""" Introduction ============ The Munkres module provides an implementation of the Munkres algorithm (also called the Hungarian algorithm or the Kuhn-Munkres algorithm), useful for solving the Assignment Problem. For complete usage documentation, see: https://software.clapper.org/munkres/ """ __docformat__ = 'markdown' # --------------------------------------------------------------------------- # Imports # --------------------------------------------------------------------------- import sys import copy from typing import Union, NewType, Sequence, Tuple, Optional, Callable # --------------------------------------------------------------------------- # Exports # --------------------------------------------------------------------------- __all__ = ['Munkres', 'make_cost_matrix', 'DISALLOWED'] # --------------------------------------------------------------------------- # Globals # --------------------------------------------------------------------------- AnyNum = NewType('AnyNum', Union[int, float]) Matrix = NewType('Matrix', Sequence[Sequence[AnyNum]]) # Info about the module __version__ = "1.1.4" __author__ = "Brian Clapper, bmc@clapper.org" __url__ = "https://software.clapper.org/munkres/" __copyright__ = "(c) 2008-2020 Brian M. Clapper" __license__ = "Apache Software License" # Constants class DISALLOWED_OBJ(object): pass DISALLOWED = DISALLOWED_OBJ() DISALLOWED_PRINTVAL = "D" # --------------------------------------------------------------------------- # Exceptions # --------------------------------------------------------------------------- class UnsolvableMatrix(Exception): """ Exception raised for unsolvable matrices """ pass # --------------------------------------------------------------------------- # Classes # --------------------------------------------------------------------------- class Munkres: """ Calculate the Munkres solution to the classical assignment problem. See the module documentation for usage. """ def __init__(self): """Create a new instance""" self.C = None self.row_covered = [] self.col_covered = [] self.n = 0 self.Z0_r = 0 self.Z0_c = 0 self.marked = None self.path = None def pad_matrix(self, matrix: Matrix, pad_value: int=0) -> Matrix: """ Pad a possibly non-square matrix to make it square. **Parameters** - `matrix` (list of lists of numbers): matrix to pad - `pad_value` (`int`): value to use to pad the matrix **Returns** a new, possibly padded, matrix """ max_columns = 0 total_rows = len(matrix) for row in matrix: max_columns = max(max_columns, len(row)) total_rows = max(max_columns, total_rows) new_matrix = [] for row in matrix: row_len = len(row) new_row = row[:] if total_rows > row_len: # Row too short. Pad it. new_row += [pad_value] * (total_rows - row_len) new_matrix += [new_row] while len(new_matrix) < total_rows: new_matrix += [[pad_value] * total_rows] return new_matrix def compute(self, cost_matrix: Matrix) -> Sequence[Tuple[int, int]]: """ Compute the indexes for the lowest-cost pairings between rows and columns in the database. Returns a list of `(row, column)` tuples that can be used to traverse the matrix. **WARNING**: This code handles square and rectangular matrices. It does *not* handle irregular matrices. **Parameters** - `cost_matrix` (list of lists of numbers): The cost matrix. If this cost matrix is not square, it will be padded with zeros, via a call to `pad_matrix()`. (This method does *not* modify the caller's matrix. It operates on a copy of the matrix.) **Returns** A list of `(row, column)` tuples that describe the lowest cost path through the matrix """ self.C = self.pad_matrix(cost_matrix) self.n = len(self.C) self.original_length = len(cost_matrix) self.original_width = len(cost_matrix[0]) self.row_covered = [False for i in range(self.n)] self.col_covered = [False for i in range(self.n)] self.Z0_r = 0 self.Z0_c = 0 self.path = self.__make_matrix(self.n * 2, 0) self.marked = self.__make_matrix(self.n, 0) done = False step = 1 steps = { 1 : self.__step1, 2 : self.__step2, 3 : self.__step3, 4 : self.__step4, 5 : self.__step5, 6 : self.__step6 } while not done: try: func = steps[step] step = func() except KeyError: done = True # Look for the starred columns results = [] for i in range(self.original_length): for j in range(self.original_width): if self.marked[i][j] == 1: results += [(i, j)] return results def __copy_matrix(self, matrix: Matrix) -> Matrix: """Return an exact copy of the supplied matrix""" return copy.deepcopy(matrix) def __make_matrix(self, n: int, val: AnyNum) -> Matrix: """Create an *n*x*n* matrix, populating it with the specific value.""" matrix = [] for i in range(n): matrix += [[val for j in range(n)]] return matrix def __step1(self) -> int: """ For each row of the matrix, find the smallest element and subtract it from every element in its row. Go to Step 2. """ C = self.C n = self.n for i in range(n): vals = [x for x in self.C[i] if x is not DISALLOWED] if len(vals) == 0: # All values in this row are DISALLOWED. This matrix is # unsolvable. raise UnsolvableMatrix( "Row {0} is entirely DISALLOWED.".format(i) ) minval = min(vals) # Find the minimum value for this row and subtract that minimum # from every element in the row. for j in range(n): if self.C[i][j] is not DISALLOWED: self.C[i][j] -= minval return 2 def __step2(self) -> int: """ Find a zero (Z) in the resulting matrix. If there is no starred zero in its row or column, star Z. Repeat for each element in the matrix. Go to Step 3. """ n = self.n for i in range(n): for j in range(n): if (self.C[i][j] == 0) and \ (not self.col_covered[j]) and \ (not self.row_covered[i]): self.marked[i][j] = 1 self.col_covered[j] = True self.row_covered[i] = True break self.__clear_covers() return 3 def __step3(self) -> int: """ Cover each column containing a starred zero. If K columns are covered, the starred zeros describe a complete set of unique assignments. In this case, Go to DONE, otherwise, Go to Step 4. """ n = self.n count = 0 for i in range(n): for j in range(n): if self.marked[i][j] == 1 and not self.col_covered[j]: self.col_covered[j] = True count += 1 if count >= n: step = 7 # done else: step = 4 return step def __step4(self) -> int: """ Find a noncovered zero and prime it. If there is no starred zero in the row containing this primed zero, Go to Step 5. Otherwise, cover this row and uncover the column containing the starred zero. Continue in this manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step 6. """ step = 0 done = False row = 0 col = 0 star_col = -1 while not done: (row, col) = self.__find_a_zero(row, col) if row < 0: done = True step = 6 else: self.marked[row][col] = 2 star_col = self.__find_star_in_row(row) if star_col >= 0: col = star_col self.row_covered[row] = True self.col_covered[col] = False else: done = True self.Z0_r = row self.Z0_c = col step = 5 return step def __step5(self) -> int: """ Construct a series of alternating primed and starred zeros as follows. Let Z0 represent the uncovered primed zero found in Step 4. Let Z1 denote the starred zero in the column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there will always be one). Continue until the series terminates at a primed zero that has no starred zero in its column. Unstar each starred zero of the series, star each primed zero of the series, erase all primes and uncover every line in the matrix. Return to Step 3 """ count = 0 path = self.path path[count][0] = self.Z0_r path[count][1] = self.Z0_c done = False while not done: row = self.__find_star_in_col(path[count][1]) if row >= 0: count += 1 path[count][0] = row path[count][1] = path[count-1][1] else: done = True if not done: col = self.__find_prime_in_row(path[count][0]) count += 1 path[count][0] = path[count-1][0] path[count][1] = col self.__convert_path(path, count) self.__clear_covers() self.__erase_primes() return 3 def __step6(self) -> int: """ Add the value found in Step 4 to every element of each covered row, and subtract it from every element of each uncovered column. Return to Step 4 without altering any stars, primes, or covered lines. """ minval = self.__find_smallest() events = 0 # track actual changes to matrix for i in range(self.n): for j in range(self.n): if self.C[i][j] is DISALLOWED: continue if self.row_covered[i]: self.C[i][j] += minval events += 1 if not self.col_covered[j]: self.C[i][j] -= minval events += 1 if self.row_covered[i] and not self.col_covered[j]: events -= 2 # change reversed, no real difference if (events == 0): raise UnsolvableMatrix("Matrix cannot be solved!") return 4 def __find_smallest(self) -> AnyNum: """Find the smallest uncovered value in the matrix.""" minval = sys.maxsize for i in range(self.n): for j in range(self.n): if (not self.row_covered[i]) and (not self.col_covered[j]): if self.C[i][j] is not DISALLOWED and minval > self.C[i][j]: minval = self.C[i][j] return minval def __find_a_zero(self, i0: int = 0, j0: int = 0) -> Tuple[int, int]: """Find the first uncovered element with value 0""" row = -1 col = -1 i = i0 n = self.n done = False while not done: j = j0 while True: if (self.C[i][j] == 0) and \ (not self.row_covered[i]) and \ (not self.col_covered[j]): row = i col = j done = True j = (j + 1) % n if j == j0: break i = (i + 1) % n if i == i0: done = True return (row, col) def __find_star_in_row(self, row: Sequence[AnyNum]) -> int: """ Find the first starred element in the specified row. Returns the column index, or -1 if no starred element was found. """ col = -1 for j in range(self.n): if self.marked[row][j] == 1: col = j break return col def __find_star_in_col(self, col: Sequence[AnyNum]) -> int: """ Find the first starred element in the specified row. Returns the row index, or -1 if no starred element was found. """ row = -1 for i in range(self.n): if self.marked[i][col] == 1: row = i break return row def __find_prime_in_row(self, row) -> int: """ Find the first prime element in the specified row. Returns the column index, or -1 if no starred element was found. """ col = -1 for j in range(self.n): if self.marked[row][j] == 2: col = j break return col def __convert_path(self, path: Sequence[Sequence[int]], count: int) -> None: for i in range(count+1): if self.marked[path[i][0]][path[i][1]] == 1: self.marked[path[i][0]][path[i][1]] = 0 else: self.marked[path[i][0]][path[i][1]] = 1 def __clear_covers(self) -> None: """Clear all covered matrix cells""" for i in range(self.n): self.row_covered[i] = False self.col_covered[i] = False def __erase_primes(self) -> None: """Erase all prime markings""" for i in range(self.n): for j in range(self.n): if self.marked[i][j] == 2: self.marked[i][j] = 0 # --------------------------------------------------------------------------- # Functions # --------------------------------------------------------------------------- def make_cost_matrix( profit_matrix: Matrix, inversion_function: Optional[Callable[[AnyNum], AnyNum]] = None ) -> Matrix: """ Create a cost matrix from a profit matrix by calling `inversion_function()` to invert each value. The inversion function must take one numeric argument (of any type) and return another numeric argument which is presumed to be the cost inverse of the original profit value. If the inversion function is not provided, a given cell's inverted value is calculated as `max(matrix) - value`. This is a static method. Call it like this: from munkres import Munkres cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func) For example: from munkres import Munkres cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxsize - x) **Parameters** - `profit_matrix` (list of lists of numbers): The matrix to convert from profit to cost values. - `inversion_function` (`function`): The function to use to invert each entry in the profit matrix. **Returns** A new matrix representing the inversion of `profix_matrix`. """ if not inversion_function: maximum = max(max(row) for row in profit_matrix) inversion_function = lambda x: maximum - x cost_matrix = [] for row in profit_matrix: cost_matrix.append([inversion_function(value) for value in row]) return cost_matrix def print_matrix(matrix: Matrix, msg: Optional[str] = None) -> None: """ Convenience function: Displays the contents of a matrix. **Parameters** - `matrix` (list of lists of numbers): The matrix to print - `msg` (`str`): Optional message to print before displaying the matrix """ import math if msg is not None: print(msg) # Calculate the appropriate format width. width = 0 for row in matrix: for val in row: if val is DISALLOWED: val = DISALLOWED_PRINTVAL width = max(width, len(str(val))) # Make the format string format = ('%%%d' % width) # Print the matrix for row in matrix: sep = '[' for val in row: if val is DISALLOWED: val = DISALLOWED_PRINTVAL formatted = ((format + 's') % val) sys.stdout.write(sep + formatted) sep = ', ' sys.stdout.write(']\n') # --------------------------------------------------------------------------- # Main # --------------------------------------------------------------------------- if __name__ == '__main__': matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850), # expected cost # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452), # expected cost # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18), # Square variant with floating point value ([[10.1, 10.2, 8.3], [9.4, 8.5, 1.6], [9.7, 7.8, 4.9]], 19.5), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15), # Rectangular variant with floating point value ([[10.01, 10.02, 8.03, 11.04], [9.05, 8.06, 1.07, 1.08], [9.09, 7.1, 4.11, 10.12]], 15.2), # Rectangular with DISALLOWED ([[4, 5, 6, DISALLOWED], [1, 9, 12, 11], [DISALLOWED, 5, 4, DISALLOWED], [12, 12, 12, 10]], 20), # Rectangular variant with DISALLOWED and floating point value ([[4.001, 5.002, 6.003, DISALLOWED], [1.004, 9.005, 12.006, 11.007], [DISALLOWED, 5.008, 4.009, DISALLOWED], [12.01, 12.011, 12.012, 10.013]], 20.028), # DISALLOWED to force pairings ([[1, DISALLOWED, DISALLOWED, DISALLOWED], [DISALLOWED, 2, DISALLOWED, DISALLOWED], [DISALLOWED, DISALLOWED, 3, DISALLOWED], [DISALLOWED, DISALLOWED, DISALLOWED, 4]], 10), # DISALLOWED to force pairings with floating point value ([[1.1, DISALLOWED, DISALLOWED, DISALLOWED], [DISALLOWED, 2.2, DISALLOWED, DISALLOWED], [DISALLOWED, DISALLOWED, 3.3, DISALLOWED], [DISALLOWED, DISALLOWED, DISALLOWED, 4.4]], 11.0)] m = Munkres() for cost_matrix, expected_total in matrices: print_matrix(cost_matrix, msg='cost matrix') indexes = m.compute(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r][c] total_cost += x print(('(%d, %d) -> %s' % (r, c, x))) print(('lowest cost=%s' % total_cost)) assert expected_total == total_cost