#!/opt/chipster/tools/Python-2.7.12/bin/python """Map features from the target species to the query species of a chain alignment file. This is intended for mapping relatively short features such as Chip-Seq peaks on TF binding events. Features that when mapped span multiple chains or multiple chromosomes are silently filtered out. TODO: (1)for narrowPeak input, map the predicted peak position. """ import logging import os import sys from itertools import groupby from operator import attrgetter, concat, itemgetter import numpy as np from six.moves import reduce from bx.align import epo from bx.align.epo import bed_union as elem_u from bx.cookbook import argparse from bx.intervals.intersection import IntervalTree, Interval elem_t = np.dtype([('chrom', np.str_, 30), ('start', np.int64), ('end', np.int64), ('id', np.str_, 100)]) narrowPeak_t = np.dtype([('chrom', np.str_, 30), ('start', np.int64), ('end', np.int64), ('id', np.str_, 100), ('score', np.int64), ('strand', np.str_, 1), ('signalValue', np.float), ('pValue', np.float), ('qValue', np.float), ('peak', np.int64)]) LOG_LEVELS = {"info" : logging.INFO, "debug" : logging.DEBUG, "silent" : logging.ERROR} logging.basicConfig() log = logging.getLogger() class GIntervalTree( IntervalTree ): """a set of IntervalTrees that is indexed by chromosomes""" def __init__(self, data=[]): self._trees = {} def add(self, chrom, element): """insert an element. use this method as the IntervalTree one. this will simply call the IntervalTree.add method on the right tree :param chrom: chromosome :param element: the argument of IntervalTree.insert_interval :return: None """ self._trees.setdefault(chrom, IntervalTree()).insert_interval( element ) def find(self, chrom, start, end): """find the intersecting elements :param chrom: chromosome :param start: start :param end: end :return: a list of intersecting elements""" tree = self._trees.get( chrom, None ) if tree: return tree.find( start, end ) #return always a list return [] def transform(elem, chain_CT_CQ, max_gap): """transform the coordinates of this elem into the other species. elem intersects this chain's ginterval. :return: a list of the type [(to_chr, start, end, elem[id]) ... ]""" (chain, CT, CQ) = chain_CT_CQ start, end = max(elem['start'], chain.tStart) - chain.tStart, min(elem['end'], chain.tEnd) - chain.tStart assert np.all( (CT[:,1] - CT[:,0]) == (CQ[:,1] - CQ[:,0]) ) to_chrom = chain.qName to_gab_start = chain.qStart start_idx = np.where( CT[:,1] > start )[0][0] end_idx = np.where( CT[:,0] < end )[0][-1] if start_idx > end_idx: #maps to a gap region on the other species return [] ## apply the gap threshold if max_gap >= 0 and start_idx < end_idx - 1: if np.max(CT[(start_idx+1):end_idx,0] - CT[start_idx:(end_idx-1),1]) > max_gap or np.max(CQ[(start_idx+1):end_idx,0] - CQ[start_idx:(end_idx-1),1]) > max_gap: return [] assert start < CT[start_idx, 1] assert CT[end_idx, 0] < end to_start = CQ[start_idx, 0] + max(0, start - CT[start_idx,0]) # correct if on middle of interval to_end = CQ[end_idx, 1] - max(0, CT[end_idx, 1] - end) # idem if start_idx == end_idx: #elem falls in a single run of matches slices = [(to_start, to_end)] else: slices = [(to_start, CQ[start_idx,1])] slices += [(CQ[i,0], CQ[i,1]) for i in range(start_idx+1, end_idx)] slices.append( (CQ[end_idx,0], to_end) ) if chain.qStrand == '-': Sz = chain.qEnd - chain.qStart slices = [(Sz-t[1], Sz-t[0]) for t in slices] return [(to_chrom, to_gab_start + t[0], to_gab_start + t[1], elem['id']) for t in slices] def union_elements(elements): """elements = [(chr, s, e, id), ...], this is to join elements that have a deletion in the 'to' species """ if len(elements) < 2: return elements assert set( [e[3] for e in elements] ) == set( [elements[0][3]] ), "more than one id" el_id = elements[0][3] unioned_elements = [] for ch, chgrp in groupby(elements, key=itemgetter(0)): for (s, e) in elem_u( np.array([itemgetter(1, 2)(_) for _ in chgrp], dtype=np.uint) ): if (s < e): unioned_elements.append( (ch, s, e, el_id) ) assert len(unioned_elements) <= len(elements) return unioned_elements def transform_by_chrom(all_epo, from_elem_list, tree, chrom, opt, out_fd): BED4_FRM = "%s\t%d\t%d\t%s\n" BED12_FRM = "%s\t%d\t%d\t%s\t1000\t+\t%d\t%d\t0,0,0\t%d\t%s\t%s\n" NPEAK_FRM = "%s\t%d\t%d\t%s\t%d\t%s\t%f\t%f\t%f\t%d\n" assert len( set(from_elem_list['chrom']) ) <= 1 mapped_elem_count = 0 mapped_summit_count = 0 for from_elem in from_elem_list: matching_block_ids = [attrgetter("value")(_) for _ in tree.find(chrom, from_elem['start'], from_elem['end'])] # do the actual mapping to_elem_slices = [_ for _ in (transform(from_elem, all_epo[i], opt.gap) for i in matching_block_ids) if _] """ # Original version: silently discard split alignments if len(to_elem_slices) > 1 or len(to_elem_slices) == 0: log.debug("%s no match or in different chain/chromosomes" % (str(from_elem))) continue to_elem_slices = to_elem_slices[0] """ """ Modified version below allows liftOver-like behavior of keeping the longest alignment when alignments are split across multiple chains. Added by Adam Diehl (adadiehl@umich.edu) """ max_elem_idx = 0 if len(to_elem_slices) == 0: log.debug("%s: no match in target: discarding." % (str(from_elem))) continue elif len(to_elem_slices) > 1 and opt.keep_split: log.debug("%s spans multiple chains/chromosomes. Using longest alignment." % (str(from_elem))) max_elem_len = 0 for i in xrange(len(to_elem_slices)): elem_len = to_elem_slices[i][-1][2] - to_elem_slices[i][0][2] if elem_len > max_elem_len: max_elem_len = elem_len max_elem_idx = i elif len(to_elem_slices) > 1: log.debug("%s spans multiple chains/chromosomes: discarding." % (str(from_elem))) continue to_elem_slices = to_elem_slices[max_elem_idx] """ End AGD modifications """ # apply threshold if (from_elem[2] - from_elem[1]) * opt.threshold > reduce(lambda b,a: a[2]-a[1] + b, to_elem_slices, 0): log.debug("%s did not pass threshold" % (str(from_elem))) continue # if to_species had insertions you can join elements to_elem_list = sorted(union_elements(to_elem_slices), key=lambda a: a[1]) if to_elem_list: mapped_elem_count += 1 log.debug("\tjoined to %d elements" % (len(to_elem_list))) start = to_elem_list[0][1] end = to_elem_list[-1][2] if opt.format == "BED4": for tel in to_elem_list: out_fd.write(BED4_FRM % tel) elif opt.format == "BED12": out_fd.write(BED12_FRM % (to_elem_list[0][0], start, end, from_elem['id'], start, end, len(to_elem_list), ",".join( "%d" % (e[2]-e[1]) for e in to_elem_list ), ",".join( "%d" % (e[1]-start) for e in to_elem_list ) ) ) else: # narrowPeak convention is to report the peak location relative to start peak = int((start + end)/2) - start if opt.in_format == "narrowPeak": # Map the peak location #sys.stderr.write("{}\n".format(from_elem)) matching_block_ids = [attrgetter("value")(_) for _ in tree.find(chrom, from_elem['peak'], from_elem['peak'])] p_elem_slices = [_ for _ in (transform( np.array((chrom, from_elem['peak'], from_elem['peak'], '.'), dtype=elem_t), all_epo[i], opt.gap) for i in matching_block_ids) if _] if len(p_elem_slices) >= 1: mapped_summit_count += 1 sys.stderr.write("{}\n".format(p_elem_slices)) # Make sure the peak is between the start and end positions if p_elem_slices[0][0][1] >= start and p_elem_slices[0][0][1] <= end: peak = p_elem_slices[0][0][1] - start else: mapped_summit_count -= 1 log.debug("Warning: elem {} summit mapped location falls outside the mapped element start and end. Using the mapped elem midpoint instead.".format(from_elem)) else: log.debug("Warning: elem {} summit maps to a gap region in the target alignment. Using the mapped elem midpoint instead.".format(from_elem)) out_fd.write(NPEAK_FRM % (to_elem_list[0][0], start, end, from_elem['id'], from_elem['score'], from_elem['strand'], from_elem['signalValue'], from_elem['pValue'], from_elem['qValue'], peak)) log.info("%s: %d of %d elements mapped" % (chrom, mapped_elem_count, from_elem_list.shape[0])) if opt.format == "narrowPeak" and opt.in_format == "narrowPeak": log.info("%s: %d peak summits from %d mapped elements mapped" % (chrom, mapped_summit_count, mapped_elem_count)) def transform_file(ELEMS, ofname, EPO, TREE, opt): "transform/map the elements of this file and dump the output on 'ofname'" BED4_FRM = "%s\t%d\t%d\t%s\n" log.info("%s (%d) elements ..." % (opt.screen and "screening" or "transforming", ELEMS.shape[0])) with open(ofname, 'w') as out_fd: if opt.screen: for elem in ELEMS.flat: matching_blocks = [attrgetter("value")(_) for _ in TREE.find(elem['chrom'], elem['start'], elem['end'])] assert set( matching_blocks ) <= set( EPO.keys() ) if matching_blocks: out_fd.write(BED4_FRM % elem) else: for chrom in set( ELEMS['chrom'] ): transform_by_chrom(EPO, ELEMS[ELEMS['chrom'] == chrom], TREE, chrom, opt, out_fd) log.info("DONE!") def loadChains(path): "name says it." EPO = epo.Chain._parse_file(path, True) ## convert coordinates w.r.t the forward strand (into slices) ## compute cummulative intervals for i in range( len(EPO) ): ch, S, T, Q = EPO[i] if ch.tStrand == '-': ch = ch._replace(tEnd = ch.tSize - ch.tStart, tStart = ch.tSize - ch.tEnd) if ch.qStrand == '-': ch = ch._replace(qEnd = ch.qSize - ch.qStart, qStart = ch.qSize - ch.qEnd) EPO[i] = (ch, epo.cummulative_intervals(S, T), epo.cummulative_intervals(S, Q) ) ##now each element of epo is (chain_header, target_intervals, query_intervals) assert all( t[0].tStrand == '+' for t in EPO ), "all target strands should be +" return EPO def loadFeatures(path, opt): """ Load features. For BED, only BED4 columns are loaded. For narrowPeak, all columns are loaded. """ log.info("loading from %s ..." % path) data = [] if opt.in_format == "BED": with open(path) as fd: for line in fd: cols = line.split() data.append( (cols[0], int(cols[1]), int(cols[2]), cols[3]) ) data = np.array(data, dtype=elem_t) else: with open(path) as fd: for line in fd: cols = line.split() data.append( (cols[0], int(cols[1]), int(cols[2]), cols[3], int(cols[4]), cols[5], float(cols[6]), float(cols[7]), float(cols[8]), int(cols[-1])+int(cols[1])) ) data = np.array(data, dtype=narrowPeak_t) return data if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__, epilog="Olgert Denas (Taylor Lab)", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("input", nargs='+', help="Input to process. If more than a file is specified, all files will be mapped and placed on --output, which should be a directory.") parser.add_argument("alignment", help="Alignment file (.chain or .pkl)") parser.add_argument("-f", '--format', choices=("BED4", "BED12", "narrowPeak"), default="BED4", help="Output format. BED4 output reports all aligned blocks as separate BED records. BED12 reports a single BED record for each mapped element, with individual blocks given in the BED12 fields. NarrowPeak reports a single narrowPeak record for each mapped element, in which the chromosome, start, end, and peak positions are mapped to the target species and all other columns are passed through unchanged.") parser.add_argument("-o", '--output', metavar="FILE", default='stdout', type=lambda s: ((s in ('stdout', '-') and "/dev/stdout") or s), help="Output file. Mandatory if more than on file in input.") parser.add_argument("-t", '--threshold', metavar="FLOAT", default=0., type=float, help="Mapping threshold i.e., |elem| * threshold <= |mapped_elem|") parser.add_argument("-s", '--screen', default=False, action='store_true', help="Only report elements in the alignment (without mapping). -t has not effect here (TODO)") parser.add_argument('-g', '--gap', type=int, default=-1, help="Ignore elements with an insertion/deletion of this or bigger size.") parser.add_argument('-v', '--verbose', type=str, choices=list(LOG_LEVELS.keys()), default='info', help='Verbosity level') parser.add_argument("-k", '--keep_split', default=False, action='store_true', help="If elements span multiple chains, report the segment with the longest overlap instead of silently dropping them. (This is the default behavior for liftOver.)") parser.add_argument("-i", "--in_format", choices=["BED", "narrowPeak"], default="BED", help="Input file format.") opt = parser.parse_args() log.setLevel(LOG_LEVELS[opt.verbose]) #check for output if input is a directory arguments if len(opt.input) > 1 and (not os.path.isdir(opt.output)): parser.error("For multiple inputs, output is mandatory and should be a dir.") #loading alignments from opt.alignment EPO = dict( (ch[0].id, ch) for ch in loadChains(opt.alignment) ) ## create an interval tree based on chain headers (from_species side) ## for fast feature-to-chain_header searching log.info("indexing %d chains ..." % (len(EPO),)) TREE = GIntervalTree() for gabid in EPO: chain, t, q = EPO[gabid] TREE.add(chain.tName, Interval(chain.tStart, chain.tEnd, chain.id)) # transform elements if len(opt.input) > 1: for inpath in opt.input: if not os.path.isfile(inpath): log.warning("skipping %s (not a file) ..." % inpath) continue outpath = os.path.join(opt.output, os.path.basename(inpath)) if os.path.isfile(outpath): log.warning("overwriting %s ..." % outpath) transform_file(loadFeatures(inpath), outpath, EPO, TREE, opt) else: transform_file(loadFeatures( opt.input[0], opt ), opt.output, EPO, TREE, opt)