//////////////////////////////////////////////////////////// // $Id: HEPConstants.hxx,v 1.2 2004/12/13 00:39:30 jnurep Exp $ // // This is taken from CLHEP and is included into here so that we don't // have to depend on CLHEP. All of the constants are in the UNO:: namespace. // ---------------------------------------------------------------------- // HEP coherent Physical Constants // // This file has been provided by Geant4 (simulation toolkit for HEP). // // The basic units are : // millimeter // nanosecond // Mega electron Volt // positon charge // degree Kelvin // amount of substance (mole) // luminous intensity (candela) // radian // steradian // // Below is a non exhaustive list of Physical CONSTANTS, // computed in the Internal HEP System Of Units. // // Most of them are extracted from the Particle Data Book : // Phys. Rev. D volume 50 3-1 (1994) page 1233 // // ...with a meaningful (?) name ... // // You can add your own constants. // // Author: M.Maire // // History: // // 23.02.96 Created // 26.03.96 Added constants for standard conditions of temperature // and pressure; also added Gas threshold. #ifndef HEP_CONSTANTS_HXX #define HEP_CONSTANTS_HXX #include "HEPUnits.hxx" namespace unit { const double pi = 3.14159265358979323846; const double twopi = 2*pi; const double halfpi = pi/2; const double pi2 = pi*pi; // // // const double Avogadro = 6.0221367e+23/mole; // // c = 299.792458 mm/ns // c^2 = 898.7404 (mm/ns)^2 // const double c_light = 2.99792458e+8 * meter/second; const double c_squared = c_light * c_light; // // h = 4.13566e-12 MeV*ns // hbar = 6.58212e-13 MeV*ns // hbarc = 197.32705e-12 MeV*mm // const double h_Planck = 6.6260755e-34 * joule*second; const double hbar_Planck = h_Planck/twopi; const double hbarc = hbar_Planck * c_light; const double hbarc_squared = hbarc * hbarc; // // // const double electron_charge = - eplus; // see SystemOfUnits.h const double e_squared = eplus * eplus; // // amu_c2 - atomic equivalent mass unit // amu - atomic mass unit // const double electron_mass_c2 = 0.51099906 * MeV; const double proton_mass_c2 = 938.27231 * MeV; const double neutron_mass_c2 = 939.56563 * MeV; const double amu_c2 = 931.49432 * MeV; const double amu = amu_c2/c_squared; // // permeability of free space mu0 = 2.01334e-16 Mev*(ns*eplus)^2/mm // permittivity of free space epsil0 = 5.52636e+10 eplus^2/(MeV*mm) // const double mu0 = 4*pi*1.e-7 * henry/meter; const double epsilon0 = 1./(c_squared*mu0); // // electromagnetic coupling = 1.43996e-12 MeV*mm/(eplus^2) // const double elm_coupling = e_squared/(4*pi*epsilon0); const double fine_structure_const = elm_coupling/hbarc; const double classic_electr_radius = elm_coupling/electron_mass_c2; const double electron_Compton_length = hbarc/electron_mass_c2; const double Bohr_radius = electron_Compton_length/fine_structure_const; const double alpha_rcl2 = fine_structure_const *classic_electr_radius *classic_electr_radius; const double twopi_mc2_rcl2 = twopi*electron_mass_c2 *classic_electr_radius *classic_electr_radius; // // // const double k_Boltzmann = 8.617385e-11 * MeV/kelvin; // // // const double STP_Temperature = 273.15*kelvin; const double STP_Pressure = 1.*atmosphere; const double kGasThreshold = 10.*milligram/centimeter3; // // // const double universe_mean_density = 1.e-25*gram/centimeter3; } #endif