// Copyright Paul A. Bristow 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_STATS_rayleigh_HPP #define BOOST_STATS_rayleigh_HPP #include #include #include #include #include #include #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable: 4702) // unreachable code (return after domain_error throw). #endif #include #include namespace boost{ namespace math{ namespace detail { // Error checks: template inline bool verify_sigma(const char* function, RealType sigma, RealType* presult, const Policy& pol) { if((sigma <= 0) || (!(boost::math::isfinite)(sigma))) { *presult = policies::raise_domain_error( function, "The scale parameter \"sigma\" must be > 0 and finite, but was: %1%.", sigma, pol); return false; } return true; } // bool verify_sigma template inline bool verify_rayleigh_x(const char* function, RealType x, RealType* presult, const Policy& pol) { if((x < 0) || (boost::math::isnan)(x)) { *presult = policies::raise_domain_error( function, "The random variable must be >= 0, but was: %1%.", x, pol); return false; } return true; } // bool verify_rayleigh_x } // namespace detail template > class rayleigh_distribution { public: typedef RealType value_type; typedef Policy policy_type; rayleigh_distribution(RealType l_sigma = 1) : m_sigma(l_sigma) { RealType err; detail::verify_sigma("boost::math::rayleigh_distribution<%1%>::rayleigh_distribution", l_sigma, &err, Policy()); } // rayleigh_distribution RealType sigma()const { // Accessor. return m_sigma; } private: RealType m_sigma; }; // class rayleigh_distribution typedef rayleigh_distribution rayleigh; template inline const std::pair range(const rayleigh_distribution& /*dist*/) { // Range of permissible values for random variable x. using boost::math::tools::max_value; return std::pair(static_cast(0), std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : max_value()); } template inline const std::pair support(const rayleigh_distribution& /*dist*/) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); } template inline RealType pdf(const rayleigh_distribution& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std function exp. RealType sigma = dist.sigma(); RealType result = 0; static const char* function = "boost::math::pdf(const rayleigh_distribution<%1%>&, %1%)"; if(false == detail::verify_sigma(function, sigma, &result, Policy())) { return result; } if(false == detail::verify_rayleigh_x(function, x, &result, Policy())) { return result; } if((boost::math::isinf)(x)) { return 0; } RealType sigmasqr = sigma * sigma; result = x * (exp(-(x * x) / ( 2 * sigmasqr))) / sigmasqr; return result; } // pdf template inline RealType cdf(const rayleigh_distribution& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std functions RealType result = 0; RealType sigma = dist.sigma(); static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)"; if(false == detail::verify_sigma(function, sigma, &result, Policy())) { return result; } if(false == detail::verify_rayleigh_x(function, x, &result, Policy())) { return result; } result = -boost::math::expm1(-x * x / ( 2 * sigma * sigma), Policy()); return result; } // cdf template inline RealType quantile(const rayleigh_distribution& dist, const RealType& p) { BOOST_MATH_STD_USING // for ADL of std functions RealType result = 0; RealType sigma = dist.sigma(); static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)"; if(false == detail::verify_sigma(function, sigma, &result, Policy())) return result; if(false == detail::check_probability(function, p, &result, Policy())) return result; if(p == 0) { return 0; } if(p == 1) { return policies::raise_overflow_error(function, 0, Policy()); } result = sqrt(-2 * sigma * sigma * boost::math::log1p(-p, Policy())); return result; } // quantile template inline RealType cdf(const complemented2_type, RealType>& c) { BOOST_MATH_STD_USING // for ADL of std functions RealType result = 0; RealType sigma = c.dist.sigma(); static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)"; if(false == detail::verify_sigma(function, sigma, &result, Policy())) { return result; } RealType x = c.param; if(false == detail::verify_rayleigh_x(function, x, &result, Policy())) { return result; } RealType ea = x * x / (2 * sigma * sigma); // Fix for VC11/12 x64 bug in exp(float): if (ea >= tools::max_value()) return 0; result = exp(-ea); return result; } // cdf complement template inline RealType quantile(const complemented2_type, RealType>& c) { BOOST_MATH_STD_USING // for ADL of std functions, log & sqrt. RealType result = 0; RealType sigma = c.dist.sigma(); static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)"; if(false == detail::verify_sigma(function, sigma, &result, Policy())) { return result; } RealType q = c.param; if(false == detail::check_probability(function, q, &result, Policy())) { return result; } if(q == 1) { return 0; } if(q == 0) { return policies::raise_overflow_error(function, 0, Policy()); } result = sqrt(-2 * sigma * sigma * log(q)); return result; } // quantile complement template inline RealType mean(const rayleigh_distribution& dist) { RealType result = 0; RealType sigma = dist.sigma(); static const char* function = "boost::math::mean(const rayleigh_distribution<%1%>&, %1%)"; if(false == detail::verify_sigma(function, sigma, &result, Policy())) { return result; } using boost::math::constants::root_half_pi; return sigma * root_half_pi(); } // mean template inline RealType variance(const rayleigh_distribution& dist) { RealType result = 0; RealType sigma = dist.sigma(); static const char* function = "boost::math::variance(const rayleigh_distribution<%1%>&, %1%)"; if(false == detail::verify_sigma(function, sigma, &result, Policy())) { return result; } using boost::math::constants::four_minus_pi; return four_minus_pi() * sigma * sigma / 2; } // variance template inline RealType mode(const rayleigh_distribution& dist) { return dist.sigma(); } template inline RealType median(const rayleigh_distribution& dist) { using boost::math::constants::root_ln_four; return root_ln_four() * dist.sigma(); } template inline RealType skewness(const rayleigh_distribution& /*dist*/) { // using namespace boost::math::constants; return static_cast(0.63111065781893713819189935154422777984404221106391L); // Computed using NTL at 150 bit, about 50 decimal digits. // return 2 * root_pi() * pi_minus_three() / pow23_four_minus_pi(); } template inline RealType kurtosis(const rayleigh_distribution& /*dist*/) { // using namespace boost::math::constants; return static_cast(3.2450893006876380628486604106197544154170667057995L); // Computed using NTL at 150 bit, about 50 decimal digits. // return 3 - (6 * pi() * pi() - 24 * pi() + 16) / // (four_minus_pi() * four_minus_pi()); } template inline RealType kurtosis_excess(const rayleigh_distribution& /*dist*/) { //using namespace boost::math::constants; // Computed using NTL at 150 bit, about 50 decimal digits. return static_cast(0.2450893006876380628486604106197544154170667057995L); // return -(6 * pi() * pi() - 24 * pi() + 16) / // (four_minus_pi() * four_minus_pi()); } // kurtosis template inline RealType entropy(const rayleigh_distribution& dist) { using std::log; return 1 + log(dist.sigma()*constants::one_div_root_two()) + constants::euler()/2; } } // namespace math } // namespace boost #ifdef _MSC_VER # pragma warning(pop) #endif // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #endif // BOOST_STATS_rayleigh_HPP