaca mulatta miR-192 stem-loop GCUGAGACCGAGUGCACAGGGCUCUGACCUAUGAAUUGACAGCCAGUGCUCUCGUCUCCCCUCUGGCUGCCAAUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGCCAGC 32 20903 MI0007655 mml-mir-193a Macaca mulatta miR-193a stem-loop GGAUGGGAGCUGAGGGCUGGGUCUUUGCGGGCGAGAUGAGGGUGUCGGAUCAACUGGCCUACAAAGUCCCAGUCCUCGGCCCCCG 32 20904 MI0007656 mml-mir-193b Macaca mulatta miR-193b stem-loop GUGGUCUCAGAAUCGGGGUUUUGAGGGCGAGAUGAGUUUAUGUUUUAUCCAACUGGCCCUCAAAGUCCCGCUUUUGGGGUCAU 32 20905 MI0007657 mml-mir-194-2 Macaca mulatta miR-194-2 stem-loop UGGCUCCCGCCCCCUGUAACAGCAACUCCAUGUGGAAGUGUCCACUGAUUCCAGUGGGGCUGCUGUUAUCUGGGGCGAGGGCCGG 32 20906 MI0007658 mml-mir-195 Macaca mulatta miR-195 stem-loop AGCUUCCCUGGCUCUAGCAGCACAGAAAUAUUGGCACAGGGAAGCAAGUCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUGGUG 32 20907 MI0007659 mml-mir-196a-2 Macaca mulatta miR-196a-2 stem-loop UGCUCGCUCAGCUGAUCUGUGGCUUAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCGAGGGC 32 20908 MI0007660 mml-mir-196b Macaca mulatta miR-196b stem-loop ACUGGUCGGUGAUUUAGGUAGUUUCCUGUUGUUGGGAUCCACCUUUCUCUCGACAGCACGACACUGCCUUCAUUA 32 20909 MI0007661 mml-mir-197 Macaca mulatta miR-197 stem-loop GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGCAUGGCC 32 20910 MI0007662 mml-mir-199a-2 Macaca mulatta miR-199a-2 stem-loop GCCAACCCAGUGUUCAGACUACCUGUUCAGGAGGCUCUCAACGUGUACAGUAGUCUGCACAUUGGUUAGGC 32 20911 MI0007663 mml-mir-200a Macaca mulatta miR-200a stem-loop CCGGGCCCCUGUGAGCAUCUUACCGGACAGUGCUGGAUUUCCCAGCUUGACUCUAACACUGUCUGGUAACGAUGUUCAAAGGUGACCCAC 32 20912 MI0007664 mml-mir-203 Macaca mulatta miR-203 stem-loop GUGCUGGGGACUCGCGCGCUGGGUCCAGUGGUUCUUAACAGUUCAACAGUUCUGUAGCGCAAUUGUGAAAUGUUUAGGACCACUAGACCCGGCGGGCACGGCGACAGCGA 32 20913 MI0007665 mml-mir-204 Macaca mulatta miR-204 stem-loop GGCUACAGUCUUUCUUCAUGUGACUCGUGGACUUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCACUGGC 32 20914 MI0007666 mml-mir-205 Macaca mulatta miR-205 stem-loop AAAGAUCCUCAGGCAAUCCAUGUGCUUCUCUUGUCCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCUGACG 32 20915 MI0007667 mml-mir-206 Macaca mulatta miR-206 stem-loop UGCUUCCCGAGGCCACAUGCUUCUUUAUAUCCCCAUAUGGAUUACUUUGCUAUGGAAUGUAAGGAAGUGUGUGGUUUCGGCAAGUG 32 20916 MI0007668 mml-mir-208a Macaca mulatta miR-208a stem-loop UGACAGGCGAGCUUUUGGCCCGGGUUAUACCUGAUGCUCACGUAUAAGACGAGCAAAAAGCUUGUUGGUCA 32 20917 MI0007669 mml-mir-208b Macaca mulatta miR-208b stem-loop CCUCUCAGGGAAGCUUUUUGCUCGAAUUAUGUUUCUGAUCCGAAUAUAAGACGAACAAAAGGUUUGUCUGAGGGCAG 32 20918 MI0007670 mml-mir-210 Macaca mulatta miR-210 stem-loop ACCCGGCAGUCCCUCCAGGCGCAGGGCAGCCCCUGCCCACCGCACACUGCGCUGCCCCAGACCCACUGUGCGUGUGACAGCGGCUGAUCUGUGCCUGGGCAGCGCGACCC 32 20919 MI0007671 mml-mir-212 Macaca mulatta miR-212 stem-loop CGGGGCACCCCGCCCGGACAGCGCGCCGGCACCUUGGCUCUAGACUGCUUACUGCCCGGGCCGCCCUCAGUAACAGUCUCCAGUCAGGGCCACCGACGCCUGGCCCCGCC 32 20920 MI0007672 mml-mir-216a Macaca mulatta miR-216a stem-loop GAUGGCUGUGAGUUGGCUUAAUCUCAGCUGGCAACUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUACGCUAAACAGAGCAAUUUCCUUGCCCUCGCGA 32 20921 MI0007673 mml-mir-216b Macaca mulatta miR-216b stem-loop GCAGACUGGAAAAUCUCUGCAGGCAAAUGUGAUGUCACUGAAGAAAUCACACACUUACCCGUAGAGAUUCUACAGUCUGACA 32 20922 MI0007674 mml-mir-217 Macaca mulatta miR-217 stem-loop AAUAUAAUUAUUACAUAGUUUUUGAUGUCGCAGAUUCUGCAUCAGGAACUGAUUGGAUAAGAAUCAGUCACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAAACAAG 32 20923 MI0007675 mml-mir-218-1 Macaca mulatta miR-218-1 stem-loop AAUGUAGCGAGAUUUUCUGUUGUGCUUGAUCUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUCUACA 32 20924 MI0007676 mml-mir-219-2 Macaca mulatta miR-219-2 stem-loop ACUCAGGGGCUUCGCCACUGAUUGUCCAAACGCAAUUCUUGUACGAGUCUGCGGCCAACCGAGAAUUGUGGCUGGACAUCUGUGGCUGAGCUCCGGG 32 20925 MI0007677 mml-mir-220b Macaca mulatta miR-220b stem-loop GACAGCGUGGCGUUGUAGGGCUCCACCACCGUGUCCGACACCUUGGGCGAGGGCAUGACGCUGAAGGUGUUCAUGAUGCGGUCCGGGAACUCCUCGCGGAUCUUGCUGAUG 32 20926 MI0007678 mml-mir-220c Macaca mulatta miR-220c stem-loop GACAGCGUGGCAUUGUAGGGCUCCACCACUGUGUCUGACACCUUGGGCGAGGGCACGACGCUGAAGGUGUUCAUGAUGCGGUCCGGAUACUCCUCACG 32 20927 MI0007679 mml-mir-220d Macaca mulatta miR-220d stem-loop GUGGCGUUGUAGGGCUCCACCACCGUGUCUGACACCUUGGGUGAGGGCAUGACGCUGAAGGUGUUCAUGAUGCGGUCUGGGUACUCUUCCCGGAUCUUGCUGAUG 32 20928 MI0007680 mml-mir-222 Macaca mulatta miR-222 stem-loop GCUGCUGGAAGGUAUAGGUACCCUCAAUGGCUCAGUAGCCAGUGUAGAUCCUGUCUUUCGUAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUCUUCUAGCU 32 20929 MI0007681 mml-mir-296 Macaca mulatta miR-296 stem-loop AGGACCCUUCCAGAGGGCCCCCCCUCAAUCCUGUUGUGCCUAAUUCAGAGGGUUGGGUGGAGGCUCUCCUGAAGGGCUCU 32 20930 MI0007682 mml-mir-297 Macaca mulatta miR-297 stem-loop UGUAUGUAUGUGUGCAUGUGCAUAUAUGUGUGUGUAUAUAUAUAUAUGUAUUAUGUACUCAUAUAUCA 32 20931 MI0007683 mml-mir-298 Macaca mulatta miR-298 stem-loop UCAGGUCUUCAGCAGAAGCCGGGUGGUUCUCCCAGUGGUUUUCCUUGACUGUGAGGAACUAGCCUGCUGUUUUGCUCAGGAAUGAGCU 32 20932 MI0007684 mml-mir-299 Macaca mulatta miR-299 stem-loop AAGAAAUGGUUUACCGUCCCACAUACAUUUUCAAUAUGUAUGUGGGACGGUAAACCGCUUCUU 32 20933 MI0007685 mml-mir-301a Macaca mulatta miR-301a stem-loop ACUGCUAACGAAUGCUCUGACUUUAUUGCACUACUGUACUUUACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCAUCUGAAAGCAGG 32 20934 MI0007686 mml-mir-301b Macaca mulatta miR-301b stem-loop CCGCAGGUGCUCUGACGAGGUUGCACUACUGUGCUCUGAGAAGCAGUGCAAUGAUAUUGUCAAAGCAUCUGGGACCA 32 20935 MI0007687 mml-mir-302a Macaca mulatta miR-302a stem-loop CCACCACUUAAACGUGGAUGUACUUGCUUUGAAACUAAAGAAGUAAGUGCUUCCAUGUUUUGGUGAUGG 32 20936 MI0007688 mml-mir-302b Macaca mulatta miR-302b stem-loop GCUCCCUUCAACUUUAACAUGGAAGUGCUUUCUGUGACUUUAAAAUAAGUAAGUGCUUCCAUGUUUUAGUAGGAGU 32 20937 MI0007689 mml-mir-302c Macaca mulatta miR-302c stem-loop CCUUUGCUUUAACAUGGGGGUACCUGCUGUGUGAAACAAAAGUAAGUGCUUCCAUGUUUCAGUGGAGG 32 20938 MI0007690 mml-mir-302d Macaca mulatta miR-302d stem-loop CCUCUACUUUAACAUGGAGGCACUUGCUGUGGUAUGACAAAAAUAAGUGCUUCCAUGUUUGAGUGUGG 32 20939 MI0007691 mml-mir-320 Macaca mulatta miR-320 stem-loop GCUUCGCUCCCCUCCGCCUUCUCUUCCCGGUUCUUCCCGGAGUCGGGAAAAGCUGGGUUGAGAGGGCGAAAAAGGAUGAGG 32 20940 MI0007692 mml-mir-323 Macaca mulatta miR-323 stem-loop UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCGUUCGCUUUAUUUAUGGCGCACAUUACACGGUCGACCUCUUUGCAGUAUCUAAUC 32 20941 MI0007693 mml-mir-324 Macaca mulatta miR-324 stem-loop CUGACUAUGCCUCCCCGCAUCCCCUAGGGCAUUGGUGUAAAGCUGGAGACCCACUGCCCCAGGUGCUGCUGGGGGUUGUAGUC 32 20942 MI0007694 mml-mir-325 Macaca mulatta miR-325 stem-loop AUGCAGUGCUUGGUUCCUAGUAGGUGUCCAGUAAGUGUUUGUUACAUAAUUUGUUUAUUGAGGACCUCCUAUCAAUCAAGCACUGUGCUAGGCUCUGG 32 20943 MI0007695 mml-mir-329-1 Macaca mulatta miR-329-1 stem-loop GUGGUACCUGAAGGGAGGUUUUCUGGGUUUCUGUUUCUUUAAUGAGGAUGAAACACACCUGGUUAACCUCUUUUCCAGUAUCAA 32 20944 MI0007696 mml-mir-329-2 Macaca mulatta miR-329-2 stem-loop GGUACCUGAAGGGAGGUUUUCUGGGUCUCUGUUUCUUUACUGAGGAUGAAACACACCUGGUUAACCUCUUUUCCAGUAUC 32 20945 MI0007697 mml-mir-330 Macaca mulatta miR-330 stem-loop CUUUGGCGAUCACUGCCUCUCUGGGCCUGUGUCUUAGGCUCUGCAAGAUCAACCGAGCAAAGCACACGGCCUGCAGAGAGGCAGCGCUCUGCCC 32 20946 MI0007698 mml-mir-331 Macaca mulatta miR-331 stem-loop GAGUUUGGUUUUGUUUGGGUUUGUUCUAGGUAUGGUCCCAGGGAUCCCAGAUCAAACCAGGCCCCUGGGCCUAUCCUAGAACCAACCUAAACUC 32 20947 MI0007699 mml-mir-335 Macaca mulatta miR-335 stem-loop GAGCGGGGGUCAAGAGCAAUAACGAAAAAUGUUUGUCAUAAACCGUUUUUCAUUAUUGCUCCUGACCUCCUCUCAUUUGCUAUAUUCA 32 20948 MI0007700 mml-mir-337 Macaca mulatta miR-337 stem-loop GUAGUCAGUAGUUGGGGGGUGGGAACGGCUUCAUACAGGAGUUGAUGCACAGUUAUCCAGCUCCUAUAUGAUGCCUUUCUUCAUCCCCUUCAA 32 20949 MI0007701 mml-mir-338 Macaca mulatta miR-338 stem-loop UCUCCAACAAUAUCCUGGUGCUGAGUGAUGACUCAGGUGACUCCAGCAUCAGUGAUUUUGUUGAAGA 32 20950 MI0007702 mml-mir-339 Macaca mulatta miR-339 stem-loop CGGGGCGGCCGCUCUCCCUGUCCUCCAGGAGCUCACGUGUGCCUGCCUGUGAGCGCCUCGACGACAGAGCCGGCGCCCGCCCCAGUGUCUGCGC 32 20951 MI0007703 mml-mir-340 Macaca mulatta miR-340 stem-loop UUGUACCUGGUGUGAUUAUAAAGCAAUGAGACUGAUUGUCAUAUGUUGUUUGUGGGAUCCGUCUCAGUUACUUUAUAGCCAUACCUGGUAUCUUA 32 20952 MI0007704 mml-mir-342 Macaca mulatta miR-342 stem-loop GAAACUGGGCUCAAGGUGAGGGGUGCUAUCUGUGAUUGAGGGACAUGGUUAAUGGAAUUGUCUCACACAGAAAUCGCACCCGUCACCUUGGCCUACUUA 32 20953 MI0007705 mml-mir-345 Macaca mulatta miR-345 stem-loop AAACCCUAGGUCGGCUGACUCCUAGUCAAGGGCUCGUGGUGGCUGGUGGGCCCUGAACGAGGGUUCUGGAGGCCUGGGUUUGAAUAUC 32 20954 MI0007706 mml-mir-346 Macaca mulatta miR-346 stem-loop GUCUGUCUGCCCGCAUGCCUGCCUCUCUGUUGCUCUGAAGGAGGCAGGGGCUGGGCCUGCAGCUGCCUGGGCAGAGCGGCUCCUGC 32 20955 MI0007707 mml-mir-361 Macaca mulatta miR-361 stem-loop GGAGCUUAUCAGAAUCUCCAGGGGUACUUUAUAAUUUCAAAAAGUCCCCCAGGUGUGAUUCUGAUUUGCUUC 32 20956 MI0007708 mml-mir-362 Macaca mulatta miR-362 stem-loop CUCGAAUCCUUGGAACCUAGGUGUGAGUGCUAUUUCAGUGCAACACACCUAUUCAAGGAUUCAAA 32 20957 MI0007709 mml-mir-363 Macaca mulatta miR-363 stem-loop UGUUGUCGGGUGGAUCACGAUGCAAUUUUGAUUAGUAUCAUAGGAGAAAAAUUGCACGGUAUCCAUCUGUAAACC 32 20958 MI0007710 mml-mir-365-1 Macaca mulatta miR-365-1 stem-loop ACCGCAGGGAAAAUGAGGGACUUUUGGGGGCAGAUGUGUUUCCAUUCCACUAUCAUAAUGCCCCUAAAAAUCCUUAUUGCUCUUGCA 32 20959 MI0007711 mml-mir-365-2 Macaca mulatta miR-365-2 stem-loop AGAGUGUUCAAGGACAGCAAGAAAAAUGAGGGACUUUCAGGGGCAGCUGUGUUUUCUGACUCAGUCAUAAUGCCCCUAAAAAUCCUUAUUGUUCUUGCAGUGUGCAUCAGG 32 20960 MI0007712 mml-mir-367 Macaca mulatta miR-367 stem-loop CCACUACUGUUGCUAAUAUGCAACUCUGUUGAACACAAAUUGGAAUUGCACUUUAGCAAUGGUGAUGG 32 20961 MI0007713 mml-mir-369 Macaca mulatta miR-369 stem-loop UUGAAGGGAGAUCGACCGUGUUAUAUUCGCUUUAUUGACUUCGAAUAAUACAUGGUUGAUCUUUUCUCAG 32 20962 MI0007714 mml-mir-370 Macaca mulatta miR-370 stem-loop AGACAGAGAAGCCAGGUCACGUCUCUGCAGUUACACAGCUCAUGAGUGCCUGCUGGGGUGGAACCUGGUCUGUCU 32 20963 MI0007715 mml-mir-371 Macaca mulatta miR-371 stem-loop GUGGCACUCAAACUGUGGGGGCACUUUCUGCUCUCUGGUGAAAAAAGUGCCGCCAUGUUUUGAGUGUUAC 32 20964 MI0007716 mml-mir-372 Macaca mulatta miR-372 stem-loop GUGAUCCUCAAAUGUGGAGCACUAUUCUGAUGUCCAAGUGGAAAGUGCUGCGACAUUUGAGCGUCAC 32 20965 MI0007717 mml-mir-373 Macaca mulatta miR-373 stem-loop GGGAUACCCAAAAUGGGAGCACUUUCCCUUUUGUCUGUGCUGGGAAGUGCUUCGAUUUUGGGGUGUCCC 32 20966 MI0007718 mml-mir-374a Macaca mulatta miR-374a stem-loop UACAUCGGCCAUUAUAAUACAACCUGAUAAGUGUUACAGCACUUAUCAGAUUGUAUUGUAAUUGUCUGUGUA 32 20967 MI0007719 mml-mir-374b Macaca mulatta miR-374b stem-loop ACUCGGAUGGAUAUAAUACAACCUGCUAAGUGUCCUAGCACUUAGCAGGUUGUAUUAUCAUUGUCCGUGUCU 32 20968 MI0007720 mml-mir-375 Macaca mulatta miR-375 stem-loop CCCCGCGACGAGCCCCUCGCACAAACCGGACCUGAGCGUUUUGUUCGUUCGGCUCGCGUGAGGC 32 20969 MI0007721 mml-mir-376a-1 Macaca mulatta miR-376a-1 stem-loop UAAAAGGUAGAUUCUCCUUCUAUGAGUACAUUAUUUAUGAUUAAUCAUAGAGGAAAAUCCACGUUUUC 32 20970 MI0007722 mml-mir-376a-2 Macaca mulatta miR-376a-2 stem-loop GGUAUUUAAAAGGUAGAUUUUCCUUCUAUGGUUACGUGUUUGAUGGUUAAUCAUAGAGGAAAAUCCACGUUUUCAGUAUC 32 20971 MI0007723 mml-mir-376b Macaca mulatta miR-376b stem-loop CAGUCCUUCUUUGGUAUUUAAAACGUGGAUAUUCCUUCUAUGUUUACGUGAUUCCUGGUUAAUCAUAGAGGAAAAUCCAUGUUUUCAGUAUCAAAUGCUG 32 20972 MI0007724 mml-mir-376c Macaca mulatta miR-376c stem-loop AAAAGGUGGAUAUUCCUUCUAUGUUUAUGUUAUUUAUGGUUAAACAUAGAGGAAAUUCCACGUUUU 32 20973 MI0007725 mml-mir-377 Macaca mulatta miR-377 stem-loop UUGAGCAGAGGUUGCCCUUGGUGAAUUCGCUUUAUUUAUGUUGAAUCACACAAAGGCAACUUUUGUUUG 32 20974 MI0007726 mml-mir-378 Macaca mulatta miR-378 stem-loop AGGGCUCCUGACUCCAGGUCCUGUGUGUUACCUCGAAAUAGCACUGGACUUGGAGUCAGAAGGCCU 32 20975 MI0007727 mml-mir-379 Macaca mulatta miR-379 stem-loop AGAGAUGGUAGACUAUGGAACGUAGGCGUUAUGAUUUUUGACCUAUGUAACAUGGUCCACUAACUCU 32 20976 MI0007728 mml-mir-380 Macaca mulatta miR-380 stem-loop AAGAUGGUUGACCAUAGAACAUGCGCUAUCUCUGUGUCGUAUGUAAUAUGGUCCACGUCUU 32 20977 MI0007729 mml-mir-381 Macaca mulatta miR-381 stem-loop UACUUAAAGCGAGGUUGCCCUUUGUAUAUUCGGUUUAUUGACAUGGAAUAUACAAGGGCAAGCUCUCUGUGAGUA 32 20978 MI0007730 mml-mir-382 Macaca mulatta miR-382 stem-loop UACUUGAAGAGAAGUUGUUCGUGGUGGAUUCGCUUUACUUAUGACGAAUCAUUCACGGACAACACUUUUUUCAGUA 32 20979 MI0007731 mml-mir-383 Macaca mulatta miR-383 stem-loop CUCCUCAGAUCAGAAGGUGAUUGUGGCUUUGGGUGGAUAUUAAUCAGCCACAGCACUGCCUGGUCAGAAAGAG 32 20980 MI0007732 mml-mir-384 Macaca mulatta miR-384 stem-loop UGUUAAAUUAGGAAUUGUAAACAAUUCCUAGGCAAUAUGUAUAAUGUUCAUAAGACAUUCCUAGAAAUUGUUCAUAAUGCCUGUAACA 32 20981 MI0007733 mml-mir-409 Macaca mulatta miR-409 stem-loop UGGUACUCGGGGAGAGGUUACCCGAGCAACUUUGCAUCUGGACGACGAAUGUUGCUCGGUGAACCCCUUUUCGGUAUCA 32 20982 MI0007734 mml-mir-410 Macaca mulatta miR-410 stem-loop GGUACCUGAGGAGAGGUUGUCUGUGAUGAGUUCGCUUUUAUUAAUGACGAAUAUAACACAGAUGGCCUGUUUUCAGUACC 32 20983 MI0007735 mml-mir-411 Macaca mulatta miR-411 stem-loop UGGUACUUGGAGAGAUAGUAGACCGUAUAGCGUACGCUUUAUCUGUGACGUAUGUAACACGGUCCACUAACCCUCAGUAUCA 32 20984 MI0007736 mml-mir-412 Macaca mulatta miR-412 stem-loop CUGGGGUACGGGGAUGGAUGGUCGACCAGUUGGAAAGUAAUUGUUUCUAAUGUACUUCACCUGGUCCACUAGCCGUCCGUAUCCGCUGCAG 32 20985 MI0007737 mml-mir-421 Macaca mulatta miR-421 stem-loop CACAUUGUAGGCCUCAUUAAAUGUUUGUUGAAUGAAAAAAUGAAUCAUCAACAGACAUUAAUUGGGCGCCUGCUCUGUG 32 20986 MI0007738 mml-mir-422a Macaca mulatta miR-422a stem-loop GAGAGAAGCACUGGACUCAGGGUCAGAAGGCCUGAGUCUCCCUGCUGCAGAUGGGCUGUGUGUCCCUGAGCCAAGCCUUGUCCUCCCUGG 32 20987 MI0007739 mml-mir-423 Macaca mulatta miR-423 stem-loop AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC 32 20988 MI0007740 mml-mir-424 Macaca mulatta miR-424 stem-loop CGAGGGGAUACAGCAGCAAUUCAUGUUUUGAAGUGUUCUAAAUGGUUCAAAACGUGAGGCGCUGCUAUACCCCCUCGUGGGGAAGGUAGAAGGUGGGG 32 20989 MI0007741 mml-mir-425 Macaca mulatta miR-425 stem-loop GAAAGCGCUUUGGAAUGACACGAUCACUCCCGUUGAGUGGGCCCCCGAGAAGCCAUCGGGAAUGUCGUGUCCGCCCAGUGCUCUUUC 32 20990 MI0007742 mml-mir-429 Macaca mulatta miR-429 stem-loop CGCCGGCCGAUGAGCGUCUUACCAGACACGGUUAGACCUGGCUCUCUGUCUAAUACUGUCUGGUAAAACCGUCCAUCCGCGGC 32 20991 MI0007743 mml-mir-431 Macaca mulatta miR-431 stem-loop UCCUGCUUGUCCUGCGAGGUGUCUUGCAGGCCGUCAUGCAGGCCACACUGACGGUAACGUUGCAGGUCGUCUUGCAGGGCUUCUCGCAAGACGACAUCCUCAUCACCAACGACG 32 20992 MI0007744 mml-mir-432 Macaca mulatta miR-432 stem-loop UGACUCCUCCAUGUCUUGGAGUAGGUCAUUGGGUGGAUCCUCUAUUUCCUUAUGUGGGCCACUGGAUGGCUCCUCCAUGUCUUGGAGUAGAUCA 32 20993 MI0007745 mml-mir-433 Macaca mulatta miR-433 stem-loop CCAGGGAGAAGUACGGUGAGCCUGUCAUUAUUCAGAGAGGCUAGAUCCUCUGUGUUGAGAAGGAUCAUGAUGGGCUCCUCGGUGUUCUCCAGG 32 20994 MI0007746 mml-mir-448 Macaca mulatta miR-448 stem-loop GCCGGGAGGUUGAACAUCCUGCAUAGUGCUGCCAGGAAAUCCCUAUUUCAUACUAAGAGGGGCUGGCUGGUUGCAUAUGUAGGAUGUCCCAUCUCCCAGCCUACUUCGUCA 32 20995 MI0007747 mml-mir-449a Macaca mulatta miR-449a stem-loop CUGUGUGUGAUGAGCUGGCAGUGUAUUGUUAGCUGGUUGAAUAUGUGAAUGGCAUCAGCUAACAUGCAACUGCUGUCUUAUUGCAUAUACA 32 20996 MI0007748 mml-mir-449b Macaca mulatta miR-449b stem-loop UGACCUGAAUCAGGUAGGCAGUGUAUUGUUAGCUGGCUGCUUGAGUCAAGUCAGCAGCCACAACUACCCUGCCACUUGCUUCUGGAUAAAUUCUUCU 32 20997 MI0007749 mml-mir-450a-1 Macaca mulatta miR-450a-1 stem-loop AAAUGAUACUAAACUGUUUUUGCGAUGUGUUCCUAAUAUGUACUAUAAAUAUAUUGGGAACAUUUUGCAUGUGUAGUUUUGUAUCAAUAUA 32 20998 MI0007750 mml-mir-450a-2 Macaca mulatta miR-450a-2 stem-loop CCAAAGAAAGAUGCUAAACUAUUUUUGCGAUGUGUUCCUAAUAUGUAAUAUAAAUGUAUUGGGGACAUUUUGCAUUCAUAGUUUUGUAUCAAUAAUAUGG 32 20999 MI0007751 mml-mir-450b Macaca mulatta miR-450b stem-loop GCAGAAUUAUUUUUGCAAUAUGUUCCUGAAUAUGUAGUAUAAGCGUAUUGGGAUCAUUUUGCAUCCAUAGUUUUGUAU 32 21000 MI0007752 mml-mir-451 Macaca mulatta miR-451 stem-loop CUUGGGAAUGGCAAGGAAACCGUUACCAUUACUGAGUUUAGUAAUGGUAAGGGUUCUCUUGCUAUAUCCAGA 32 21001 MI0007753 mml-mir-452 Macaca mulatta miR-452 stem-loop GCUAAGCACUUACAACUGUUUGCAGAGGAAACUGAGACUUUGUAACUAUGUCUCAGUCUCAUCUGCAAAGAAGUAAGUGCUUUGC 32 21002 MI0007754 mml-mir-453 Macaca mulatta miR-453 stem-loop GCAGGAAUGCUGUGAGCAGUGCCACCUCAUGGUACUCGGAGGGAGGUUGUCCGUGGUGAGUUCGCAUUAUUUAAUGAUGC 32 21003 MI0007755 mml-mir-454 Macaca mulatta miR-454 stem-loop UCUGUUUAUCACCAGAUCCUAGAACCCUAUCAAUAUUGUCUCUGCUGUGUAAAUAGUUCUGAGUAGUGCAAUAUUGCUUAUAGGGUUUUGGUGUUUGGGAAGAACAAUGGGCAGG 32 21004 MI0007756 mml-mir-455 Macaca mulatta miR-455 stem-loop UCCCUGGCGUGAGGGUAUGUGCCUUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACACUUGCCUCAAGGCCUAUGUCAUC 32 21005 MI0007757 mml-mir-484 Macaca mulatta miR-484 stem-loop GUCAGGCUCAGUCCCCUCCCGAUAAACCCCUAAAUAGGGACUUUCCCGGGGGGUGACCCUGGC 32 21006 MI0007758 mml-mir-485 Macaca mulatta miR-485 stem-loop ACUUGGAGAGAGGCUGGCCGUGAUGAAUUCGAUUCAUCAAAGCGAGUCAUACACGGCUCUCCUCUCUUUUAGU 32 21007 MI0007759 mml-mir-486 Macaca mulatta miR-486 stem-loop GUAUCCUGUACUGAGCUGCCCCGAGCUGGGCAGCAUGAAGGGCCUCGGGGCAGCUCAGUACAGGAUGC 32 21008 MI0007760 mml-mir-487a Macaca mulatta miR-487a stem-loop GGUACUUGGAGAGUGGUCAUCCCUGCUGUGUUCGCUUUGUUUAUGACGAAUCAUACAGGGACAUCCAGUUUUUCAGUAUC 32 21009 MI0007761 mml-mir-487b Macaca mulatta miR-487b stem-loop UUGGUACUUGGAGAGUGGUUAUCCCUGUCCUGUUCGUUUUGCUCGUGUCGAAUCGUACAGGGUCAUCCACUUUUUCAGUAUCAA 32 21010 MI0007762 mml-mir-488 Macaca mulatta miR-488 stem-loop GAGAAUCAUCUCUCCCAGAUAAUGGCACUCUCAAACAAGUUUCCAAGUUGUUUGAAAGGCUAUUUCUUGGUCAGAUGACUCUC 32 21011 MI0007763 mml-mir-489 Macaca mulatta miR-489 stem-loop GUGGCAGCUUGGUGGUCGUAUGUGUGGCGCCAUUUACUUGAACCUUUAGGAGUGACAUCACAUAUACGGCAGCUAAACUGUUAC 32 21012 MI0007764 mml-mir-490 Macaca mulatta miR-490 stem-loop UGGAGGCCUUGCUGGUUUGGAAAGUUCAUUGUUCGACACCAUGGAUCUCCAGGUGGGUCAAGUUUAGAGAUGCACCAACCUGGAGGACUCCAUGCUGUUGAGCUGUUCACAAGCAGCGGACACUUCCA 32 21013 MI0007765 mml-mir-491 Macaca mulatta miR-491 stem-loop UUGACUUAGCUGGGUAGUGGGGAACCCUUCCAUGAGGAGUAGAACACUCCUUAUGCAAGAUUCCCUUCUACCUGGCUGGGUUGG 32 21014 MI0007766 mml-mir-492 Macaca mulatta miR-492 stem-loop ACUACAGCCACUACUACAAGACCUUCGAGGACCUGCGGGACAAGAUUCUUGGUGCCGUCAAUGAGAACUCCAGGAUUGUCCUGCAGAUCAACAAUGCCUGUCUGGCUGCAGAUG 32 21015 MI0007767 mml-mir-493 Macaca mulatta miR-493 stem-loop CUGGCCUCCAGGGCUUUGUACAUGGUAGGCUUUCAUUCAUUCGUUUGCACAUUCGGUGAAGGUCUACUGUGUGCCAGGCCCUGUGCCAG 32 21016 MI0007768 mml-mir-494 Macaca mulatta miR-494 stem-loop GAUACUCGAAGGAGAGGUUGUCCGUGUUGUCUUCUCUUUAUUUAUGAUGAAACAUACACGGGAAACCUCUUCUUUAGUAUC 32 21017 MI0007769 mml-mir-495 Macaca mulatta miR-495 stem-loop UGGUACCUGAAAAGAAGUUGCCCAUGUUAUUUUCGCUUUAUAUGUGACGAAACAAACAUGGUGCACUUCUUUUUCGGUAUCA 32 21018 MI0007770 mml-mir-496 Macaca mulatta miR-496 stem-loop CCCGAGUCAGGUACUCGAAUGGAGGUUGUCCAUGGUGUGUUCAUUUUAUUUAUGAUGAGUAUUACAUGGCCAAUCUCCUUUCGGUACUCAAUUCUUCUUGGG 32 21019 MI0007771 mml-mir-497 Macaca mulatta miR-497 stem-loop CCACCCCGGUCCUGCUCCCGCCCCAGCAGCACACUGUGGUUUGUACGGCACUGUGGCCACGUCCAAACCACACUGUGGUGUUAGAGCGAGGGUGGGGGAGGCACCGCCGAGG 32 21020 MI0007772 mml-mir-498 Macaca mulatta miR-498 stem-loop AAUCCUCCUUGGGAAGUGAAGCUCAGGCUGUGAUUUCAAGCCAGGGGGCGUUUUUCUGUGACUGGAUGAAAAGCACCUCCGGGGCUUGAAGCUCACAGUUUGAGAGCAAUCAUCUAAGGAAGUU 32 21021 MI0007773 mml-mir-499 Macaca mulatta miR-499 stem-loop GCCCUGUCCCCGUGUCUUGGGCGGGCAGCUGUUAAGACUUGCAGUGAUGUUUAACUCCUCUCCACGUGAACAUCACAGCAAGUCUGUGCUGCUUCCCGUCCCUACGCUGCCUGGGCAGGGU 32 21022 MI0007774 mml-mir-500 Macaca mulatta miR-500 stem-loop GCUCCCCCUCUCUAAUCCUUGCUACCUGGGUGAGAGUGCUAUCUGAAUGCAAUGCACCUGGGCAAGGAUUCUGAGAGCGAGAGC 32 21023 MI0007775 mml-mir-501 Macaca mulatta miR-501 stem-loop GCUCUUCCUCUCUAAUCCUUUGUCCCUGGGUGAGAGUGCUUUCUGAAUGCAGUGCACCCAGGCAAGGAUUCUGAGAGGGUGAGC 32 21024 MI0007776 mml-mir-502 Macaca mulatta miR-502 stem-loop CCCUCUCUAAUCCUUGCUAUCUGGGUGCUAGUGCUGUCUCAAUGCAAUGCACCUGGGCAAGGAUUCAGAGAGGGGGAGCU 32 21025 MI0007777 mml-mir-503 Macaca mulatta miR-503 stem-loop UGCCCUAGCAGCGGGAACAGUUCUGCAGUGAGUGAUCAGUACUCUGGAGUAUUGUUUCCGCUGCCAGGGUA 32 21026 MI0007778 mml-mir-504 Macaca mulatta miR-504 stem-loop GCUGCUGUUGGGAGACCCUGGUCUGCACUCUAUCUGUAUUCUUACUGAAGGGAGCGCAGGGCAGGGUUUCCCAUACAGAGGGC 32 21027 MI0007779 mml-mir-505 Macaca mulatta miR-505 stem-loop GAUGCACCCAGUGGGGGAGCCAGGAAGUAUUGAUGUUUCUGCCAGUUUAGCGUCAACACUUGCUGGUUUCCUCUCUGGAGCAUC 32 21028 MI0007780 mml-mir-511-1 Macaca mulatta miR-511-1 stem-loop CAAUAGACACCCACCUUGUCUUUUGCUCUGCAGUCAGUAAAUAUUUUUUUGUGAAUGUGUAGCAAAAGACAGAAUGGGGGUCCAUUG 32 21029 MI0007781 mml-mir-511-2 Macaca mulatta miR-511-2 stem-loop CAAUAGACACCCACCUUGUCUUUUGCUCUGCAGUCAGUAAAUAUUUUUUUGUGAAUGUGUAGCAAAAGACAGAAUGGGGGUCCAUUG 32 21030 MI0007782 mml-mir-512-1 Macaca mulatta miR-512-1 stem-loop UCUCACUCUGUGGCACUCAGCCUCGGGGGCACUUUCUGGUGUCAGAAUGAAAGUGCUGUCAUUGCUGAGAUCCAAUGACUGAGG 32 21031 MI0007783 mml-mir-512-2 Macaca mulatta miR-512-2 stem-loop GGUACUUCUCACUCUGUGGCACUCAGCCUCGGGGGCACUUUCUGGUGUCAGAAUGAAAGUGCUGUCAUUGCUGAGAUCCAAUGACUGAGGCGAGCACC 32 21032 MI0007784 mml-mir-514-2 Macaca mulatta miR-514-2 stem-loop GUUGUCUGUGGUACCCUACUCUGGAGAGUGACAAUCAUGUAUAAUUAAAUUUGAUUGACACUUCUGUGAGUAGAGUAAUGCAUGACAC 32 21033 MI0007785 mml-mir-516a-1 Macaca mulatta miR-516a-1 stem-loop UCUCAGGCUGUGACCGUCUCGAGGAAAGAAGCACUUUCUGUUGUCUAAAGAAAAGGAAGUGUUUCCUUCCCGAGGGUUACGGUUUGAGA 32 21034 MI0007786 mml-mir-516a-2 Macaca mulatta miR-516a-2 stem-loop UCUCAGGCUGUGACCGUCUCGAGGAAAGAAGCACUUUCUGUUGUCUAAAGAAAAGGAAGUGUUUCCUUCCCGAGGGUUACGGUUUGAGA 32 21035 MI0007787 mml-mir-517a Macaca mulatta miR-517a stem-loop CUCAUGCAGUGACCCUCUAGAUGGAAGCACUGUCUGUGGUCUAAAAGAAAAGAUCGUGCAUCCUUUUAGAGUGUUACCGUUUGAGA 32 21036 MI0007788 mml-mir-517b Macaca mulatta miR-517b stem-loop GUGACCCUCUAGAUGGAAGCACUGUCUGUGGUCUAAAAGAAAAGAUCGUGCAUCCUUUUAGAGUGUUAC 32 21037 MI0007789 mml-mir-518a Macaca mulatta miR-518a stem-loop UCUCAUGCUGUGACCCUACAAAGGGAAGCCCUUUCUGUUGUCUAAACGAAAAGAAAGUGCUUCUCUUUGCUGGGUUACGGUUUGAGA 32 21038 MI0007790 mml-mir-518b Macaca mulatta miR-518b stem-loop UCAGGCUGUGACCCUCCAGAGGGAAGCACUUUCUGUUGUCUGAAAGAAAGCAAAGCGCUCCCCUUUAGAGGAUUACGGUUUGA 32 21039 MI0007791 mml-mir-518c Macaca mulatta miR-518c stem-loop GCGAGAAGAUUUCAUGCUGUGACUCUCUGGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAACAAAGCGCUUCUCUUUAGAGAGUUACGGUUUGAGAAAAGC 32 21040 MI0007792 mml-mir-518d Macaca mulatta miR-518d stem-loop CAUGCUGUGACUCUCUGGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAACAAAGCGCUUCUCUUUAGAGAGUUACGGUUUGAGA 32 21041 MI0007793 mml-mir-518e Macaca mulatta miR-518e stem-loop UCUCAGGCUGUGACCCUCUAGAGGGAAGCGAUUUCUGUGAUCUGAAAGAAAAGAAAAUGGUUCCCUUUAGAGUGUUACUGUUUGAGA 32 21042 MI0007794 mml-mir-518f Macaca mulatta miR-518f stem-loop UCUCAGGCUGUGACCCUCUAGAGGGAAGCACUUUAUCUUGUGUGAAAGGAAAGAAAGCGCUUCCCUUCAGAGGAUUACUCUUUGAGA 32 21043 MI0007795 mml-mir-519a Macaca mulatta miR-519a stem-loop CUCAGGCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUGGUCUGAAAGAAAAGAAAGUGCUUCCUUUUAGAGGGUUACCGUUUGAG 32 21044 MI0007796 mml-mir-519b Macaca mulatta miR-519b stem-loop CAUGCUGUGACCCUCUGGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAACGUGCAUCCCUUUAGAGGGUUACUCUUUG 32 21045 MI0007797 mml-mir-519c Macaca mulatta miR-519c stem-loop UCUCAGUCUGUGACCCUCUAGAAGGAAGCACUUUCUGUUGUUUGAAAGAAAAGAAAGUGCAUCAUUUUAGAGGAUUACAGUUUGAGA 32 21046 MI0007798 mml-mir-519d Macaca mulatta miR-519d stem-loop UCCCAAGCUGUGACCCUCCAAAGGGAAGCACUUUCUGUUUGUUGUCUGAGAGAAAACAAAGUGCUUCCUUUUAGAGUGUGACCGCUUGGGA 32 21047 MI0007799 mml-mir-520a Macaca mulatta miR-520a stem-loop CUCAGGCUGUGACCCUCCAGAGGGAAGUAUUUUCUGUUGUCUGAAGGAAAAGAAAGUGCUUCCCUUUGGACUGUUUCGGUUUGAG 32 21048 MI0007800 mml-mir-520b Macaca mulatta miR-520b stem-loop CCCUCUAGAGGGAAGCGCUUUCUGUGGUCUGAAAGAAAAGAAAGUGCUUCCUUUUAGAGGG 32 21049 MI0007801 mml-mir-520c Macaca mulatta miR-520c stem-loop UCUCAGGCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUGGUCUGAAAGAAAAGAAAGUGCUUCCUUUUAGAGGGUUACCGUUUGAGA 32 21050 MI0007802 mml-mir-520d Macaca mulatta miR-520d stem-loop UCUCAUGCUGUGACCCUACAAAGGGAAGCCCUUUCUGUUGUCUAAACGAAAAGAAAGUGCUUCUCUUUGCUGGGUUACGGUUUGAGA 32 21051 MI0007803 mml-mir-520e Macaca mulatta miR-520e stem-loop GCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUGGUCUGAAAGAAAAGAAAGUGCUUCCUUUUAGAGGGUUACCGUUUGAGA 32 21052 MI0007804 mml-mir-520f Macaca mulatta miR-520f stem-loop UCUCAGGCUGUGACCCUCUAGAGGGAAGCGCUUUCUGUGGUCUGAAAGAAAAGAAAGUGCUUCCUUUUAGAGGGUUACCGUUUGAGA 32 21053 MI0007805 mml-mir-520g Macaca mulatta miR-520g stem-loop UCCCAUGCUGUGGCCCUCUAGAGAAAGCACUUUCUGUUUGUUGUCUGAGGAAAAACAAAGUGCUUCCCUUCAGAGUGUGGCUGUUUGGGA 32 21054 MI0007806 mml-mir-520h Macaca mulatta miR-520h stem-loop UCCCAAGCUGUGACCCUCCAAAGGGAAGCACUUUCUGUUUGUUGUCUGAGAGAAAACAAAGUGCUUCCUUUUAGAGUGUG 32 21055 MI0007807 mml-mir-521 Macaca mulatta miR-521 stem-loop UCUCAUGCUGUGACCCUCCAAAGGGAAGUACUUUCUGUUGUCUAAAAGAAAAGAACGCACUUCCCUUUGGAGUGUUACCGUUUGAGA 32 21056 MI0007808 mml-mir-522 Macaca mulatta miR-522 stem-loop UCUCAGGCUGUGACCCUCUAGAGGGAAGCGAUUUCUGUGAUCUGAAAGAAAAGAAAAUGGUUCCCUUUAGAGUGUUACUGUUUGAGA 32 21057 MI0007809 mml-mir-523a Macaca mulatta miR-523a stem-loop UCUCAGGCUGUGACCCUCUAGAGGGAAGCACUUUCUGUUGUCUGGAAGAAAAGAAUGCGCUUCCCUUUAGAGGGUUACUCUCUGAGA 32 21058 MI0007810 mml-mir-523b Macaca mulatta miR-523b stem-loop UCUCAUGAUGUGACCCUCUAGAGCGAAGCGCUUUCUGUUGGCUAGAAAAGAAUAGGAAGCGCUUCCCUUUAGAGUGUUACGCUUUGAGA 32 21059 MI0007811 mml-mir-523c-1 Macaca mulatta miR-523c-1 stem-loop CAUGCUGUGACCCUCUGGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAACGUGCAUCCCUUUAGAGGGUUACUCUUUGAGA 32 21060 MI0007812 mml-mir-523c-2 Macaca mulatta miR-523c-2 stem-loop UCCCAUGCUGUGACCCUCUGGAGGGAAGCGCUUUCUGUUGUCUGAAAGAAAAGAACGUGCAUCCCUUUAGAGGGUUACUCUUUGAGAAGA 32 21061 MI0007813 mml-mir-525 Macaca mulatta miR-525 stem-loop CUCAGGCUGUGACUCUCCAGAGGGAUGCACUUUCUUUUAUGUGAAAAAAAAAGAAGGCGCAUCCCUUUGGAGCGUUACGGUUUGGG 32 21062 MI0007814 mml-mir-532 Macaca mulatta miR-532 stem-loop CGACUUGCUUUCUCUCCUCCAUGCCUUGAGUGUAGGACCGUUGGCAUCUUAAUUACCCUCCCACACCCAAGGCUUGCA 32 21063 MI0007815 mml-mir-539 Macaca mulatta miR-539 stem-loop AUACUUGAGGAGAAAUUAUCCUUGGUGUGUUCGCUUUAUUUAUGAUGAAUCAUACAAGGACAAUUUCUUUUUGAGUAU 32 21064 MI0007816 mml-mir-542 Macaca mulatta miR-542 stem-loop CAGACCUCAGACAUCUCGGGGAUCAUCAUGUCACGAGAUACCACUGUGCACUUGUGACAGAUUGAUAACUGAAAGGUCUGGGAGCCAUUCAUCUUCA 32 21065 MI0007817 mml-mir-544 Macaca mulatta miR-544 stem-loop AUUUUCAUCACCUAGGGAUCUUGUUAAAAAGCAGAUUCUGAUUCAGGGACCAAGAUUCUGCAUUUUUAGCAAGUUCUCAAGUGAUGCUAAU 32 21066 MI0007818 mml-mir-545 Macaca mulatta miR-545 stem-loop CCCAGCCUGGCACAUUAGUAGGCCUCAGUAAAUGUUUAUUAGAUGAAUAAAUGAAUGACUCAUCAGCAAACAUUUAUUGUGUGCCUGCUAAAGUGAGCUCCACAGG 32 21067 MI0007819 mml-mir-548a Macaca mulatta miR-548a stem-loop UCCAGGGAGGUAUUAAGUUGGUGCAAAAGUAAUUGUGGUUUUUUGCCAUUAAAAGUAAUGACAAUACUGGCAAUUACUUUUCCUCCAAACCUGAUAUU 32 21068 MI0007820 mml-mir-548b Macaca mulatta miR-548b stem-loop CAGGCUAUGUAUUUAGGUUGGUGCAAAAGUAAUUGGGGCUUGGGCCUUUAUUUUCAAUGGCAAAAACCUCAAUUGCUUUUGUGCCAACCUAAUACUU 32 21069 MI0007821 mml-mir-548c Macaca mulatta miR-548c stem-loop UGUGAUGUAUUAGGUUGAUGCAAAAGUAAUUGGGGUUUUUUGUCAUUAAAAGUAGUGACAAAACCGGCAAUUACUUCUGCACCAAACUAAUAUAA 32 21070 MI0007822 mml-mir-548d Macaca mulatta miR-548d stem-loop AAACAAGUUGUAUUAGGUUGGUGCAAAAGUAAUUGUGGUUCUUGCCUAUAAAAGUAAUGGCAAAAACCACAAUUUCUUUUGCACCAAACUAAUAAAG 32 21071 MI0007823 mml-mir-548e Macaca mulatta miR-548e stem-loop CCUAGAAUGUUACUAGGUUGGUGCAAAAGUAAUUGCGAGUUUUACCAUUACUUUCAAUGGCAAAACCGGCAGUUACUUUUGCACCAACGUAAUACUU 32 21072 MI0007824 mml-mir-548f Macaca mulatta miR-548f stem-loop AUUUAGGUUGGUGCAAAAGUAAUUGCGGAUUUUGCCAUUGAAAGUAAUGGCCAAAACCACAGUUCCUUUUGCACCAAUCUAUAGA 32 21073 MI0007825 mml-mir-549 Macaca mulatta miR-549 stem-loop AGACAUGCAACUCAAGAAUAUAUUGAGAGCUCAUCCAUAGUUGUCACUGUCUCAGAUCAUGACAAUUAUGGAUGAGCUCUUAAUAUAUCCCAGGC 32 21074 MI0007826 mml-mir-550 Macaca mulatta miR-550 stem-loop UGAUGCUUUGCUGGCUGGUGCAGUGCCUGAGGGAGUAAGAGCCCUGUUGUUGUAAGAUAGUGUCCUACUCCCUCAGGCACAUCUCCAGCAAGU 32 21075 MI0007827 mml-mir-551a Macaca mulatta miR-551a stem-loop GGGGACUGCCGGGUGACCCUGGAAAUCCAGAGUGGGUGGGGCCUGUCUGACCAUUUCUAGGCGACCCACUCUUGGUUUCCAGGGUUGCCCUGGAAA 32 21076 MI0007828 mml-mir-551b Macaca mulatta miR-551b stem-loop AGAUGUGCUCUCCUGGCCCAUGAAAUCAAGCGUGGGUGAGACCUGGUGCAGAACAGGAAGGCGACCCAUACUUGGUUUCAGAGGCUGCGAGAAUA 32 21077 MI0007829 mml-mir-552 Macaca mulatta miR-552 stem-loop ACCAUUCAAAUAUACCACAGUUUGUUUGACCAUUAACCUGUUUGUUGAAGAUGCCUUUCAACGGGUGACUGGUUAGACAAACUGUGGUAUAUUCA 32 21078 MI0007830 mml-mir-553 Macaca mulatta miR-553 stem-loop CUUCAAUUUUAUUUGAAAAAGGUGAGGUUUUGUUUUGUCUGAGAAAAUCUCACUGUUUUAGACUGAGG 32 21079 MI0007831 mml-mir-554 Macaca mulatta miR-554 stem-loop ACCUGAGUAACCUUUGCUAGUCCUGACUCAGCCAGUACUGAUCUUACACUGGCAGUGGGUCAGGGUUCAUAUUUUGGCAUCUCUCUCUGGGCAUCU 32 21080 MI0007832 mml-mir-556 Macaca mulatta miR-556 stem-loop GAUAGUAAUGAGAAAGAUGAACUCAUUGUAAUAUGAGCUUCAUUUAUGCAUUUCAUAUUACAAUUAGCUGAUCUUUUUUUUU 32 21081 MI0007833 mml-mir-557 Macaca mulatta miR-557 stem-loop AGAAUGGGCAAAUGAAUAGUAAAUUUGGAGGCCUGGGGCCCUCCCUGCUGCUGGACAAGUGUCUGCAUGGGUGAGCCUUAUCUUUGAAAGGAGGUGGA 32 21082 MI0007834 mml-mir-558 Macaca mulatta miR-558 stem-loop GUGUGUGUGUGUGUUUGUGUUUAUUUUGGCAUAGUAGCUCUAGACUCUAUUAUAGUUUCCUGAGCUGCUGUACCAAAAUACCACAAACUGCCUG 32 21083 MI0007835 mml-mir-562 Macaca mulatta miR-562 stem-loop AGUGAAAUUGCUGGGUCAUAUGGUCAGUCUACUUUCAGAGUAAUUGUGAAAGUAUUUUUCAAAGUAGCUGUACCAUUUGCAUUCCCUGUGGCAAU 32 21084 MI0007836 mml-mir-563 Macaca mulatta miR-563 stem-loop AGCAAAGAAGUGUGUUGCCCUCCAGGAAAUGUGUGUUGCUCUGAUGUAAUUAGGCUGACAUACAUUUCCCUGGUAGCCA 32 21085 MI0007837 mml-mir-567 Macaca mulatta miR-567 stem-loop GGAUUCUUACAGGACACUAUGUUCUUCCAGGACAGAACAUUCUUUGCUAUUUUGUACUGGAAGAACAUGCAAAACUUUAAAAAAAGUUAUUGCU 32 21086 MI0007838 mml-mir-568 Macaca mulatta miR-568 stem-loop AUAUACACUAUAUUAUGUAUAAAUGUAUACACACUUCCUAUAUGUAUCCACAUAUAUAUAGUGUAUAUAUUAUACAUGUAUAGGUGUGUAUAUG 32 21087 MI0007839 mml-mir-569 Macaca mulatta miR-569 stem-loop GGUAUUGUUAGAUUAAUUUUGUGGGACAUUAACAACAGCAUCAGCAGCAACAUCAGCUUUAGUUAAUGAAUCCUGGAAAGUUAAGUGACUUUAUUU 32 21088 MI0007840 mml-mir-570 Macaca mulatta miR-570 stem-loop UAUUAGGUUGGUGCAAACGUAAUUGCAGUUUUUGCCAUUACUUUUAAAGGCAAAAGUAGCAAUUACCUUUGCACCAACCU 32 21089 MI0007841 mml-mir-572 Macaca mulatta miR-572 stem-loop GUCGAGGCCGUGGCCCGGAAGUGAUCGGGGCCGCCGCGGACGGAAGGGCGCCUCUGCUUCGUCCGCUCGGCGGUGGCCCAGCCAGGCCCGCGGGA 32 21090 MI0007842 mml-mir-573 Macaca mulatta miR-573 stem-loop UUUAGAGGUGUCUCCCUGAAGUGAUGCAUAACCGAUCAGGAUCUACUCAUGUCAACUUUGGUAAAGUUAUGUUGCUUGUCAGGGUGAGGAGAGGUUUUG 32 21091 MI0007843 mml-mir-576 Macaca mulatta miR-576 stem-loop UACAAUCCAGUGAGGAUUCUAAUUUCUCCACAUCUUUGGUAAUAAGUUUUGGCAAAGAUGUGGAAAAAUUGGAAUCCUCAUUGGAUUGGUUAUAA 32 21092 MI0007844 mml-mir-577 Macaca mulatta miR-577 stem-loop UGGGGGAAUGAAGAGUAGAUAAAAUAUUGGUACCUGAUGAGUGUGAGGCCAGGUUUCAAUACUUUAUCUGCUCUUCAUUUUCCCAUAUCUACUUAC 32 21093 MI0007845 mml-mir-578 Macaca mulatta miR-578 stem-loop GAUAAAUAUAUAGACAAAAUACAAUCCUGGACUAUAAGAAGCUCCUAUAGCUCCUGUAGCUUCUUGUGCUCUGGGAUUGUAUUUUGUUUAUAUAU 32 21094 MI0007846 mml-mir-579 Macaca mulatta miR-579 stem-loop CAUAUUAGGUUAAUGCAAAAGUAAUCGCGGUUUGUGCCAAAUGGCGAUUUGAAUUAAUAAAUUCAUUUGGUACAAACCGCGAUUACUUUUGCAUCAGC 32 21095 MI0007847 mml-mir-580 Macaca mulatta miR-580 stem-loop AUAAAAUUUCCAGUUGGAACCUAAUGAUUCAUCAGACUCAGAUAUUUAAGUUAACAGUAUUUGAGUCUGAUGAAUCAUUAGGUUCCAGUCAGAAAUU 32 21096 MI0007848 mml-mir-581 Macaca mulatta miR-581 stem-loop GUUCUGUGAACGUAUUCUUGUGUUCUGUAGAUCAGUGCUUUUAGAAAAUUUGUGUGAUCUAGAGAACACAAAGAAUACCUACACAGAACCAUCUGC 32 21097 MI0007849 mml-mir-582 Macaca mulatta miR-582 stem-loop AUCUGUGCUCUUUGAUUACAGUUGUUCAACCAGUUACUAAUCUACCUAAUUGUAACUGGUUGAACAACUGAACCCAAAGGGUGCAAAGUAGAAACAUU 32 21098 MI0007850 mml-mir-583 Macaca mulatta miR-583 stem-loop AACUCGCACAUUUACCAAAGAGGAAGGUCCCAGUACUGCAGGGAUCUUAGCAGUACUGGGACCUACCUCUUUGGU 32 21099 MI0007851 mml-mir-584 Macaca mulatta miR-584 stem-loop UAGGGUGACCAGCCAUUAUGGUUUGCCUGGGACUGAGGAAUUUGCUGGGAUAUGUCAGUUCCAGGCCAACCAGGCUGGUUGGUUUCCCUGAAGCAAC 32 21100 MI0007852 mml-mir-586 Macaca mulatta miR-586 stem-loop AUGGGGUAAAACCAUUAUGCAUAUUGUAUUUUUAGGUCCCAAUACGUGUGGACCCUAAAAAUGCAAUGCAUAAUGGUUUUAUACUCUUUAUCUUCUUAU 32 21101 MI0007853 mml-mir-587 Macaca mulatta miR-587 stem-loop CUCCUAGGCACCCUCUUUCCACAGGUGAUGAGUUACAGGGCCCAGGGAAUGUGUCUGCACCUGUGACUCAUCACUGGUGGAAGCCCAUAC 32 21102 MI0007854 mml-mir-589 Macaca mulatta miR-589 stem-loop UCCAGCCUGUGCCCAGCAGCCCCUGAGAACCACGUCUGCUCUGAGCUGGGUACUGCCUGUUCAGAACAGACGCUGCUUCCCAGACGCUGCCAGCUGGCC 32 21103 MI0007855 mml-mir-590 Macaca mulatta miR-590 stem-loop UAGCCAGUCAGAAAUGAGCUUAUUCAUAAAAGUGCAGUAUGGUGGAGUCAGUCUGUAAUUUUAUGUAUAAGCUGGUCUCUAACUGAAACGUGCAGCA 32 21104 MI0007856 mml-mir-592 Macaca mulatta miR-592 stem-loop UAUUAUGCCAUGACAUUGUGUCAAUAUGCGAUGAUGUGUUGUGAUGGCACAGCGUCAUCACGUGGUGACGCAACAUCAUGACGUAAGACGUCACAAC 32 21105 MI0007857 mml-mir-593 Macaca mulatta miR-593 stem-loop CCCCCAGAGUGUGUCAGGCAUCAGCCAGGCAUCGCUCAGCCCCUUUCCCUCUGGGGGAGCAAGGAGUGGUGCUGGGUUUGUCUCUGCUGGGGUUUCUCCU 32 21106 MI0007858 mml-mir-597 Macaca mulatta miR-597 stem-loop UACUUACUCUACAUGUGUGUCACUUGACGACCACUGUGAAGAGAGUAAAAUGUACAGUGGUUCUCUUGGGGCUCAAGCGUAACGUAGAGUGCUGGUC 32 21107 MI0007859 mml-mir-598 Macaca mulatta miR-598 stem-loop GCUUGAUGAUGCUGCUGAUGCUGGCGGUGAUCCCGAUGGUGUGAGCUGGAAAUGGGGUGCUACGUCAUCGUUGUCAUCGUCAUCAUCAUCAUCCGAG 32 21108 MI0007860 mml-mir-599 Macaca mulatta miR-599 stem-loop AAAGACAUGCUGUCCACAGUGUGUUUGAUAAGCUGACAUGGGACAGGGAUUCUUUUCACUGUUGUGUCAGUUUAUCAAACCCAUACUUGGAUGAC 32 21109 MI0007861 mml-mir-600 Macaca mulatta miR-600 stem-loop AAGUCACUUACUGUGUCUCCAGCUUCACAGGAAGGCUCUUGUCUGUCAGGCAGUGGAGUUACAGACAAGAGCCUUGCUCAGGCCAGCCCUGCCC 32 21110 MI0007862 mml-mir-601 Macaca mulatta miR-601 stem-loop UGCAUGAGUUCAUCUUGGUCUAGGAUUGUUGGAGGAGUCAGAAAAAUUACCCCAGGGAUCCUGAAGUCAUUGGGGUGGA 32 21111 MI0007863 mml-mir-604 Macaca mulatta miR-604 stem-loop AGAGCAUCGUGCUUGACCUUCCACGCUCCCGUGUCCACUAGCAGGCAGGUUUUCUGACACGGGCUGCGGGAUUCAGGACAGCGCAUCACGGAGA 32 21112 MI0007864 mml-mir-605 Macaca mulatta miR-605 stem-loop CCCUAGCUUGGUUCUAAAUCCCACGGUGCCUUCUCCUUGGGAAAAACAGAGAAGGCACUGUGGGAUUUAGAACCAAGUUAGG 32 21113 MI0007865 mml-mir-607 Macaca mulatta miR-607 stem-loop UCGCCCAAAGUCACACAGGUUAUAGAUCUGGAUUGGAACCCAGGUAGCCAGACUGCCUGGGUUUGAAUCCAGAUCUGUAACCUGUGUGACUUUGG 32 21114 MI0007866 mml-mir-609 Macaca mulatta miR-609 stem-loop UGCUCUGCUUUUCCUAGGGUGUUGCUCUCAUCUCUGGUCUAUAAUGGGGUAAAUGUAGAGAUGAGGGCAACAGCCUAGGAACAGCAGAGGAACC 32 21115 MI0007867 mml-mir-611 Macaca mulatta miR-611 stem-loop AAAAUGGUGAGAGGGUUAAGGGGAGUUCCCGACGGAGAUGCGAGGACCCCUCGGGGUCUGACCCACA 32 21116 MI0007868 mml-mir-612 Macaca mulatta miR-612 stem-loop UCUCAUCUGGACCCCACUGGGGAGGGCUUCUGAGCUCCUCAGCACUGGCAGGAGGGGCUCCAGGGGCCCUCCCUCCAUGGCAGCCAGGACAGGACUCUCA 32 21117 MI0007869 mml-mir-615 Macaca mulatta miR-615 stem-loop CUCGGGAGGGGCGGAAGGGGGGUCCCCGGUGCUCGGAUCUCGAGGGUGCUUAUUGUUCGGUCCGAGCCUGGGUCUCCCUCUUCCCCCCAACCCCCC 32 21118 MI0007870 mml-mir-616 Macaca mulatta miR-616 stem-loop UUAGGUAAUUCCUCCUCUCAAAACCCUCCAAUGACUUCCCUGACAUGACAUAGGAAGUCACUGGAGAGUUUUGAGCAGAGGAAUGACCUGUUUUAAAA 32 21119 MI0007871 mml-mir-618 Macaca mulatta miR-618 stem-loop UCUUGUUCACAACCAAACUCUACUUGUCCUUCUGAGUGUGAUUACGCCCAUGGAGUAGCUCAGGAGGCAAACAGGGUUACCCUGUGGAUAGGUCUGAAAA 32 21120 MI0007872 mml-mir-619 Macaca mulatta miR-619 stem-loop CGCCCACCUCAGCCUCCCAAAAUGCUGGGAUUACAGGCAUGAGCCACCGCAGUCGACCAUGAUCUGGACAUGUUUGUGCCUGGGAUUGUCAGUUUGCAG 32 21121 MI0007873 mml-mir-624 Macaca mulatta miR-624 stem-loop AAUGCUGUUUCAAGGUAGUACCAGUAUCUUGUGUUCAGUGGAACCAAGGUAAACACAAGAUACUGGUAUUACCUUGAGAUAGCAUUAACACCUAAGUG 32 21122 MI0007874 mml-mir-625 Macaca mulatta miR-625 stem-loop AGGGUAGAGGUAUAAGGGGGGAAAGUUCUGCAGGCCUGUAAUUAGAUCUCAGGACUGUAGAACUUUCUCCCUCACCUCUGCCCU 32 21123 MI0007875 mml-mir-626 Macaca mulatta miR-626 stem-loop ACCGAUAUCUUUGUCUUAUUUCUGAGCUGAGGGGUUAUUUUUAUGCAGUCUAAAUGAUCUCAGCUGUCCGAAAAUGUCUUCAAGUUUAAAGGCUU 32 21124 MI0007876 mml-mir-627 Macaca mulatta miR-627 stem-loop UACUUAUUACCGGUAGUGAGUCUGUAAGAAAAGAGGAGGUGGUGGUUUUCCUCCUCUUUUCUUAGAGACUCACUACCAGUAAUAAGAAAUACUACUA 32 21125 MI0007877 mml-mir-628 Macaca mulatta miR-628 stem-loop AUAGCUGUUGUGUCACUUCCUCAUGCUGACAUAUUUACUAGAGGGUAAAAUUAAUAACCUUCUAGUAAGAGUGGCAGUCGAAGGGAAGGACUCAU 32 21126 MI0007878 mml-mir-631 Macaca mulatta miR-631 stem-loop GUGGAGAGCCUGGUUAGACCUGGCCCAGACCUCAGCUACACAAGCUGAUGGACUGAGUCAGGGGCCACACUCUCC 32 21127 MI0007879 mml-mir-632 Macaca mulatta miR-632 stem-loop CGCCUCCUGCCGCAGUGCCUGACGGGAGGCGGAGCGGCGAACGAGGCCGUCGGCCAUUUUGUGUCUGCUUCCUGUGGGACGCGGUCGUAGCCGU 32 21128 MI0007880 mml-mir-633 Macaca mulatta miR-633 stem-loop AACCUCUCUUAGCCUCUGUUUCUUUACUGUGGUAGAUACUAUUAGCCUAAAAUAAGAAGGCUAAUAGUAUCUACCACAAUAAAAUUGUUGUGAUGAUA 32 21129 MI0007881 mml-mir-636 Macaca mulatta miR-636 stem-loop UGGCGGCCUGGGCGGGAGCGCGCGGGCGGGGCCGGCCCCGCUGCCUGGAAUUAACCCCGCUGUGCUUGCUCGUCCCGCCUGCAGCCCUAGGCGGCGUCG 32 21130 MI0007882 mml-mir-638 Macaca mulatta miR-638 stem-loop GUAAGCGGGCGCGGCAGGGAUCGCGGGCGGGCGGCGGCCUAGGGUGCGGAGGGCGGACCGGGAAUGGCGCUCCCUGCGCCGCCGGCGUAACUGCGGCGCU 32 21131 MI0007883 mml-mir-639 Macaca mulatta miR-639 stem-loop UGGCCGACGGGGCGCGCGCGGCCGGGAGGGGCGGGGCGGACGCACAGCCGCGUUUAGUCUAGCGCAGCGGUCGCGAGCGCUCUGGGUAUCCUGUCCUG 32 21132 MI0007884 mml-mir-640 Macaca mulatta miR-640 stem-loop GUGACCCUGGGCAAGUUCCUGAAGAUCAAACACAUCAGAUCCCUUAUCUGUAAAAUGGGCAUGAUCCAGGAACCUGCCUCUAUGGUUGCCUUGGAG 32 21133 MI0007885 mml-mir-642 Macaca mulatta miR-642 stem-loop AUCUGAGCUGGGAGGGUCCCUCUCCAAAUGUGUCUUGGGGUGGGGGAUCAAGACACAUUUGGAGAGGGAACCUCCCAACUCGGCCUC 32 21134 MI0007886 mml-mir-643 Macaca mulatta miR-643 stem-loop ACCAACUGAUACGCAUUAUCUACGUGAGCUAGAAUACAAGUAGUUGGUGUCUUCAGAGACACUUGUAUUCUAGCUCAGGUAGAUACUGAAUGGAAAA 32 21135 MI0007887 mml-mir-644 Macaca mulatta miR-644 stem-loop UUUUAUUUAGUAUUCUUCCAUCAGUGUUCAUAAGGGAUGUUGGUCUGUAGUUUUCUUAUAGUGUGGCUUGCUUAGAGCAAAGGUGGUUCCCU 32 21136 MI0007888 mml-mir-648 Macaca mulatta miR-648 stem-loop AGCACAGACGCCUCCAAGUGUGCAGGGCACUGAUGGGGGCCAGGGCAGGCCCAGCCAAAGUGCAGGACCUGGCACUUAGUCGGAGGUGAGGAUG 32 21137 MI0007889 mml-mir-649 Macaca mulatta miR-649 stem-loop GCCCUAGCCAAAUACUGUAUUUUUUAUCAACAUUUGGUUGAAAAACAUCUGUGUAUUAGUAAACCUGUGUUGUUCAAGAGUCCGCUGUGCUUUGCUG 32 21138 MI0007890 mml-mir-650a-1 Macaca mulatta miR-650a-1 stem-loop CAGUGCUGGGAUCUCAGGAGGCAGCGCUCUCAGGACGUCUCCACCAUGGUCUGGGCUCUGCUCCUCCUCACCCUCCUCACUCAGGGCACAGGUGA 32 21139 MI0007891 mml-mir-650a-2 Macaca mulatta miR-650a-2 stem-loop CAGUGCUGGGAUCUCAGGAGGCAGCGCUCUCAGGACUUCUCCACCAUGGUCUGGGCUCUGCUCCUCCUCACCCUCCUCACUCAGGGCACAGGUGA 32 21140 MI0007892 mml-mir-650b Macaca mulatta miR-650b stem-loop CAGUGCUGGGGUCUCAGGAGGCAGCGCUCUCGGGACAUCUCCACCAUGGCCUGGGAUCUGCUCCUCUUCACCCUCCUCACUCAGGGCACAGGUGA 32 21141 MI0007893 mml-mir-650c Macaca mulatta miR-650c stem-loop CAGUGCUGGGGUGUCAGGAGGCAGCGCUCUCAGUCUCCACCAUGGCCUGGGCUCUGCUCCUCCUCACUCUCCUCACUCAUGGCACGGGUGA 32 21142 MI0007894 mml-mir-650d Macaca mulatta miR-650d stem-loop CAGUGCUGGGGUCUCAGGAGACAGUGCUGUCGGGACGUCUCCACCAUGGCCUGGGCUCUGCUCCUCCUCACCCUUCUCACUCAAGGCACAGG 32 21143 MI0007895 mml-mir-651 Macaca mulatta miR-651 stem-loop AAGCUAUCACUGCUUUUUAGAAUAAGCUUGACUUUUGUUCAAAUAAAAACGCAAAAGGAAAGUGUAUCUUAAAAGGCAAUGACAGUUUAAUAUGUUU 32 21144 MI0007896 mml-mir-652 Macaca mulatta miR-652 stem-loop ACGAAUGGCUAUGCACUGCACAACCCUAGGAGAGGGUGCCAUUCACAUAGACUAUAAUUGAAUGGCGCCACUAGGGUUGUGCAGUGCACAACCUGCAC 32 21145 MI0007897 mml-mir-653 Macaca mulatta miR-653 stem-loop UUCAUUCCUUCAGUGUUGAAACAAUCUCUACUGAACCAGCUUCAAACAAAUUCACUGGAGUUUGUUUCAAUAUUGCAAGAAUGAUAAGAUGGAAGC 32 21146 MI0007898 mml-mir-654 Macaca mulatta miR-654 stem-loop GGGUAAGUGGAAAGAUGGUGGGCCGCAGAACAUGUGCUGAGUUCGUGCCAUAUGUCUGCUGACCAUCACCUUUAGAAGCCC 32 21147 MI0007899 mml-mir-656 Macaca mulatta miR-656 stem-loop CUGAAAUAGGUUGUCUGUGAGGUGUUCACUUUCUAUAUGAUGAAUAUUAUACAGUCAACCUCUUUCCGAUAUCGAAUC 32 21148 MI0007900 mml-mir-657 Macaca mulatta miR-657 stem-loop GGAGGAGAGGGUCCUGGAGAAGCGUGGACGGCUCCAGGUGGGUUCUGGCAGGUCCUCACCCUCUCUAGGCCCCAUUCUC 32 21149 MI0007901 mml-mir-660 Macaca mulatta miR-660 stem-loop CUGCUCCUUCUCCCAUACCCAUUGCAUAUCGGAGUUGUAAAUUCUCAAAACACCUCCUGUGUGCAUGGAUUACAGGAGGGUGAGCCUUGUCAUCGUG 32 21150 MI0007902 mml-mir-661 Macaca mulatta miR-661 stem-loop GGAGAGGCUGUGCUGUGGGGCAGGCGCUGGCCUGGGUGGCCUGAGCCCUGAUUUUGGGCUGCCUGGGUAUCUGGCCCGUGCGUGACCUUGGGGCGGCU 32 21151 MI0007903 mml-mir-662 Macaca mulatta miR-662 stem-loop GCUGUUGAGGCUGUACAGCCAGGACCUGACGGUGGGGUGGCUUCGGGCCUUCUGCAGGUCUCCCACGUUGUGGCCCAGCAGCGCAGUCACGUUGC 32 21152 MI0007904 mml-mir-663 Macaca mulatta miR-663 stem-loop CCGUUCGGCGUCCCAGGCGGGGCGCUGCGGGACCGCCCUCGUGUCUGUGGCGGUGGGAUCCCGUGGCCGUGUUUUCCUGGUGGCCCGGCC 32 21153 MI0007905 mml-mir-664 Macaca mulatta miR-664 stem-loop CUGGCUAGGGAAAAUGAUUGGAUAGAAAAUGUUAUUCUAUUCAUUUAUCCCCAGCCUA 32 21154 MI0007906 mml-mir-668 Macaca mulatta miR-668 stem-loop GGUAAGUGCGCCUCGGGUGAGCAUGCACUUAAUGUGGGUGUAUGUCACUCGGCUCGGCCCACUACC 32 21155 MI0007907 mml-mir-671 Macaca mulatta miR-671 stem-loop GCAGGUGAACUGGCAGGCCAGGAAGAGGAGGAAGCCCUGGAGGGGCUGGAGGUGAUGGAUGUUUUCCUCCGGUUCUCAGGGCUCCACCUCUUUCGGGCCGUAGAGCCAGGGCUGGUGC 32 21156 MI0007908 mml-mir-675 Macaca mulatta miR-675 stem-loop CCCAGGGUCUGGUGCGGAGAGGGCCCACAGUGGACUUGGUGACACUGUAUGCCCUCACCGCUCAGCCCCUGGG 32 21157 MI0007909 mml-mir-758 Macaca mulatta miR-758 stem-loop GCCUGGAUACGUGAGAUGGUUGACCAGAGAGCACACGCUUUAUAUGUGCCGUUUGUGACCUGGUCCACUACCCCUCAGUAUCUAAUGC 32 21158 MI0007910 mml-mir-765 Macaca mulatta miR-765 stem-loop UUUAGGGGCUGAUGAAAGUGGAGUUCAGUAGACAACCCUUUUCAAGCCCUGCAAGAAACUGGGGUUUCUGGAGGAGAGGGAAGGUGCUGAAGGGGCUGCUCUCGUGAGCCUGAA 32 21159 MI0007911 mml-mir-767 Macaca mulatta miR-767 stem-loop GCUUUUAUAUUGUAGGUUUUUGCUCAUGCACCAUGGUUGUCUGAGCAUGCAGCAUGCUUGUCUGCUCAUACCCCAUGGUUUCUGAGCAGGAAUCUUCAUUGUCUACUGCU 32 21160 MI0007912 mml-mir-768 Macaca mulatta miR-768 stem-loop CUGUGCUUUGUGUGUUGGAGGAUGAAAGUACGGAGUGAUCCAUCGGCUAAGUGUCUUAUCACAAUGCUGACACUCAAACUGCUGACAGCACACGUUUUUCACAG 32 21161 MI0007913 mml-mir-770 Macaca mulatta miR-770 stem-loop AGGAGCCACCUUCCGAGCCUCCAGUACCACGUGUCAGGGCCACAUGAGCUGGGCCUCGUGGGCCUGAUGUGGUGCUGGGGCCUCAGGGGUCUGCUCUU 32 21162 MI0007914 mml-mir-802 Macaca mulatta miR-802 stem-loop GUUCUGUUAUUUGCAAUCAGUAACAAAGAUUCAUCCUUGUGUCCAUCAUGCAGCAAGGAGAAUCUUUGUCACUUAGUGUAAUUAAUAGCUGGAC 32 21163 MI0007915 mml-mir-874 Macaca mulatta miR-874 stem-loop UUAGCCCUGCGGCCCCACGCACCAGGGUAAGAGAGAGUCUCGCUUCCUGCCCUGGCCCGAGGGACCGACUGGCUGGGC 32 21164 MI0007916 mml-mir-875 Macaca mulatta miR-875 stem-loop UUAGUGGUACUAUACCUCAGUUUUAUCAGGUGUUCCUAAAAUCACCUGGAAAUACUGAGGUUGUGUCUCACUGAAC 32 21165 MI0007917 mml-mir-876 Macaca mulatta miR-876 stem-loop UGAAGUGCUGUGGAUUUCUUUGUGAAUCACCAUAUCUAAGCUAAUGUGGUGGUGGUUUACAAAGUAAUUCAUAGUGCUUCA 32 21166 MI0007918 mml-mir-877 Macaca mulatta miR-877 stem-loop GCUAGAGAAGGUAGAGGAGAUGGCGCAGGGGACACGGGCUAAGACUCGGGGGUUCCUGGGACCCUCAGACAUGUGUCCUCUUCUCCCUCCUCCCAGGUGUAUG 32 21167 MI0007919 mml-mir-885 Macaca mulatta miR-885 stem-loop CCGCACUCUCUCCAUUACACUACCCUGCCUCUUCUCCAUGAGAGGCAGCGGGGUGUAGUGGAUAGAGCACGGGU 32 21168 MI0007920 mml-mir-886 Macaca mulatta miR-886 stem-loop CCGGGUCGGAGUUAGCUCAAGCGGUUACCUCCUCAUGCCGCACUUUCUAACUGUCCAUCUCUGUGCUGGGGUUCGAGACCCGCGGGUGCUUACUGACCCUUUUAUGCACUAA 32 21169 MI0007921 mml-mir-887 Macaca mulatta miR-887 stem-loop UGCAGAUCCUUGGGAGCCCUGUUAGACUCUGGAUUUUACACUUGGAGUGAACGGGCGCCAUCCCGAGGCUUUGCACAG 32 21170 MI0007922 mml-mir-888 Macaca mulatta miR-888 stem-loop GGCAGUGCCCUACUCAAAAAGCUGUCAGUCACUUAUGUUACAUGUGACUGACACCUCUUUAGAUGAAGGAAGGCUCA 32 21171 MI0007923 mml-mir-889 Macaca mulatta miR-889 stem-loop GUGCUUAAAGAAUGGCUGUCCGUAGUAUGGUCUCUAUAUUUAUGAUGAUUAAUAUCGGACAACCAUUGUUUUAGUAUCC 32 21172 MI0007924 mml-mir-890 Macaca mulatta miR-890 stem-loop UGCCCUACUUGGAAAGGCACCAGUUACUUAGAUUACACGUAACUGUUCCCUUUCUGAGUAGAGUAAGGCUUA 32 21173 MI0007925 mml-mir-891 Macaca mulatta miR-891 stem-loop CCUUAAUCCUUGCAACUUACCUGAGUCAUUGAUUCAGUAAAACAUUCAAUGGCACAUGUUUGUUGUUAGGGUCAAAAGA 32 21174 MI0007926 mml-mir-892 Macaca mulatta miR-892 stem-loop GCAGUGCUCUACUUAGAAAGGUGCCAGUCACUUACAUUACAUGUCACUGUGUCCUUUCUGCGUAGAGUAAGGCUC 32 21175 MI0007927 mml-mir-920 Macaca mulatta miR-920 stem-loop GUAGUUGUUCUGCAGAAGACCUGGAUGUGGAAGAGCUAAGACACACUCCAGGGGAGCUGUAGAAGCGGUAACACG 32 21176 MI0007928 mml-mir-922 Macaca mulatta miR-922 stem-loop UGGCGUUCUCUCUCUCCCUGUCCUGGACUGGGGUCAGACCGUGCCCCGAGGAGAAGCAGCAGAGAAUGAGACUACGUCGU 32 21177 MI0007929 mml-mir-924 Macaca mulatta miR-924 stem-loop AAUAGAGUCUUGUGUUGUCUUGCUUAAAGGCCAUCCAACCUAGAGUCUA 32 21178 MI0007930 mml-mir-933 Macaca mulatta miR-933 stem-loop CUUGGGUCAGUUCAGAGGUCCUCGGGGCGCGCGUCGAGUCAGCCGUGUGCGCAGGGAGACCUCUCCCACCCACAGU 32 21179 MI0007931 mml-mir-934 Macaca mulatta miR-934 stem-loop AGGAAUAAGGCUUCUGUCUACUACUGGAGACACUGAUAGUGUAAAACCCAGAGUCUUCGGUAAUGGACGGGAGCCUUAUUUCU 32 21180 MI0007932 mml-mir-936 Macaca mulatta miR-936 stem-loop UCAAGGACACUGGGACAGGAGAGGGAGGAAUCGCAGAAAUCACUCCAGGAGCAACUGAGAGACCUUGCUUCUACUUUACCAGGUCCUGCUGGCCCAGA 32 21181 MI0007933 mml-mir-937 Macaca mulatta miR-937 stem-loop AGCACUGCCCCCGGUGAGUCAGGGUGGGGCUGGCCCCCUGCUUCGCGCCCAUCCGCACUCUGACUCUCCACCUGCCUGCAGGAGCU 32 21182 MI0007934 mml-mir-938 Macaca mulatta miR-938 stem-loop GAAAGUGUACCAUGUGCACUUAAAGAUGAAGCCGGUGCACCUUCAUGAACUGUGGUACACCUUUAAGAACUUGGU 32 21183 MI0007935 mml-mir-939 Macaca mulatta miR-939 stem-loop UGUGGGCAGGGCCCUGGGGAGCUGAGGCUCUGGGGGUGGCCGGGGCUGACCCCUGGGCCUCUGCUCCCCAGUGUCUGACCGUG 32 21184 MI0007936 mml-mir-940 Macaca mulatta miR-940 stem-loop GUGGGGUGUGGGCCCGGCCCCAGGAGCGGGGCCUGGGCAGCCCCGUGUGUUGAGGAAGGAAGGCAGGGCCCCCGCUCCCCGGGCCUGACCCCAC 32 21185 MI0007937 mml-mir-942 Macaca mulatta miR-942 stem-loop AUUAAGAGAGUACCUUCUCUGUUUUGGCCAUGUGUGUACUCACAGCCCCUCACACGUGGCCGAAACAGAGAAGGUACUUUCCUAAU 32 21186 MI0007938 mml-mir-944 Macaca mulatta miR-944 stem-loop GUUCCAGACACAUCUCAUCUGAUAUACAAUAUUUUCUUAAAUUGUAAAAAGAGAAAUUAUUGUAUAUCAGAUGAGAUGUGUCUGGGGU 32 21187 MI0007939 vvi-MIR156h Vitis vinifera miR156h stem-loop UGCCUCACAAUGACAGAAGAGAGAGAGCAUGCUGGUGGGAAAACAAUUACAACUUUUGAUCAUCUGAUCUGGAAAUGCUUGUAAGCGGCAUUCUCUUGGAUUGUAAUCUGAAUUCUGCCUCUAUCAUCAACCUGCCCACAAACGAUUUCCUUCAACUGAGUGCCUUUCCGGCUUGAGCCUUCUGCAUGAUCAGCUGAGUUCUUUCUGCGCCUUUCAUUGUGUCCUGCC 70 21188 MI0007940 vvi-MIR169b Vitis vinifera miR169b stem-loop GGGGUCGAAUUGAGCCAAGGAUGGCUUGCCGUCAUCUGCAGCAAGAGUUGGAGACUUUUAACUGUGCGUGCACGGUUAGUCAUCCUUGGCUCAUUUGGCCCUUCU 70 21189 MI0007941 vvi-MIR169h Vitis vinifera miR169h stem-loop AGGGUGGAAUUGAGCCAAGGAUGGCUUGCCGUCCUUUGUCACUAUUUGAGGCAUUAACUGGUCACGCACGGAGGGUUAUCCUUGACUCCUUUAGCUCCUCU 70 21190 MI0007942 vvi-MIR169i Vitis vinifera miR169i stem-loop AGGGUGGAAUUGAGCCAAGGAUGACUGGCCGUCAUUUUUCAGUUGGUAUUUGAGGCUUUAACUGGUCAUGCACGGCUGGUUAUCCCUGUCUCCUUUAGCUCCUCU 70 21191 MI0007943 vvi-MIR169l Vitis vinifera miR169l stem-loop AGGGUGGAAUUGAGCCAAGGAUGACUUGCCGUCCUUUGCAUCAAGCAUUGAAGCUUUAACUGGGCAUGCACGGCUAGUUAUUCUUGGCUCAUUUGGCCCCUCU 70 21192 MI0007944 vvi-MIR169n Vitis vinifera miR169n stem-loop UGAGUGGAAUAGAGCCAAGGAUGACUUGCCGGCAACUGCAGCAAGGCAUAGGGUUUAACUGGUCAUAACUGGCAAGCAUCUGAGGCUCUAUUUCACCCUCU 70 21193 MI0007945 vvi-MIR169o Vitis vinifera miR169o stem-loop AGGGUGGAUUUGAGCCAAGGAUGACUUGCCGCCAUCAGCAGCAAGCAUUGAAGCUUUAACUGGGCAUGGACAGCGAGUUAUUCUUGGCUCAUGCGGCCCCUCU 70 21194 MI0007946 vvi-MIR169q Vitis vinifera miR169q stem-loop AGGGUGGAAUAGAGCCAAGGAUGACUUGCCGGCAUUUGCAGUAAGUCUAUAUUAACUGGAACAGCCGGCAUGUAAUCCUGGCUCUAUUUGGUCCUCU 70 21195 MI0007947 vvi-MIR169v Vitis vinifera miR169v stem-loop AGGGAGGAACAAAGCCAAGGAUGAAUUGCCGGCGAUGAAAGUAGGCAGCUUUGUCCAUGGAUCGGCAAUUUAUUUCUUGGCUAUGUUGGGCUCUCU 70 21196 MI0007948 vvi-MIR169w Vitis vinifera miR169w stem-loop GGUUAUGUGGUGCAGCCAAGGAUGACUUGCCGGCAACUCCCUUUAUUGUACUCAUGCAUGCUCAUACUUAUACUGUUGUGGGCAUCAUUUAAGUGGCAAAAAUGGUGGUCGGCGAGUCAUUCUUAGCUACAUUUCUGCCUCAU 70 21197 MI0007949 vvi-MIR169x Vitis vinifera miR169x stem-loop GUCUCGUCUGGUAGCCAAGGAUGACUUGCCUAAAUCCACCAGGUUUCAAAACACUGAAUGUAAUUAUCCACAAAGCGAUUCCGUGGUCUUUAGGCAGUCAUUCCUUCGGCUAAACUGACCGGCUC 70 21198 MI0007950 vvi-MIR171g Vitis vinifera miR171g stem-loop GCCAGCCUCUCCAUGUUGGUUCCAUCGGUGGGGGACACCAACUCCUUGAGCCGAACCAAUAUCACCCGAGCCAAAU 70 21199 MI0007951 vvi-MIR319e Vitis vinifera miR319e stem-loop UGCAGAAAUGGGGGUUCCUUUGCAGCCCAAAACAACUCCAUCGCUGAAGAAGAUGAUGAACUUCAUGCUCCUUGUUUUGGACUGAAGGGAGCUCCUAGUUCUUCUCU 70 21200 MI0007952 vvi-MIR393a Vitis vinifera miR393a stem-loop GGUGGACAGUUCCAAAGGGAUCGCAUUGAUCCCAUGGUUAUCUUCCACCUCUCUUACCAGACUAUCAUAACAAAGUCUGGCCUUUUUCCCAUUGGAUCAUGCUAUCCCUUAGGAACUCUCCAUCAG 70 21201 MI0007953 vvi-MIR394c Vitis vinifera miR394c stem-loop CAGAGCCAUUUUGGCAUUCUGUCCACCUCCAUAUAUACCAAUUCUUCUGAAUUGGCGCCCACAAGCGUUUGGAGGCGGCCAGGAUGCCAAAUUGGCUCUGUA 70 21202 MI0007954 vvi-MIR395n Vitis vinifera miR395n stem-loop GGCCUUGAGAGUUCCCCCAACCCCUCCAGUAUGACCAUCUCUCUUCUUCUUUUAAUUUGUUCAUCAAAUCUUCUUCUACUAUCUAUUUCCAGGGUGAUUUCCUCUACUGAAGAGUCUGGAGGAACUCUUGGUGCCAC 70 21203 MI0007955 vvi-MIR396c Vitis vinifera miR396c stem-loop UUCUGUGAUCUUCCACAGCUUUCUUGAACUGUUUUGGAAGCCUUCCACUUCCAUGCAAUGGAGGAGUUCAACCAACAGCUCAGGAAAGUUGUGGAACAUUACUGAGAG 70 21204 MI0007956 vvi-MIR397a Vitis vinifera miR397a stem-loop GAAGAAAACAUCAUUGAGUGCAGCGUUGAUGAAACUGAAGUAUUCCAUUUUUCAGCUUCUUUGAAGUCCGGCAAGAUGGGUUCUGGUUGAUUCCAUUGGCGCUGCACUCAAUCAUGUC 70 21205 MI0007957 vvi-MIR397b Vitis vinifera miR397b stem-loop GAAGAAAACAUCAUUGAGUGCAGCGUUGAUGAAACUGAAGUAUUCCAUUUUUCAGCUUCUUUGAAGUCCGGCAAGAUGGGUUCUGGUUGAUUCCAUUGGCGCUGCACUCAAUCAUGUC 70 21206 MI0007958 vvi-MIR398b Vitis vinifera miR398b stem-loop GUGUCCUACAGGUGUGACCUGAGAAUCACAUGCCCGCACCACCCAUCUUUGCUCUCAUGUGUUCUCAGGUCGCCCCUGCUGGACUCCC 70 21207 MI0007959 vvi-MIR398c Vitis vinifera miR398c stem-loop GUGUCCUACAGGAGUGACCUGAGAAUCACAUGCCCGCAUCACCCAUCUUUGCUCUCAUGUGUUCUCAGGUCGCCCCUGCUGGACUCCC 70 21208 MI0007960 vvi-MIR399c Vitis vinifera miR399c stem-loop ACCGGUCUCAGGGCCUCUUUCACUUGGUAGGUGACAUAGAUGUGAAUGAUCUGCCAAAGGAGAGUUGCCCUGUGUCUGGUUA 70 21209 MI0007961 vvi-MIR399d Vitis vinifera miR399d stem-loop GUAAAUUAUAGAGCAGAUUUCUUUUGGCAGAUGGCGAUCACAAGCCAAUGUGCUCAAAGGGCAUUGAGUGUGUCUGCCAAAGGAGAUUUGCUCGUGAAUUUAACU 70 21210 MI0007962 vvi-MIR399f Vitis vinifera miR399f stem-loop GUUGCAUUAGAGGGCCAAAUCUGCUUUGGCAUGAAGCCCAUUUAGCAGGCUCGUCUGUGUCUGCAGUCUUCUCGCUGCCGAAGGAGAUUUGUCCUGCAAUUCUUCUG 70 21211 MI0007963 vvi-MIR399i Vitis vinifera miR399i stem-loop AGUAGUUGUAGGGCUUCUCUCCUUCUGGCAGGAGAUGGCAAUAGAUUAUCCUUUGUGGCUUAUCUCCGGUGUUGAUUAACUUCCAAUGACCCGCCAAAGGAGAGUUGCCCUGUGACUACUUC 70 21212 MI0007964 vvi-MIR403a Vitis vinifera miR403a stem-loop GCACAUCUCAAGUUUGUGCGUGAAUCAAACCCCAUCGUAGCCGUCCAUAUCUUCGGGUACUAAUCACGGGGCGAUUCGACGGCGUUAGAUUCACGCACAAACUCGUGAGUUCUGA 70 21213 MI0007965 vvi-MIR403b Vitis vinifera miR403b stem-loop ACAAACCUCGAGUUUGUGCGCGAAUCCAACGCCUCGAUCUUCUUUCAAAGGGGUGUUAGAUUCACGCACAAACUCGGGAUCUGUCU 70 21214 MI0007966 vvi-MIR403c Vitis vinifera miR403c stem-loop GCACAUCUCAAGUUUGUGCGUGAAUCAAACCCCAUCGUAGCCGUCCAUAUCUUCGGGUACUAAUCACGGGGCGAUUCGACGCCGUUAGAUUCACGCACAAACUCGUGAUCUGUCC 70 21215 MI0007967 vvi-MIR403d Vitis vinifera miR403d stem-loop ACAAACCUCGAGUUUGUGCGCGAAUCCAACCCCUCAAUCUUCUUUCAAAGGGGUGUUAGAUUCACGCACAAACUCGGGAUCUGUCU 70 21216 MI0007968 vvi-MIR403e Vitis vinifera miR403e stem-loop GCACAUCUCAAGUUUGUGCGUGAAUCAAACCCCAUCGUAGCCGUCCAUAUCUUCGUGUACUAAUCACGGGGCGAUUCGACGCCGUUAGAUUCACGCACAAACUCGCGAUCUGUCC 70 21217 MI0007969 vvi-MIR403f Vitis vinifera miR403f stem-loop UGAGAUGAGGAGUUUGUGCGUGACUCUAAAACCGCCUGAUCUAAACCUUUUCCCGAUGCGAUACCUUUUCUAUGGUCUUAGAUUCACGCACAAACUCGUAAUCUGUCU 70 21218 MI0007970 vvi-MIR477 Vitis vinifera miR477 stem-loop GAAGUUGUCAAUCUCCCUCAAAGGCUUCCAAUUUUCCUGGCUGAUUAUCAAGGUUGGAAAGUUGGAAGACAGUGGGGGACCUUGGAAGCUUACC 70 21219 MI0007971 vvi-MIR482 Vitis vinifera miR482 stem-loop AAUGUUUGGGAAUUGGAGAGUAGGAAAGCUUAGCCAUCUAUUCCCUUCAUGGUUUCCUCUCCAUGGAUUGGGGGUCUAGAGCUAGUCUUUCCUACUCCUCCCAUUCCUAUUGUUUUC 70 21220 MI0007972 vvi-MIR828a Vitis vinifera miR828a stem-loop UAUAAAGUUUCUUGCUCAAAUGAGUAUUCCAAACAACAGCUUGUGAAGCAAUGAUUACUGUCAUAGUCUCUGCAUGUGGAUUGUUGUUGAGAUGCUCAUUUGAGGAAGCAACCUUAAAAAUG 70 21221 MI0007973 vvi-MIR828b Vitis vinifera miR828b stem-loop GCUCUUGGUUUCUUGCUCAAAUGAGUGUUCCACAUCAACCUGGAUAGUCAUUUCCUGCAAAACCAGGUUUCU 70 21222 MI0007974 vvi-MIR845a Vitis vinifera miR845a stem-loop UUUCACUUGAUUAGUUCCUUCAUGAGUUAUUGCAAGUAAUCUCCAAAUUUCCUUAGCGGAUUUACAUUGACAUAUUCUAUUAUAUUCAUUCCUAUCCAUAGCACAUUGCAAAGUAAAAACGACUUUAGCAUUUAAUUGAAAAUUUCUUCUAUCAAGCUCAUUCCAUUCUUGCUUGGGUUUUGGAACCAAAAUUCCAUCAACUAAUUUAGUGGGUAAAGUUGGGCCAUCUUCAAUGGCAUCCCAUACAUCUAAAUCAGUUGAUUGUAAGUACCAAGUCAUUCUAGCUUUCCAAUAGGGAUAGUCGGUUCCCGUAAAGAAUGGAGCUCUAUGUUUUGAACAAUUUUCAGUUUGAGAUGAGCUUGAUGGAAUAGCCAUUUUCCUCUUAGAUGAUUAAGUCUUAAGCAAGAGGUCUAGCUCUGAUACCAAUUGAUAAAACAAAGGC 70 21223 MI0007975 vvi-MIR845b Vitis vinifera miR845b stem-loop UUUCACUUGAUUAGUUCCUUCAUGAGUUAUUUCAAGCAAUCUCCAAAUUUCCUUAGCAGAUUUACAUUGGCAUAUUCUAUUAUAUUCAUUCCUAUCCAUAGCACAUUGCAAAGUAAAAACGACUUUAGCAUUUAAUUGAAAAUUUCUUCUAUCAAGCUCAUUCCAUUCUUGCUUGAGUUUUGGAACCAAAACUCCAUCAACUAAUUUAGUGGGAAAAGUUGGGCCAUCUUCAAUGACAUCCCAUACAUCUAAAUCAGUUGAUUGUAAGUACCAAGUCAUUCUAACUUUCCAAUAGGGAUAGUCGGUUCCCGUAAAGAAUGGAGCUCUAUGUUUUGAACAAUUUUCAGUUUGAGAUGAGCUUGAUGGAACAACCAUUUUCCUCUUAGAUGAUUAAGUCUUAAGCAAGAGGUCUAGCUCUGAUACCAAUUGAUAAAACAAAGGC 70 21224 MI0007976 vvi-MIR845c Vitis vinifera miR845c stem-loop CAAUUAUGUGUUUUGGUUGUCUGAGUUUCAUGUUGGCAAUUUCUUAAUGAUUAAACAUGAGGCUCUGAUACCAAUUGAUGCAUAAACCAU 70 21225 MI0007977 vvi-MIR845d Vitis vinifera miR845d stem-loop AUAACCAACAUUAAUUAUCCCUAGGGCCAUGGGAUAAACAAAAACUCUGCAAAACCAAGUUAGCACACCCUAGAAUGGUUCUAGCACAAUUACUAACCUAUGGCUCUGAUACCAAUUGAUGGGAAAAACCU 70 21226 MI0007978 vvi-MIR845e Vitis vinifera miR845e stem-loop AGAACGCACAUUAAUUAUCCCUAGGGCCAUGGGAUAAACAAAAACCUUGAAAAAACAAGUUAGCACACCCUAGAAUGGUUCUAGCACGAUUACUAACCUAUGGCUCUGAUACCAAUUGAUGGGAAAAACUC 70 21227 MI0007979 cel-mir-1817 Caenorhabditis elegans miR-1817 stem-loop UGUACAUUUCAAUUUUCGAGUAGCCAAUGUCUUCUCUAUCAUGCAUUUUACAAAUAAUGAGUACAUGAUAGUGAAAUAUUUGCUUCCUGAAUUUCAGAGAUGUUU This sequence was erroneously named mir-801 in [1]. 3 21228 MI0007980 cel-mir-1818 Caenorhabditis elegans miR-1818 stem-loop CUGGAAAGAGUGGCCUUUUGUGGUCUUCAUGCCAUGAUUUUAUCACUCAAACUGAUAAAAUCAUAGUUUGGAAACCUCGACAGGCUUUUCUUUUCUU This sequence was erroneously named mir-802 in [1]. 3 21229 MI0007981 cel-mir-1819 Caenorhabditis elegans miR-1819 stem-loop AAUCAGUGAUCAAUCAUGCUCAAAACAUUCGACAUAACUUAAUUUCUUUGUGGAAUGAUUGAGCUUGAUGGAUCGAUGAAA This sequence was erroneously named mir-804 in [1]. 3 21230 MI0007982 cel-mir-1820 Caenorhabditis elegans miR-1820 stem-loop UUCAAAAAUUGCAUUUUCCAUCUUUUGAUUGUUUUUCGAUGAUGUUCGUUAAAUCGGUAUAAGCGAACCAUUGUAAACAAUCAAAGAAUGGAGAAUCAAUUUAUGAU This sequence was erroneously named mir-805 in [1]. 3 21231 MI0007983 cel-mir-1821 Caenorhabditis elegans miR-1821 stem-loop AUAUGUAGUUGGUACAAGUUUGCCCAACUUGCAGACUUUUCAAUUUUCGGCAAGUGGAAUUGAGGUCUUAUAGUUAGGUAGACAUUUACUACAACUAAUAUAUA This sequence was erroneously named mir-806 in [1]. 3 21232 MI0007984 cel-mir-1822 Caenorhabditis elegans miR-1822 stem-loop AUUCUUGAAAACUCCAAUAGUUUCUCUGGGAAAGCUAUCGGCCAAAUUUAACUGUCCGAGCUGCCCUCAGAAAAACUCUUGGCUCAUCGAGAAA This sequence was erroneously named mir-807 in [1]. 3 21233 MI0007985 cel-mir-1823 Caenorhabditis elegans miR-1823 stem-loop CUUUGACCUGAACGUCACCCCUAACCCUAUGCAGUAUUUGGAGCUCAUAAAAUACUGGAAGUGUUUAGGAGUAAUGCUCAGUUGUCAGAA This sequence was erroneously named mir-808 in [1]. 3 21234 MI0007986 cel-mir-1824 Caenorhabditis elegans miR-1824 stem-loop GUUCACCAGAGUUGGCAGUGUUUCUCCCCCAACUUUUGUUACAGAAUUGCAAAAAUGUUGGCCGUGGUGAACACUUCCGCCUCUGGUUUGAAG This sequence was erroneously named mir-809 in [1]. 3 21235 MI0007987 cfa-mir-216 Canis familiaris miR-216 stem-loop AAAUCUCUGCAGGCAAAUGUGAUGUCACUAAAGAAAUCACACACUUACCCGUAGAGAUUCUG 20 21236 MI0007988 cfa-mir-33 Canis familiaris miR-33 stem-loop GUGCAUUGUAGUUGCAUUGCAUGUUCUGGCGGUACCCGUGCAAUGUUUCCACAGUGCAUCA 20 21237 MI0007989 cfa-let-7a Canis familiaris let-7a stem-loop UGAGGUAGUAGGUUGUAUAGUUUGGGGCUCUGCCCUGCUCUGGGUAACUAUACAAUCUACUGUCUUUCC 20 21238 MI0007990 cfa-mir-26a-2 Canis familiaris miR-26a-2 stem-loop UUCAAGUAAUCCAGGAUAGGCUGUUUCCGUCUGUGAGGCCUAUUCUUGAUUACUUGUUUC 20 21239 MI0007991 cfa-mir-1835 Canis familiaris miR-1835 stem-loop UGCACCCUGAGAGCUGGAGCAGGUCUCUUACGGGAACCAUCUUCAACUCUGUGGAUGCAGG 20 21240 MI0007992 cfa-mir-32 Canis familiaris miR-32 stem-loop UAUUGCACAUUACUAAGUUGCAUGUUGUCACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUU 20 21241 MI0007993 cfa-mir-204 Canis familiaris miR-204 stem-loop UUCCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGAGGCUGGGAAGGCAAAGGGACGU 20 21242 MI0007994 cfa-mir-31 Canis familiaris miR-31 stem-loop AGGCAAGAUGCUGGCAUAGCUGUUGAACUGAGAACCUGCUAUGCCAACAUAUUGCCAUC 20 21243 MI0007995 cfa-mir-101-2 Canis familiaris miR-101-2 stem-loop GGUUAUCAUGGUACCGAUGCUGUAUAUCUGAAAGGUACAGUACUGUGAUAACUGA 20 21244 MI0007997 cfa-mir-491 Canis familiaris miR-491 stem-loop GUGGGGAACCCUUCCAUGAGGAGUAGAACACUCCUUAUGCAAGAUUCCCUUCUA 20 21245 MI0007998 cfa-mir-150 Canis familiaris miR-150 stem-loop UCUCCCAACCCUUGUACCAGUGCUGUGCCUCAGUCCCUGGUACAGGCAUGGGGGGCA 20 21246 MI0007999 cfa-mir-455 Canis familiaris miR-455 stem-loop UAUGUGCCUUUGGACUACAUCGUGGAAGCCAGCACCAUGCAGUCCAUGGGCAUAUACA 20 21247 MI0008000 cfa-mir-30a Canis familiaris miR-30a stem-loop UGUAAACAUCCUCGACUGGAAGCUGUGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGC 20 21248 MI0008001 cfa-mir-30c-2 Canis familiaris miR-30c-2 stem-loop UGUAAACAUCCUACACUCUCAGCUGUGGAAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCU 20 21249 MI0008002 cfa-mir-206 Canis familiaris miR-206 stem-loop ACAUGCUUCUUUAUAUCCCCAUACGGAUUACGUUGCUAUGGAAUGUAAGGAAGUGUGUGG 20 21250 MI0008003 cfa-mir-99b Canis familiaris miR-99b stem-loop CACCCGUAGAACCGACCUUGCGGGGCCUUCGCCGCACACAAGCUCGAGUCUGUGGGUCUG 20 21251 MI0008004 cfa-let-7e Canis familiaris let-7e stem-loop UGAGGUAGGAGGUUGUAUAGUUGAGGAGGACACCCACGGAGAUCACUAUACGGCCUCCUAGCUUUCC 20 21252 MI0008005 cfa-mir-125a Canis familiaris miR-125a stem-loop UCCCUGAGACCCUUUAACCUGUGAGGACAUCCAGGGUCACAGGUGAGGUUCUUGGGAGCC 20 21253 MI0008006 cfa-let-7f Canis familiaris let-7f stem-loop UGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUUCCC 20 21254 MI0008007 cfa-mir-219-1 Canis familiaris miR-219-1 stem-loop UGAUUGUCCAAACGCAAUUCUCGAGUCUCUGGCUCUGGCCGAGAGUUGAGUCUGGACGUCCCG 20 21255 MI0008008 cfa-mir-23b Canis familiaris miR-23b stem-loop GUUCCUGGCAUGCUGAUUUGUGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUA 20 21256 MI0008009 cfa-mir-27b Canis familiaris miR-27b stem-loop AGAGCUUAGCUGAUUGGUGAACAGUGACUGGUUUCCGCUUUGUUCACAGUGGCUAAGUUCUGC 20 21257 MI0008010 cfa-mir-24-1 Canis familiaris miR-24-1 stem-loop GGUGCCUACUGAGCUGAUAUCAGUUCUCAUUGUACACACUGGCUCAGUUCAGCAGGAACAGG 20 21258 MI0008011 cfa-mir-151 Canis familiaris miR-151 stem-loop UCGAGGAGCUCACAGUCUAGUAUGUCUCAGCCCUACUAGACUGAGGCUCCUUGAGG 20 21259 MI0008012 cfa-mir-30d Canis familiaris miR-30d stem-loop UGUAAACAUCCCCGACUGGAAGCUGGAAGACAGCAAAGCUUUCAGUCAGAUGUUUGCUGC 20 21260 MI0008013 cfa-mir-30b Canis familiaris miR-30b stem-loop UGUAAACAUCCUACACUCAGCUGUAGUACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUC 20 21261 MI0008014 cfa-mir-1836 Canis familiaris miR-1836 stem-loop UAGGCCAUGGUAGAUAGAGAUGGAGUAACCAUUUCAUCUCAUCUGCACUGCCCAGAC 20 21262 MI0008015 cfa-mir-122 Canis familiaris miR-122 stem-loop UGGAGUGUGACAAUGGUGUUUGUGUCCAAACUAUCAAACGCCAUUAUCACACUAAAUA 20 21263 MI0008016 cfa-mir-196b Canis familiaris miR-196b stem-loop UAGGUAGUUUCCUGUUGUUGGGAUCCACCUUUCUCUCGACAGCACGACACUGCCUUCA 20 21264 MI0008017 cfa-mir-183 Canis familiaris miR-183 stem-loop UAUGGCACUGGUAGAAUUCACUGUGAACAGUCUCGGUCAGUGAAUUACCGAAGGGCCAUAAA 20 21265 MI0008018 cfa-mir-148a Canis familiaris miR-148a stem-loop AAAGUUCUGAGACACUCCGACUCUGAAUAUGAUAGAAGUCAGUGCACUACAGAACUUUGU 20 21266 MI0008019 cfa-mir-129-1 Canis familiaris miR-129-1 stem-loop CUUUUUGCGGUCUGGGCUUGCUGUUCCUCUCAACAGUAGUCAGGAAGCCCUUACCCCAAAAAGUA 20 21267 MI0008020 cfa-mir-335 Canis familiaris miR-335 stem-loop UCAAGAGCAAUAACGAAAAAUGUUUGUCAUAAACCGUUUUUCAUUAUUGCUCCUGACC 20 21268 MI0008021 cfa-mir-29b-1 Canis familiaris miR-29b-1 stem-loop AGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGUGUU 20 21269 MI0008022 cfa-mir-29a Canis familiaris miR-29a stem-loop ACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUA 20 21270 MI0008023 cfa-mir-30e Canis familiaris miR-30e stem-loop UGUAAACAUCCUUGACUGGAAGCUGUAAGGUGCUCAGAGGGGCUUUCAGUCGGAUGUUUACAGC 20 21271 MI0008024 cfa-mir-30c-1 Canis familiaris miR-30c-1 stem-loop UGUAAACAUCCUACACUCUCAGCUGUGAGCUCAAGGUGGCUGGGAGAGGGUUGUUUACUCC 20 21272 MI0008025 cfa-mir-135 Canis familiaris miR-135 stem-loop UUAUGGCUUUUUAUUCCUAUGUGAUAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAA 20 21273 MI0008026 cfa-mir-383 Canis familiaris miR-383 stem-loop AGAUCAGAAGGUGAUUGUGGCUUUGGGUGGAUAUUAAUCAGCCACAGCACUGCCUGGUCAGA 20 21274 MI0008028 cfa-mir-1837 Canis familiaris miR-1837 stem-loop AUGUGAUGGCUCUUCUGAGAAGUACUUCGAUGGCUCCUCUCAGAGGGACUGCGACAUCU 20 21275 MI0008029 cfa-mir-130a Canis familiaris miR-130a stem-loop GCUCUUUUCACAUUGUGCUACUGUCUGCACCUACCACUAGCAGUGCAAUGUUAAAAGGGCAU 20 21276 MI0008030 cfa-mir-129-2 Canis familiaris miR-129-2 stem-loop CUUUUUGCGGUCUGGGCUUGCUGUACAUAACUCGAUAGCCGGAAGCCCUUACCCCAAAAAGCA 20 21277 MI0008031 cfa-mir-192 Canis familiaris miR-192 stem-loop CUGACCUAUGAAUUGACAGCCAGUGCUCUCAUCUCUCCUCUGGCUGCCAAUUCCAUAGGUCACAG 20 21278 MI0008032 cfa-mir-128-1 Canis familiaris miR-128-1 stem-loop CGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUU 20 21279 MI0008033 cfa-mir-7-1 Canis familiaris miR-7-1 stem-loop UGGAAGACUAGUGAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCAUA 20 21280 MI0008034 cfa-mir-181c Canis familiaris miR-181c stem-loop AACAUUCAACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGGACC 20 21281 MI0008035 cfa-mir-181d Canis familiaris miR-181d stem-loop AACAUUCAUUGUUGUCGGUGGGUUGUGAGGACGGAGGCCAGACCCACCGAGGGAUGAAUGUCAC 20 21282 MI0008036 cfa-let-7g Canis familiaris let-7g stem-loop UGAGGUAGUAGUUUGUACAGUUUGAGGGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCCACUGCCUUGCC 20 21283 MI0008037 cfa-mir-191 Canis familiaris miR-191 stem-loop CAACGGAAUCCCAAAAGCAGCUGUUGUCUCCAGAGCAUUCCAGCUGCGCUUGGAUUUCGUUCCC 20 21284 MI0008038 cfa-mir-425 Canis familiaris miR-425 stem-loop AAUGACACGAUCACUCCCGUUGAGUGGGCACCCAAGAAGCCAUCGGGAAUGUCGUGUCCGCCC 20 21285 MI0008039 cfa-mir-23a Canis familiaris miR-23a stem-loop GUUCCUGGGGAUGGGAUUUGCUGCCUGUCACAAAUCACAUUGCCAGGGAUUU 20 21286 MI0008040 cfa-mir-27a Canis familiaris miR-27a stem-loop GGGCUUAGCUGCUUGUGAGCAGAGUCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCG 20 21287 MI0008041 cfa-mir-24-2 Canis familiaris miR-24-2 stem-loop CGUGCCUACUGAGCUGAAACACAGUUGAUUUGUGCAGACUGGCUCAGUUCAGCAGGAACAGG 20 21288 MI0008042 cfa-mir-199-1 Canis familiaris miR-199-1 stem-loop CCAGUGUUCAGACUACCUGUUCAGGGGGCUCUGAAUGUGUACAGUAGUCUGCACAUUGGUU 20 21289 MI0008043 cfa-mir-708 Canis familiaris miR-708 stem-loop AAGGAGCUUACAAUCUAGCUGGGGGUGAACGGCUUGCACAUGAACGCAACUAGACUGUGAGCUUCUAGA 20 21290 MI0008044 cfa-mir-1838 Canis familiaris miR-1838 stem-loop CCACCAGCUGGCGUUCCCUGGCGUGGGAACGAGAGGCAGGGGCUGCUGGCUGGAGGGA 20 21291 MI0008045 cfa-mir-139 Canis familiaris miR-139 stem-loop CUACAGUGCACGUGUCUCCAGUGUGGCUCCGAGGCUGGAGACGCGGCCCUGUUGGAA 20 21292 MI0008047 cfa-mir-138b Canis familiaris miR-138b stem-loop AGCUGGUGUUGUGAAUCAUGCCGACGAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUU 20 21293 MI0008048 cfa-mir-15a Canis familiaris miR-15a stem-loop UAGCAGCACAUAAUGGUUUGUGGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCA 20 21294 MI0008049 cfa-mir-16-1 Canis familiaris miR-16-1 stem-loop UAGCAGCACGUAAAUAUUGGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAA 20 21295 MI0008050 cfa-mir-17 Canis familiaris miR-17 stem-loop CAAAGUGCUUACAGUGCAGGUAGUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUAG 20 21296 MI0008051 cfa-mir-19a Canis familiaris miR-19a stem-loop AGUUUUGCAUAGUUGCACUACAAGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGA 20 21297 MI0008052 cfa-mir-20 Canis familiaris miR-20 stem-loop UAAAGUGCUUAUAGUGCAGGUAGUGUUUCGUUAUCUACUGCAUUAUGAGCACUUAAAGU 20 21298 MI0008054 cfa-mir-19b-1 Canis familiaris miR-19b-1 stem-loop GUUUUGCAGGUUUGCAUCCAGCUGUGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUG 20 21299 MI0008055 cfa-mir-92a-1 Canis familiaris miR-92a-1 stem-loop AGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGU 20 21300 MI0008056 cfa-mir-138a Canis familiaris miR-138a stem-loop AGCUGGUGUUGUGAAUCAGGCCGUUGCCAAUCAGAGAACGGCUACUUCACAACACCAGGGUC 20 21301 MI0008057 cfa-mir-128-2 Canis familiaris miR-128-2 stem-loop GGGGGCCGAUACACUGUACGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUUU 20 21302 MI0008058 cfa-mir-26a-1 Canis familiaris miR-26a-1 stem-loop UUCAAGUAAUCCAGGAUAGGCUGUGCAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACG 20 21303 MI0008059 cfa-mir-499 Canis familiaris miR-499 stem-loop UUAAGACUUGCAGUGAUGUUUAACUCCUCUCCACGUGAACAUCACAGCAAGUCUGUGCU 20 21304 MI0008060 cfa-mir-1-1 Canis familiaris miR-1-1 stem-loop CAUACUUCUUUAUAUGCCCAUAUGGACCUGCUAAGCUAUGGAAUGUAAAGAAGUAUGUA 20 21305 MI0008061 cfa-mir-124-5 Canis familiaris miR-124-5 stem-loop GUGUUCACAGCGGACCUUGAUUUAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCA 20 21306 MI0008062 cfa-mir-124-1 Canis familiaris miR-124-1 stem-loop GUGUUCACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGCCA 20 21307 MI0008063 cfa-mir-320 Canis familiaris miR-320 stem-loop GCCUUCUCUUCCCGGUUCUUCCCGGAGUCGGGAAAAGCUGGGUUGAGAGGGCGA 20 21308 MI0008064 cfa-mir-130b Canis familiaris miR-130b stem-loop ACUCUUUCCCUGUUGCACUACUGUGGGCCGCUGGGAAGCAGUGCAAUGAUGAAAGGGCAU 20 21309 MI0008065 cfa-mir-185 Canis familiaris miR-185 stem-loop UGGAGAGAAAGGCAGUUCCUGAUGGUCCCCUCCCCAGGGGCUGGCUUUCCUCUGGU 20 21310 MI0008066 cfa-mir-1306 Canis familiaris miR-1306 stem-loop CCACCUCCCCUGCAAACGUCCAGUGAUGCAGAGGUAAUGGACGUUGGCUCUGGUGGUG 20 21311 MI0008068 cfa-mir-196a Canis familiaris miR-196a stem-loop UAGGUAGUUUCAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAG 20 21312 MI0008069 cfa-mir-148b Canis familiaris miR-148b stem-loop GAAGUUCUGUUAUACACUCAGGCUGUGGCUCUCUGAAAGUCAGUGCAUCACAGAACUUUGU 20 21313 MI0008070 cfa-mir-200c Canis familiaris miR-200c stem-loop CGUCUUACCCAGCAGUGUUUGGGUGCUGGUUGGGAGUCUCUAAUACUGCCGGGUAAUGAUGGA 20 21314 MI0008071 cfa-mir-1307 Canis familiaris miR-1307 stem-loop CGACCGGACCUCGACCGGCUCGUCUAUGUUGCCAAUCGACUCGGCGUGGCGUCGGUCGUG 20 21315 MI0008072 cfa-mir-107 Canis familiaris miR-107 stem-loop AGCUUCUUUACAGUGUUGCCUUGUGGCAUGGAGUUCAAGCAGCAUUGUACAGGGCUAU 20 21316 MI0008073 cfa-mir-146b Canis familiaris miR-146b stem-loop UGAGAACUGAAUUCCAUAGGCUGUGAGCUUGAGCAAACAGCCUAGGGACUCAGUUCUGGUG 20 21317 MI0008074 cfa-mir-124-2 Canis familiaris miR-124-2 stem-loop GUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAAUUAAGGCACGCGGUGAAUGCCA 20 21318 MI0008075 cfa-mir-99a-1 Canis familiaris miR-99a-1 stem-loop AACCCGUAGAUCCGAUCUUGUGGUGAAGUGGACGGCACAAGCUCGCUUCUAUGGGUCUG 20 21319 MI0008076 cfa-let-7c Canis familiaris let-7c stem-loop UGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCC 20 21320 MI0008077 cfa-mir-125b-2 Canis familiaris miR-125b-2 stem-loop UCCCUGAGACCCUAACUUGUGAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCU 20 21321 MI0008078 cfa-mir-155 Canis familiaris miR-155 stem-loop UUAAUGCUAAUCGUGAUAGGGGUUUUUACCUCCGACUGACUCCUACAUGUUAGCAUUAACA 20 21322 MI0008079 cfa-mir-218-1 Canis familiaris miR-218-1 stem-loop UUGUGCUUGAUCUAACCAUGUGGUUGCCAGGUAUGAGUAAAACAUGGUUCCGUCAAGCACCAUG 20 21323 MI0008080 cfa-mir-574 Canis familiaris miR-574 stem-loop UGAGUGUGUGUGUGUGAGUGUGUGUCGCUCCGGGUCCACGCUCAUGCACACACCCACA 20 21324 MI0008081 cfa-mir-9-2 Canis familiaris miR-9-2 stem-loop UCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCUUCAUAAAGCUAGAUAACCGAAAGUA 20 21325 MI0008082 cfa-mir-28 Canis familiaris miR-28 stem-loop AAGGAGCUCACAGUCUAUUGAGUUGCCUUUCUGACUUUCCCACUAGAUUGUGAGCUCCUGGA 20 21326 MI0008083 cfa-mir-15b Canis familiaris miR-15b stem-loop UAGCAGCACAUCAUGGUUUACAUACUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUA 20 21327 MI0008084 cfa-mir-16-2 Canis familiaris miR-16-2 stem-loop UAGCAGCACGUAAAUAUUGGCGUAGUGAAAUAAAAAUUAAACACCAAUAUUAUUGUGCUGCUUUA 20 21328 MI0008085 cfa-mir-7-2 Canis familiaris miR-7-2 stem-loop UGGAAGACUAGUGAUUUUGUUGUUGUCUCACUGCAUCCAACAACAAGUCCCAGUCUGCCACA 20 21329 MI0008086 cfa-mir-9-3 Canis familiaris miR-9-3 stem-loop UCUUUGGUUAUCUAGCUGUAUGAGUGCCACAGAGCCGUCAUAAAGCUAGAUAACCGAAAGU 20 21330 MI0008087 cfa-mir-1839 Canis familiaris miR-1839 stem-loop AAGGUAGAUAGAACAGGUCUUGUUAGCAAAAUAAAUUCAAGACCUACUUAAUCUACCAACA 20 21331 MI0008088 cfa-mir-26b Canis familiaris miR-26b stem-loop UUCAAGUAAUUCAGGAUAGGUUGUGUGCUGUCCAGCCUGUUCUCCAUUACUUGGCU 20 21332 MI0008089 cfa-mir-1840 Canis familiaris miR-1840 stem-loop UUAGGGCGCGUCACGUGACGGGCUCGUCGCUCCGCCGUCACGUGACGGGCCUCGGCG 20 21333 MI0008090 cfa-mir-664 Canis familiaris miR-664 stem-loop UGGGCUAGGAAAAAUGAUUGGAUAAAAAAUAUUAUUCUAUUCAUUUAUCUCCCAGCCUACA 20 21334 MI0008091 cfa-mir-194 Canis familiaris miR-194 stem-loop UGUAACAGCAACUCCAUGUGGAUUGUGUGCCAAUUUCCAGUGGAGAUGCUGUUACUUU 20 21335 MI0008092 cfa-mir-143 Canis familiaris miR-143 stem-loop GGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUC 20 21336 MI0008093 cfa-mir-378 Canis familiaris miR-378 stem-loop CUCCUGACUCCAGGUCCUGUGUGUUACCUCGAAAUAGCACUGGACUUGGAGUCAGAAGGC 20 21337 MI0008094 cfa-mir-146a Canis familiaris miR-146a stem-loop UGAGAACUGAAUUCCAUGGGUUGUGUCAGUGUCAGACCUGUGAAGUUCAGUUCUUCAG 20 21338 MI0008095 cfa-mir-1271 Canis familiaris miR-1271 stem-loop CUUGGCACCUAGUAAGCACUCAGUAAAUACUUGUUGAGUGCCUGCUAUGUGCCAGGCA 20 21339 MI0008096 cfa-mir-1841 Canis familiaris miR-1841 stem-loop AGAGGAAAGCUGGACGGCAAGCCUGAAGGGAAGAAGGUGGCUCCGUCCUCUUUCCAAGCC 20 21340 MI0008097 cfa-mir-218-2 Canis familiaris miR-218-2 stem-loop UUGUGCUUGAUCUAACCAUGUGGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCACCGCG 20 21341 MI0008098 cfa-mir-103 Canis familiaris miR-103 stem-loop UCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGA 20 21342 MI0008099 cfa-mir-328 Canis familiaris miR-328 stem-loop AGGGGGGCAGGAAGGGCUCAGGGAGAAAGUGUGUGCAGCCCCUGGCCCUCUCUGCCCUUCCGU 20 21343 MI0008100 cfa-mir-140 Canis familiaris miR-140 stem-loop CAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGA 20 21344 MI0008101 cfa-mir-34a Canis familiaris miR-34a stem-loop UGGCAGUGUCUUAGCUGGUUGUUGUGAGUAAUAGUGAAGGAAGCAAUCAGCAAGUAUACUGCCCUA 20 21345 MI0008102 cfa-mir-99a-2 Canis familiaris miR-99a-2 stem-loop AACCCGUAGAUCCGAUCUUGUGGUGAUAGUCCACACAAGCUUGUGUCUAUAGGUAUG 20 21346 MI0008103 cfa-mir-125b-1 Canis familiaris miR-125b-1 stem-loop UCCCUGAGACCCUAACUUGUGAUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGC 20 21347 MI0008104 cfa-mir-497 Canis familiaris miR-497 stem-loop CAGCAGCACACUGUGGUUUGUACGGUACUGUGGCCACGUCCAGACCACACUGUGGUGUUAGGGUGAG 20 21348 MI0008105 cfa-mir-195 Canis familiaris miR-195 stem-loop UAGCAGCACAGAAAUAUUGGCACUGGGAAGAGAGUCUGCCAAUAUUGGCUGUGCUGCUCUA 20 21349 MI0008106 cfa-mir-34c Canis familiaris miR-34c stem-loop AGGCAGUGUAGUUAGCUGAUUGCUAAUAGUACCAAUCACUAACCACACGGCCAGG 20 21350 MI0008107 cfa-mir-101-1 Canis familiaris miR-101-1 stem-loop AGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGGUACAGUACUGUGAUAACUGA 20 21351 MI0008108 cfa-mir-186 Canis familiaris miR-186 stem-loop CAAAGAAUUCUCCUUUUGGGCUUUCUGAUUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGG 20 21352 MI0008109 cfa-mir-106b Canis familiaris miR-106b stem-loop UAAAGUGCUGACAGUGCAGAUAGCGGUCCUCCGUGCUACCGCACUGUGGGUACUUGCUG 20 21353 MI0008110 cfa-mir-93 Canis familiaris miR-93 stem-loop CAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCUGACCUACUGCUGAGCUAGCACUUCCCG 20 21354 MI0008111 cfa-mir-25 Canis familiaris miR-25 stem-loop AGGCGGAGACUUGGGCAAUUGCUGGACGCUGCCCGCGCAUUGCACUUGUCUCGGUCUGA 20 21355 MI0008112 cfa-mir-197 Canis familiaris miR-197 stem-loop CGGGUAGAGAGGGCAGUGGGAGGUAAGAGCUCUUCACCCUUCACCACCUUCUCCACCCAGC 20 21356 MI0008113 cfa-mir-193b Canis familiaris miR-193b stem-loop CGGGGUUUUGAGGGCGAGAUGAGUUUAUGUUUGAUCCAACUGGCCCACAAAGUCCCGCU 20 21357 MI0008114 cfa-mir-590 Canis familiaris miR-590 stem-loop GAGCUUAUUCAUAAAAGUACAGUAUGAUCCAGUAAACCUGUAAUUUUAUGUAUAAGCUAGU 20 21358 MI0008116 cfa-mir-1842 Canis familiaris miR-1842 stem-loop UGGCUCUGCGAGGUCAGCUCAAGGUGGGUCUGGAUAUUGAGCAGGCCUGUCAGGGCGUUG 20 21359 MI0008117 cfa-mir-137 Canis familiaris miR-137 stem-loop GGGUAUUCUUGGGUGGAUAAUACGGAUUACGUUGUUAUUGCUUAAGAAUACGCGU 20 21360 MI0008118 cfa-mir-1-2 Canis familiaris miR-1-2 stem-loop CAUACUUCUUUAUGUACCCAUAUGAACAUACAAUGCUAUGGAAUGUAAAGAAGUAUGUA 20 21361 MI0008119 cfa-mir-92b Canis familiaris miR-92b stem-loop AGGGACGGGACGCGGUGCAGUGUUGUUCUCUCCCCCGCCAAUAUUGCACUCGUCCCGGCCUCC 20 21362 MI0008120 cfa-mir-350 Canis familiaris miR-350 stem-loop AGUGCACGCGCUUUGGGACAGUGAAGAAAAUAAUGUUCACAAAGCCCAUACACUUUU 20 21363 MI0008121 cfa-mir-29b-2 Canis familiaris miR-29b-2 stem-loop AGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUU 20 21364 MI0008122 cfa-mir-29c Canis familiaris miR-29c stem-loop ACCGAUUUCUCCUGGUGUUCAGAGUCUGUUUUUGUCUAGCACCAUUUGAAAUCGGUUA 20 21365 MI0008123 cfa-mir-1843 Canis familiaris miR-1843 stem-loop ACUGGAGGUCUCUGUCUGGCUUAGGACAGCUGGCUAAGUCUGAUCGUUCCCCUCCAUACA 20 21366 MI0008124 cfa-mir-199-2 Canis familiaris miR-199-2 stem-loop CCAGUGUUCAGACUACCUGUUCAGGACAAUGCCGUUGUACAGUAGUCUGCACAUUGGUU 20 21367 MI0008125 cfa-mir-9-1 Canis familiaris miR-9-1 stem-loop UCUUUGGUUAUCUAGCUGUAUGAGUGGUGUGGAGUCUUCAUAAAGCUAGAUAACCGAAAGUA 20 21368 MI0008126 cfa-mir-181a-1 Canis familiaris miR-181a-1 stem-loop AACAUUCAACGCUGUCGGUGAGUUUGGAAUUAAAAUCAAAACCAUCGACCGUUGAUUGUACC 20 21369 MI0008127 cfa-mir-181b-1 Canis familiaris miR-181b-1 stem-loop AACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGGACAAGCUCACUGAACAAUGAAUGCAAC 20 21370 MI0008128 cfa-mir-342 Canis familiaris miR-342 stem-loop GGGUGCUAUCUGUGAUUGAGGGACAUGGCAAAUAGAAUUGUCUCACACAGAAAUCGCACCCGU 20 21371 MI0008129 cfa-mir-345 Canis familiaris miR-345 stem-loop UGCUGACUCUUAGUCCAGUGCUCGUGAUGGCUGGUGGGCCCUGAACUAGGGGUCUGGAGG 20 21372 MI0008130 cfa-mir-493 Canis familiaris miR-493 stem-loop UGUACAUGGUAGGCUUUCAUUCAUUCGUUUGCACAUUCGGUGAAGGUCUACUGUGUGCCAG 20 21373 MI0008131 cfa-mir-433 Canis familiaris miR-433 stem-loop UACGGUGAGCCUGUCAUUAUUCAGAGAGGCUAGAUCCUCUGUGUUGAGAAGGAUCAUGAUGGGCUCCUCGGUGU 20 21374 MI0008132 cfa-mir-127 Canis familiaris miR-127 stem-loop CCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCAUCGGAUCCGUCUGAGCUUGGCU 20 21375 MI0008133 cfa-mir-136 Canis familiaris miR-136 stem-loop ACUCCAUUUGUUUUGAUGAUGGAUUCUUACGCUCCAUCAUCGUCUCAAAUGAGUCU 20 21376 MI0008134 cfa-mir-379 Canis familiaris miR-379 stem-loop UGGUAGACUAUGGAACGUAGGCUUUGUGAUUUUUGACCUAUGUAACAUGGUCCACUAAC 20 21377 MI0008135 cfa-mir-411 Canis familiaris miR-411 stem-loop AUAGUAGACCGUAUAGCGUACGCUUUAUCUGUGACGUAUGUAACACGGUCCACUAACC 20 21378 MI0008136 cfa-mir-380 Canis familiaris miR-380 stem-loop AUGGUUGACCAUAGAACAUGCGCUAGCUCUAUGUCGUAUGUAAUAUGGUCCACGUCU 20 21379 MI0008137 cfa-mir-323 Canis familiaris miR-323 stem-loop AGGUGGUCCGUGGCGCGUUCGCUUUAUUUAUGGCGCACAUUACACGGUCGACCUCU 20 21380 MI0008138 cfa-mir-329 Canis familiaris miR-329 stem-loop AGAGGUUUUCUGGGUUUCUGUUUCUUUCAUGAGGAUGAAACACACCCAGUUAACCUCUUU 20 21381 MI0008139 cfa-mir-543 Canis familiaris miR-543 stem-loop GAAGUUGCCCGUGUUUUUUUCGCUUUAUUUGUGACGAAACAUUCGCGGUGCACUUCUU 20 21382 MI0008140 cfa-mir-495 Canis familiaris miR-495 stem-loop GAAGUUGCCCGUGUUAUUUUCGCUUGAUACGUGCCGAAACAAACAUGGUGCACUUCUU 20 21383 MI0008141 cfa-mir-376-3 Canis familiaris miR-376-3 stem-loop GGUGGAUGUUCCUUCUAUGUUUACGGGAUUUAUAGUUAAUCAUAGAGGAAAAUCCACGU 20 21384 MI0008142 cfa-mir-376-2 Canis familiaris miR-376-2 stem-loop GUAGAUUUUCCUUCUAUGAUUACGUGUUUGAUGGUUAAUCAUAGAGGAAAAUCCACGU 20 21385 MI0008143 cfa-mir-376-1 Canis familiaris miR-376-1 stem-loop GUAGAUUCUCCUUCUAUGAGUACAUUAUUUAUGAUUAAUCAUAGAGGAAAAUCCACGU 20 21386 MI0008144 cfa-mir-487 Canis familiaris miR-487 stem-loop GUGGUUAUCCCUGUCCUGUUCGUUUUACUCAUGUCGAAUCGUACAGGGUCAUCCACUU 20 21387 MI0008145 cfa-mir-382 Canis familiaris miR-382 stem-loop AAGUUGUUCGUGGUGGAUUCGCUUUACUUAUGACGAAUCAUUCACGGACAACACUUU 20 21388 MI0008146 cfa-mir-485 Canis familiaris miR-485 stem-loop AGAGGCUGGCCGUGAUGAAUUCGAUUCAUCAAAGCGAGUCAUACACGGCUCUCCUCUCU 20 21389 MI0008147 cfa-mir-409 Canis familiaris miR-409 stem-loop AGGUUACCCGAGCAACUUUGCAUCUGGACGACGAAUGUUGCUCGUUGAACCCCU 20 21390 MI0008148 cfa-mir-369 Canis familiaris miR-369 stem-loop AGUUCGACCGUGUUAUAUUCGCUUUAUUGACUUCGAAUAAUACAUGGUUGGUCUUU 20 21391 MI0008149 cfa-mir-410 Canis familiaris miR-410 stem-loop AGGUUGUCUGUGAUGAGUUCGCUUUAUUAAUGCCGAAUAUAACACAGAUGGCCUGU 20 21392 MI0008150 cfa-mir-219-2 Canis familiaris miR-219-2 stem-loop UGAUUGUCCAAACGCAAUUCUUGUACGAGUCUGCGGCCAACCGAGAAUUGUGGCUGGACAUCUGU 20 21393 MI0008151 cfa-mir-199-3 Canis familiaris miR-199-3 stem-loop CCAGUGUUUAGACUAUCUGUUCAGGACUCCCAAAUUGUACAGUAGUCUGCACAUUGGUU 20 21394 MI0008152 cfa-mir-181a-2 Canis familiaris miR-181a-2 stem-loop AACAUUCAACGCUGUCGGUGAGUUUGGGAUUUGAAAAAACCACCGACCGUUGACUGUACC 20 21395 MI0008153 cfa-mir-181b-2 Canis familiaris miR-181b-2 stem-loop AACAUUCAUUGCUGUCGGUGGGUUUGAGUCUGAAUCAACUCACUGAUCAAUGAAUGCAAA 20 21396 MI0008154 cfa-mir-126 Canis familiaris miR-126 stem-loop CAUUAUUACUUUUGGUACGCGCUGUGACACUUCAAACUCGUACCGUGAGUAAUAAUGCG 20 21397 MI0008155 cfa-mir-212 Canis familiaris miR-212 stem-loop ACCUUGGCUCUAGACUGCUUACUGCCCGGGCCGCCCUCAGUAACAGUCUCCAGUCACGGCCA 20 21398 MI0008156 cfa-mir-132 Canis familiaris miR-132 stem-loop AACCGUGGCUUUCGAUUGUUACUGUGGGAACCGGAGGUAACAGUCUACAGCCAUGGUCGC 20 21399 MI0008157 cfa-mir-22 Canis familiaris miR-22 stem-loop AGUUCUUCAGUGGCAAGCUUUAUGUCCUGACCCAGCUAAAGCUGCCAGUUGAAGAACUGU 20 21400 MI0008158 cfa-mir-144 Canis familiaris miR-144 stem-loop AGGAUAUCAUCAUAUACUGUAAGUUUGCGACAAGAUACUACAGUAUAGAUGAUGUACUAG 20 21401 MI0008159 cfa-mir-193a Canis familiaris miR-193a stem-loop UGGGUCUUUGCGGGCGAGAUGAGGGUGUCGGUUCAACUGGCCUACAAAGUCCCAGU 20 21402 MI0008160 cfa-mir-142 Canis familiaris miR-142 stem-loop CCCAUAAAGUAGAAAGCACUACUAACAGCACUGGAGGGUGUAGUGUUUCCUACUUUAUGGAUG 20 21403 MI0008161 cfa-mir-10 Canis familiaris miR-10 stem-loop UACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUA 20 21404 MI0008162 cfa-mir-152 Canis familiaris miR-152 stem-loop AGGUUCUGUGAUACACUCCGACUCGGGCUCUGGAGCAGUCAGUGCAUGACAGAACUUGG 20 21405 MI0008163 cfa-mir-338 Canis familiaris miR-338 stem-loop AACAAUAUCCUGGUGCUGAGUGAUGACACAUGCAACUCCAGCAUCAGUGAUUUUGUUGA 20 21406 MI0008164 cfa-mir-1844 Canis familiaris miR-1844 stem-loop AGGACUACGGACGGGCUGAGCUUUCAGGCUCCCCACAGCUCUGCCCGACUCUGGUUCGCA 20 21407 MI0008165 cfa-mir-21 Canis familiaris miR-21 stem-loop UAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACAGCAGUCGAUGGGCUGUC 20 21408 MI0008166 cfa-mir-423a Canis familiaris miR-423a stem-loop UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU 20 21409 MI0008167 cfa-mir-652 Canis familiaris miR-652 stem-loop ACAACCCUAGGAGAGGGUGCCAUUCACAUAGACUAUAAUUGAAUGGCGCCACUAGGGUUGUGC 20 21410 MI0008168 cfa-mir-224 Canis familiaris miR-224 stem-loop CAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUAUGCAUUGUUUCAAAAUGGUGCCCUAGUGACUGCAA 20 21411 MI0008169 cfa-mir-424 Canis familiaris miR-424 stem-loop AGCAGCAAUUCAUGUUUUGAAGUGCUUUAAAUGGUUCAAAACGUGAGGCGCUGCUAU 20 21412 MI0008170 cfa-mir-503 Canis familiaris miR-503 stem-loop UAGCAGCGGGAACAGUACUGCAGUGGGCAAUCGGUGUUCUGGAGUAUUGUUUCUGCUGCCCGG 20 21413 MI0008171 cfa-mir-542 Canis familiaris miR-542 stem-loop UCGGGGAUCAUCAUGUCACGAGAUACCACUGUGCACUUGUGACAGAUUGAUAACUGAAA 20 21414 MI0008172 cfa-mir-450b Canis familiaris miR-450b stem-loop UUUUGCAAUAUGUUCCUGAAUAUGUAAUAUAAGUGUAUUGGGAACAUUUUGCAUCCAU 20 21415 MI0008173 cfa-mir-106a Canis familiaris miR-106a stem-loop AAAGUGCUUACAGUGCAGGUAGCAUUCUGCGAUCUACUGCAAUGCAAGCACUUCUUA 20 21416 MI0008174 cfa-mir-19b-2 Canis familiaris miR-19b-2 stem-loop GUUUUGCAGGUUUGCAUUUCAGCGUACUUGUGCAUAUAGGGCUGUGCAAAUCCAUGCAAAACUG 20 21417 MI0008175 cfa-mir-92a-2 Canis familiaris miR-92a-2 stem-loop GGGUGGGGAUUUGUGGCAUUACUUGUGUUCCAUAUAAAGUAUUGCACUUGUCCCGGCCUGU 20 21418 MI0008176 cfa-mir-363 Canis familiaris miR-363 stem-loop UCGGGUGGAUCACGAUGCAAUUUUGAUGAGUAUAAUAGGAGAAAAAUUGCACGGUAUCCAUCUGUAA 20 21419 MI0008177 cfa-mir-361 Canis familiaris miR-361 stem-loop UUAUCAGAAUCUCCAGGGGUACUUAAAAUUUGAAAAAGUCCCCCAGGUGUGAUUCUGAUUUGC 20 21420 MI0008178 cfa-mir-384 Canis familiaris miR-384 stem-loop UGUAAACAAUUCCUAGGCAAUGUGUAUAAUGUUUGUAAGUCAUUCCUAGAAAUUGUUCACAAU 20 21421 MI0008179 cfa-mir-374a Canis familiaris miR-374a stem-loop UUAUAAUACAACCUGAUAAGUGUUGUAGCACUUACCAGGUUGUAUUGUAAUU 20 21422 MI0008180 cfa-mir-374b Canis familiaris miR-374b stem-loop AUAUAAUACAACCUGCUAAGUGUCCUAGCACUUAUCAGGUUGUAUUAUCAUU 20 21423 MI0008181 cfa-mir-421 Canis familiaris miR-421 stem-loop CUCAUUAAAUGUUUGUUGAAUGAAAAAAUGAAUCAUCAACAGACAUUAAUUGGGCG 20 21424 MI0008182 cfa-mir-98 Canis familiaris miR-98 stem-loop UGAGGUAGUAAGUUGUAUUGUUGUGGGGUAGGGAUUUUAGGCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCCC 20 21425 MI0008183 cfa-mir-221 Canis familiaris miR-221 stem-loop ACCUGGCAUACAAUGUAGAUUUCUGUGUUUGUUGGGCAACAGCUACAUUGUCUGCUGGGUUU 20 21426 MI0008184 cfa-mir-532 Canis familiaris miR-532 stem-loop CAUGCCUUGAGUGUAGGACCGUUGGUAUCUUAAUUACCCUCCCACACCCAAGGCUUGCA 20 21427 MI0008185 cfa-mir-500 Canis familiaris miR-500 stem-loop AAUCCUUGCUACCUGGGUGAGAGUGCUUUCUGAAUGCAAUGCACCUGGGCAAGGAUUCU 20 21428 MI0008186 cfa-mir-660 Canis familiaris miR-660 stem-loop UACCCAUUGCAUAUCGGAGUUGUGAAUUCUCAAAGCACCUCCUGUGUGCAUGGAUUACA 20 21429 MI0008187 cfa-mir-502 Canis familiaris miR-502 stem-loop AAUCCUUGCUAUCUGGGUGCUAGUGCUGUCUCAAUGCAAUGCACCUGGGCAAGGAUUCA 20 21430 MI0008188 cfa-mir-676 Canis familiaris miR-676 stem-loop CUCUUCAAUCUCAGGACUCGCAGAAUUAAUGGAAUGCCGUCCUAAGGUUGGUGAGUU 20 21431 MI0008189 cfa-let-7j Canis familiaris let-7j stem-loop UGAGGUAGUAGAGUGCAGUAGUUAUAAAAGGAAUCUCUGGAGCUAGAUUGCUGUACUUCAUACCUGCU 20 21432 MI0008190 hsa-mir-320d-1 Homo sapiens miR-320d-1 stem-loop UUCUCGUCCCAGUUCUUCCCAAAGUUGAGAAAAGCUGGGUUGAGAGGA 5 21433 MI0008191 hsa-mir-320c-2 Homo sapiens miR-320c-2 stem-loop CUUCUCUUUCCAGUUCUUCCCAGAAUUGGGAAAAGCUGGGUUGAGAGGGU 5 21434 MI0008192 hsa-mir-320d-2 Homo sapiens miR-320d-2 stem-loop UUCUCUUCCCAGUUCUUCUUGGAGUCAGGAAAAGCUGGGUUGAGAGGA 5 21435 MI0008193 hsa-mir-1825 Homo sapiens miR-1825 stem-loop AGAGACUGGGGUGCUGGGCUCCCCUAGACUAGGACUCCAGUGCCCUCCUCUCC 5 21436 MI0008194 hsa-mir-1826 Homo sapiens miR-1826 stem-loop AUUGAUCAUCGACACUUCGAACGCAAUUGCAGCCCGGGUUCCUCCCAGGGCUUUGCCUGUCUGAGCGUCGCUUGCCGAUCAGUAG 5 21437 MI0008195 hsa-mir-1827 Homo sapiens miR-1827 stem-loop UCAGCAGCACAGCCUUCAGCCUAAAGCAAUGAGAAGCCUCUGAAAGGCUGAGGCAGUAGAUUGAAU 5 21438 MI0008196 cel-mir-1828 Caenorhabditis elegans miR-1828 stem-loop GAUCACUUUUAUCGGUUCCGGUCCCUCUGCAAAAAAGUGGACUGGAAGCAUUUAAGUGAUAGU 3 21439 MI0008197 cel-mir-1829a Caenorhabditis elegans miR-1829a stem-loop AAGGGGACUUCUAAUUGUUUGUAAAAAAUCGAGUAUUACAACCAUUGGAAUUUCUCUAUU 3 21440 MI0008198 cel-mir-1829b Caenorhabditis elegans miR-1829b stem-loop AAGCGAUCUUCUAGAUGGUUGUAAAACAUCGAGUAUUACAACCACUGGAAUUUCUCUAUU 3 21441 MI0008199 cel-mir-1829c Caenorhabditis elegans miR-1829c stem-loop AAGCGAAAUUCAAGAUGGUUGUAAAACAUCGAGUACUACAACCACUGGAAUUUCUCUAUUGC 3 21442 MI0008200 cel-mir-1830 Caenorhabditis elegans miR-1830 stem-loop CGAGGUUUCACGUUUUCUAGGCCACGCCGCAAAUAGCCAGCUUGUGGCCUAGGAAAUGAGAAAACUCGGC 3 21443 MI0008201 cel-mir-1831 Caenorhabditis elegans miR-1831 stem-loop ACCUGGCUGGGGGUAUCUCGUGAUCAUGAAGACGGGAUCCCCAUGGUGA 3 21444 MI0008202 cel-mir-1832 Caenorhabditis elegans miR-1832 stem-loop CAGCGAUUCGAACUCCGCCCACUGCACCUGAUUGGUUGACAAGUGGGCGGAGCGAAUCGAUGAU 3 21445 MI0008203 cel-mir-1833 Caenorhabditis elegans miR-1833 stem-loop ACGCUUACUUCGCAAGCCUCGCGCGUUUUCUUUUCAAGAGAAAAAGCGUGCGAGGCUUGCGAAAUAAGUGUGC 3 21446 MI0008204 cel-mir-1834 Caenorhabditis elegans miR-1834 stem-loop UGACUCGGUGUGUGAUCUCUUACCGUUUUAUGGAUAAGAGAUCAACCAUUGAGAUCCAA 3