# Copyright 2006 Google, Inc. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """ Python parse tree definitions. This is a very concrete parse tree; we need to keep every token and even the comments and whitespace between tokens. There's also a pattern matching implementation here. """ # mypy: allow-untyped-defs, allow-incomplete-defs from typing import ( Any, Dict, Iterable, Iterator, List, Optional, Set, Tuple, TypeVar, Union, ) from blib2to3.pgen2.grammar import Grammar __author__ = "Guido van Rossum " import sys from io import StringIO HUGE: int = 0x7FFFFFFF # maximum repeat count, default max _type_reprs: Dict[int, Union[str, int]] = {} def type_repr(type_num: int) -> Union[str, int]: global _type_reprs if not _type_reprs: from . import pygram if not hasattr(pygram, "python_symbols"): pygram.initialize(cache_dir=None) # printing tokens is possible but not as useful # from .pgen2 import token // token.__dict__.items(): for name in dir(pygram.python_symbols): val = getattr(pygram.python_symbols, name) if type(val) == int: _type_reprs[val] = name return _type_reprs.setdefault(type_num, type_num) _P = TypeVar("_P", bound="Base") NL = Union["Node", "Leaf"] Context = Tuple[str, Tuple[int, int]] RawNode = Tuple[int, Optional[str], Optional[Context], Optional[List[NL]]] class Base: """ Abstract base class for Node and Leaf. This provides some default functionality and boilerplate using the template pattern. A node may be a subnode of at most one parent. """ # Default values for instance variables type: int # int: token number (< 256) or symbol number (>= 256) parent: Optional["Node"] = None # Parent node pointer, or None children: List[NL] # List of subnodes was_changed: bool = False was_checked: bool = False def __new__(cls, *args, **kwds): """Constructor that prevents Base from being instantiated.""" assert cls is not Base, "Cannot instantiate Base" return object.__new__(cls) def __eq__(self, other: Any) -> bool: """ Compare two nodes for equality. This calls the method _eq(). """ if self.__class__ is not other.__class__: return NotImplemented return self._eq(other) @property def prefix(self) -> str: raise NotImplementedError def _eq(self: _P, other: _P) -> bool: """ Compare two nodes for equality. This is called by __eq__ and __ne__. It is only called if the two nodes have the same type. This must be implemented by the concrete subclass. Nodes should be considered equal if they have the same structure, ignoring the prefix string and other context information. """ raise NotImplementedError def __deepcopy__(self: _P, memo: Any) -> _P: return self.clone() def clone(self: _P) -> _P: """ Return a cloned (deep) copy of self. This must be implemented by the concrete subclass. """ raise NotImplementedError def post_order(self) -> Iterator[NL]: """ Return a post-order iterator for the tree. This must be implemented by the concrete subclass. """ raise NotImplementedError def pre_order(self) -> Iterator[NL]: """ Return a pre-order iterator for the tree. This must be implemented by the concrete subclass. """ raise NotImplementedError def replace(self, new: Union[NL, List[NL]]) -> None: """Replace this node with a new one in the parent.""" assert self.parent is not None, str(self) assert new is not None if not isinstance(new, list): new = [new] l_children = [] found = False for ch in self.parent.children: if ch is self: assert not found, (self.parent.children, self, new) if new is not None: l_children.extend(new) found = True else: l_children.append(ch) assert found, (self.children, self, new) self.parent.children = l_children self.parent.changed() self.parent.invalidate_sibling_maps() for x in new: x.parent = self.parent self.parent = None def get_lineno(self) -> Optional[int]: """Return the line number which generated the invocant node.""" node = self while not isinstance(node, Leaf): if not node.children: return None node = node.children[0] return node.lineno def changed(self) -> None: if self.was_changed: return if self.parent: self.parent.changed() self.was_changed = True def remove(self) -> Optional[int]: """ Remove the node from the tree. Returns the position of the node in its parent's children before it was removed. """ if self.parent: for i, node in enumerate(self.parent.children): if node is self: del self.parent.children[i] self.parent.changed() self.parent.invalidate_sibling_maps() self.parent = None return i return None @property def next_sibling(self) -> Optional[NL]: """ The node immediately following the invocant in their parent's children list. If the invocant does not have a next sibling, it is None """ if self.parent is None: return None if self.parent.next_sibling_map is None: self.parent.update_sibling_maps() assert self.parent.next_sibling_map is not None return self.parent.next_sibling_map[id(self)] @property def prev_sibling(self) -> Optional[NL]: """ The node immediately preceding the invocant in their parent's children list. If the invocant does not have a previous sibling, it is None. """ if self.parent is None: return None if self.parent.prev_sibling_map is None: self.parent.update_sibling_maps() assert self.parent.prev_sibling_map is not None return self.parent.prev_sibling_map[id(self)] def leaves(self) -> Iterator["Leaf"]: for child in self.children: yield from child.leaves() def depth(self) -> int: if self.parent is None: return 0 return 1 + self.parent.depth() def get_suffix(self) -> str: """ Return the string immediately following the invocant node. This is effectively equivalent to node.next_sibling.prefix """ next_sib = self.next_sibling if next_sib is None: return "" prefix = next_sib.prefix return prefix class Node(Base): """Concrete implementation for interior nodes.""" fixers_applied: Optional[List[Any]] used_names: Optional[Set[str]] def __init__( self, type: int, children: List[NL], context: Optional[Any] = None, prefix: Optional[str] = None, fixers_applied: Optional[List[Any]] = None, ) -> None: """ Initializer. Takes a type constant (a symbol number >= 256), a sequence of child nodes, and an optional context keyword argument. As a side effect, the parent pointers of the children are updated. """ assert type >= 256, type self.type = type self.children = list(children) for ch in self.children: assert ch.parent is None, repr(ch) ch.parent = self self.invalidate_sibling_maps() if prefix is not None: self.prefix = prefix if fixers_applied: self.fixers_applied = fixers_applied[:] else: self.fixers_applied = None def __repr__(self) -> str: """Return a canonical string representation.""" assert self.type is not None return "{}({}, {!r})".format( self.__class__.__name__, type_repr(self.type), self.children, ) def __str__(self) -> str: """ Return a pretty string representation. This reproduces the input source exactly. """ return "".join(map(str, self.children)) def _eq(self, other: Base) -> bool: """Compare two nodes for equality.""" return (self.type, self.children) == (other.type, other.children) def clone(self) -> "Node": assert self.type is not None """Return a cloned (deep) copy of self.""" return Node( self.type, [ch.clone() for ch in self.children], fixers_applied=self.fixers_applied, ) def post_order(self) -> Iterator[NL]: """Return a post-order iterator for the tree.""" for child in self.children: yield from child.post_order() yield self def pre_order(self) -> Iterator[NL]: """Return a pre-order iterator for the tree.""" yield self for child in self.children: yield from child.pre_order() @property def prefix(self) -> str: """ The whitespace and comments preceding this node in the input. """ if not self.children: return "" return self.children[0].prefix @prefix.setter def prefix(self, prefix: str) -> None: if self.children: self.children[0].prefix = prefix def set_child(self, i: int, child: NL) -> None: """ Equivalent to 'node.children[i] = child'. This method also sets the child's parent attribute appropriately. """ child.parent = self self.children[i].parent = None self.children[i] = child self.changed() self.invalidate_sibling_maps() def insert_child(self, i: int, child: NL) -> None: """ Equivalent to 'node.children.insert(i, child)'. This method also sets the child's parent attribute appropriately. """ child.parent = self self.children.insert(i, child) self.changed() self.invalidate_sibling_maps() def append_child(self, child: NL) -> None: """ Equivalent to 'node.children.append(child)'. This method also sets the child's parent attribute appropriately. """ child.parent = self self.children.append(child) self.changed() self.invalidate_sibling_maps() def invalidate_sibling_maps(self) -> None: self.prev_sibling_map: Optional[Dict[int, Optional[NL]]] = None self.next_sibling_map: Optional[Dict[int, Optional[NL]]] = None def update_sibling_maps(self) -> None: _prev: Dict[int, Optional[NL]] = {} _next: Dict[int, Optional[NL]] = {} self.prev_sibling_map = _prev self.next_sibling_map = _next previous: Optional[NL] = None for current in self.children: _prev[id(current)] = previous _next[id(previous)] = current previous = current _next[id(current)] = None class Leaf(Base): """Concrete implementation for leaf nodes.""" # Default values for instance variables value: str fixers_applied: List[Any] bracket_depth: int # Changed later in brackets.py opening_bracket: Optional["Leaf"] = None used_names: Optional[Set[str]] _prefix = "" # Whitespace and comments preceding this token in the input lineno: int = 0 # Line where this token starts in the input column: int = 0 # Column where this token starts in the input # If not None, this Leaf is created by converting a block of fmt off/skip # code, and `fmt_pass_converted_first_leaf` points to the first Leaf in the # converted code. fmt_pass_converted_first_leaf: Optional["Leaf"] = None def __init__( self, type: int, value: str, context: Optional[Context] = None, prefix: Optional[str] = None, fixers_applied: List[Any] = [], opening_bracket: Optional["Leaf"] = None, fmt_pass_converted_first_leaf: Optional["Leaf"] = None, ) -> None: """ Initializer. Takes a type constant (a token number < 256), a string value, and an optional context keyword argument. """ assert 0 <= type < 256, type if context is not None: self._prefix, (self.lineno, self.column) = context self.type = type self.value = value if prefix is not None: self._prefix = prefix self.fixers_applied: Optional[List[Any]] = fixers_applied[:] self.children = [] self.opening_bracket = opening_bracket self.fmt_pass_converted_first_leaf = fmt_pass_converted_first_leaf def __repr__(self) -> str: """Return a canonical string representation.""" from .pgen2.token import tok_name assert self.type is not None return "{}({}, {!r})".format( self.__class__.__name__, tok_name.get(self.type, self.type), self.value, ) def __str__(self) -> str: """ Return a pretty string representation. This reproduces the input source exactly. """ return self._prefix + str(self.value) def _eq(self, other: "Leaf") -> bool: """Compare two nodes for equality.""" return (self.type, self.value) == (other.type, other.value) def clone(self) -> "Leaf": assert self.type is not None """Return a cloned (deep) copy of self.""" return Leaf( self.type, self.value, (self.prefix, (self.lineno, self.column)), fixers_applied=self.fixers_applied, ) def leaves(self) -> Iterator["Leaf"]: yield self def post_order(self) -> Iterator["Leaf"]: """Return a post-order iterator for the tree.""" yield self def pre_order(self) -> Iterator["Leaf"]: """Return a pre-order iterator for the tree.""" yield self @property def prefix(self) -> str: """ The whitespace and comments preceding this token in the input. """ return self._prefix @prefix.setter def prefix(self, prefix: str) -> None: self.changed() self._prefix = prefix def convert(gr: Grammar, raw_node: RawNode) -> NL: """ Convert raw node information to a Node or Leaf instance. This is passed to the parser driver which calls it whenever a reduction of a grammar rule produces a new complete node, so that the tree is build strictly bottom-up. """ type, value, context, children = raw_node if children or type in gr.number2symbol: # If there's exactly one child, return that child instead of # creating a new node. assert children is not None if len(children) == 1: return children[0] return Node(type, children, context=context) else: return Leaf(type, value or "", context=context) _Results = Dict[str, NL] class BasePattern: """ A pattern is a tree matching pattern. It looks for a specific node type (token or symbol), and optionally for a specific content. This is an abstract base class. There are three concrete subclasses: - LeafPattern matches a single leaf node; - NodePattern matches a single node (usually non-leaf); - WildcardPattern matches a sequence of nodes of variable length. """ # Defaults for instance variables type: Optional[int] type = None # Node type (token if < 256, symbol if >= 256) content: Any = None # Optional content matching pattern name: Optional[str] = None # Optional name used to store match in results dict def __new__(cls, *args, **kwds): """Constructor that prevents BasePattern from being instantiated.""" assert cls is not BasePattern, "Cannot instantiate BasePattern" return object.__new__(cls) def __repr__(self) -> str: assert self.type is not None args = [type_repr(self.type), self.content, self.name] while args and args[-1] is None: del args[-1] return "{}({})".format(self.__class__.__name__, ", ".join(map(repr, args))) def _submatch(self, node, results=None) -> bool: raise NotImplementedError def optimize(self) -> "BasePattern": """ A subclass can define this as a hook for optimizations. Returns either self or another node with the same effect. """ return self def match(self, node: NL, results: Optional[_Results] = None) -> bool: """ Does this pattern exactly match a node? Returns True if it matches, False if not. If results is not None, it must be a dict which will be updated with the nodes matching named subpatterns. Default implementation for non-wildcard patterns. """ if self.type is not None and node.type != self.type: return False if self.content is not None: r: Optional[_Results] = None if results is not None: r = {} if not self._submatch(node, r): return False if r: assert results is not None results.update(r) if results is not None and self.name: results[self.name] = node return True def match_seq(self, nodes: List[NL], results: Optional[_Results] = None) -> bool: """ Does this pattern exactly match a sequence of nodes? Default implementation for non-wildcard patterns. """ if len(nodes) != 1: return False return self.match(nodes[0], results) def generate_matches(self, nodes: List[NL]) -> Iterator[Tuple[int, _Results]]: """ Generator yielding all matches for this pattern. Default implementation for non-wildcard patterns. """ r: _Results = {} if nodes and self.match(nodes[0], r): yield 1, r class LeafPattern(BasePattern): def __init__( self, type: Optional[int] = None, content: Optional[str] = None, name: Optional[str] = None, ) -> None: """ Initializer. Takes optional type, content, and name. The type, if given must be a token type (< 256). If not given, this matches any *leaf* node; the content may still be required. The content, if given, must be a string. If a name is given, the matching node is stored in the results dict under that key. """ if type is not None: assert 0 <= type < 256, type if content is not None: assert isinstance(content, str), repr(content) self.type = type self.content = content self.name = name def match(self, node: NL, results=None) -> bool: """Override match() to insist on a leaf node.""" if not isinstance(node, Leaf): return False return BasePattern.match(self, node, results) def _submatch(self, node, results=None): """ Match the pattern's content to the node's children. This assumes the node type matches and self.content is not None. Returns True if it matches, False if not. If results is not None, it must be a dict which will be updated with the nodes matching named subpatterns. When returning False, the results dict may still be updated. """ return self.content == node.value class NodePattern(BasePattern): wildcards: bool = False def __init__( self, type: Optional[int] = None, content: Optional[Iterable[str]] = None, name: Optional[str] = None, ) -> None: """ Initializer. Takes optional type, content, and name. The type, if given, must be a symbol type (>= 256). If the type is None this matches *any* single node (leaf or not), except if content is not None, in which it only matches non-leaf nodes that also match the content pattern. The content, if not None, must be a sequence of Patterns that must match the node's children exactly. If the content is given, the type must not be None. If a name is given, the matching node is stored in the results dict under that key. """ if type is not None: assert type >= 256, type if content is not None: assert not isinstance(content, str), repr(content) newcontent = list(content) for i, item in enumerate(newcontent): assert isinstance(item, BasePattern), (i, item) # I don't even think this code is used anywhere, but it does cause # unreachable errors from mypy. This function's signature does look # odd though *shrug*. if isinstance(item, WildcardPattern): # type: ignore[unreachable] self.wildcards = True # type: ignore[unreachable] self.type = type self.content = newcontent # TODO: this is unbound when content is None self.name = name def _submatch(self, node, results=None) -> bool: """ Match the pattern's content to the node's children. This assumes the node type matches and self.content is not None. Returns True if it matches, False if not. If results is not None, it must be a dict which will be updated with the nodes matching named subpatterns. When returning False, the results dict may still be updated. """ if self.wildcards: for c, r in generate_matches(self.content, node.children): if c == len(node.children): if results is not None: results.update(r) return True return False if len(self.content) != len(node.children): return False for subpattern, child in zip(self.content, node.children): if not subpattern.match(child, results): return False return True class WildcardPattern(BasePattern): """ A wildcard pattern can match zero or more nodes. This has all the flexibility needed to implement patterns like: .* .+ .? .{m,n} (a b c | d e | f) (...)* (...)+ (...)? (...){m,n} except it always uses non-greedy matching. """ min: int max: int def __init__( self, content: Optional[str] = None, min: int = 0, max: int = HUGE, name: Optional[str] = None, ) -> None: """ Initializer. Args: content: optional sequence of subsequences of patterns; if absent, matches one node; if present, each subsequence is an alternative [*] min: optional minimum number of times to match, default 0 max: optional maximum number of times to match, default HUGE name: optional name assigned to this match [*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is equivalent to (a b c | d e | f g h); if content is None, this is equivalent to '.' in regular expression terms. The min and max parameters work as follows: min=0, max=maxint: .* min=1, max=maxint: .+ min=0, max=1: .? min=1, max=1: . If content is not None, replace the dot with the parenthesized list of alternatives, e.g. (a b c | d e | f g h)* """ assert 0 <= min <= max <= HUGE, (min, max) if content is not None: f = lambda s: tuple(s) wrapped_content = tuple(map(f, content)) # Protect against alterations # Check sanity of alternatives assert len(wrapped_content), repr( wrapped_content ) # Can't have zero alternatives for alt in wrapped_content: assert len(alt), repr(alt) # Can have empty alternatives self.content = wrapped_content self.min = min self.max = max self.name = name def optimize(self) -> Any: """Optimize certain stacked wildcard patterns.""" subpattern = None if ( self.content is not None and len(self.content) == 1 and len(self.content[0]) == 1 ): subpattern = self.content[0][0] if self.min == 1 and self.max == 1: if self.content is None: return NodePattern(name=self.name) if subpattern is not None and self.name == subpattern.name: return subpattern.optimize() if ( self.min <= 1 and isinstance(subpattern, WildcardPattern) and subpattern.min <= 1 and self.name == subpattern.name ): return WildcardPattern( subpattern.content, self.min * subpattern.min, self.max * subpattern.max, subpattern.name, ) return self def match(self, node, results=None) -> bool: """Does this pattern exactly match a node?""" return self.match_seq([node], results) def match_seq(self, nodes, results=None) -> bool: """Does this pattern exactly match a sequence of nodes?""" for c, r in self.generate_matches(nodes): if c == len(nodes): if results is not None: results.update(r) if self.name: results[self.name] = list(nodes) return True return False def generate_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: """ Generator yielding matches for a sequence of nodes. Args: nodes: sequence of nodes Yields: (count, results) tuples where: count: the match comprises nodes[:count]; results: dict containing named submatches. """ if self.content is None: # Shortcut for special case (see __init__.__doc__) for count in range(self.min, 1 + min(len(nodes), self.max)): r = {} if self.name: r[self.name] = nodes[:count] yield count, r elif self.name == "bare_name": yield self._bare_name_matches(nodes) else: # The reason for this is that hitting the recursion limit usually # results in some ugly messages about how RuntimeErrors are being # ignored. We only have to do this on CPython, though, because other # implementations don't have this nasty bug in the first place. if hasattr(sys, "getrefcount"): save_stderr = sys.stderr sys.stderr = StringIO() try: for count, r in self._recursive_matches(nodes, 0): if self.name: r[self.name] = nodes[:count] yield count, r except RuntimeError: # We fall back to the iterative pattern matching scheme if the recursive # scheme hits the recursion limit. for count, r in self._iterative_matches(nodes): if self.name: r[self.name] = nodes[:count] yield count, r finally: if hasattr(sys, "getrefcount"): sys.stderr = save_stderr def _iterative_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: """Helper to iteratively yield the matches.""" nodelen = len(nodes) if 0 >= self.min: yield 0, {} results = [] # generate matches that use just one alt from self.content for alt in self.content: for c, r in generate_matches(alt, nodes): yield c, r results.append((c, r)) # for each match, iterate down the nodes while results: new_results = [] for c0, r0 in results: # stop if the entire set of nodes has been matched if c0 < nodelen and c0 <= self.max: for alt in self.content: for c1, r1 in generate_matches(alt, nodes[c0:]): if c1 > 0: r = {} r.update(r0) r.update(r1) yield c0 + c1, r new_results.append((c0 + c1, r)) results = new_results def _bare_name_matches(self, nodes) -> Tuple[int, _Results]: """Special optimized matcher for bare_name.""" count = 0 r = {} # type: _Results done = False max = len(nodes) while not done and count < max: done = True for leaf in self.content: if leaf[0].match(nodes[count], r): count += 1 done = False break assert self.name is not None r[self.name] = nodes[:count] return count, r def _recursive_matches(self, nodes, count) -> Iterator[Tuple[int, _Results]]: """Helper to recursively yield the matches.""" assert self.content is not None if count >= self.min: yield 0, {} if count < self.max: for alt in self.content: for c0, r0 in generate_matches(alt, nodes): for c1, r1 in self._recursive_matches(nodes[c0:], count + 1): r = {} r.update(r0) r.update(r1) yield c0 + c1, r class NegatedPattern(BasePattern): def __init__(self, content: Optional[BasePattern] = None) -> None: """ Initializer. The argument is either a pattern or None. If it is None, this only matches an empty sequence (effectively '$' in regex lingo). If it is not None, this matches whenever the argument pattern doesn't have any matches. """ if content is not None: assert isinstance(content, BasePattern), repr(content) self.content = content def match(self, node, results=None) -> bool: # We never match a node in its entirety return False def match_seq(self, nodes, results=None) -> bool: # We only match an empty sequence of nodes in its entirety return len(nodes) == 0 def generate_matches(self, nodes: List[NL]) -> Iterator[Tuple[int, _Results]]: if self.content is None: # Return a match if there is an empty sequence if len(nodes) == 0: yield 0, {} else: # Return a match if the argument pattern has no matches for c, r in self.content.generate_matches(nodes): return yield 0, {} def generate_matches( patterns: List[BasePattern], nodes: List[NL] ) -> Iterator[Tuple[int, _Results]]: """ Generator yielding matches for a sequence of patterns and nodes. Args: patterns: a sequence of patterns nodes: a sequence of nodes Yields: (count, results) tuples where: count: the entire sequence of patterns matches nodes[:count]; results: dict containing named submatches. """ if not patterns: yield 0, {} else: p, rest = patterns[0], patterns[1:] for c0, r0 in p.generate_matches(nodes): if not rest: yield c0, r0 else: for c1, r1 in generate_matches(rest, nodes[c0:]): r = {} r.update(r0) r.update(r1) yield c0 + c1, r