pause <- function() {} ### A modular graph has dense subgraphs mod <- make_full_graph(10) %du% make_full_graph(10) %du% make_full_graph(10) perfect <- c(rep(1,10), rep(2,10), rep(3,10)) perfect pause() ### Plot it with community (=component) colors plot(mod, vertex.color=perfect, layout=layout_with_fr) pause() ### Modularity of the perfect division modularity(mod, perfect) pause() ### Modularity of the trivial partition, quite bad modularity(mod, rep(1, 30)) pause() ### Modularity of a good partition with two communities modularity(mod, c(rep(1, 10), rep(2,20))) pause() ### A real little network, Zachary's karate club data karate <- make_graph("Zachary") karate$layout <- layout_with_kk(karate, niter=1000) pause() ### Greedy algorithm fc <- cluster_fast_greedy(karate) memb <- membership(fc) plot(karate, vertex.color=memb) pause() ### Greedy algorithm, easier plotting plot(fc, karate) pause() ### Spinglass algorithm, create a hierarchical network pref.mat <- matrix(0, 16, 16) pref.mat[1:4,1:4] <- pref.mat[5:8,5:8] <- pref.mat[9:12,9:12] <- pref.mat[13:16,13:16] <- 7.5/127 pref.mat[ pref.mat==0 ] <- 5/(3*128) diag(pref.mat) <- diag(pref.mat) + 10/31 pause() ### Create the network with the given vertex preferences G <- sample_pref(128*4, types=16, pref.matrix=pref.mat) pause() ### Run spinglass community detection with two gamma parameters sc1 <- cluster_spinglass(G, spins=4, gamma=1.0) sc2.2 <- cluster_spinglass(G, spins=16, gamma=2.2) pause() ### Plot the adjacency matrix, use the Matrix package if available if (require(Matrix)) { myimage <- function(...) image(Matrix(...)) } else { myimage <- image } A <- as_adj(G) myimage(A) pause() ### Ordering according to (big) communities ord1 <- order(membership(sc1)) myimage(A[ord1,ord1]) pause() ### Ordering according to (small) communities ord2.2 <- order(membership(sc2.2)) myimage(A[ord2.2,ord2.2]) pause() ### Consensus ordering ord <- order(membership(sc1), membership(sc2.2)) myimage(A[ord,ord]) pause() ### Comparision of algorithms communities <- list() pause() ### cluster_edge_betweenness ebc <- cluster_edge_betweenness(karate) communities$`Edge betweenness` <- ebc pause() ### cluster_fast_greedy fc <- cluster_fast_greedy(karate) communities$`Fast greedy` <- fc pause() ### cluster_leading_eigen lec <- cluster_leading_eigen(karate) communities$`Leading eigenvector` <- lec pause() ### cluster_spinglass sc <- cluster_spinglass(karate, spins=10) communities$`Spinglass` <- sc pause() ### cluster_walktrap wt <- cluster_walktrap(karate) communities$`Walktrap` <- wt pause() ### cluster_label_prop labprop <- cluster_label_prop(karate) communities$`Label propagation` <- labprop pause() ### Plot everything layout(rbind(1:3, 4:6)) coords <- layout_with_kk(karate) lapply(seq_along(communities), function(x) { m <- modularity(communities[[x]]) par(mar=c(1,1,3,1)) plot(communities[[x]], karate, layout=coords, main=paste(names(communities)[x], "\n", "Modularity:", round(m, 3))) }) pause() ### Function to calculate clique communities clique.community <- function(graph, k) { clq <- cliques(graph, min=k, max=k) edges <- c() for (i in seq(along=clq)) { for (j in seq(along=clq)) { if ( length(unique(c(clq[[i]], clq[[j]]))) == k+1 ) { edges <- c(edges, c(i,j)) } } } clq.graph <- simplify(graph(edges)) V(clq.graph)$name <- seq(length=vcount(clq.graph)) comps <- decompose(clq.graph) lapply(comps, function(x) { unique(unlist(clq[ V(x)$name ])) }) } pause() ### Apply it to a graph, this is the example graph from ## the original publication g <- graph_from_literal(A-B:F:C:E:D, B-A:D:C:E:F:G, C-A:B:F:E:D, D-A:B:C:F:E, E-D:A:C:B:F:V:W:U, F-H:B:A:C:D:E, G-B:J:K:L:H, H-F:G:I:J:K:L, I-J:L:H, J-I:G:H:L, K-G:H:L:M, L-H:G:I:J:K:M, M-K:L:Q:R:S:P:O:N, N-M:Q:R:P:S:O, O-N:M:P, P-Q:M:N:O:S, Q-M:N:P:V:U:W:R, R-M:N:V:W:Q, S-N:P:M:U:W:T, T-S:V:W:U, U-E:V:Q:S:W:T, V-E:U:W:T:R:Q, W-U:E:V:Q:R:S:T) pause() ### Hand-made layout to make it look like the original in the paper lay <- c(387.0763, 306.6947, 354.0305, 421.0153, 483.5344, 512.1145, 148.6107, 392.4351, 524.6183, 541.5878, 240.6031, 20, 65.54962, 228.0992, 61.9771, 152.1832, 334.3817, 371.8931, 421.9084, 265.6107, 106.6336, 57.51145, 605, 20, 124.8780, 273.6585, 160.2439, 241.9512, 132.1951, 123.6585, 343.1707, 465.1220, 317.561, 216.3415, 226.0976, 343.1707, 306.5854, 123.6585, 360.2439, 444.3902, 532.1951, 720, 571.2195, 639.5122, 505.3659, 644.3902) lay <- matrix(lay, nc=2) lay[,2] <- max(lay[,2])-lay[,2] pause() ### Take a look at it layout(1) plot(g, layout=lay, vertex.label=V(g)$name) pause() ### Calculate communities res <- clique.community(g, k=4) pause() ### Paint them to different colors colbar <- rainbow( length(res)+1 ) for (i in seq(along=res)) { V(g)[ res[[i]] ]$color <- colbar[i+1] } pause() ### Paint the vertices in multiple communities to red V(g)[ unlist(res)[ duplicated(unlist(res)) ] ]$color <- "red" pause() ### Plot with the new colors plot(g, layout=lay, vertex.label=V(g)$name)