// Formatting library for C++ - the base API for char/UTF-8 // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_BASE_H_ #define FMT_BASE_H_ #if defined(FMT_IMPORT_STD) && !defined(FMT_MODULE) # define FMT_MODULE #endif #ifndef FMT_MODULE # include // CHAR_BIT # include // FILE # include // strlen // is also included transitively from . # include // std::byte # include // std::enable_if #endif // The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 110002 // Detect compiler versions. #if defined(__clang__) && !defined(__ibmxl__) # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #else # define FMT_GCC_VERSION 0 #endif #if defined(__ICL) # define FMT_ICC_VERSION __ICL #elif defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #else # define FMT_ICC_VERSION 0 #endif #if defined(_MSC_VER) # define FMT_MSC_VERSION _MSC_VER #else # define FMT_MSC_VERSION 0 #endif // Detect standard library versions. #ifdef _GLIBCXX_RELEASE # define FMT_GLIBCXX_RELEASE _GLIBCXX_RELEASE #else # define FMT_GLIBCXX_RELEASE 0 #endif #ifdef _LIBCPP_VERSION # define FMT_LIBCPP_VERSION _LIBCPP_VERSION #else # define FMT_LIBCPP_VERSION 0 #endif #ifdef _MSVC_LANG # define FMT_CPLUSPLUS _MSVC_LANG #else # define FMT_CPLUSPLUS __cplusplus #endif // Detect __has_*. #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #ifdef __has_include # define FMT_HAS_INCLUDE(x) __has_include(x) #else # define FMT_HAS_INCLUDE(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \ (FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \ (FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute)) // Detect C++14 relaxed constexpr. #ifdef FMT_USE_CONSTEXPR // Use the provided definition. #elif FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L // GCC only allows throw in constexpr since version 6: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67371. # define FMT_USE_CONSTEXPR 1 #elif FMT_ICC_VERSION # define FMT_USE_CONSTEXPR 0 // https://github.com/fmtlib/fmt/issues/1628 #elif FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912 # define FMT_USE_CONSTEXPR 1 #else # define FMT_USE_CONSTEXPR 0 #endif #if FMT_USE_CONSTEXPR # define FMT_CONSTEXPR constexpr #else # define FMT_CONSTEXPR #endif // Detect consteval, C++20 constexpr extensions and std::is_constant_evaluated. #if !defined(__cpp_lib_is_constant_evaluated) # define FMT_USE_CONSTEVAL 0 #elif FMT_CPLUSPLUS < 201709L # define FMT_USE_CONSTEVAL 0 #elif FMT_GLIBCXX_RELEASE && FMT_GLIBCXX_RELEASE < 10 # define FMT_USE_CONSTEVAL 0 #elif FMT_LIBCPP_VERSION && FMT_LIBCPP_VERSION < 10000 # define FMT_USE_CONSTEVAL 0 #elif defined(__apple_build_version__) && __apple_build_version__ < 14000029L # define FMT_USE_CONSTEVAL 0 // consteval is broken in Apple clang < 14. #elif FMT_MSC_VERSION && FMT_MSC_VERSION < 1929 # define FMT_USE_CONSTEVAL 0 // consteval is broken in MSVC VS2019 < 16.10. #elif defined(__cpp_consteval) # define FMT_USE_CONSTEVAL 1 #elif FMT_GCC_VERSION >= 1002 || FMT_CLANG_VERSION >= 1101 # define FMT_USE_CONSTEVAL 1 #else # define FMT_USE_CONSTEVAL 0 #endif #if FMT_USE_CONSTEVAL # define FMT_CONSTEVAL consteval # define FMT_CONSTEXPR20 constexpr #else # define FMT_CONSTEVAL # define FMT_CONSTEXPR20 #endif #if defined(FMT_USE_NONTYPE_TEMPLATE_ARGS) // Use the provided definition. #elif defined(__NVCOMPILER) # define FMT_USE_NONTYPE_TEMPLATE_ARGS 0 #elif FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1 #elif defined(__cpp_nontype_template_args) && \ __cpp_nontype_template_args >= 201911L # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1 #elif FMT_CLANG_VERSION >= 1200 && FMT_CPLUSPLUS >= 202002L # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1 #else # define FMT_USE_NONTYPE_TEMPLATE_ARGS 0 #endif #ifdef FMT_USE_CONCEPTS // Use the provided definition. #elif defined(__cpp_concepts) # define FMT_USE_CONCEPTS 1 #else # define FMT_USE_CONCEPTS 0 #endif // Check if exceptions are disabled. #ifdef FMT_EXCEPTIONS // Use the provided definition. #elif defined(__GNUC__) && !defined(__EXCEPTIONS) # define FMT_EXCEPTIONS 0 #elif FMT_MSC_VERSION && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 #else # define FMT_EXCEPTIONS 1 #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #if FMT_HAS_CPP17_ATTRIBUTE(fallthrough) # define FMT_FALLTHROUGH [[fallthrough]] #elif defined(__clang__) # define FMT_FALLTHROUGH [[clang::fallthrough]] #elif FMT_GCC_VERSION >= 700 && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520) # define FMT_FALLTHROUGH [[gnu::fallthrough]] #else # define FMT_FALLTHROUGH #endif // Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings. #if FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && !defined(__NVCC__) # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_NODISCARD # if FMT_HAS_CPP17_ATTRIBUTE(nodiscard) # define FMT_NODISCARD [[nodiscard]] # else # define FMT_NODISCARD # endif #endif #ifdef FMT_DEPRECATED // Use the provided definition. #elif FMT_HAS_CPP14_ATTRIBUTE(deprecated) # define FMT_DEPRECATED [[deprecated]] #else # define FMT_DEPRECATED /* deprecated */ #endif #ifdef FMT_INLINE // Use the provided definition. #elif FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_ALWAYS_INLINE inline __attribute__((always_inline)) #else # define FMT_ALWAYS_INLINE inline #endif // A version of FMT_INLINE to prevent code bloat in debug mode. #ifdef NDEBUG # define FMT_INLINE FMT_ALWAYS_INLINE #else # define FMT_INLINE inline #endif #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_VISIBILITY(value) __attribute__((visibility(value))) #else # define FMT_VISIBILITY(value) #endif #ifndef FMT_GCC_PRAGMA // Workaround a _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884 // and an nvhpc warning: https://github.com/fmtlib/fmt/pull/2582. # if FMT_GCC_VERSION >= 504 && !defined(__NVCOMPILER) # define FMT_GCC_PRAGMA(arg) _Pragma(arg) # else # define FMT_GCC_PRAGMA(arg) # endif #endif // GCC < 5 requires this-> in decltype. #if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 # define FMT_DECLTYPE_THIS this-> #else # define FMT_DECLTYPE_THIS #endif #if FMT_MSC_VERSION # define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__)) # define FMT_UNCHECKED_ITERATOR(It) \ using _Unchecked_type = It // Mark iterator as checked. #else # define FMT_MSC_WARNING(...) # define FMT_UNCHECKED_ITERATOR(It) using unchecked_type = It #endif #ifndef FMT_BEGIN_NAMESPACE # define FMT_BEGIN_NAMESPACE \ namespace fmt { \ inline namespace v11 { # define FMT_END_NAMESPACE \ } \ } #endif #ifndef FMT_EXPORT # define FMT_EXPORT # define FMT_BEGIN_EXPORT # define FMT_END_EXPORT #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # if defined(FMT_LIB_EXPORT) # define FMT_API __declspec(dllexport) # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # endif #elif defined(FMT_LIB_EXPORT) || defined(FMT_SHARED) # define FMT_API FMT_VISIBILITY("default") #endif #ifndef FMT_API # define FMT_API #endif #ifndef FMT_UNICODE # define FMT_UNICODE 1 #endif // Check if rtti is available. #ifndef FMT_USE_RTTI // __RTTI is for EDG compilers. _CPPRTTI is for MSVC. # if defined(__GXX_RTTI) || FMT_HAS_FEATURE(cxx_rtti) || defined(_CPPRTTI) || \ defined(__INTEL_RTTI__) || defined(__RTTI) # define FMT_USE_RTTI 1 # else # define FMT_USE_RTTI 0 # endif #endif #define FMT_FWD(...) static_cast(__VA_ARGS__) // Enable minimal optimizations for more compact code in debug mode. FMT_GCC_PRAGMA("GCC push_options") #if !defined(__OPTIMIZE__) && !defined(__CUDACC__) FMT_GCC_PRAGMA("GCC optimize(\"Og\")") #endif FMT_BEGIN_NAMESPACE // Implementations of enable_if_t and other metafunctions for older systems. template using enable_if_t = typename std::enable_if::type; template using conditional_t = typename std::conditional::type; template using bool_constant = std::integral_constant; template using remove_reference_t = typename std::remove_reference::type; template using remove_const_t = typename std::remove_const::type; template using remove_cvref_t = typename std::remove_cv>::type; template struct type_identity { using type = T; }; template using type_identity_t = typename type_identity::type; template using make_unsigned_t = typename std::make_unsigned::type; template using underlying_t = typename std::underlying_type::type; #if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 // A workaround for gcc 4.8 to make void_t work in a SFINAE context. template struct void_t_impl { using type = void; }; template using void_t = typename void_t_impl::type; #else template using void_t = void; #endif struct monostate { constexpr monostate() {} }; // An enable_if helper to be used in template parameters which results in much // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed // to workaround a bug in MSVC 2019 (see #1140 and #1186). #ifdef FMT_DOC # define FMT_ENABLE_IF(...) #else # define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0 #endif // This is defined in base.h instead of format.h to avoid injecting in std. // It is a template to avoid undesirable implicit conversions to std::byte. #ifdef __cpp_lib_byte template ::value)> inline auto format_as(T b) -> unsigned char { return static_cast(b); } #endif namespace detail { // Suppresses "unused variable" warnings with the method described in // https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/. // (void)var does not work on many Intel compilers. template FMT_CONSTEXPR void ignore_unused(const T&...) {} constexpr auto is_constant_evaluated(bool default_value = false) noexcept -> bool { // Workaround for incompatibility between libstdc++ consteval-based // std::is_constant_evaluated() implementation and clang-14: // https://github.com/fmtlib/fmt/issues/3247. #if FMT_CPLUSPLUS >= 202002L && FMT_GLIBCXX_RELEASE >= 12 && \ (FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500) ignore_unused(default_value); return __builtin_is_constant_evaluated(); #elif defined(__cpp_lib_is_constant_evaluated) ignore_unused(default_value); return std::is_constant_evaluated(); #else return default_value; #endif } // Suppresses "conditional expression is constant" warnings. template constexpr auto const_check(T value) -> T { return value; } FMT_NORETURN FMT_API void assert_fail(const char* file, int line, const char* message); #if defined(FMT_ASSERT) // Use the provided definition. #elif defined(NDEBUG) // FMT_ASSERT is not empty to avoid -Wempty-body. # define FMT_ASSERT(condition, message) \ fmt::detail::ignore_unused((condition), (message)) #else # define FMT_ASSERT(condition, message) \ ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \ ? (void)0 \ : fmt::detail::assert_fail(__FILE__, __LINE__, (message))) #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \ !(FMT_CLANG_VERSION && FMT_MSC_VERSION) # define FMT_USE_INT128 1 using int128_opt = __int128_t; // An optional native 128-bit integer. using uint128_opt = __uint128_t; template inline auto convert_for_visit(T value) -> T { return value; } #else # define FMT_USE_INT128 0 #endif #if !FMT_USE_INT128 enum class int128_opt {}; enum class uint128_opt {}; // Reduce template instantiations. template auto convert_for_visit(T) -> monostate { return {}; } #endif // Casts a nonnegative integer to unsigned. template FMT_CONSTEXPR auto to_unsigned(Int value) -> make_unsigned_t { FMT_ASSERT(std::is_unsigned::value || value >= 0, "negative value"); return static_cast>(value); } // A heuristic to detect std::string and std::[experimental::]string_view. // It is mainly used to avoid dependency on <[experimental/]string_view>. template struct is_std_string_like : std::false_type {}; template struct is_std_string_like().find_first_of( typename T::value_type(), 0))>> : std::is_convertible().data()), const typename T::value_type*> {}; // Returns true iff the literal encoding is UTF-8. constexpr auto is_utf8_enabled() -> bool { // Avoid an MSVC sign extension bug: https://github.com/fmtlib/fmt/pull/2297. using uchar = unsigned char; return sizeof("\u00A7") == 3 && uchar("\u00A7"[0]) == 0xC2 && uchar("\u00A7"[1]) == 0xA7; } constexpr auto use_utf8() -> bool { return !FMT_MSC_VERSION || is_utf8_enabled(); } static_assert(!FMT_UNICODE || use_utf8(), "Unicode support requires compiling with /utf-8"); template FMT_CONSTEXPR auto length(const Char* s) -> size_t { size_t len = 0; while (*s++) ++len; return len; } template FMT_CONSTEXPR auto compare(const Char* s1, const Char* s2, std::size_t n) -> int { if (!is_constant_evaluated() && sizeof(Char) == 1) return memcmp(s1, s2, n); for (; n != 0; ++s1, ++s2, --n) { if (*s1 < *s2) return -1; if (*s1 > *s2) return 1; } return 0; } namespace adl { using namespace std; template auto invoke_back_inserter() -> decltype(back_inserter(std::declval())); } // namespace adl template struct is_back_insert_iterator : std::false_type {}; template struct is_back_insert_iterator< It, bool_constant()), It>::value>> : std::true_type {}; // Extracts a reference to the container from *insert_iterator. template inline auto get_container(OutputIt it) -> typename OutputIt::container_type& { struct accessor : OutputIt { accessor(OutputIt base) : OutputIt(base) {} using OutputIt::container; }; return *accessor(it).container; } } // namespace detail // Checks whether T is a container with contiguous storage. template struct is_contiguous : std::false_type {}; /** * An implementation of `std::basic_string_view` for pre-C++17. It provides a * subset of the API. `fmt::basic_string_view` is used for format strings even * if `std::basic_string_view` is available to prevent issues when a library is * compiled with a different `-std` option than the client code (which is not * recommended). */ FMT_EXPORT template class basic_string_view { private: const Char* data_; size_t size_; public: using value_type = Char; using iterator = const Char*; constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {} /// Constructs a string reference object from a C string and a size. constexpr basic_string_view(const Char* s, size_t count) noexcept : data_(s), size_(count) {} constexpr basic_string_view(std::nullptr_t) = delete; /// Constructs a string reference object from a C string. FMT_CONSTEXPR20 basic_string_view(const Char* s) : data_(s), size_(detail::const_check(std::is_same::value && !detail::is_constant_evaluated(false)) ? strlen(reinterpret_cast(s)) : detail::length(s)) {} /// Constructs a string reference from a `std::basic_string` or a /// `std::basic_string_view` object. template ::value&& std::is_same< typename S::value_type, Char>::value)> FMT_CONSTEXPR basic_string_view(const S& s) noexcept : data_(s.data()), size_(s.size()) {} /// Returns a pointer to the string data. constexpr auto data() const noexcept -> const Char* { return data_; } /// Returns the string size. constexpr auto size() const noexcept -> size_t { return size_; } constexpr auto begin() const noexcept -> iterator { return data_; } constexpr auto end() const noexcept -> iterator { return data_ + size_; } constexpr auto operator[](size_t pos) const noexcept -> const Char& { return data_[pos]; } FMT_CONSTEXPR void remove_prefix(size_t n) noexcept { data_ += n; size_ -= n; } FMT_CONSTEXPR auto starts_with(basic_string_view sv) const noexcept -> bool { return size_ >= sv.size_ && detail::compare(data_, sv.data_, sv.size_) == 0; } FMT_CONSTEXPR auto starts_with(Char c) const noexcept -> bool { return size_ >= 1 && *data_ == c; } FMT_CONSTEXPR auto starts_with(const Char* s) const -> bool { return starts_with(basic_string_view(s)); } // Lexicographically compare this string reference to other. FMT_CONSTEXPR auto compare(basic_string_view other) const -> int { size_t str_size = size_ < other.size_ ? size_ : other.size_; int result = detail::compare(data_, other.data_, str_size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } FMT_CONSTEXPR friend auto operator==(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) == 0; } friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) != 0; } friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) < 0; } friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) <= 0; } friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) > 0; } friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) >= 0; } }; FMT_EXPORT using string_view = basic_string_view; /// Specifies if `T` is a character type. Can be specialized by users. FMT_EXPORT template struct is_char : std::false_type {}; template <> struct is_char : std::true_type {}; namespace detail { // Constructs fmt::basic_string_view from types implicitly convertible // to it, deducing Char. Explicitly convertible types such as the ones returned // from FMT_STRING are intentionally excluded. template ::value)> constexpr auto to_string_view(const Char* s) -> basic_string_view { return s; } template ::value)> constexpr auto to_string_view(const T& s) -> basic_string_view { return s; } template constexpr auto to_string_view(basic_string_view s) -> basic_string_view { return s; } template struct has_to_string_view : std::false_type {}; // detail:: is intentional since to_string_view is not an extension point. template struct has_to_string_view< T, void_t()))>> : std::true_type {}; template struct string_literal { static constexpr Char value[sizeof...(C)] = {C...}; constexpr operator basic_string_view() const { return {value, sizeof...(C)}; } }; #if FMT_CPLUSPLUS < 201703L template constexpr Char string_literal::value[sizeof...(C)]; #endif enum class type { none_type, // Integer types should go first, int_type, uint_type, long_long_type, ulong_long_type, int128_type, uint128_type, bool_type, char_type, last_integer_type = char_type, // followed by floating-point types. float_type, double_type, long_double_type, last_numeric_type = long_double_type, cstring_type, string_type, pointer_type, custom_type }; // Maps core type T to the corresponding type enum constant. template struct type_constant : std::integral_constant {}; #define FMT_TYPE_CONSTANT(Type, constant) \ template \ struct type_constant \ : std::integral_constant {} FMT_TYPE_CONSTANT(int, int_type); FMT_TYPE_CONSTANT(unsigned, uint_type); FMT_TYPE_CONSTANT(long long, long_long_type); FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type); FMT_TYPE_CONSTANT(int128_opt, int128_type); FMT_TYPE_CONSTANT(uint128_opt, uint128_type); FMT_TYPE_CONSTANT(bool, bool_type); FMT_TYPE_CONSTANT(Char, char_type); FMT_TYPE_CONSTANT(float, float_type); FMT_TYPE_CONSTANT(double, double_type); FMT_TYPE_CONSTANT(long double, long_double_type); FMT_TYPE_CONSTANT(const Char*, cstring_type); FMT_TYPE_CONSTANT(basic_string_view, string_type); FMT_TYPE_CONSTANT(const void*, pointer_type); constexpr auto is_integral_type(type t) -> bool { return t > type::none_type && t <= type::last_integer_type; } constexpr auto is_arithmetic_type(type t) -> bool { return t > type::none_type && t <= type::last_numeric_type; } constexpr auto set(type rhs) -> int { return 1 << static_cast(rhs); } constexpr auto in(type t, int set) -> bool { return ((set >> static_cast(t)) & 1) != 0; } // Bitsets of types. enum { sint_set = set(type::int_type) | set(type::long_long_type) | set(type::int128_type), uint_set = set(type::uint_type) | set(type::ulong_long_type) | set(type::uint128_type), bool_set = set(type::bool_type), char_set = set(type::char_type), float_set = set(type::float_type) | set(type::double_type) | set(type::long_double_type), string_set = set(type::string_type), cstring_set = set(type::cstring_type), pointer_set = set(type::pointer_type) }; } // namespace detail /// Reports a format error at compile time or, via a `format_error` exception, /// at runtime. // This function is intentionally not constexpr to give a compile-time error. FMT_NORETURN FMT_API void report_error(const char* message); FMT_DEPRECATED FMT_NORETURN inline void throw_format_error( const char* message) { report_error(message); } /// String's character (code unit) type. template ()))> using char_t = typename V::value_type; /** * Parsing context consisting of a format string range being parsed and an * argument counter for automatic indexing. * You can use the `format_parse_context` type alias for `char` instead. */ FMT_EXPORT template class basic_format_parse_context { private: basic_string_view format_str_; int next_arg_id_; FMT_CONSTEXPR void do_check_arg_id(int id); public: using char_type = Char; using iterator = const Char*; explicit constexpr basic_format_parse_context( basic_string_view format_str, int next_arg_id = 0) : format_str_(format_str), next_arg_id_(next_arg_id) {} /// Returns an iterator to the beginning of the format string range being /// parsed. constexpr auto begin() const noexcept -> iterator { return format_str_.begin(); } /// Returns an iterator past the end of the format string range being parsed. constexpr auto end() const noexcept -> iterator { return format_str_.end(); } /// Advances the begin iterator to `it`. FMT_CONSTEXPR void advance_to(iterator it) { format_str_.remove_prefix(detail::to_unsigned(it - begin())); } /// Reports an error if using the manual argument indexing; otherwise returns /// the next argument index and switches to the automatic indexing. FMT_CONSTEXPR auto next_arg_id() -> int { if (next_arg_id_ < 0) { report_error("cannot switch from manual to automatic argument indexing"); return 0; } int id = next_arg_id_++; do_check_arg_id(id); return id; } /// Reports an error if using the automatic argument indexing; otherwise /// switches to the manual indexing. FMT_CONSTEXPR void check_arg_id(int id) { if (next_arg_id_ > 0) { report_error("cannot switch from automatic to manual argument indexing"); return; } next_arg_id_ = -1; do_check_arg_id(id); } FMT_CONSTEXPR void check_arg_id(basic_string_view) { next_arg_id_ = -1; } FMT_CONSTEXPR void check_dynamic_spec(int arg_id); }; FMT_EXPORT using format_parse_context = basic_format_parse_context; namespace detail { // A parse context with extra data used only in compile-time checks. template class compile_parse_context : public basic_format_parse_context { private: int num_args_; const type* types_; using base = basic_format_parse_context; public: explicit FMT_CONSTEXPR compile_parse_context( basic_string_view format_str, int num_args, const type* types, int next_arg_id = 0) : base(format_str, next_arg_id), num_args_(num_args), types_(types) {} constexpr auto num_args() const -> int { return num_args_; } constexpr auto arg_type(int id) const -> type { return types_[id]; } FMT_CONSTEXPR auto next_arg_id() -> int { int id = base::next_arg_id(); if (id >= num_args_) report_error("argument not found"); return id; } FMT_CONSTEXPR void check_arg_id(int id) { base::check_arg_id(id); if (id >= num_args_) report_error("argument not found"); } using base::check_arg_id; FMT_CONSTEXPR void check_dynamic_spec(int arg_id) { detail::ignore_unused(arg_id); if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id])) report_error("width/precision is not integer"); } }; /// A contiguous memory buffer with an optional growing ability. It is an /// internal class and shouldn't be used directly, only via `memory_buffer`. template class buffer { private: T* ptr_; size_t size_; size_t capacity_; using grow_fun = void (*)(buffer& buf, size_t capacity); grow_fun grow_; protected: // Don't initialize ptr_ since it is not accessed to save a few cycles. FMT_MSC_WARNING(suppress : 26495) FMT_CONSTEXPR20 buffer(grow_fun grow, size_t sz) noexcept : size_(sz), capacity_(sz), grow_(grow) {} constexpr buffer(grow_fun grow, T* p = nullptr, size_t sz = 0, size_t cap = 0) noexcept : ptr_(p), size_(sz), capacity_(cap), grow_(grow) {} FMT_CONSTEXPR20 ~buffer() = default; buffer(buffer&&) = default; /// Sets the buffer data and capacity. FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept { ptr_ = buf_data; capacity_ = buf_capacity; } public: using value_type = T; using const_reference = const T&; buffer(const buffer&) = delete; void operator=(const buffer&) = delete; auto begin() noexcept -> T* { return ptr_; } auto end() noexcept -> T* { return ptr_ + size_; } auto begin() const noexcept -> const T* { return ptr_; } auto end() const noexcept -> const T* { return ptr_ + size_; } /// Returns the size of this buffer. constexpr auto size() const noexcept -> size_t { return size_; } /// Returns the capacity of this buffer. constexpr auto capacity() const noexcept -> size_t { return capacity_; } /// Returns a pointer to the buffer data (not null-terminated). FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; } FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; } /// Clears this buffer. void clear() { size_ = 0; } // Tries resizing the buffer to contain `count` elements. If T is a POD type // the new elements may not be initialized. FMT_CONSTEXPR void try_resize(size_t count) { try_reserve(count); size_ = count <= capacity_ ? count : capacity_; } // Tries increasing the buffer capacity to `new_capacity`. It can increase the // capacity by a smaller amount than requested but guarantees there is space // for at least one additional element either by increasing the capacity or by // flushing the buffer if it is full. FMT_CONSTEXPR void try_reserve(size_t new_capacity) { if (new_capacity > capacity_) grow_(*this, new_capacity); } FMT_CONSTEXPR void push_back(const T& value) { try_reserve(size_ + 1); ptr_[size_++] = value; } /// Appends data to the end of the buffer. template void append(const U* begin, const U* end) { while (begin != end) { auto count = to_unsigned(end - begin); try_reserve(size_ + count); auto free_cap = capacity_ - size_; if (free_cap < count) count = free_cap; // A loop is faster than memcpy on small sizes. T* out = ptr_ + size_; for (size_t i = 0; i < count; ++i) out[i] = begin[i]; size_ += count; begin += count; } } template FMT_CONSTEXPR auto operator[](Idx index) -> T& { return ptr_[index]; } template FMT_CONSTEXPR auto operator[](Idx index) const -> const T& { return ptr_[index]; } }; struct buffer_traits { explicit buffer_traits(size_t) {} auto count() const -> size_t { return 0; } auto limit(size_t size) -> size_t { return size; } }; class fixed_buffer_traits { private: size_t count_ = 0; size_t limit_; public: explicit fixed_buffer_traits(size_t limit) : limit_(limit) {} auto count() const -> size_t { return count_; } auto limit(size_t size) -> size_t { size_t n = limit_ > count_ ? limit_ - count_ : 0; count_ += size; return size < n ? size : n; } }; // A buffer that writes to an output iterator when flushed. template class iterator_buffer : public Traits, public buffer { private: OutputIt out_; enum { buffer_size = 256 }; T data_[buffer_size]; static FMT_CONSTEXPR void grow(buffer& buf, size_t) { if (buf.size() == buffer_size) static_cast(buf).flush(); } void flush() { auto size = this->size(); this->clear(); const T* begin = data_; const T* end = begin + this->limit(size); while (begin != end) *out_++ = *begin++; } public: explicit iterator_buffer(OutputIt out, size_t n = buffer_size) : Traits(n), buffer(grow, data_, 0, buffer_size), out_(out) {} iterator_buffer(iterator_buffer&& other) noexcept : Traits(other), buffer(grow, data_, 0, buffer_size), out_(other.out_) {} ~iterator_buffer() { // Don't crash if flush fails during unwinding. FMT_TRY { flush(); } FMT_CATCH(...) {} } auto out() -> OutputIt { flush(); return out_; } auto count() const -> size_t { return Traits::count() + this->size(); } }; template class iterator_buffer : public fixed_buffer_traits, public buffer { private: T* out_; enum { buffer_size = 256 }; T data_[buffer_size]; static FMT_CONSTEXPR void grow(buffer& buf, size_t) { if (buf.size() == buf.capacity()) static_cast(buf).flush(); } void flush() { size_t n = this->limit(this->size()); if (this->data() == out_) { out_ += n; this->set(data_, buffer_size); } this->clear(); } public: explicit iterator_buffer(T* out, size_t n = buffer_size) : fixed_buffer_traits(n), buffer(grow, out, 0, n), out_(out) {} iterator_buffer(iterator_buffer&& other) noexcept : fixed_buffer_traits(other), buffer(static_cast(other)), out_(other.out_) { if (this->data() != out_) { this->set(data_, buffer_size); this->clear(); } } ~iterator_buffer() { flush(); } auto out() -> T* { flush(); return out_; } auto count() const -> size_t { return fixed_buffer_traits::count() + this->size(); } }; template class iterator_buffer : public buffer { public: explicit iterator_buffer(T* out, size_t = 0) : buffer([](buffer&, size_t) {}, out, 0, ~size_t()) {} auto out() -> T* { return &*this->end(); } }; // A buffer that writes to a container with the contiguous storage. template class iterator_buffer< OutputIt, enable_if_t::value && is_contiguous::value, typename OutputIt::container_type::value_type>> : public buffer { private: using container_type = typename OutputIt::container_type; using value_type = typename container_type::value_type; container_type& container_; static FMT_CONSTEXPR void grow(buffer& buf, size_t capacity) { auto& self = static_cast(buf); self.container_.resize(capacity); self.set(&self.container_[0], capacity); } public: explicit iterator_buffer(container_type& c) : buffer(grow, c.size()), container_(c) {} explicit iterator_buffer(OutputIt out, size_t = 0) : iterator_buffer(get_container(out)) {} auto out() -> OutputIt { return back_inserter(container_); } }; // A buffer that counts the number of code units written discarding the output. template class counting_buffer : public buffer { private: enum { buffer_size = 256 }; T data_[buffer_size]; size_t count_ = 0; static FMT_CONSTEXPR void grow(buffer& buf, size_t) { if (buf.size() != buffer_size) return; static_cast(buf).count_ += buf.size(); buf.clear(); } public: counting_buffer() : buffer(grow, data_, 0, buffer_size) {} auto count() -> size_t { return count_ + this->size(); } }; } // namespace detail template FMT_CONSTEXPR void basic_format_parse_context::do_check_arg_id(int id) { // Argument id is only checked at compile-time during parsing because // formatting has its own validation. if (detail::is_constant_evaluated() && (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) { using context = detail::compile_parse_context; if (id >= static_cast(this)->num_args()) report_error("argument not found"); } } template FMT_CONSTEXPR void basic_format_parse_context::check_dynamic_spec( int arg_id) { if (detail::is_constant_evaluated() && (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) { using context = detail::compile_parse_context; static_cast(this)->check_dynamic_spec(arg_id); } } FMT_EXPORT template class basic_format_arg; FMT_EXPORT template class basic_format_args; FMT_EXPORT template class dynamic_format_arg_store; // A formatter for objects of type T. FMT_EXPORT template struct formatter { // A deleted default constructor indicates a disabled formatter. formatter() = delete; }; // Specifies if T has an enabled formatter specialization. A type can be // formattable even if it doesn't have a formatter e.g. via a conversion. template using has_formatter = std::is_constructible>; // An output iterator that appends to a buffer. It is used instead of // back_insert_iterator to reduce symbol sizes and avoid dependency. template class basic_appender { private: detail::buffer* buffer_; friend auto get_container(basic_appender app) -> detail::buffer& { return *app.buffer_; } public: using iterator_category = int; using value_type = T; using difference_type = ptrdiff_t; using pointer = T*; using reference = T&; using container_type = detail::buffer; FMT_UNCHECKED_ITERATOR(basic_appender); FMT_CONSTEXPR basic_appender(detail::buffer& buf) : buffer_(&buf) {} auto operator=(T c) -> basic_appender& { buffer_->push_back(c); return *this; } auto operator*() -> basic_appender& { return *this; } auto operator++() -> basic_appender& { return *this; } auto operator++(int) -> basic_appender { return *this; } }; using appender = basic_appender; namespace detail { template struct is_back_insert_iterator> : std::true_type {}; template struct locking : std::true_type {}; template struct locking>::nonlocking>> : std::false_type {}; template FMT_CONSTEXPR inline auto is_locking() -> bool { return locking::value; } template FMT_CONSTEXPR inline auto is_locking() -> bool { return locking::value || is_locking(); } // An optimized version of std::copy with the output value type (T). template ::value)> auto copy(InputIt begin, InputIt end, OutputIt out) -> OutputIt { get_container(out).append(begin, end); return out; } template ::value)> FMT_CONSTEXPR auto copy(InputIt begin, InputIt end, OutputIt out) -> OutputIt { while (begin != end) *out++ = static_cast(*begin++); return out; } template FMT_CONSTEXPR auto copy(basic_string_view s, OutputIt out) -> OutputIt { return copy(s.begin(), s.end(), out); } template constexpr auto has_const_formatter_impl(T*) -> decltype(typename Context::template formatter_type().format( std::declval(), std::declval()), true) { return true; } template constexpr auto has_const_formatter_impl(...) -> bool { return false; } template constexpr auto has_const_formatter() -> bool { return has_const_formatter_impl(static_cast(nullptr)); } template struct is_buffer_appender : std::false_type {}; template struct is_buffer_appender< It, bool_constant< is_back_insert_iterator::value && std::is_base_of, typename It::container_type>::value>> : std::true_type {}; // Maps an output iterator to a buffer. template ::value)> auto get_buffer(OutputIt out) -> iterator_buffer { return iterator_buffer(out); } template ::value)> auto get_buffer(OutputIt out) -> buffer& { return get_container(out); } template auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) { return buf.out(); } template auto get_iterator(buffer&, OutputIt out) -> OutputIt { return out; } struct view {}; template struct named_arg : view { const Char* name; const T& value; named_arg(const Char* n, const T& v) : name(n), value(v) {} }; template struct named_arg_info { const Char* name; int id; }; template struct is_named_arg : std::false_type {}; template struct is_statically_named_arg : std::false_type {}; template struct is_named_arg> : std::true_type {}; template constexpr auto count() -> size_t { return B ? 1 : 0; } template constexpr auto count() -> size_t { return (B1 ? 1 : 0) + count(); } template constexpr auto count_named_args() -> size_t { return count::value...>(); } template constexpr auto count_statically_named_args() -> size_t { return count::value...>(); } struct unformattable {}; struct unformattable_char : unformattable {}; struct unformattable_pointer : unformattable {}; template struct string_value { const Char* data; size_t size; }; template struct named_arg_value { const named_arg_info* data; size_t size; }; template struct custom_value { using parse_context = typename Context::parse_context_type; void* value; void (*format)(void* arg, parse_context& parse_ctx, Context& ctx); }; // A formatting argument value. template class value { public: using char_type = typename Context::char_type; union { monostate no_value; int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; int128_opt int128_value; uint128_opt uint128_value; bool bool_value; char_type char_value; float float_value; double double_value; long double long_double_value; const void* pointer; string_value string; custom_value custom; named_arg_value named_args; }; constexpr FMT_ALWAYS_INLINE value() : no_value() {} constexpr FMT_ALWAYS_INLINE value(int val) : int_value(val) {} constexpr FMT_ALWAYS_INLINE value(unsigned val) : uint_value(val) {} constexpr FMT_ALWAYS_INLINE value(long long val) : long_long_value(val) {} constexpr FMT_ALWAYS_INLINE value(unsigned long long val) : ulong_long_value(val) {} FMT_ALWAYS_INLINE value(int128_opt val) : int128_value(val) {} FMT_ALWAYS_INLINE value(uint128_opt val) : uint128_value(val) {} constexpr FMT_ALWAYS_INLINE value(float val) : float_value(val) {} constexpr FMT_ALWAYS_INLINE value(double val) : double_value(val) {} FMT_ALWAYS_INLINE value(long double val) : long_double_value(val) {} constexpr FMT_ALWAYS_INLINE value(bool val) : bool_value(val) {} constexpr FMT_ALWAYS_INLINE value(char_type val) : char_value(val) {} FMT_CONSTEXPR FMT_ALWAYS_INLINE value(const char_type* val) { string.data = val; if (is_constant_evaluated()) string.size = {}; } FMT_CONSTEXPR FMT_ALWAYS_INLINE value(basic_string_view val) { string.data = val.data(); string.size = val.size(); } FMT_ALWAYS_INLINE value(const void* val) : pointer(val) {} FMT_ALWAYS_INLINE value(const named_arg_info* args, size_t size) : named_args{args, size} {} template FMT_CONSTEXPR20 FMT_ALWAYS_INLINE value(T& val) { using value_type = remove_const_t; // T may overload operator& e.g. std::vector::reference in libc++. #if defined(__cpp_if_constexpr) if constexpr (std::is_same::value) custom.value = const_cast(&val); #endif if (!is_constant_evaluated()) custom.value = const_cast(&reinterpret_cast(val)); // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter` for `format` and // `printf_formatter` for `printf`. custom.format = format_custom_arg< value_type, typename Context::template formatter_type>; } value(unformattable); value(unformattable_char); value(unformattable_pointer); private: // Formats an argument of a custom type, such as a user-defined class. template static void format_custom_arg(void* arg, typename Context::parse_context_type& parse_ctx, Context& ctx) { auto f = Formatter(); parse_ctx.advance_to(f.parse(parse_ctx)); using qualified_type = conditional_t(), const T, T>; // format must be const for compatibility with std::format and compilation. const auto& cf = f; ctx.advance_to(cf.format(*static_cast(arg), ctx)); } }; // To minimize the number of types we need to deal with, long is translated // either to int or to long long depending on its size. enum { long_short = sizeof(long) == sizeof(int) }; using long_type = conditional_t; using ulong_type = conditional_t; template struct format_as_result { template ::value || std::is_class::value)> static auto map(U*) -> remove_cvref_t()))>; static auto map(...) -> void; using type = decltype(map(static_cast(nullptr))); }; template using format_as_t = typename format_as_result::type; template struct has_format_as : bool_constant, void>::value> {}; #define FMT_MAP_API FMT_CONSTEXPR FMT_ALWAYS_INLINE // Maps formatting arguments to core types. // arg_mapper reports errors by returning unformattable instead of using // static_assert because it's used in the is_formattable trait. template struct arg_mapper { using char_type = typename Context::char_type; FMT_MAP_API auto map(signed char val) -> int { return val; } FMT_MAP_API auto map(unsigned char val) -> unsigned { return val; } FMT_MAP_API auto map(short val) -> int { return val; } FMT_MAP_API auto map(unsigned short val) -> unsigned { return val; } FMT_MAP_API auto map(int val) -> int { return val; } FMT_MAP_API auto map(unsigned val) -> unsigned { return val; } FMT_MAP_API auto map(long val) -> long_type { return val; } FMT_MAP_API auto map(unsigned long val) -> ulong_type { return val; } FMT_MAP_API auto map(long long val) -> long long { return val; } FMT_MAP_API auto map(unsigned long long val) -> unsigned long long { return val; } FMT_MAP_API auto map(int128_opt val) -> int128_opt { return val; } FMT_MAP_API auto map(uint128_opt val) -> uint128_opt { return val; } FMT_MAP_API auto map(bool val) -> bool { return val; } template ::value || std::is_same::value)> FMT_MAP_API auto map(T val) -> char_type { return val; } template ::value || #ifdef __cpp_char8_t std::is_same::value || #endif std::is_same::value || std::is_same::value) && !std::is_same::value, int> = 0> FMT_MAP_API auto map(T) -> unformattable_char { return {}; } FMT_MAP_API auto map(float val) -> float { return val; } FMT_MAP_API auto map(double val) -> double { return val; } FMT_MAP_API auto map(long double val) -> long double { return val; } FMT_MAP_API auto map(char_type* val) -> const char_type* { return val; } FMT_MAP_API auto map(const char_type* val) -> const char_type* { return val; } template , FMT_ENABLE_IF(std::is_same::value && !std::is_pointer::value)> FMT_MAP_API auto map(const T& val) -> basic_string_view { return to_string_view(val); } template , FMT_ENABLE_IF(!std::is_same::value && !std::is_pointer::value)> FMT_MAP_API auto map(const T&) -> unformattable_char { return {}; } FMT_MAP_API auto map(void* val) -> const void* { return val; } FMT_MAP_API auto map(const void* val) -> const void* { return val; } FMT_MAP_API auto map(volatile void* val) -> const void* { return const_cast(val); } FMT_MAP_API auto map(const volatile void* val) -> const void* { return const_cast(val); } FMT_MAP_API auto map(std::nullptr_t val) -> const void* { return val; } // Use SFINAE instead of a const T* parameter to avoid a conflict with the // array overload. template < typename T, FMT_ENABLE_IF( std::is_pointer::value || std::is_member_pointer::value || std::is_function::type>::value || (std::is_array::value && !std::is_convertible::value))> FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer { return {}; } template ::value)> FMT_MAP_API auto map(const T (&values)[N]) -> const T (&)[N] { return values; } // Only map owning types because mapping views can be unsafe. template , FMT_ENABLE_IF(std::is_arithmetic::value)> FMT_MAP_API auto map(const T& val) -> decltype(FMT_DECLTYPE_THIS map(U())) { return map(format_as(val)); } template > struct formattable : bool_constant() || (has_formatter::value && !std::is_const::value)> {}; template ::value)> FMT_MAP_API auto do_map(T& val) -> T& { return val; } template ::value)> FMT_MAP_API auto do_map(T&) -> unformattable { return {}; } // is_fundamental is used to allow formatters for extended FP types. template , FMT_ENABLE_IF( (std::is_class::value || std::is_enum::value || std::is_union::value || std::is_fundamental::value) && !has_to_string_view::value && !is_char::value && !is_named_arg::value && !std::is_integral::value && !std::is_arithmetic>::value)> FMT_MAP_API auto map(T& val) -> decltype(FMT_DECLTYPE_THIS do_map(val)) { return do_map(val); } template ::value)> FMT_MAP_API auto map(const T& named_arg) -> decltype(FMT_DECLTYPE_THIS map(named_arg.value)) { return map(named_arg.value); } auto map(...) -> unformattable { return {}; } }; // A type constant after applying arg_mapper. template using mapped_type_constant = type_constant().map(std::declval())), typename Context::char_type>; enum { packed_arg_bits = 4 }; // Maximum number of arguments with packed types. enum { max_packed_args = 62 / packed_arg_bits }; enum : unsigned long long { is_unpacked_bit = 1ULL << 63 }; enum : unsigned long long { has_named_args_bit = 1ULL << 62 }; template struct is_output_iterator : std::false_type {}; template <> struct is_output_iterator : std::true_type {}; template struct is_output_iterator< It, T, void_t()++ = std::declval())>> : std::true_type {}; // A type-erased reference to an std::locale to avoid a heavy include. class locale_ref { private: const void* locale_; // A type-erased pointer to std::locale. public: constexpr locale_ref() : locale_(nullptr) {} template explicit locale_ref(const Locale& loc); explicit operator bool() const noexcept { return locale_ != nullptr; } template auto get() const -> Locale; }; template constexpr auto encode_types() -> unsigned long long { return 0; } template constexpr auto encode_types() -> unsigned long long { return static_cast(mapped_type_constant::value) | (encode_types() << packed_arg_bits); } template constexpr unsigned long long make_descriptor() { return NUM_ARGS <= max_packed_args ? encode_types() : is_unpacked_bit | NUM_ARGS; } // This type is intentionally undefined, only used for errors. template #if FMT_CLANG_VERSION && FMT_CLANG_VERSION <= 1500 // https://github.com/fmtlib/fmt/issues/3796 struct type_is_unformattable_for { }; #else struct type_is_unformattable_for; #endif template FMT_CONSTEXPR auto make_arg(T& val) -> value { using arg_type = remove_cvref_t().map(val))>; // Use enum instead of constexpr because the latter may generate code. enum { formattable_char = !std::is_same::value }; static_assert(formattable_char, "Mixing character types is disallowed."); // Formatting of arbitrary pointers is disallowed. If you want to format a // pointer cast it to `void*` or `const void*`. In particular, this forbids // formatting of `[const] volatile char*` printed as bool by iostreams. enum { formattable_pointer = !std::is_same::value }; static_assert(formattable_pointer, "Formatting of non-void pointers is disallowed."); enum { formattable = !std::is_same::value }; #if defined(__cpp_if_constexpr) if constexpr (!formattable) type_is_unformattable_for _; #endif static_assert( formattable, "Cannot format an argument. To make type T formattable provide a " "formatter specialization: https://fmt.dev/latest/api.html#udt"); return {arg_mapper().map(val)}; } template FMT_CONSTEXPR auto make_arg(T& val) -> basic_format_arg { auto arg = basic_format_arg(); arg.type_ = mapped_type_constant::value; arg.value_ = make_arg(val); return arg; } template FMT_CONSTEXPR inline auto make_arg(T& val) -> basic_format_arg { return make_arg(val); } template using arg_t = conditional_t, basic_format_arg>; template ::value)> void init_named_arg(named_arg_info*, int& arg_index, int&, const T&) { ++arg_index; } template ::value)> void init_named_arg(named_arg_info* named_args, int& arg_index, int& named_arg_index, const T& arg) { named_args[named_arg_index++] = {arg.name, arg_index++}; } // An array of references to arguments. It can be implicitly converted to // `fmt::basic_format_args` for passing into type-erased formatting functions // such as `fmt::vformat`. template struct format_arg_store { // args_[0].named_args points to named_args to avoid bloating format_args. // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. static constexpr size_t ARGS_ARR_SIZE = 1 + (NUM_ARGS != 0 ? NUM_ARGS : +1); arg_t args[ARGS_ARR_SIZE]; named_arg_info named_args[NUM_NAMED_ARGS]; template FMT_MAP_API format_arg_store(T&... values) : args{{named_args, NUM_NAMED_ARGS}, make_arg(values)...} { using dummy = int[]; int arg_index = 0, named_arg_index = 0; (void)dummy{ 0, (init_named_arg(named_args, arg_index, named_arg_index, values), 0)...}; } format_arg_store(format_arg_store&& rhs) { args[0] = {named_args, NUM_NAMED_ARGS}; for (size_t i = 1; i < ARGS_ARR_SIZE; ++i) args[i] = rhs.args[i]; for (size_t i = 0; i < NUM_NAMED_ARGS; ++i) named_args[i] = rhs.named_args[i]; } format_arg_store(const format_arg_store& rhs) = delete; format_arg_store& operator=(const format_arg_store& rhs) = delete; format_arg_store& operator=(format_arg_store&& rhs) = delete; }; // A specialization of format_arg_store without named arguments. // It is a plain struct to reduce binary size in debug mode. template struct format_arg_store { // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. arg_t args[NUM_ARGS != 0 ? NUM_ARGS : +1]; }; } // namespace detail FMT_BEGIN_EXPORT // A formatting argument. Context is a template parameter for the compiled API // where output can be unbuffered. template class basic_format_arg { private: detail::value value_; detail::type type_; template friend FMT_CONSTEXPR auto detail::make_arg(T& value) -> basic_format_arg; friend class basic_format_args; friend class dynamic_format_arg_store; using char_type = typename Context::char_type; template friend struct detail::format_arg_store; basic_format_arg(const detail::named_arg_info* args, size_t size) : value_(args, size) {} public: class handle { public: explicit handle(detail::custom_value custom) : custom_(custom) {} void format(typename Context::parse_context_type& parse_ctx, Context& ctx) const { custom_.format(custom_.value, parse_ctx, ctx); } private: detail::custom_value custom_; }; constexpr basic_format_arg() : type_(detail::type::none_type) {} constexpr explicit operator bool() const noexcept { return type_ != detail::type::none_type; } auto type() const -> detail::type { return type_; } auto is_integral() const -> bool { return detail::is_integral_type(type_); } auto is_arithmetic() const -> bool { return detail::is_arithmetic_type(type_); } /** * Visits an argument dispatching to the appropriate visit method based on * the argument type. For example, if the argument type is `double` then * `vis(value)` will be called with the value of type `double`. */ template FMT_CONSTEXPR FMT_INLINE auto visit(Visitor&& vis) const -> decltype(vis(0)) { switch (type_) { case detail::type::none_type: break; case detail::type::int_type: return vis(value_.int_value); case detail::type::uint_type: return vis(value_.uint_value); case detail::type::long_long_type: return vis(value_.long_long_value); case detail::type::ulong_long_type: return vis(value_.ulong_long_value); case detail::type::int128_type: return vis(detail::convert_for_visit(value_.int128_value)); case detail::type::uint128_type: return vis(detail::convert_for_visit(value_.uint128_value)); case detail::type::bool_type: return vis(value_.bool_value); case detail::type::char_type: return vis(value_.char_value); case detail::type::float_type: return vis(value_.float_value); case detail::type::double_type: return vis(value_.double_value); case detail::type::long_double_type: return vis(value_.long_double_value); case detail::type::cstring_type: return vis(value_.string.data); case detail::type::string_type: using sv = basic_string_view; return vis(sv(value_.string.data, value_.string.size)); case detail::type::pointer_type: return vis(value_.pointer); case detail::type::custom_type: return vis(typename basic_format_arg::handle(value_.custom)); } return vis(monostate()); } auto format_custom(const char_type* parse_begin, typename Context::parse_context_type& parse_ctx, Context& ctx) -> bool { if (type_ != detail::type::custom_type) return false; parse_ctx.advance_to(parse_begin); value_.custom.format(value_.custom.value, parse_ctx, ctx); return true; } }; template FMT_DEPRECATED FMT_CONSTEXPR auto visit_format_arg( Visitor&& vis, const basic_format_arg& arg) -> decltype(vis(0)) { return arg.visit(static_cast(vis)); } /** * A view of a collection of formatting arguments. To avoid lifetime issues it * should only be used as a parameter type in type-erased functions such as * `vformat`: * * void vlog(fmt::string_view fmt, fmt::format_args args); // OK * fmt::format_args args = fmt::make_format_args(); // Dangling reference */ template class basic_format_args { public: using size_type = int; using format_arg = basic_format_arg; private: // A descriptor that contains information about formatting arguments. // If the number of arguments is less or equal to max_packed_args then // argument types are passed in the descriptor. This reduces binary code size // per formatting function call. unsigned long long desc_; union { // If is_packed() returns true then argument values are stored in values_; // otherwise they are stored in args_. This is done to improve cache // locality and reduce compiled code size since storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const detail::value* values_; const format_arg* args_; }; constexpr auto is_packed() const -> bool { return (desc_ & detail::is_unpacked_bit) == 0; } constexpr auto has_named_args() const -> bool { return (desc_ & detail::has_named_args_bit) != 0; } FMT_CONSTEXPR auto type(int index) const -> detail::type { int shift = index * detail::packed_arg_bits; unsigned int mask = (1 << detail::packed_arg_bits) - 1; return static_cast((desc_ >> shift) & mask); } public: constexpr basic_format_args() : desc_(0), args_(nullptr) {} /// Constructs a `basic_format_args` object from `format_arg_store`. template constexpr FMT_ALWAYS_INLINE basic_format_args( const detail::format_arg_store& store) : desc_(DESC), values_(store.args + (NUM_NAMED_ARGS != 0 ? 1 : 0)) {} template detail::max_packed_args)> constexpr basic_format_args( const detail::format_arg_store& store) : desc_(DESC), args_(store.args + (NUM_NAMED_ARGS != 0 ? 1 : 0)) {} /// Constructs a `basic_format_args` object from `dynamic_format_arg_store`. constexpr basic_format_args(const dynamic_format_arg_store& store) : desc_(store.get_types()), args_(store.data()) {} /// Constructs a `basic_format_args` object from a dynamic list of arguments. constexpr basic_format_args(const format_arg* args, int count) : desc_(detail::is_unpacked_bit | detail::to_unsigned(count)), args_(args) {} /// Returns the argument with the specified id. FMT_CONSTEXPR auto get(int id) const -> format_arg { format_arg arg; if (!is_packed()) { if (id < max_size()) arg = args_[id]; return arg; } if (static_cast(id) >= detail::max_packed_args) return arg; arg.type_ = type(id); if (arg.type_ == detail::type::none_type) return arg; arg.value_ = values_[id]; return arg; } template auto get(basic_string_view name) const -> format_arg { int id = get_id(name); return id >= 0 ? get(id) : format_arg(); } template FMT_CONSTEXPR auto get_id(basic_string_view name) const -> int { if (!has_named_args()) return -1; const auto& named_args = (is_packed() ? values_[-1] : args_[-1].value_).named_args; for (size_t i = 0; i < named_args.size; ++i) { if (named_args.data[i].name == name) return named_args.data[i].id; } return -1; } auto max_size() const -> int { unsigned long long max_packed = detail::max_packed_args; return static_cast(is_packed() ? max_packed : desc_ & ~detail::is_unpacked_bit); } }; // A formatting context. class context { private: appender out_; basic_format_args args_; detail::locale_ref loc_; public: /// The character type for the output. using char_type = char; using iterator = appender; using format_arg = basic_format_arg; using parse_context_type = basic_format_parse_context; template using formatter_type = formatter; /// Constructs a `basic_format_context` object. References to the arguments /// are stored in the object so make sure they have appropriate lifetimes. FMT_CONSTEXPR context(iterator out, basic_format_args ctx_args, detail::locale_ref loc = {}) : out_(out), args_(ctx_args), loc_(loc) {} context(context&&) = default; context(const context&) = delete; void operator=(const context&) = delete; FMT_CONSTEXPR auto arg(int id) const -> format_arg { return args_.get(id); } auto arg(string_view name) -> format_arg { return args_.get(name); } FMT_CONSTEXPR auto arg_id(string_view name) -> int { return args_.get_id(name); } auto args() const -> const basic_format_args& { return args_; } // Returns an iterator to the beginning of the output range. FMT_CONSTEXPR auto out() -> iterator { return out_; } // Advances the begin iterator to `it`. void advance_to(iterator) {} FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; } }; template class generic_context; // Longer aliases for C++20 compatibility. template using basic_format_context = conditional_t::value, context, generic_context>; using format_context = context; template using buffered_context = basic_format_context, Char>; template using is_formattable = bool_constant>() .map(std::declval()))>::value>; #if FMT_USE_CONCEPTS template concept formattable = is_formattable, Char>::value; #endif /** * Constructs an object that stores references to arguments and can be * implicitly converted to `format_args`. `Context` can be omitted in which case * it defaults to `format_context`. See `arg` for lifetime considerations. */ // Take arguments by lvalue references to avoid some lifetime issues, e.g. // auto args = make_format_args(std::string()); template (), unsigned long long DESC = detail::make_descriptor(), FMT_ENABLE_IF(NUM_NAMED_ARGS == 0)> constexpr FMT_ALWAYS_INLINE auto make_format_args(T&... args) -> detail::format_arg_store { return {{detail::make_arg( args)...}}; } #ifndef FMT_DOC template (), unsigned long long DESC = detail::make_descriptor() | static_cast(detail::has_named_args_bit), FMT_ENABLE_IF(NUM_NAMED_ARGS != 0)> constexpr auto make_format_args(T&... args) -> detail::format_arg_store { return {args...}; } #endif /** * Returns a named argument to be used in a formatting function. * It should only be used in a call to a formatting function or * `dynamic_format_arg_store::push_back`. * * **Example**: * * fmt::print("The answer is {answer}.", fmt::arg("answer", 42)); */ template inline auto arg(const Char* name, const T& arg) -> detail::named_arg { static_assert(!detail::is_named_arg(), "nested named arguments"); return {name, arg}; } FMT_END_EXPORT /// An alias for `basic_format_args`. // A separate type would result in shorter symbols but break ABI compatibility // between clang and gcc on ARM (#1919). FMT_EXPORT using format_args = basic_format_args; // We cannot use enum classes as bit fields because of a gcc bug, so we put them // in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414). // Additionally, if an underlying type is specified, older gcc incorrectly warns // that the type is too small. Both bugs are fixed in gcc 9.3. #if FMT_GCC_VERSION && FMT_GCC_VERSION < 903 # define FMT_ENUM_UNDERLYING_TYPE(type) #else # define FMT_ENUM_UNDERLYING_TYPE(type) : type #endif namespace align { enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, left, right, center, numeric}; } using align_t = align::type; namespace sign { enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, minus, plus, space}; } using sign_t = sign::type; namespace detail { template using unsigned_char = typename conditional_t::value, std::make_unsigned, type_identity>::type; // Character (code unit) type is erased to prevent template bloat. struct fill_t { private: enum { max_size = 4 }; char data_[max_size] = {' '}; unsigned char size_ = 1; public: template FMT_CONSTEXPR void operator=(basic_string_view s) { auto size = s.size(); size_ = static_cast(size); if (size == 1) { unsigned uchar = static_cast>(s[0]); data_[0] = static_cast(uchar); data_[1] = static_cast(uchar >> 8); return; } FMT_ASSERT(size <= max_size, "invalid fill"); for (size_t i = 0; i < size; ++i) data_[i] = static_cast(s[i]); } FMT_CONSTEXPR void operator=(char c) { data_[0] = c; size_ = 1; } constexpr auto size() const -> size_t { return size_; } template constexpr auto get() const -> Char { using uchar = unsigned char; return static_cast(static_cast(data_[0]) | (static_cast(data_[1]) << 8)); } template ::value)> constexpr auto data() const -> const Char* { return data_; } template ::value)> constexpr auto data() const -> const Char* { return nullptr; } }; } // namespace detail enum class presentation_type : unsigned char { // Common specifiers: none = 0, debug = 1, // '?' string = 2, // 's' (string, bool) // Integral, bool and character specifiers: dec = 3, // 'd' hex, // 'x' or 'X' oct, // 'o' bin, // 'b' or 'B' chr, // 'c' // String and pointer specifiers: pointer = 3, // 'p' // Floating-point specifiers: exp = 1, // 'e' or 'E' (1 since there is no FP debug presentation) fixed, // 'f' or 'F' general, // 'g' or 'G' hexfloat // 'a' or 'A' }; // Format specifiers for built-in and string types. struct format_specs { int width; int precision; presentation_type type; align_t align : 4; sign_t sign : 3; bool upper : 1; // An uppercase version e.g. 'X' for 'x'. bool alt : 1; // Alternate form ('#'). bool localized : 1; detail::fill_t fill; constexpr format_specs() : width(0), precision(-1), type(presentation_type::none), align(align::none), sign(sign::none), upper(false), alt(false), localized(false) {} }; namespace detail { enum class arg_id_kind { none, index, name }; // An argument reference. template struct arg_ref { FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {} FMT_CONSTEXPR explicit arg_ref(int index) : kind(arg_id_kind::index), val(index) {} FMT_CONSTEXPR explicit arg_ref(basic_string_view name) : kind(arg_id_kind::name), val(name) {} FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& { kind = arg_id_kind::index; val.index = idx; return *this; } arg_id_kind kind; union value { FMT_CONSTEXPR value(int idx = 0) : index(idx) {} FMT_CONSTEXPR value(basic_string_view n) : name(n) {} int index; basic_string_view name; } val; }; // Format specifiers with width and precision resolved at formatting rather // than parsing time to allow reusing the same parsed specifiers with // different sets of arguments (precompilation of format strings). template struct dynamic_format_specs : format_specs { arg_ref width_ref; arg_ref precision_ref; }; // Converts a character to ASCII. Returns '\0' on conversion failure. template ::value)> constexpr auto to_ascii(Char c) -> char { return c <= 0xff ? static_cast(c) : '\0'; } // Returns the number of code units in a code point or 1 on error. template FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int { if (const_check(sizeof(Char) != 1)) return 1; auto c = static_cast(*begin); return static_cast((0x3a55000000000000ull >> (2 * (c >> 3))) & 0x3) + 1; } // Return the result via the out param to workaround gcc bug 77539. template FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool { for (out = first; out != last; ++out) { if (*out == value) return true; } return false; } template <> inline auto find(const char* first, const char* last, char value, const char*& out) -> bool { out = static_cast(memchr(first, value, to_unsigned(last - first))); return out != nullptr; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end, int error_value) noexcept -> int { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); unsigned value = 0, prev = 0; auto p = begin; do { prev = value; value = value * 10 + unsigned(*p - '0'); ++p; } while (p != end && '0' <= *p && *p <= '9'); auto num_digits = p - begin; begin = p; int digits10 = static_cast(sizeof(int) * CHAR_BIT * 3 / 10); if (num_digits <= digits10) return static_cast(value); // Check for overflow. unsigned max = INT_MAX; return num_digits == digits10 + 1 && prev * 10ull + unsigned(p[-1] - '0') <= max ? static_cast(value) : error_value; } FMT_CONSTEXPR inline auto parse_align(char c) -> align_t { switch (c) { case '<': return align::left; case '>': return align::right; case '^': return align::center; } return align::none; } template constexpr auto is_name_start(Char c) -> bool { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_'; } template FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end, Handler&& handler) -> const Char* { Char c = *begin; if (c >= '0' && c <= '9') { int index = 0; if (c != '0') index = parse_nonnegative_int(begin, end, INT_MAX); else ++begin; if (begin == end || (*begin != '}' && *begin != ':')) report_error("invalid format string"); else handler.on_index(index); return begin; } if (!is_name_start(c)) { report_error("invalid format string"); return begin; } auto it = begin; do { ++it; } while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9'))); handler.on_name({begin, to_unsigned(it - begin)}); return it; } template FMT_CONSTEXPR auto parse_arg_id(const Char* begin, const Char* end, Handler&& handler) -> const Char* { FMT_ASSERT(begin != end, ""); Char c = *begin; if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler); handler.on_auto(); return begin; } template struct dynamic_spec_id_handler { basic_format_parse_context& ctx; arg_ref& ref; FMT_CONSTEXPR void on_auto() { int id = ctx.next_arg_id(); ref = arg_ref(id); ctx.check_dynamic_spec(id); } FMT_CONSTEXPR void on_index(int id) { ref = arg_ref(id); ctx.check_arg_id(id); ctx.check_dynamic_spec(id); } FMT_CONSTEXPR void on_name(basic_string_view id) { ref = arg_ref(id); ctx.check_arg_id(id); } }; // Parses [integer | "{" [arg_id] "}"]. template FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end, int& value, arg_ref& ref, basic_format_parse_context& ctx) -> const Char* { FMT_ASSERT(begin != end, ""); if ('0' <= *begin && *begin <= '9') { int val = parse_nonnegative_int(begin, end, -1); if (val != -1) value = val; else report_error("number is too big"); } else if (*begin == '{') { ++begin; auto handler = dynamic_spec_id_handler{ctx, ref}; if (begin != end) begin = parse_arg_id(begin, end, handler); if (begin != end && *begin == '}') return ++begin; report_error("invalid format string"); } return begin; } template FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end, int& value, arg_ref& ref, basic_format_parse_context& ctx) -> const Char* { ++begin; if (begin == end || *begin == '}') { report_error("invalid precision"); return begin; } return parse_dynamic_spec(begin, end, value, ref, ctx); } enum class state { start, align, sign, hash, zero, width, precision, locale }; // Parses standard format specifiers. template FMT_CONSTEXPR auto parse_format_specs(const Char* begin, const Char* end, dynamic_format_specs& specs, basic_format_parse_context& ctx, type arg_type) -> const Char* { auto c = '\0'; if (end - begin > 1) { auto next = to_ascii(begin[1]); c = parse_align(next) == align::none ? to_ascii(*begin) : '\0'; } else { if (begin == end) return begin; c = to_ascii(*begin); } struct { state current_state = state::start; FMT_CONSTEXPR void operator()(state s, bool valid = true) { if (current_state >= s || !valid) report_error("invalid format specifier"); current_state = s; } } enter_state; using pres = presentation_type; constexpr auto integral_set = sint_set | uint_set | bool_set | char_set; struct { const Char*& begin; dynamic_format_specs& specs; type arg_type; FMT_CONSTEXPR auto operator()(pres pres_type, int set) -> const Char* { if (!in(arg_type, set)) { if (arg_type == type::none_type) return begin; report_error("invalid format specifier"); } specs.type = pres_type; return begin + 1; } } parse_presentation_type{begin, specs, arg_type}; for (;;) { switch (c) { case '<': case '>': case '^': enter_state(state::align); specs.align = parse_align(c); ++begin; break; case '+': case '-': case ' ': if (arg_type == type::none_type) return begin; enter_state(state::sign, in(arg_type, sint_set | float_set)); switch (c) { case '+': specs.sign = sign::plus; break; case '-': specs.sign = sign::minus; break; case ' ': specs.sign = sign::space; break; } ++begin; break; case '#': if (arg_type == type::none_type) return begin; enter_state(state::hash, is_arithmetic_type(arg_type)); specs.alt = true; ++begin; break; case '0': enter_state(state::zero); if (!is_arithmetic_type(arg_type)) { if (arg_type == type::none_type) return begin; report_error("format specifier requires numeric argument"); } if (specs.align == align::none) { // Ignore 0 if align is specified for compatibility with std::format. specs.align = align::numeric; specs.fill = '0'; } ++begin; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '{': enter_state(state::width); begin = parse_dynamic_spec(begin, end, specs.width, specs.width_ref, ctx); break; case '.': if (arg_type == type::none_type) return begin; enter_state(state::precision, in(arg_type, float_set | string_set | cstring_set)); begin = parse_precision(begin, end, specs.precision, specs.precision_ref, ctx); break; case 'L': if (arg_type == type::none_type) return begin; enter_state(state::locale, is_arithmetic_type(arg_type)); specs.localized = true; ++begin; break; case 'd': return parse_presentation_type(pres::dec, integral_set); case 'X': specs.upper = true; FMT_FALLTHROUGH; case 'x': return parse_presentation_type(pres::hex, integral_set); case 'o': return parse_presentation_type(pres::oct, integral_set); case 'B': specs.upper = true; FMT_FALLTHROUGH; case 'b': return parse_presentation_type(pres::bin, integral_set); case 'E': specs.upper = true; FMT_FALLTHROUGH; case 'e': return parse_presentation_type(pres::exp, float_set); case 'F': specs.upper = true; FMT_FALLTHROUGH; case 'f': return parse_presentation_type(pres::fixed, float_set); case 'G': specs.upper = true; FMT_FALLTHROUGH; case 'g': return parse_presentation_type(pres::general, float_set); case 'A': specs.upper = true; FMT_FALLTHROUGH; case 'a': return parse_presentation_type(pres::hexfloat, float_set); case 'c': if (arg_type == type::bool_type) report_error("invalid format specifier"); return parse_presentation_type(pres::chr, integral_set); case 's': return parse_presentation_type(pres::string, bool_set | string_set | cstring_set); case 'p': return parse_presentation_type(pres::pointer, pointer_set | cstring_set); case '?': return parse_presentation_type(pres::debug, char_set | string_set | cstring_set); case '}': return begin; default: { if (*begin == '}') return begin; // Parse fill and alignment. auto fill_end = begin + code_point_length(begin); if (end - fill_end <= 0) { report_error("invalid format specifier"); return begin; } if (*begin == '{') { report_error("invalid fill character '{'"); return begin; } auto align = parse_align(to_ascii(*fill_end)); enter_state(state::align, align != align::none); specs.fill = basic_string_view(begin, to_unsigned(fill_end - begin)); specs.align = align; begin = fill_end + 1; } } if (begin == end) return begin; c = to_ascii(*begin); } } template FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end, Handler&& handler) -> const Char* { struct id_adapter { Handler& handler; int arg_id; FMT_CONSTEXPR void on_auto() { arg_id = handler.on_arg_id(); } FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void on_name(basic_string_view id) { arg_id = handler.on_arg_id(id); } }; ++begin; if (begin == end) return handler.on_error("invalid format string"), end; if (*begin == '}') { handler.on_replacement_field(handler.on_arg_id(), begin); } else if (*begin == '{') { handler.on_text(begin, begin + 1); } else { auto adapter = id_adapter{handler, 0}; begin = parse_arg_id(begin, end, adapter); Char c = begin != end ? *begin : Char(); if (c == '}') { handler.on_replacement_field(adapter.arg_id, begin); } else if (c == ':') { begin = handler.on_format_specs(adapter.arg_id, begin + 1, end); if (begin == end || *begin != '}') return handler.on_error("unknown format specifier"), end; } else { return handler.on_error("missing '}' in format string"), end; } } return begin + 1; } template FMT_CONSTEXPR void parse_format_string(basic_string_view format_str, Handler&& handler) { auto begin = format_str.data(); auto end = begin + format_str.size(); if (end - begin < 32) { // Use a simple loop instead of memchr for small strings. const Char* p = begin; while (p != end) { auto c = *p++; if (c == '{') { handler.on_text(begin, p - 1); begin = p = parse_replacement_field(p - 1, end, handler); } else if (c == '}') { if (p == end || *p != '}') return handler.on_error("unmatched '}' in format string"); handler.on_text(begin, p); begin = ++p; } } handler.on_text(begin, end); return; } struct writer { FMT_CONSTEXPR void operator()(const Char* from, const Char* to) { if (from == to) return; for (;;) { const Char* p = nullptr; if (!find(from, to, Char('}'), p)) return handler_.on_text(from, to); ++p; if (p == to || *p != '}') return handler_.on_error("unmatched '}' in format string"); handler_.on_text(from, p); from = p + 1; } } Handler& handler_; } write = {handler}; while (begin != end) { // Doing two passes with memchr (one for '{' and another for '}') is up to // 2.5x faster than the naive one-pass implementation on big format strings. const Char* p = begin; if (*begin != '{' && !find(begin + 1, end, Char('{'), p)) return write(begin, end); write(begin, p); begin = parse_replacement_field(p, end, handler); } } template ::value> struct strip_named_arg { using type = T; }; template struct strip_named_arg { using type = remove_cvref_t; }; template FMT_VISIBILITY("hidden") // Suppress an ld warning on macOS (#3769). FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx) -> decltype(ctx.begin()) { using char_type = typename ParseContext::char_type; using context = buffered_context; using mapped_type = conditional_t< mapped_type_constant::value != type::custom_type, decltype(arg_mapper().map(std::declval())), typename strip_named_arg::type>; #if defined(__cpp_if_constexpr) if constexpr (std::is_default_constructible< formatter>::value) { return formatter().parse(ctx); } else { type_is_unformattable_for _; return ctx.begin(); } #else return formatter().parse(ctx); #endif } // Checks char specs and returns true iff the presentation type is char-like. FMT_CONSTEXPR inline auto check_char_specs(const format_specs& specs) -> bool { if (specs.type != presentation_type::none && specs.type != presentation_type::chr && specs.type != presentation_type::debug) { return false; } if (specs.align == align::numeric || specs.sign != sign::none || specs.alt) report_error("invalid format specifier for char"); return true; } #if FMT_USE_NONTYPE_TEMPLATE_ARGS template constexpr auto get_arg_index_by_name(basic_string_view name) -> int { if constexpr (is_statically_named_arg()) { if (name == T::name) return N; } if constexpr (sizeof...(Args) > 0) return get_arg_index_by_name(name); (void)name; // Workaround an MSVC bug about "unused" parameter. return -1; } #endif template FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view name) -> int { #if FMT_USE_NONTYPE_TEMPLATE_ARGS if constexpr (sizeof...(Args) > 0) return get_arg_index_by_name<0, Args...>(name); #endif (void)name; return -1; } template class format_string_checker { private: using parse_context_type = compile_parse_context; static constexpr int num_args = sizeof...(Args); // Format specifier parsing function. // In the future basic_format_parse_context will replace compile_parse_context // here and will use is_constant_evaluated and downcasting to access the data // needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1. using parse_func = const Char* (*)(parse_context_type&); type types_[num_args > 0 ? static_cast(num_args) : 1]; parse_context_type context_; parse_func parse_funcs_[num_args > 0 ? static_cast(num_args) : 1]; public: explicit FMT_CONSTEXPR format_string_checker(basic_string_view fmt) : types_{mapped_type_constant>::value...}, context_(fmt, num_args, types_), parse_funcs_{&parse_format_specs...} {} FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); } FMT_CONSTEXPR auto on_arg_id(int id) -> int { return context_.check_arg_id(id), id; } FMT_CONSTEXPR auto on_arg_id(basic_string_view id) -> int { #if FMT_USE_NONTYPE_TEMPLATE_ARGS auto index = get_arg_index_by_name(id); if (index < 0) on_error("named argument is not found"); return index; #else (void)id; on_error("compile-time checks for named arguments require C++20 support"); return 0; #endif } FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) { on_format_specs(id, begin, begin); // Call parse() on empty specs. } FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*) -> const Char* { context_.advance_to(begin); // id >= 0 check is a workaround for gcc 10 bug (#2065). return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin; } FMT_NORETURN FMT_CONSTEXPR void on_error(const char* message) { report_error(message); } }; // A base class for compile-time strings. struct compile_string {}; template using is_compile_string = std::is_base_of; // Reports a compile-time error if S is not a valid format string. template ::value)> FMT_ALWAYS_INLINE void check_format_string(const S&) { #ifdef FMT_ENFORCE_COMPILE_STRING static_assert(is_compile_string::value, "FMT_ENFORCE_COMPILE_STRING requires all format strings to use " "FMT_STRING."); #endif } template ::value)> void check_format_string(S format_str) { using char_t = typename S::char_type; FMT_CONSTEXPR auto s = basic_string_view(format_str); using checker = format_string_checker...>; FMT_CONSTEXPR bool error = (parse_format_string(s, checker(s)), true); ignore_unused(error); } // Report truncation to prevent silent data loss. inline void report_truncation(bool truncated) { if (truncated) report_error("output is truncated"); } // Use vformat_args and avoid type_identity to keep symbols short and workaround // a GCC <= 4.8 bug. template struct vformat_args { using type = basic_format_args>; }; template <> struct vformat_args { using type = format_args; }; template void vformat_to(buffer& buf, basic_string_view fmt, typename vformat_args::type args, locale_ref loc = {}); FMT_API void vprint_mojibake(FILE*, string_view, format_args, bool = false); #ifndef _WIN32 inline void vprint_mojibake(FILE*, string_view, format_args, bool) {} #endif template struct native_formatter { private: dynamic_format_specs specs_; public: using nonlocking = void; template FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* { if (ctx.begin() == ctx.end() || *ctx.begin() == '}') return ctx.begin(); auto end = parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, TYPE); if (const_check(TYPE == type::char_type)) check_char_specs(specs_); return end; } template FMT_CONSTEXPR void set_debug_format(bool set = true) { specs_.type = set ? presentation_type::debug : presentation_type::none; } template FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const -> decltype(ctx.out()); }; } // namespace detail FMT_BEGIN_EXPORT // A formatter specialization for natively supported types. template struct formatter::value != detail::type::custom_type>> : detail::native_formatter::value> { }; template struct runtime_format_string { basic_string_view str; }; /// A compile-time format string. template class basic_format_string { private: basic_string_view str_; public: template < typename S, FMT_ENABLE_IF( std::is_convertible>::value || (detail::is_compile_string::value && std::is_constructible, const S&>::value))> FMT_CONSTEVAL FMT_ALWAYS_INLINE basic_format_string(const S& s) : str_(s) { static_assert( detail::count< (std::is_base_of>::value && std::is_reference::value)...>() == 0, "passing views as lvalues is disallowed"); #if FMT_USE_CONSTEVAL if constexpr (detail::count_named_args() == detail::count_statically_named_args()) { using checker = detail::format_string_checker...>; detail::parse_format_string(str_, checker(s)); } #else detail::check_format_string(s); #endif } basic_format_string(runtime_format_string fmt) : str_(fmt.str) {} FMT_ALWAYS_INLINE operator basic_string_view() const { return str_; } auto get() const -> basic_string_view { return str_; } }; #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround broken conversion on older gcc. template using format_string = string_view; inline auto runtime(string_view s) -> string_view { return s; } #else template using format_string = basic_format_string...>; /** * Creates a runtime format string. * * **Example**: * * // Check format string at runtime instead of compile-time. * fmt::print(fmt::runtime("{:d}"), "I am not a number"); */ inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; } #endif /// Formats a string and writes the output to `out`. template , char>::value)> auto vformat_to(OutputIt&& out, string_view fmt, format_args args) -> remove_cvref_t { auto&& buf = detail::get_buffer(out); detail::vformat_to(buf, fmt, args, {}); return detail::get_iterator(buf, out); } /** * Formats `args` according to specifications in `fmt`, writes the result to * the output iterator `out` and returns the iterator past the end of the output * range. `format_to` does not append a terminating null character. * * **Example**: * * auto out = std::vector(); * fmt::format_to(std::back_inserter(out), "{}", 42); */ template , char>::value)> FMT_INLINE auto format_to(OutputIt&& out, format_string fmt, T&&... args) -> remove_cvref_t { return vformat_to(FMT_FWD(out), fmt, fmt::make_format_args(args...)); } template struct format_to_n_result { /// Iterator past the end of the output range. OutputIt out; /// Total (not truncated) output size. size_t size; }; template ::value)> auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args) -> format_to_n_result { using traits = detail::fixed_buffer_traits; auto buf = detail::iterator_buffer(out, n); detail::vformat_to(buf, fmt, args, {}); return {buf.out(), buf.count()}; } /** * Formats `args` according to specifications in `fmt`, writes up to `n` * characters of the result to the output iterator `out` and returns the total * (not truncated) output size and the iterator past the end of the output * range. `format_to_n` does not append a terminating null character. */ template ::value)> FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string fmt, T&&... args) -> format_to_n_result { return vformat_to_n(out, n, fmt, fmt::make_format_args(args...)); } template struct format_to_result { /// Iterator pointing to just after the last successful write in the range. OutputIt out; /// Specifies if the output was truncated. bool truncated; FMT_CONSTEXPR operator OutputIt&() & { detail::report_truncation(truncated); return out; } FMT_CONSTEXPR operator const OutputIt&() const& { detail::report_truncation(truncated); return out; } FMT_CONSTEXPR operator OutputIt&&() && { detail::report_truncation(truncated); return static_cast(out); } }; template auto vformat_to(char (&out)[N], string_view fmt, format_args args) -> format_to_result { auto result = vformat_to_n(out, N, fmt, args); return {result.out, result.size > N}; } template FMT_INLINE auto format_to(char (&out)[N], format_string fmt, T&&... args) -> format_to_result { auto result = fmt::format_to_n(out, N, fmt, static_cast(args)...); return {result.out, result.size > N}; } /// Returns the number of chars in the output of `format(fmt, args...)`. template FMT_NODISCARD FMT_INLINE auto formatted_size(format_string fmt, T&&... args) -> size_t { auto buf = detail::counting_buffer<>(); detail::vformat_to(buf, fmt, fmt::make_format_args(args...), {}); return buf.count(); } FMT_API void vprint(string_view fmt, format_args args); FMT_API void vprint(FILE* f, string_view fmt, format_args args); FMT_API void vprint_buffered(FILE* f, string_view fmt, format_args args); FMT_API void vprintln(FILE* f, string_view fmt, format_args args); /** * Formats `args` according to specifications in `fmt` and writes the output * to `stdout`. * * **Example**: * * fmt::print("The answer is {}.", 42); */ template FMT_INLINE void print(format_string fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); if (!detail::use_utf8()) return detail::vprint_mojibake(stdout, fmt, vargs); return detail::is_locking() ? vprint_buffered(stdout, fmt, vargs) : vprint(fmt, vargs); } /** * Formats `args` according to specifications in `fmt` and writes the * output to the file `f`. * * **Example**: * * fmt::print(stderr, "Don't {}!", "panic"); */ template FMT_INLINE void print(FILE* f, format_string fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); if (!detail::use_utf8()) return detail::vprint_mojibake(f, fmt, vargs); return detail::is_locking() ? vprint_buffered(f, fmt, vargs) : vprint(f, fmt, vargs); } /// Formats `args` according to specifications in `fmt` and writes the output /// to the file `f` followed by a newline. template FMT_INLINE void println(FILE* f, format_string fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); return detail::use_utf8() ? vprintln(f, fmt, vargs) : detail::vprint_mojibake(f, fmt, vargs, true); } /// Formats `args` according to specifications in `fmt` and writes the output /// to `stdout` followed by a newline. template FMT_INLINE void println(format_string fmt, T&&... args) { return fmt::println(stdout, fmt, static_cast(args)...); } FMT_END_EXPORT FMT_GCC_PRAGMA("GCC pop_options") FMT_END_NAMESPACE #ifdef FMT_HEADER_ONLY # include "format.h" #endif #endif // FMT_BASE_H_