#include #include #include #include "bam.h" #include "kstring.h" #include "bam2bcf.h" #include "errmod.h" #include "bcftools/bcf.h" extern void ks_introsort_uint32_t(size_t n, uint32_t a[]); #define CALL_ETA 0.03f #define CALL_MAX 256 #define CALL_DEFTHETA 0.83f #define DEF_MAPQ 20 #define CAP_DIST 25 bcf_callaux_t *bcf_call_init(double theta, int min_baseQ) { bcf_callaux_t *bca; if (theta <= 0.) theta = CALL_DEFTHETA; bca = calloc(1, sizeof(bcf_callaux_t)); bca->capQ = 60; bca->openQ = 40; bca->extQ = 20; bca->tandemQ = 100; bca->min_baseQ = min_baseQ; bca->e = errmod_init(1. - theta); bca->min_frac = 0.002; bca->min_support = 1; bca->per_sample_flt = 0; bca->npos = 100; bca->ref_pos = calloc(bca->npos, sizeof(int)); bca->alt_pos = calloc(bca->npos, sizeof(int)); return bca; } static int get_position(const bam_pileup1_t *p, int *len) { int icig, n_tot_bases = 0, iread = 0, edist = p->qpos + 1; for (icig=0; icigb->core.n_cigar; icig++) { // Conversion from uint32_t to MIDNSHP // 0123456 // MIDNSHP int cig = bam1_cigar(p->b)[icig] & BAM_CIGAR_MASK; int ncig = bam1_cigar(p->b)[icig] >> BAM_CIGAR_SHIFT; if ( cig==0 ) { n_tot_bases += ncig; iread += ncig; } else if ( cig==1 ) { n_tot_bases += ncig; iread += ncig; } else if ( cig==4 ) { iread += ncig; if ( iread<=p->qpos ) edist -= ncig; } } *len = n_tot_bases; return edist; } void bcf_call_destroy(bcf_callaux_t *bca) { if (bca == 0) return; errmod_destroy(bca->e); if (bca->npos) { free(bca->ref_pos); free(bca->alt_pos); bca->npos = 0; } free(bca->bases); free(bca->inscns); free(bca); } /* ref_base is the 4-bit representation of the reference base. It is * negative if we are looking at an indel. */ int bcf_call_glfgen(int _n, const bam_pileup1_t *pl, int ref_base, bcf_callaux_t *bca, bcf_callret1_t *r) { int i, n, ref4, is_indel, ori_depth = 0; memset(r, 0, sizeof(bcf_callret1_t)); if (ref_base >= 0) { ref4 = bam_nt16_nt4_table[ref_base]; is_indel = 0; } else ref4 = 4, is_indel = 1; if (_n == 0) return -1; // enlarge the bases array if necessary if (bca->max_bases < _n) { bca->max_bases = _n; kroundup32(bca->max_bases); bca->bases = (uint16_t*)realloc(bca->bases, 2 * bca->max_bases); } // fill the bases array for (i = n = r->n_supp = 0; i < _n; ++i) { const bam_pileup1_t *p = pl + i; int q, b, mapQ, baseQ, is_diff, min_dist, seqQ; // set base if (p->is_del || p->is_refskip || (p->b->core.flag&BAM_FUNMAP)) continue; ++ori_depth; baseQ = q = is_indel? p->aux&0xff : (int)bam1_qual(p->b)[p->qpos]; // base/indel quality seqQ = is_indel? (p->aux>>8&0xff) : 99; if (q < bca->min_baseQ) continue; if (q > seqQ) q = seqQ; mapQ = p->b->core.qual < 255? p->b->core.qual : DEF_MAPQ; // special case for mapQ==255 mapQ = mapQ < bca->capQ? mapQ : bca->capQ; if (q > mapQ) q = mapQ; if (q > 63) q = 63; if (q < 4) q = 4; if (!is_indel) { b = bam1_seqi(bam1_seq(p->b), p->qpos); // base b = bam_nt16_nt4_table[b? b : ref_base]; // b is the 2-bit base is_diff = (ref4 < 4 && b == ref4)? 0 : 1; } else { b = p->aux>>16&0x3f; is_diff = (b != 0); } if (is_diff) ++r->n_supp; bca->bases[n++] = q<<5 | (int)bam1_strand(p->b)<<4 | b; // collect annotations if (b < 4) r->qsum[b] += q; ++r->anno[0<<2|is_diff<<1|bam1_strand(p->b)]; min_dist = p->b->core.l_qseq - 1 - p->qpos; if (min_dist > p->qpos) min_dist = p->qpos; if (min_dist > CAP_DIST) min_dist = CAP_DIST; r->anno[1<<2|is_diff<<1|0] += baseQ; r->anno[1<<2|is_diff<<1|1] += baseQ * baseQ; r->anno[2<<2|is_diff<<1|0] += mapQ; r->anno[2<<2|is_diff<<1|1] += mapQ * mapQ; r->anno[3<<2|is_diff<<1|0] += min_dist; r->anno[3<<2|is_diff<<1|1] += min_dist * min_dist; // collect read positions for ReadPosBias int len, pos = get_position(p, &len); int epos = (double)pos/(len+1) * bca->npos; if ( bam1_seqi(bam1_seq(p->b),p->qpos) == ref_base ) bca->ref_pos[epos]++; else bca->alt_pos[epos]++; } r->depth = n; r->ori_depth = ori_depth; // glfgen errmod_cal(bca->e, n, 5, bca->bases, r->p); return r->depth; } double mann_whitney_1947(int n, int m, int U) { if (U<0) return 0; if (n==0||m==0) return U==0 ? 1 : 0; return (double)n/(n+m)*mann_whitney_1947(n-1,m,U-m) + (double)m/(n+m)*mann_whitney_1947(n,m-1,U); } void calc_ReadPosBias(bcf_callaux_t *bca, bcf_call_t *call) { int i, nref = 0, nalt = 0; unsigned long int U = 0; for (i=0; inpos; i++) { nref += bca->ref_pos[i]; nalt += bca->alt_pos[i]; U += nref*bca->alt_pos[i]; bca->ref_pos[i] = 0; bca->alt_pos[i] = 0; } #if 0 //todo double var = 0, avg = (double)(nref+nalt)/bca->npos; for (i=0; inpos; i++) { double ediff = bca->ref_pos[i] + bca->alt_pos[i] - avg; var += ediff*ediff; bca->ref_pos[i] = 0; bca->alt_pos[i] = 0; } call->read_pos.avg = avg; call->read_pos.var = sqrt(var/bca->npos); call->read_pos.dp = nref+nalt; #endif if ( !nref || !nalt ) { call->read_pos_bias = -1; return; } if ( nref>=8 || nalt>=8 ) { // normal approximation double mean = ((double)nref*nalt+1.0)/2.0; double var2 = (double)nref*nalt*(nref+nalt+1.0)/12.0; double z = (U-mean)/sqrt(var2); call->read_pos_bias = z; //fprintf(stderr,"nref=%d nalt=%d U=%ld mean=%e var=%e zval=%e\n", nref,nalt,U,mean,sqrt(var2),call->read_pos_bias); } else { double p = mann_whitney_1947(nalt,nref,U); // biased form claimed by GATK to behave better empirically // double var2 = (1.0+1.0/(nref+nalt+1.0))*(double)nref*nalt*(nref+nalt+1.0)/12.0; double var2 = (double)nref*nalt*(nref+nalt+1.0)/12.0; double z; if ( p >= 1./sqrt(var2*2*M_PI) ) z = 0; // equal to mean else { if ( U >= nref*nalt/2. ) z = sqrt(-2*log(sqrt(var2*2*M_PI)*p)); else z = -sqrt(-2*log(sqrt(var2*2*M_PI)*p)); } call->read_pos_bias = z; //fprintf(stderr,"nref=%d nalt=%d U=%ld p=%e var2=%e zval=%e\n", nref,nalt,U, p,var2,call->read_pos_bias); } } float mean_diff_to_prob(float mdiff, int dp, int readlen) { if ( dp==2 ) { if ( mdiff==0 ) return (2.0*readlen + 4.0*(readlen-1.0))/((float)readlen*readlen); else return 8.0*(readlen - 4.0*mdiff)/((float)readlen*readlen); } // This is crude empirical approximation and is not very accurate for // shorter read lengths (<100bp). There certainly is a room for // improvement. const float mv[24][2] = { {0,0}, {0,0}, {0,0}, { 9.108, 4.934}, { 9.999, 3.991}, {10.273, 3.485}, {10.579, 3.160}, {10.828, 2.889}, {11.014, 2.703}, {11.028, 2.546}, {11.244, 2.391}, {11.231, 2.320}, {11.323, 2.138}, {11.403, 2.123}, {11.394, 1.994}, {11.451, 1.928}, {11.445, 1.862}, {11.516, 1.815}, {11.560, 1.761}, {11.544, 1.728}, {11.605, 1.674}, {11.592, 1.652}, {11.674, 1.613}, {11.641, 1.570} }; float m, v; if ( dp>=24 ) { m = readlen/8.; if (dp>100) dp = 100; v = 1.476/(0.182*pow(dp,0.514)); v = v*(readlen/100.); } else { m = mv[dp][0]; v = mv[dp][1]; m = m*readlen/100.; v = v*readlen/100.; v *= 1.2; // allow more variability } return 1.0/(v*sqrt(2*M_PI)) * exp(-0.5*((mdiff-m)/v)*((mdiff-m)/v)); } void calc_vdb(bcf_callaux_t *bca, bcf_call_t *call) { int i, dp = 0; float mean_pos = 0, mean_diff = 0; for (i=0; inpos; i++) { if ( !bca->alt_pos[i] ) continue; dp += bca->alt_pos[i]; int j = inpos/2 ? i : bca->npos - i; mean_pos += bca->alt_pos[i]*j; } if ( dp<2 ) { call->vdb = -1; return; } mean_pos /= dp; for (i=0; inpos; i++) { if ( !bca->alt_pos[i] ) continue; int j = inpos/2 ? i : bca->npos - i; mean_diff += bca->alt_pos[i] * fabs(j - mean_pos); } mean_diff /= dp; call->vdb = mean_diff_to_prob(mean_diff, dp, bca->npos); } /** * bcf_call_combine() - sets the PL array and VDB, RPB annotations, finds the top two alleles * @n: number of samples * @calls: each sample's calls * @bca: auxiliary data structure for holding temporary values * @ref_base: the reference base * @call: filled with the annotations */ int bcf_call_combine(int n, const bcf_callret1_t *calls, bcf_callaux_t *bca, int ref_base /*4-bit*/, bcf_call_t *call) { int ref4, i, j, qsum[4]; int64_t tmp; if (ref_base >= 0) { call->ori_ref = ref4 = bam_nt16_nt4_table[ref_base]; if (ref4 > 4) ref4 = 4; } else call->ori_ref = -1, ref4 = 0; // calculate qsum memset(qsum, 0, 4 * sizeof(int)); for (i = 0; i < n; ++i) for (j = 0; j < 4; ++j) qsum[j] += calls[i].qsum[j]; int qsum_tot=0; for (j=0; j<4; j++) { qsum_tot += qsum[j]; call->qsum[j] = 0; } for (j = 0; j < 4; ++j) qsum[j] = qsum[j] << 2 | j; // find the top 2 alleles for (i = 1; i < 4; ++i) // insertion sort for (j = i; j > 0 && qsum[j] < qsum[j-1]; --j) tmp = qsum[j], qsum[j] = qsum[j-1], qsum[j-1] = tmp; // set the reference allele and alternative allele(s) for (i = 0; i < 5; ++i) call->a[i] = -1; call->unseen = -1; call->a[0] = ref4; for (i = 3, j = 1; i >= 0; --i) { if ((qsum[i]&3) != ref4) { if (qsum[i]>>2 != 0) { if ( j<4 ) call->qsum[j] = (float)(qsum[i]>>2)/qsum_tot; // ref N can make j>=4 call->a[j++] = qsum[i]&3; } else break; } else call->qsum[0] = (float)(qsum[i]>>2)/qsum_tot; } if (ref_base >= 0) { // for SNPs, find the "unseen" base if (((ref4 < 4 && j < 4) || (ref4 == 4 && j < 5)) && i >= 0) call->unseen = j, call->a[j++] = qsum[i]&3; call->n_alleles = j; } else { call->n_alleles = j; if (call->n_alleles == 1) return -1; // no reliable supporting read. stop doing anything } // set the PL array if (call->n < n) { call->n = n; call->PL = realloc(call->PL, 15 * n); } { int x, g[15], z; double sum_min = 0.; x = call->n_alleles * (call->n_alleles + 1) / 2; // get the possible genotypes for (i = z = 0; i < call->n_alleles; ++i) for (j = 0; j <= i; ++j) g[z++] = call->a[j] * 5 + call->a[i]; for (i = 0; i < n; ++i) { uint8_t *PL = call->PL + x * i; const bcf_callret1_t *r = calls + i; float min = 1e37; for (j = 0; j < x; ++j) if (min > r->p[g[j]]) min = r->p[g[j]]; sum_min += min; for (j = 0; j < x; ++j) { int y; y = (int)(r->p[g[j]] - min + .499); if (y > 255) y = 255; PL[j] = y; } } // if (ref_base < 0) fprintf(stderr, "%d,%d,%f,%d\n", call->n_alleles, x, sum_min, call->unseen); call->shift = (int)(sum_min + .499); } // combine annotations memset(call->anno, 0, 16 * sizeof(int)); for (i = call->depth = call->ori_depth = 0, tmp = 0; i < n; ++i) { call->depth += calls[i].depth; call->ori_depth += calls[i].ori_depth; for (j = 0; j < 16; ++j) call->anno[j] += calls[i].anno[j]; } calc_vdb(bca, call); calc_ReadPosBias(bca, call); return 0; } int bcf_call2bcf(int tid, int pos, bcf_call_t *bc, bcf1_t *b, bcf_callret1_t *bcr, int fmt_flag, const bcf_callaux_t *bca, const char *ref) { extern double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two); kstring_t s; int i, j; b->n_smpl = bc->n; b->tid = tid; b->pos = pos; b->qual = 0; s.s = b->str; s.m = b->m_str; s.l = 0; kputc('\0', &s); if (bc->ori_ref < 0) { // an indel // write REF kputc(ref[pos], &s); for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s); kputc('\0', &s); // write ALT kputc(ref[pos], &s); for (i = 1; i < 4; ++i) { if (bc->a[i] < 0) break; if (i > 1) { kputc(',', &s); kputc(ref[pos], &s); } if (bca->indel_types[bc->a[i]] < 0) { // deletion for (j = -bca->indel_types[bc->a[i]]; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s); } else { // insertion; cannot be a reference unless a bug char *inscns = &bca->inscns[bc->a[i] * bca->maxins]; for (j = 0; j < bca->indel_types[bc->a[i]]; ++j) kputc("ACGTN"[(int)inscns[j]], &s); for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s); } } kputc('\0', &s); } else { // a SNP kputc("ACGTN"[bc->ori_ref], &s); kputc('\0', &s); for (i = 1; i < 5; ++i) { if (bc->a[i] < 0) break; if (i > 1) kputc(',', &s); kputc(bc->unseen == i? 'X' : "ACGT"[bc->a[i]], &s); } kputc('\0', &s); } kputc('\0', &s); // INFO if (bc->ori_ref < 0) ksprintf(&s,"INDEL;IS=%d,%f;", bca->max_support, bca->max_frac); kputs("DP=", &s); kputw(bc->ori_depth, &s); kputs(";I16=", &s); for (i = 0; i < 16; ++i) { if (i) kputc(',', &s); kputw(bc->anno[i], &s); } //ksprintf(&s,";RPS=%d,%f,%f", bc->read_pos.dp,bc->read_pos.avg,bc->read_pos.var); ksprintf(&s,";QS=%f,%f,%f,%f", bc->qsum[0],bc->qsum[1],bc->qsum[2],bc->qsum[3]); if (bc->vdb != -1) ksprintf(&s, ";VDB=%e", bc->vdb); if (bc->read_pos_bias != -1 ) ksprintf(&s, ";RPB=%e", bc->read_pos_bias); kputc('\0', &s); // FMT kputs("PL", &s); if (bcr && fmt_flag) { if (fmt_flag & B2B_FMT_DP) kputs(":DP", &s); if (fmt_flag & B2B_FMT_DV) kputs(":DV", &s); if (fmt_flag & B2B_FMT_SP) kputs(":SP", &s); } kputc('\0', &s); b->m_str = s.m; b->str = s.s; b->l_str = s.l; bcf_sync(b); memcpy(b->gi[0].data, bc->PL, b->gi[0].len * bc->n); if (bcr && fmt_flag) { uint16_t *dp = (fmt_flag & B2B_FMT_DP)? b->gi[1].data : 0; uint16_t *dv = (fmt_flag & B2B_FMT_DV)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0)].data : 0; int32_t *sp = (fmt_flag & B2B_FMT_SP)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0) + ((fmt_flag & B2B_FMT_DV) != 0)].data : 0; for (i = 0; i < bc->n; ++i) { bcf_callret1_t *p = bcr + i; if (dp) dp[i] = p->depth < 0xffff? p->depth : 0xffff; if (dv) dv[i] = p->n_supp < 0xffff? p->n_supp : 0xffff; if (sp) { if (p->anno[0] + p->anno[1] < 2 || p->anno[2] + p->anno[3] < 2 || p->anno[0] + p->anno[2] < 2 || p->anno[1] + p->anno[3] < 2) { sp[i] = 0; } else { double left, right, two; int x; kt_fisher_exact(p->anno[0], p->anno[1], p->anno[2], p->anno[3], &left, &right, &two); x = (int)(-4.343 * log(two) + .499); if (x > 255) x = 255; sp[i] = x; } } } } return 0; }