
ICEDUST: The Software for COMET

Ben Krikler
Imperial College London

(Dated: February 24, 2015(v1))

We cover an introduction to ICEDUST, with an overview of its structure and some of the key
components. We then go through in more depth how the simulation and reconstruction stages work.
This document should be periodically expanded and elaborated as the software is developed to act
as a hand-book for new users.
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I. HISTORY

Until recently, most simulations for the COMET ex-
periment have been stand-alone with many people study-
ing different aspects of the experiment separately. With
data taking fast approaching, the decision to build a uni-
fied approach to the offline software was taken. In order
to minimize the effort required to build such software, it
was decided to base the COMET software on the frame-
work used by ND280, the near detector for the T2K ex-
periment [1]. ICEDUST, as the COMET framework is
now known, has therefore inherited the general structure
and low-level aspects (in particular, the online / offline
data formats) from a framework that has been well tested
on real data. ICEDUST Can Efficiently Do Useful Soft-
ware Things and stands for the Integrated COMET Ex-
periment Data User Software Toolkit.

II. ICEDUST

The ICEDUST framework splits up the code base into
packages of which there are currently around 65. A pack-
age, in principle, has a single responsibility or task which
it performs by providing a library, an executable or oc-
casionaly both. Such responsibilities include defining an
interface or data format, providing access to some exter-
nal tool or library, and running some part of the complete
processing chain.

The flow of information along the processing chain is
shown in fig. 1. The naming of the packages should help
to identify those that sit within the same collection. For
example, the prefix ‘Sim’ means the package sits within
the simulation collection, whereas ‘Recon‘ means it be-
longs to reconstruction.

Packages that provide interfaces and data structures
are considered ‘lower level’ and begin with the prefix ‘oa’
1.

A Conventions document [2] sets out the full package
naming scheme as well as other more detailed conventions
for code and scripting style.

III. OBTAINING AND WORKING WITH THE
CODE

A. Installing

B. Repository

C. Building (CMT)

IV. KEY CLASSES AND PACKAGES

When working with a framework it is important to
understand the basic support structure and classes. In
ICEDUST, most of these low-level packages are found in
the ‘oa’ collection.

For instance, communication between packages is
nearly entirely managed through a common file format
known as ‘oaEvent‘. Since this format also contains the

1 In ND280, this stood for ‘off-axis’, ‘on-axis’ or ((CHECK: . . .))
. In COMET, we take it to be ‘On Aluminium’
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FIG. 1: The interaction between the key packages of the ICEDUST framework. Black arrows show the direction of information
flow from one package to another. Blue arrows show the format of output data whereas pink arrows show the format of input
data to a given package.

actual data tuples, there is less need for book-keeping
since the data should be self-descriptive. An oaEvent file
is built using a ROOT [3] TFile which contains condi-
tions information, a representation of the geometry and
the actual data itself which is stored in a TTree, giving
a high level of compression and simple routines for data
retrieval.

A. oaEvent

1. Data

Data in the the oaEvent format is built by a heirar-
chical structure of objects from the class called IDatum.
This is a light-weight extension to ROOT’s TNamed class
that provides a stronger memory management policy and
avoids the need for global pointers to access the out-
put data hierarchy. Collections of data are stored in
IDataVectors which derive from IDatum and can be used
similarly to the STL’s map class, with iterators and key-
value access provided by the three methods Has, Use and
Get.

The Doxygen documentation [4] provides more infor-
mation on this.

2. Geometry

Geometries are stored alongside the data they relate
to. Although this was inherited directly from ND280, it
is particularly relevant for COMET since the exact geom-

etry and setup will change a great deal between Phase-I
and Phase-II and even within Phase-I there will be mul-
tiple setups with two detectors and different target and
absorber configurations.

The geometry in oaEvent is stored using ROOT’s
TGeo format. This library provides methods to deal with
material budget calculations, visualisation of the experi-
ment and overlap checking. The exact geometries them-
selves are created in SimG4, the Geant4 package which
shall be discussed in more depth later.

For real data, the geometry is actually persisted as a
hash which is used to obtain the correct geometry file.
The hash is formed using the SHA1 algorithm, so each
hash is able to uniquely identify the geometry it corre-
sponds to. These geometry files are pulled from a remote
database at the start of every ICEDUST session and the
correct geometry is loaded the first time the file is read
in so that the difference between simulated and real data
is again transparent.

3. Conditions and Fieldmaps

Finally, the header of oaEvent files contains other in-
formation describing the environment of the experiment.
These include run, sub-run and event identifiers, as well
as DAQ and Trigger configurations like timestamps and
bit masks.

Slow control data is not contained in the oaEvent file
but accessed through the oaSlowControlDatabase pack-
age.

Lastly, information on the fieldmap used for the data is
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not currently stored in the oaEvent file. For ND280 this
was not a big issue as the fieldmap is not particularly
complicated and is less critical to the experiment. For
COMET on the other hand, knowing the field accurately
across the entire experiment is both difficult, given the
number and variety of solenoids, and important, since it
directly relates to background and trigger rates.

Furthermore, as with the geometry, the field itself is
likely to change quite a lot during the lifetime of the ex-
periment. It is therefore important that this information
be managed carefully and as such we plan on introducing
into oaEvent a similar arrangement as for the geometry,
where each fieldmap file is given a hash and stored in it’s
own ROOT format. These hashes and the various scaling
and transformations that get applied to each fieldmap are
then stored inside the oaEvent file so that the field that
corresponds to a set of data is deducible from the data
files themselves.

4. Reading and Writing with oaEvent

Given an oaEvent file, the simplest way to run over the
contained data is by using the cometEventLoop function-
ality. This provides a simple way to produce a program,
complete with command line arguments, that loops over
every event in the file.

To work with this, create a class that inher-
its from ICOMETEventLoopFunction and overloads the
operator() method, which takes an instance of COME-
TEvent. You can use the various getters for a COME-
TEvent to obtain the data for the current event.

A complete tutorial on the comet event loop ap-
proach can be found at: http://www.hep.ph.ic.ac.uk/

~bek07/comet//oaEvent/eventLoop.html. For a full
list of getters on the COMETEvent, you should also
check the doxygen documentation.

If you want finer control over the event access, for in-
stance if you do not want to just iterate over all events,
then you can use the COMETInput class to handle reading
from the oaEvent file. Give it the name of the root file
or a pointer to the TFile that’s been already opened and
it will set up the internal methods to be able to get the
geometry, the data and all the other contents of the file.
You can then access any event using the ReadEvent(int)
method or move between events with NextEvent(int).

Similarly, for making oaEvent files, the best is to use
the COMETOutput class. This makes it easier to write the
geometry to file and fill the internal data tree with the
output data.

B. Utility Classes

1. Logging

Finer control over input and output streams is pro-
vided within ICEDUST by the use of the COMETLog and

COMETError macros. Since they are macros, they can be
switched off at compile time so that they introduce no
performance cost for production scale runs without the
need to edit the code. The error macros also print the
line and filename from where the error message originates
which helps when trying to find the cause of the prob-
lem. There are several other related macros which will
only output at higher verbosities.

The named versions of these macros allow for fine
grained debugging of processes without the need to edit
code. For example, the macro COMETNamedTrace takes
two arguments, the name to associate this output to,
and a streamable object that provides the message. The
code for this looks like:

// From SimG4’s
// COMETInteractiveCombinationParameter.cc
COMETNamedTrace("InteractiveCombo",

"Making value for "
<< this->COMETVParameter::GetName());

Then in a file, which by default should be called
‘comet.config’ and sit in your current working directory,
adding the line:

error.InteractiveCombo.level=TraceLevel

will set the error level for that named stream.
Possible log values, in order of increasing verbosity,

are: QuietLevel, LogLevel, InfoLevel, VerboseLevel.
Similarly error values, in order of increasing ver-
bosity, are: SilentLevel, ErrorLevel, SevereLevel, Warn-
Level, DebugLevel, TraceLevel. For more informa-
tion on these macros, look in the source code at:
oaEvent/src/ICOMETLog.hxx or at the Doxygen at [4]

2. Exception Handling

Exceptions are a very helpful way to flag up issues dur-
ing run-time. ICEDUST provides a very convenient set
of macros that make it easier to declare exceptions that
are meaningful to the user, have a hierarhical categorisa-
tion and can even provide an on-the-spot backtrace.

To create exceptions with these macros in your code
you add:

OA_EXCEPTION(EmyClass,EoaCore);
OA_EXCEPTION(ESpecificError,MyClass);

which creates two exception classes with the follow-
ing inheritance heirarchy: EoaCore ← EmyClass ←
ESpecificError. This heirarchical structure is useful
when the exception gets thrown as it allows us to avoid
name-clashes with similar exceptions for a different part
of the code. To get these macros you will need to include
the EoaCore.hxx header in your code.

When you want to throw one of the above exceptions,
you simply call the constructor with no arguments:

throw ESpecificError();

http://www.hep.ph.ic.ac.uk/~bek07/comet//oaEvent/eventLoop.html
http://www.hep.ph.ic.ac.uk/~bek07/comet//oaEvent/eventLoop.html
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The catching block can then get the exception name
and backtrace just by calling what() on the caught excep-
tion. This will work in catch blocks for std::exception,
since EoaCore derives from this. It is still useful to test
first for EoaCore though since this will help differentiate
exceptions from our code and those coming from else-
where, such as std::out_of_range from trying to ob-
tain an index beyond the limits of a given vector. A
try...catch block for trapping these exceptions would
have the form:

try{
// something that may throw an exception

}catch( EoaCore& e){
// Handle ICEDUST exceptions
// Maybe just:
COMETError( e.what() );

}catch( std::exception& e){
// Handle std::exception
COMETError( "Unknown problem: "<<e.what() );

}

3. Memory Management

Both a strength and a headache in c++ data analy-
sis is the need to define your own memory management
scheme. Normally this is stated that for every new op-
erator, somewhere in the code there should be a delete
operation, but implementing this is left up to the devel-
oper. In ICEDUST, a set of classes implement a different
approach, known as reference counting. This is where an
object is wrapped by a class who’s destructor takes care
of deleting the object once and only once all references
to the object have finished with it.

This class goes by the name of IHandle and since it
is designed to wrap any type of object, it is a template
class. It can be used to replace code like:

ISomething* aThing = new ISomething();

with:

IHandle<ISomething> aThing(new ISomething());

The IHandle can then be treated as if it were a normal
pointer:

// Implicit checking
if(aThing){
// operator->
aThing->DoSomething();
// dereference / operator*
ISomething aCopy = *aThing;

}

If the IHandle goes out of scope, the internal reference
count is decremented. Once the count reaches 0 the con-
tained memory is deallocated (deleted). If however you
return the IHandle at the end of some function, which
is then copied and used elsewhere, the internal reference

counter will remain above 0 and the memory will remain
allocated.
Warning: Reference counting comes with some

drawbacks (check the web for examples). For instance,
be careful not to make an IHandle to something that
contains an IHandle to the first object. It may seem con-
trived but can occur easily when the reference counted
objects are buried inside other objects creating a self-
referencing loop (known as a reference cycle) which pre-
vents the reference counters from ever reaching 0. Also
be aware that many of ROOT’s objects (such as TH1s
and TTrees) provide their own memory management so
deleting those objects yourself can cause memory upsets.

4. Runtime Parameters

The package oaRuntimeParameters provides a simple
interface for reading in parameters from a text file. These
can be used to control the way a program runs via a con-
figuration file as well as through command line options.
It also provides for the interpretation of many SI units.

Parameter files should sit in a directory called ‘param-
eters’ in a file named: <packageName>.parameters.dat.
Within the file, parameters occur as key value pairs
separated by ‘ = ’ (a space, an equals sign and an-
other space) and are contained in a pair of angle brack-
ets. The key must always be prefixed by the pack-
age name and a full stop (which is used to iden-
tify the parameter file to use). For example, to
set a parameter called ‘MaxIterations’ to the value
‘100’ in a package called ‘SolveComet’ you would write
< SolveComet.MaxIterations = 100 >. Outside of the
angle brackets, the parser ignores whatever it finds so you
can document the parameters very easily.

C. Running with IcedustControl

The IcedustControl package is a big python-based tool
which allows a single user to run all the various packages
in a single go. It is the main tool for production data
and so manages all the various book-keeping of passing
data along the processing chain. It’s input is a text based
‘cfg’ file which the program uses to set up the control files
for the individual stages. IcedustControl is quite high-
level so that it can be run easily without an in-depth
knowledge of the individual packages that it calls and
the options and formats they require.

V. PROCESSING CHAIN

The general flow of data through ICEDUST is shown
in fig. 2. Notably, data from the experiment and the
simulation are processed in the same way, following the
same steps through the chain.
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FIG. 2: The flow of data through ICEDUST. The larger blue
regions represent parts of the framework that share a common
data format, which is specified in the paralellogram.

A. Simulation

The ICEDUST simulation starts with a realistic de-
scription of the incoming proton beam and finishes with
a set of data that should look like the outputs of all elec-
tronics channels. Fig. 3 shows the packages that play a
role in the simulation and their order of processing.

The first step of simulating the particle disbtributions
after the production target is crucial as this is a key factor
in determining the total muon yield and radiation safety
for COMET. Given that we will operate in a previously
untested proton energy regime and with a novel capture
mechanism 2 using hadronic physics models is a useful
way to check the uncertainty of the different models.
Currently we have 3 possible external libraries that can
simulate this area: MARS [6], PHITS [7] and Geant4 [8].
In the past we have also supported Fluka [9] studies but
support for this has not been maintained in ICEDUST.
From this stage of the simulation a ‘oaRooTracker’ file is
written which is a single ROOT TTree containing infor-
mation on the individual particles produced at the target.

Outgoing particles from the production target are then
fed into a Geant4 simulation where particles are tracked
through to the sensitive detectors using Geant4. The
tracking uses the magnetic field description to transport
particles but also simulates the various material interac-
tions and decays so that the beam composition changes in
a realistic manner. This stage in the simulation produces
several outputs, all of which are saved in an oaEvent file,
alongside the geometry and other conditions. This in-

2 The MuSIC experiment at the RCNP in Osaka [5] uses a similar
system of capturing backwards going pions and bent solenoids,
but runs at 400 MeV proton energy whilst COMET will use
8 GeV.

cludes truth information such as the actual trajectories of
selected ‘interesting’ particles which allows one to recon-
struct the decay chain that lead up to a hit. Whether or
not a particle is interesting is determined by several fac-
tors including particle type, location, energy and whether
or not it, or one of its decay products, has deposited en-
ergy in a sensitive detector. Such energy deposits are
themselves also stored in a different container to the truth
information and are known as G4Hits.

The Hit Merger package allows us to reshuffle events.
This is one of the ways that we deal with backgrounds
and signals which have a very low rate compared to most
of the processes that Geant4 will have simulated. It
works from a catalogue of events and is able to take
G4Hits caused by different processes so that a rare back-
ground can be inserted over the standard ‘noise’ from
simple beam simulations.

Finally, all the various G4Hits are processed to give re-
alistic detector responses such as shaped electronic wave-
forms or hit information containing a single charge and
time. To accuately simulate pile-up, this stage will need
to combine hits from different primary proton events,
produce outputs that are ordered in time and ideally
maintain a list of the tracks that contributed to the Hit
so that the various signals can be debugged and studied.

The DetectorResponse package is also tasked with run-
ning the trigger simulation, which is new to ICEDUST
and not inherited from ND280 since the trigger there was
simpler. Since this information will be used to determine
the DAQ outputs, such as when to stop and start a wave-
form readout, this will have to be done in parallel or at
least before the final Digitised readout can be produced.

Table I shows a summary of the data types, how they
are persisted and where they are made and used.

Production Target 
Interactions

Particle Tracking
 Detector Energy Deposits

Combine Background and Signal Hits
Increase Simulated Statistics

Synthesize Electronics Outputs
Trigger SimulationDetectorResponse

HitMerger

MARS PHITS G4

G4

FIG. 3: The package structure making up the ICEDUST sim-
ulation. The collection’s prefix (‘Sim’) is ommitted for sim-
plicity. Each package provides an executable that operates on
an input file from a previous part of the chain. SimG4 is capa-
ble of simulating the production target interactions directly
using Geant4 [8], but given the uncertainty on the various
models’ validities for the COMET setup we also simulate this
aspect using MARS [6] and PHITS [7].
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Output oaEvent Container Made by Used by Description

Primary
primary,
oaRooTracker∗

Turtle, SimMARS,
SimPHITS, SimG4

SimG4
Possibly an incoming proton beam de-
scription or products from the pion
production target

Truth truth SimG4 Analysis
A linked list of particle trajectories,
including positions, momenta, Parti-
cle ID (PID) and parent information

G4Hit G4Hit SimG4
SimHitMerger,
SimDetectorResponse

A single energy deposit from one par-
ticle in one part of the detector

Waveform
waveforms,
trigger waveforms

SimDetectorResponse Analysis

The raw waveform output from an
electronic or trigger channel output.
Since many detectors have two wave-
form streams (one for read-out, one
for the trigger decisions) waveforms
are used in two ways.

Trigger triggers SimDetectorResponse Analysis
A timestamp with information about
the pre-triggers that contributed

Digit digits SimDetectorResponse Reconstruction
A synthesized waveform output from
an electronic channel that has used
trigger information

Hit hits SimDetectorResponse Reconstruction
A single charge and time read-out
that uses trigger information

TABLE I: The different data types persisted from the simulation. The final outputs, digits and hits, should be useable by the
rest of ICEDUST as if it were real data. ∗ Primary particles are initially stored in a separate file type known as a RooTracker
file format, as well as being put into the oaEvent file.

B. Reconstruction

This is an area of ICEDUST that is rapidly being
developed. The proposed package structure is shown
in fig. 4. The intention is to have a single executable
that runs detector specfic reconstruction over each sub-
system, the details of which are implemented in separate
packages. Each of these detector specific packages has
access to a common set of algorithms for track finding,
fitting and clustering.

Each stage of the reconstruction process will be de-

signed to use multiple approaches in order to reduce
systematic uncertainties and bias due to reconstruction.
The persisted results will therefore use physical quanti-
ties so that the subsequent analysis can work indepen-
dently from the choice of reconstruction algorithm.

Track fitting will need to consider multi-turn fitting in
order to track particles to the hodoscopes and get the
required resolution. Genfit is one of the external fitting
packages that will be used, but requires some modifica-
tion in order to perform multi-turn fitting.

[1] K. Abe, N. Abgrall et al. “The T2K experiment”. Nu-
clear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, 659(1):(2011) 106 – 135. doi:10.1016/j.
nima.2011.06.067.

[2] B. Krikler, A. Kurup et al. “ICEDUST Conventions”.
Internal Document.

[3] R. Brun and F. Rademakers. “ROOT - An Object Ori-
ented Data Analysis Framework, Proceedings AIHENP’96
Workshop, Lausanne, Sep. 1996,”. Nuclear Instruments
and Methods in Physics Research Section A, 81.

[4] oaEvent Doxygen. “http://www.hep.ph.ic.ac.uk/

~bek07/comet/oaEvent/index.html”.
[5] Y. Hino, Y. Kuno et al. “A Highly intense DC muon

source, MuSIC and muon CLFV search”. Nuclear Physics
B (Proceedings Supplements), 253-255:(2014) 206–207.

doi:10.1016/j.nuclphysbps.2014.09.051.
[6] N. V. Mokhov. “The MARS code system user’s guide

version 13(95)”.
[7] H. Iwase, K. Niita and T. Nakamura. “Development of

general-purpose particle and heavy ion transport Monte
Carlo code”. Journal of Nuclear Science and Technology,
39(11):(2002) 1142–1151.

[8] S. Agostinelli, J. Allison et al. “Geant4 - a simulation
toolkit”. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment, 506(3):(2003) 250 – 303.
doi:10.1016/S0168-9002(03)01368-8.

[9] A. Ferrari, P. R. Sala et al. “FLUKA: A multi-particle
transport code (Program version 2005)”.

http://www.hep.ph.ic.ac.uk/~bek07/comet/oaEvent/index.html
http://www.hep.ph.ic.ac.uk/~bek07/comet/oaEvent/index.html


7

Global

ECAL

CyDet

StrawTrk

TrackFitting

TrackFinding

Clustering

Main reconstruction 
executable

Defines abstract 
recon interfaces 

Detector specific 
reconstruction

Generic reconstruction 
algorithms

FIG. 4: The package structure and communication for the ICEDUST reconstruction. The collection’s prefix (‘Recon’) is
ommitted for simplicity. Only the ReconGlobal package produces an exectuable, the other packages provide libraries that are
compiled in to the executable.
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