#ifndef _GLIBMM_REFPTR_H #define _GLIBMM_REFPTR_H /* Copyright 2002 The gtkmm Development Team * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see <http://www.gnu.org/licenses/>. */ #include <glibmmconfig.h> #include <glib.h> #include <utility> namespace Glib { /** RefPtr<> is a reference-counting shared smartpointer. * * Some objects in gtkmm are obtained from a shared * store. Consequently you cannot instantiate them yourself. Instead they * return a RefPtr which behaves much like an ordinary pointer in that members * can be reached with the usual <code>object_ptr->member</code> notation. * Unlike most other smart pointers, RefPtr doesn't support dereferencing * through <code>*object_ptr</code>. * * Reference counting means that a shared reference count is incremented each * time a RefPtr is copied, and decremented each time a RefPtr is destroyed, * for instance when it leaves its scope. When the reference count reaches * zero, the contained object is deleted, meaning you don't need to remember * to delete the object. * * RefPtr<> can store any class that has reference() and unreference() methods, * and whose destructor is noexcept (the default for destructors). * In gtkmm, that is anything derived from Glib::ObjectBase, such as * Gdk::Pixbuf. * * See the "Memory Management" section in the "Programming with gtkmm" * book for further information. */ template <class T_CppObject> class RefPtr { private: #ifndef DOXYGEN_SHOULD_SKIP_THIS /** Helper class for disallowing use of Glib::RefPtr with certain classes. * * Disallow for instance in Gtk::Widget and its subclasses. * Glib::RefPtr<T>::is_allowed_type::value is false if * T:dont_allow_use_in_glib_refptr_ is a public type, else it's true. * Example: * @code * using dont_allow_use_in_glib_refptr_ = int; * @endcode */ class is_allowed_type { private: struct big { int memory[64]; }; static big check(...); // If X::dont_allow_use_in_glib_refptr_ is not a type, this check() overload // is ignored because of the SFINAE rule (Substitution Failure Is Not An Error). template <typename X> static typename X::dont_allow_use_in_glib_refptr_ check(X* obj); public: static const bool value = sizeof(check(static_cast<T_CppObject*>(nullptr))) == sizeof(big); }; static_assert(is_allowed_type::value, "Glib::RefPtr must not be used with this class."); #endif /* DOXYGEN_SHOULD_SKIP_THIS */ public: /** Default constructor * * Afterwards it will be null and use of -> will invoke undefined behaviour. */ inline RefPtr() noexcept; /// Destructor - decrements reference count. inline ~RefPtr() noexcept; /// For use only by the \::create() methods. explicit inline RefPtr(T_CppObject* pCppObject) noexcept; /** Copy constructor * * This increments the shared reference count. */ inline RefPtr(const RefPtr& src) noexcept; /** Move constructor */ inline RefPtr(RefPtr&& src) noexcept; /** Move constructor (from different, but castable type). */ template <class T_CastFrom> inline RefPtr(RefPtr<T_CastFrom>&& src) noexcept; /** Copy constructor (from different, but castable type). * * Increments the reference count. */ template <class T_CastFrom> inline RefPtr(const RefPtr<T_CastFrom>& src) noexcept; /** Swap the contents of two RefPtr<>. * This method swaps the internal pointers to T_CppObject. This can be * done safely without involving a reference/unreference cycle and is * therefore highly efficient. */ inline void swap(RefPtr& other) noexcept; /// Copy from another RefPtr: inline RefPtr& operator=(const RefPtr& src) noexcept; /// Move assignment operator: inline RefPtr& operator=(RefPtr&& src) noexcept; /// Move assignment operator (from different, but castable type): template <class T_CastFrom> inline RefPtr& operator=(RefPtr<T_CastFrom>&& src) noexcept; /** Copy from different, but castable type. * * Increments the reference count. */ template <class T_CastFrom> inline RefPtr& operator=(const RefPtr<T_CastFrom>& src) noexcept; /// Tests whether the RefPtr<> point to the same underlying instance. inline bool operator==(const RefPtr& src) const noexcept; /// See operator==(). inline bool operator!=(const RefPtr& src) const noexcept; /** Dereferencing. * * Use the methods of the underlying instance like so: * <code>refptr->memberfun()</code>. */ inline T_CppObject* operator->() const noexcept; /** Returns the stored pointer. * * @newin{2,56} */ inline T_CppObject* get() const noexcept; /** Test whether the RefPtr<> points to any underlying instance. * * Mimics usage of ordinary pointers: * @code * if (ptr) * do_something(); * @endcode */ inline explicit operator bool() const noexcept; #ifndef GLIBMM_DISABLE_DEPRECATED /// @deprecated Use reset() instead because this leads to confusion with clear() methods on the /// underlying class. For instance, people use .clear() when they mean ->clear(). inline void clear() noexcept; #endif // GLIBMM_DISABLE_DEPRECATED /** Set underlying instance to nullptr, decrementing reference count of existing instance * appropriately. * @newin{2,16} */ inline void reset() noexcept; /** Release the ownership of underlying instance. * * RefPtr's underlying instance is set to nullptr, therefore underlying object can't be accessed * through this RefPtr anymore. * @return an underlying instance. * * Most users should not use release(). It can spoil the automatic destruction * of the managed object. A legitimate use is if you immediately give RefPtr's * reference to another object. */ inline T_CppObject* release() noexcept G_GNUC_WARN_UNUSED_RESULT; /** Dynamic cast to derived class. * * The RefPtr can't be cast with the usual notation so instead you can use * @code * ptr_derived = RefPtr<Derived>::cast_dynamic(ptr_base); * @endcode */ template <class T_CastFrom> static inline RefPtr cast_dynamic(const RefPtr<T_CastFrom>& src) noexcept; /** Static cast to derived class. * * Like the dynamic cast; the notation is * @code * ptr_derived = RefPtr<Derived>::cast_static(ptr_base); * @endcode */ template <class T_CastFrom> static inline RefPtr cast_static(const RefPtr<T_CastFrom>& src) noexcept; /** Cast to non-const. * * The RefPtr can't be cast with the usual notation so instead you can use * @code * ptr_unconst = RefPtr<UnConstType>::cast_const(ptr_const); * @endcode */ template <class T_CastFrom> static inline RefPtr cast_const(const RefPtr<T_CastFrom>& src) noexcept; /** Compare based on the underlying instance address. * * This is needed in code that requires an ordering on * RefPtr<T_CppObject> instances, e.g. std::set<RefPtr<T_CppObject> >. * * Without these, comparing two RefPtr<T_CppObject> instances * is still syntactically possible, but the result is semantically * wrong, as p1 REL_OP p2 is interpreted as (bool)p1 REL_OP (bool)p2. */ inline bool operator<(const RefPtr& src) const noexcept; /// See operator<(). inline bool operator<=(const RefPtr& src) const noexcept; /// See operator<(). inline bool operator>(const RefPtr& src) const noexcept; /// See operator<(). inline bool operator>=(const RefPtr& src) const noexcept; private: T_CppObject* pCppObject_; }; #ifndef DOXYGEN_SHOULD_SKIP_THIS // RefPtr<>::operator->() comes first here since it's used by other methods. // If it would come after them it wouldn't be inlined. template <class T_CppObject> inline T_CppObject* RefPtr<T_CppObject>::operator->() const noexcept { return pCppObject_; } template <class T_CppObject> inline RefPtr<T_CppObject>::RefPtr() noexcept : pCppObject_(nullptr) { } template <class T_CppObject> inline RefPtr<T_CppObject>::~RefPtr() noexcept { if (pCppObject_) pCppObject_->unreference(); // This could cause pCppObject to be deleted. } template <class T_CppObject> inline RefPtr<T_CppObject>::RefPtr(T_CppObject* pCppObject) noexcept : pCppObject_(pCppObject) { } template <class T_CppObject> inline RefPtr<T_CppObject>::RefPtr(const RefPtr& src) noexcept : pCppObject_(src.pCppObject_) { if (pCppObject_) pCppObject_->reference(); } template <class T_CppObject> inline RefPtr<T_CppObject>::RefPtr(RefPtr&& src) noexcept : pCppObject_(src.pCppObject_) { src.pCppObject_ = nullptr; } template <class T_CppObject> template <class T_CastFrom> inline RefPtr<T_CppObject>::RefPtr(RefPtr<T_CastFrom>&& src) noexcept : pCppObject_(src.release()) { } // The templated ctor allows copy construction from any object that's // castable. Thus, it does downcasts: // base_ref = derived_ref template <class T_CppObject> template <class T_CastFrom> inline RefPtr<T_CppObject>::RefPtr(const RefPtr<T_CastFrom>& src) noexcept : // A different RefPtr<> will not allow us access to pCppObject_. We need // to add a get_underlying() for this, but that would encourage incorrect // use, so we use the less well-known operator->() accessor: pCppObject_(src.operator->()) { if (pCppObject_) pCppObject_->reference(); } template <class T_CppObject> inline void RefPtr<T_CppObject>::swap(RefPtr& other) noexcept { T_CppObject* const temp = pCppObject_; pCppObject_ = other.pCppObject_; other.pCppObject_ = temp; } template <class T_CppObject> inline RefPtr<T_CppObject>& RefPtr<T_CppObject>::operator=(const RefPtr& src) noexcept { // In case you haven't seen the swap() technique to implement copy // assignment before, here's what it does: // // 1) Create a temporary RefPtr<> instance via the copy ctor, thereby // increasing the reference count of the source object. // // 2) Swap the internal object pointers of *this and the temporary // RefPtr<>. After this step, *this already contains the new pointer, // and the old pointer is now managed by temp. // // 3) The destructor of temp is executed, thereby unreferencing the // old object pointer. // // This technique is described in Herb Sutter's "Exceptional C++", and // has a number of advantages over conventional approaches: // // - Code reuse by calling the copy ctor. // - Strong exception safety for free. // - Self assignment is handled implicitely. // - Simplicity. // - It just works and is hard to get wrong; i.e. you can use it without // even thinking about it to implement copy assignment whereever the // object data is managed indirectly via a pointer, which is very common. RefPtr<T_CppObject> temp(src); this->swap(temp); return *this; } template <class T_CppObject> inline RefPtr<T_CppObject>& RefPtr<T_CppObject>::operator=(RefPtr&& src) noexcept { RefPtr<T_CppObject> temp(std::move(src)); this->swap(temp); src.pCppObject_ = nullptr; return *this; } template <class T_CppObject> template <class T_CastFrom> inline RefPtr<T_CppObject>& RefPtr<T_CppObject>::operator=(RefPtr<T_CastFrom>&& src) noexcept { if (pCppObject_) pCppObject_->unreference(); pCppObject_ = src.release(); return *this; } template <class T_CppObject> template <class T_CastFrom> inline RefPtr<T_CppObject>& RefPtr<T_CppObject>::operator=(const RefPtr<T_CastFrom>& src) noexcept { RefPtr<T_CppObject> temp(src); this->swap(temp); return *this; } template <class T_CppObject> inline bool RefPtr<T_CppObject>::operator==(const RefPtr& src) const noexcept { return (pCppObject_ == src.pCppObject_); } template <class T_CppObject> inline bool RefPtr<T_CppObject>::operator!=(const RefPtr& src) const noexcept { return (pCppObject_ != src.pCppObject_); } template <class T_CppObject> inline T_CppObject* RefPtr<T_CppObject>::get() const noexcept { return pCppObject_; } template <class T_CppObject> inline RefPtr<T_CppObject>::operator bool() const noexcept { return (pCppObject_ != nullptr); } #ifndef GLIBMM_DISABLE_DEPRECATED template <class T_CppObject> inline void RefPtr<T_CppObject>::clear() noexcept { reset(); } #endif // GLIBMM_DISABLE_DEPRECATED template <class T_CppObject> inline void RefPtr<T_CppObject>::reset() noexcept { RefPtr<T_CppObject> temp; // swap with an empty RefPtr<> to clear *this this->swap(temp); } template <class T_CppObject> inline T_CppObject* RefPtr<T_CppObject>::release() noexcept { T_CppObject* tmp = pCppObject_; pCppObject_ = nullptr; return tmp; } template <class T_CppObject> template <class T_CastFrom> inline RefPtr<T_CppObject> RefPtr<T_CppObject>::cast_dynamic(const RefPtr<T_CastFrom>& src) noexcept { T_CppObject* const pCppObject = dynamic_cast<T_CppObject*>(src.operator->()); if (pCppObject) pCppObject->reference(); return RefPtr<T_CppObject>(pCppObject); } template <class T_CppObject> template <class T_CastFrom> inline RefPtr<T_CppObject> RefPtr<T_CppObject>::cast_static(const RefPtr<T_CastFrom>& src) noexcept { T_CppObject* const pCppObject = static_cast<T_CppObject*>(src.operator->()); if (pCppObject) pCppObject->reference(); return RefPtr<T_CppObject>(pCppObject); } template <class T_CppObject> template <class T_CastFrom> inline RefPtr<T_CppObject> RefPtr<T_CppObject>::cast_const(const RefPtr<T_CastFrom>& src) noexcept { T_CppObject* const pCppObject = const_cast<T_CppObject*>(src.operator->()); if (pCppObject) pCppObject->reference(); return RefPtr<T_CppObject>(pCppObject); } template <class T_CppObject> inline bool RefPtr<T_CppObject>::operator<(const RefPtr& src) const noexcept { return (pCppObject_ < src.pCppObject_); } template <class T_CppObject> inline bool RefPtr<T_CppObject>::operator<=(const RefPtr& src) const noexcept { return (pCppObject_ <= src.pCppObject_); } template <class T_CppObject> inline bool RefPtr<T_CppObject>::operator>(const RefPtr& src) const noexcept { return (pCppObject_ > src.pCppObject_); } template <class T_CppObject> inline bool RefPtr<T_CppObject>::operator>=(const RefPtr& src) const noexcept { return (pCppObject_ >= src.pCppObject_); } #endif /* DOXYGEN_SHOULD_SKIP_THIS */ /** @relates Glib::RefPtr */ template <class T_CppObject> inline void swap(RefPtr<T_CppObject>& lhs, RefPtr<T_CppObject>& rhs) noexcept { lhs.swap(rhs); } } // namespace Glib #endif /* _GLIBMM_REFPTR_H */