# Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.

from __future__ import division
import copy

from whoosh import matching
from whoosh.analysis import Token
from whoosh.compat import u
from whoosh.query import qcore, terms, compound


class Sequence(compound.CompoundQuery):
    """Matches documents containing a list of sub-queries in adjacent
    positions.

    This object has no sanity check to prevent you from using queries in
    different fields.
    """

    JOINT = " NEAR "
    intersect_merge = True

    def __init__(self, subqueries, slop=1, ordered=True, boost=1.0):
        """
        :param subqueries: a list of :class:`whoosh.query.Query` objects to
            match in sequence.
        :param slop: the maximum difference in position allowed between the
            subqueries.
        :param ordered: if True, the position differences between subqueries
            must be positive (that is, each subquery in the list must appear
            after the previous subquery in the document).
        :param boost: a boost factor to add to the score of documents matching
            this query.
        """

        compound.CompoundQuery.__init__(self, subqueries, boost=boost)
        self.slop = slop
        self.ordered = ordered

    def __eq__(self, other):
        return (other and type(self) is type(other)
                and self.subqueries == other.subqueries
                and self.boost == other.boost)

    def __repr__(self):
        return "%s(%r, slop=%d, boost=%f)" % (self.__class__.__name__,
                                              self.subqueries, self.slop,
                                              self.boost)

    def __hash__(self):
        h = hash(self.slop) ^ hash(self.boost)
        for q in self.subqueries:
            h ^= hash(q)
        return h

    def normalize(self):
        # Because the subqueries are in sequence, we can't do the fancy merging
        # that CompoundQuery does
        return self.__class__([q.normalize() for q in self.subqueries],
                              self.slop, self.ordered, self.boost)

    def _and_query(self):
        return compound.And(self.subqueries)

    def estimate_size(self, ixreader):
        return self._and_query().estimate_size(ixreader)

    def estimate_min_size(self, ixreader):
        return self._and_query().estimate_min_size(ixreader)

    def _matcher(self, subs, searcher, context):
        from whoosh.query.spans import SpanNear

        # Tell the sub-queries this matcher will need the current match to get
        # spans
        context = context.set(needs_current=True)
        m = self._tree_matcher(subs, SpanNear.SpanNearMatcher, searcher,
                               context, None, slop=self.slop,
                               ordered=self.ordered)
        return m


class Ordered(Sequence):
    """Matches documents containing a list of sub-queries in the given order.
    """

    JOINT = " BEFORE "

    def _matcher(self, subs, searcher, context):
        from whoosh.query.spans import SpanBefore

        return self._tree_matcher(subs, SpanBefore._Matcher, searcher,
                                  context, None)


class Phrase(qcore.Query):
    """Matches documents containing a given phrase."""

    def __init__(self, fieldname, words, slop=1, boost=1.0, char_ranges=None):
        """
        :param fieldname: the field to search.
        :param words: a list of words (unicode strings) in the phrase.
        :param slop: the number of words allowed between each "word" in the
            phrase; the default of 1 means the phrase must match exactly.
        :param boost: a boost factor that to apply to the raw score of
            documents matched by this query.
        :param char_ranges: if a Phrase object is created by the query parser,
            it will set this attribute to a list of (startchar, endchar) pairs
            corresponding to the words in the phrase
        """

        self.fieldname = fieldname
        self.words = words
        self.slop = slop
        self.boost = boost
        self.char_ranges = char_ranges

    def __eq__(self, other):
        return (other and self.__class__ is other.__class__
                and self.fieldname == other.fieldname
                and self.words == other.words
                and self.slop == other.slop
                and self.boost == other.boost)

    def __repr__(self):
        return "%s(%r, %r, slop=%s, boost=%f)" % (self.__class__.__name__,
                                                  self.fieldname, self.words,
                                                  self.slop, self.boost)

    def __unicode__(self):
        return u('%s:"%s"') % (self.fieldname, u(" ").join(self.words))

    __str__ = __unicode__

    def __hash__(self):
        h = hash(self.fieldname) ^ hash(self.slop) ^ hash(self.boost)
        for w in self.words:
            h ^= hash(w)
        return h

    def has_terms(self):
        return True

    def terms(self, phrases=False):
        if phrases and self.field():
            for word in self.words:
                yield (self.field(), word)

    def tokens(self, boost=1.0):
        char_ranges = self.char_ranges
        startchar = endchar = None
        for i, word in enumerate(self.words):
            if char_ranges:
                startchar, endchar = char_ranges[i]

            yield Token(fieldname=self.fieldname, text=word,
                        boost=boost * self.boost, startchar=startchar,
                        endchar=endchar, chars=True)

    def normalize(self):
        if not self.words:
            return qcore.NullQuery
        if len(self.words) == 1:
            t = terms.Term(self.fieldname, self.words[0])
            if self.char_ranges:
                t.startchar, t.endchar = self.char_ranges[0]
            return t

        words = [w for w in self.words if w is not None]
        return self.__class__(self.fieldname, words, slop=self.slop,
                              boost=self.boost, char_ranges=self.char_ranges)

    def replace(self, fieldname, oldtext, newtext):
        q = copy.copy(self)
        if q.fieldname == fieldname:
            for i, word in enumerate(q.words):
                if word == oldtext:
                    q.words[i] = newtext
        return q

    def _and_query(self):
        return compound.And([terms.Term(self.fieldname, word)
                             for word in self.words])

    def estimate_size(self, ixreader):
        return self._and_query().estimate_size(ixreader)

    def estimate_min_size(self, ixreader):
        return self._and_query().estimate_min_size(ixreader)

    def matcher(self, searcher, context=None):
        from whoosh.query import Term, SpanNear2

        fieldname = self.fieldname
        if fieldname not in searcher.schema:
            return matching.NullMatcher()

        field = searcher.schema[fieldname]
        if not field.format or not field.format.supports("positions"):
            raise qcore.QueryError("Phrase search: %r field has no positions"
                                   % self.fieldname)

        terms = []
        # Build a list of Term queries from the words in the phrase
        reader = searcher.reader()
        for word in self.words:
            try:
                word = field.to_bytes(word)
            except ValueError:
                return matching.NullMatcher()

            if (fieldname, word) not in reader:
                # Shortcut the query if one of the words doesn't exist.
                return matching.NullMatcher()
            terms.append(Term(fieldname, word))

        # Create the equivalent SpanNear2 query from the terms
        q = SpanNear2(terms, slop=self.slop, ordered=True, mindist=1)
        # Get the matcher
        m = q.matcher(searcher, context)

        if self.boost != 1.0:
            m = matching.WrappingMatcher(m, boost=self.boost)
        return m