#include #include #include #include "bcf.h" #include "kstring.h" #include "khash.h" KHASH_MAP_INIT_STR(str2id, int) #ifdef _WIN32 #define srand48(x) srand(x) #define drand48() ((double)rand() / RAND_MAX) #endif // FIXME: valgrind report a memory leak in this function. Probably it does not get deallocated... void *bcf_build_refhash(bcf_hdr_t *h) { khash_t(str2id) *hash; int i, ret; hash = kh_init(str2id); for (i = 0; i < h->n_ref; ++i) { khint_t k; k = kh_put(str2id, hash, h->ns[i], &ret); // FIXME: check ret kh_val(hash, k) = i; } return hash; } void *bcf_str2id_init() { return kh_init(str2id); } void bcf_str2id_destroy(void *_hash) { khash_t(str2id) *hash = (khash_t(str2id)*)_hash; if (hash) kh_destroy(str2id, hash); // Note that strings are not freed. } void bcf_str2id_thorough_destroy(void *_hash) { khash_t(str2id) *hash = (khash_t(str2id)*)_hash; khint_t k; if (hash == 0) return; for (k = 0; k < kh_end(hash); ++k) if (kh_exist(hash, k)) free((char*)kh_key(hash, k)); kh_destroy(str2id, hash); } int bcf_str2id(void *_hash, const char *str) { khash_t(str2id) *hash = (khash_t(str2id)*)_hash; khint_t k; if (!hash) return -1; k = kh_get(str2id, hash, str); return k == kh_end(hash)? -1 : kh_val(hash, k); } int bcf_str2id_add(void *_hash, const char *str) { khint_t k; int ret; khash_t(str2id) *hash = (khash_t(str2id)*)_hash; if (!hash) return -1; k = kh_put(str2id, hash, str, &ret); if (ret == 0) return kh_val(hash, k); kh_val(hash, k) = kh_size(hash) - 1; return kh_val(hash, k); } void bcf_fit_alt(bcf1_t *b, int mask) { mask |= 1; // REF must be always present int i,j,nals=0; for (i=0; in_alleles <= nals ) return; // update ALT, in principle any of the alleles can be removed char *p; if ( nals>1 ) { char *dst, *src; int n=0, nalts=nals-1; for (src=dst=p=b->alt, i=1; *p; p++) { if ( *p!=',' ) continue; if ( mask&1<=nalts ) { *dst=0; break; } src = p+1; } if ( nalt, *p = '\0'; p++; memmove(p, b->flt, b->str + b->l_str - b->flt); b->l_str -= b->flt - p; // update PL and GT int ipl=-1, igt=-1; for (i = 0; i < b->n_gi; ++i) { bcf_ginfo_t *g = b->gi + i; if (g->fmt == bcf_str2int("PL", 2)) ipl = i; if (g->fmt == bcf_str2int("GT", 2)) igt = i; } // .. create mapping between old and new indexes int npl = nals * (nals+1) / 2; int *map = malloc(sizeof(int)*(npl>b->n_alleles ? npl : b->n_alleles)); int kori=0,knew=0; for (i=0; in_alleles; i++) { for (j=0; j<=i; j++) { int skip=0; if ( i && !(mask&1<n_smpl; for (i = 0; i < b->n_gi; ++i) { bcf_ginfo_t *g = b->gi + i; if (g->fmt == bcf_str2int("PL", 2)) { g->len = npl; uint8_t *d = (uint8_t*)g->data; int ismpl, npl_ori = b->n_alleles * (b->n_alleles + 1) / 2; for (knew=ismpl=0; ismpln_alleles; i++) map[i] = mask&1<gi[igt].data)[i]; int a1 = (gt>>3)&7; int a2 = gt&7; assert( map[a1]>=0 && map[a2]>=0 ); ((uint8_t*)b->gi[igt].data)[i] = ((1<<7|1<<6)>) | map[a1]<<3 | map[a2]; } free(map); b->n_alleles = nals; bcf_sync(b); } int bcf_shrink_alt(bcf1_t *b, int n) { char *p; int i, j, k, n_smpl = b->n_smpl; if (b->n_alleles <= n) return -1; // update ALT if (n > 1) { for (p = b->alt, k = 1; *p; ++p) if (*p == ',' && ++k == n) break; *p = '\0'; } else p = b->alt, *p = '\0'; ++p; memmove(p, b->flt, b->str + b->l_str - b->flt); b->l_str -= b->flt - p; // update PL for (i = 0; i < b->n_gi; ++i) { bcf_ginfo_t *g = b->gi + i; if (g->fmt == bcf_str2int("PL", 2)) { int l, x = b->n_alleles * (b->n_alleles + 1) / 2; uint8_t *d = (uint8_t*)g->data; g->len = n * (n + 1) / 2; for (l = k = 0; l < n_smpl; ++l) { uint8_t *dl = d + l * x; for (j = 0; j < g->len; ++j) d[k++] = dl[j]; } } // FIXME: to add GL } b->n_alleles = n; bcf_sync(b); return 0; } int bcf_gl2pl(bcf1_t *b) { char *p; int i, n_smpl = b->n_smpl; bcf_ginfo_t *g; float *d0; uint8_t *d1; if (strstr(b->fmt, "PL")) return -1; if ((p = strstr(b->fmt, "GL")) == 0) return -1; *p = 'P'; for (i = 0; i < b->n_gi; ++i) if (b->gi[i].fmt == bcf_str2int("GL", 2)) break; g = b->gi + i; g->fmt = bcf_str2int("PL", 2); g->len /= 4; // 4 == sizeof(float) d0 = (float*)g->data; d1 = (uint8_t*)g->data; for (i = 0; i < n_smpl * g->len; ++i) { int x = (int)(-10. * d0[i] + .499); if (x > 255) x = 255; if (x < 0) x = 0; d1[i] = x; } return 0; } /* FIXME: this function will fail given AB:GTX:GT. BCFtools never * produces such FMT, but others may do. */ int bcf_fix_gt(bcf1_t *b) { char *s; int i; uint32_t tmp; bcf_ginfo_t gt; // check the presence of the GT FMT if ((s = strstr(b->fmt, ":GT")) == 0) return 0; // no GT or GT is already the first assert(s[3] == '\0' || s[3] == ':'); // :GTX in fact tmp = bcf_str2int("GT", 2); for (i = 0; i < b->n_gi; ++i) if (b->gi[i].fmt == tmp) break; if (i == b->n_gi) return 0; // no GT in b->gi; probably a bug... gt = b->gi[i]; // move GT to the first for (; i > 0; --i) b->gi[i] = b->gi[i-1]; b->gi[0] = gt; if ( s[3]==0 ) memmove(b->fmt + 3, b->fmt, s - b->fmt); // :GT else memmove(b->fmt + 3, b->fmt, s - b->fmt + 1); // :GT: b->fmt[0] = 'G'; b->fmt[1] = 'T'; b->fmt[2] = ':'; return 0; } int bcf_fix_pl(bcf1_t *b) { int i; uint32_t tmp; uint8_t *PL, *swap; bcf_ginfo_t *gi; // pinpoint PL tmp = bcf_str2int("PL", 2); for (i = 0; i < b->n_gi; ++i) if (b->gi[i].fmt == tmp) break; if (i == b->n_gi) return 0; // prepare gi = b->gi + i; PL = (uint8_t*)gi->data; swap = alloca(gi->len); // loop through individuals for (i = 0; i < b->n_smpl; ++i) { int k, l, x; uint8_t *PLi = PL + i * gi->len; memcpy(swap, PLi, gi->len); for (k = x = 0; k < b->n_alleles; ++k) for (l = k; l < b->n_alleles; ++l) PLi[l*(l+1)/2 + k] = swap[x++]; } return 0; } int bcf_smpl_covered(const bcf1_t *b) { int i, j, n = 0; uint32_t tmp; bcf_ginfo_t *gi; // pinpoint PL tmp = bcf_str2int("PL", 2); for (i = 0; i < b->n_gi; ++i) if (b->gi[i].fmt == tmp) break; if (i == b->n_gi) return 0; // count how many samples having PL!=[0..0] gi = b->gi + i; for (i = 0; i < b->n_smpl; ++i) { uint8_t *PLi = ((uint8_t*)gi->data) + i * gi->len; for (j = 0; j < gi->len; ++j) if (PLi[j]) break; if (j < gi->len) ++n; } return n; } static void *locate_field(const bcf1_t *b, const char *fmt, int l) { int i; uint32_t tmp; tmp = bcf_str2int(fmt, l); for (i = 0; i < b->n_gi; ++i) if (b->gi[i].fmt == tmp) break; return i == b->n_gi? 0 : b->gi[i].data; } int bcf_anno_max(bcf1_t *b) { int k, max_gq, max_sp, n_het; kstring_t str; uint8_t *gt, *gq; int32_t *sp; max_gq = max_sp = n_het = 0; gt = locate_field(b, "GT", 2); if (gt == 0) return -1; gq = locate_field(b, "GQ", 2); sp = locate_field(b, "SP", 2); if (sp) for (k = 0; k < b->n_smpl; ++k) if (gt[k]&0x3f) max_sp = max_sp > (int)sp[k]? max_sp : sp[k]; if (gq) for (k = 0; k < b->n_smpl; ++k) if (gt[k]&0x3f) max_gq = max_gq > (int)gq[k]? max_gq : gq[k]; for (k = 0; k < b->n_smpl; ++k) { int a1, a2; a1 = gt[k]&7; a2 = gt[k]>>3&7; if ((!a1 && a2) || (!a2 && a1)) { // a het if (gq == 0) ++n_het; else if (gq[k] >= 20) ++n_het; } } if (n_het) max_sp -= (int)(4.343 * log(n_het) + .499); if (max_sp < 0) max_sp = 0; memset(&str, 0, sizeof(kstring_t)); if (*b->info) kputc(';', &str); ksprintf(&str, "MXSP=%d;MXGQ=%d", max_sp, max_gq); bcf_append_info(b, str.s, str.l); free(str.s); return 0; } // FIXME: only data are shuffled; the header is NOT int bcf_shuffle(bcf1_t *b, int seed) { int i, j, *a; if (seed > 0) srand48(seed); a = malloc(b->n_smpl * sizeof(int)); for (i = 0; i < b->n_smpl; ++i) a[i] = i; for (i = b->n_smpl; i > 1; --i) { int tmp; j = (int)(drand48() * i); tmp = a[j]; a[j] = a[i-1]; a[i-1] = tmp; } for (j = 0; j < b->n_gi; ++j) { bcf_ginfo_t *gi = b->gi + j; uint8_t *swap, *data = (uint8_t*)gi->data; swap = malloc(gi->len * b->n_smpl); for (i = 0; i < b->n_smpl; ++i) memcpy(swap + gi->len * a[i], data + gi->len * i, gi->len); free(gi->data); gi->data = swap; } free(a); return 0; } bcf_hdr_t *bcf_hdr_subsam(const bcf_hdr_t *h0, int n, char *const* samples, int *list) { int i, ret, j; khint_t k; bcf_hdr_t *h; khash_t(str2id) *hash; kstring_t s; s.l = s.m = 0; s.s = 0; hash = kh_init(str2id); for (i = 0; i < h0->n_smpl; ++i) { k = kh_put(str2id, hash, h0->sns[i], &ret); kh_val(hash, k) = i; } for (i = j = 0; i < n; ++i) { k = kh_get(str2id, hash, samples[i]); if (k != kh_end(hash)) { list[j++] = kh_val(hash, k); kputs(samples[i], &s); kputc('\0', &s); } } if (j < n) { fprintf(stderr, "<%s> %d samples in the list but not in BCF.", __func__, n - j); exit(1); } kh_destroy(str2id, hash); h = calloc(1, sizeof(bcf_hdr_t)); *h = *h0; h->ns = 0; h->sns = 0; h->name = malloc(h->l_nm); memcpy(h->name, h0->name, h->l_nm); h->txt = calloc(1, h->l_txt + 1); memcpy(h->txt, h0->txt, h->l_txt); h->l_smpl = s.l; h->sname = s.s; bcf_hdr_sync(h); return h; } int bcf_subsam(int n_smpl, int *list, bcf1_t *b) { int i, j; for (j = 0; j < b->n_gi; ++j) { bcf_ginfo_t *gi = b->gi + j; uint8_t *swap; swap = malloc(gi->len * b->n_smpl); for (i = 0; i < n_smpl; ++i) memcpy(swap + i * gi->len, (uint8_t*)gi->data + list[i] * gi->len, gi->len); free(gi->data); gi->data = swap; } b->n_smpl = n_smpl; return 0; } static int8_t nt4_table[128] = { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 /*'-'*/, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, -1, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, -1, 4, 4, 4, 4, 4, 4, 4 }; int bcf_gl10(const bcf1_t *b, uint8_t *gl) { int a[4], k, l, map[4], k1, j, i; const bcf_ginfo_t *PL; char *s; if (b->ref[1] != 0 || b->n_alleles > 4) return -1; // ref is not a single base or >4 alleles for (i = 0; i < b->n_gi; ++i) if (b->gi[i].fmt == bcf_str2int("PL", 2)) break; if (i == b->n_gi) return -1; // no PL PL = b->gi + i; a[0] = nt4_table[(int)b->ref[0]]; if (a[0] > 3 || a[0] < 0) return -1; // ref is not A/C/G/T a[1] = a[2] = a[3] = -2; // -1 has a special meaning if (b->alt[0] == 0) return -1; // no alternate allele map[0] = map[1] = map[2] = map[3] = -2; map[a[0]] = 0; for (k = 0, s = b->alt, k1 = -1; k < 3 && *s; ++k, s += 2) { if (s[1] != ',' && s[1] != 0) return -1; // ALT is not single base a[k+1] = nt4_table[(int)*s]; if (a[k+1] >= 0) map[a[k+1]] = k+1; else k1 = k + 1; if (s[1] == 0) break; // the end of the ALT string } for (k = 0; k < 4; ++k) if (map[k] < 0) map[k] = k1; for (i = 0; i < b->n_smpl; ++i) { const uint8_t *p = PL->data + i * PL->len; // the PL for the i-th individual uint8_t *g = gl + 10 * i; for (k = j = 0; k < 4; ++k) { for (l = k; l < 4; ++l) { int t, x = map[k], y = map[l]; if (x > y) t = x, x = y, y = t; // make sure x is the smaller g[j++] = p[y * (y+1) / 2 + x]; } } } return 0; } int bcf_gl10_indel(const bcf1_t *b, uint8_t *gl) { int k, l, j, i; const bcf_ginfo_t *PL; if (b->alt[0] == 0) return -1; // no alternate allele for (i = 0; i < b->n_gi; ++i) if (b->gi[i].fmt == bcf_str2int("PL", 2)) break; if (i == b->n_gi) return -1; // no PL PL = b->gi + i; for (i = 0; i < b->n_smpl; ++i) { const uint8_t *p = PL->data + i * PL->len; // the PL for the i-th individual uint8_t *g = gl + 10 * i; for (k = j = 0; k < 4; ++k) { for (l = k; l < 4; ++l) { int t, x = k, y = l; if (x > y) t = x, x = y, y = t; // make sure x is the smaller x = y * (y+1) / 2 + x; g[j++] = x < PL->len? p[x] : 255; } } } return 0; }