# Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Python Software Foundation. # All rights reserved. # mypy: allow-untyped-defs, allow-untyped-calls """Tokenization help for Python programs. generate_tokens(readline) is a generator that breaks a stream of text into Python tokens. It accepts a readline-like method which is called repeatedly to get the next line of input (or "" for EOF). It generates 5-tuples with these members: the token type (see token.py) the token (a string) the starting (row, column) indices of the token (a 2-tuple of ints) the ending (row, column) indices of the token (a 2-tuple of ints) the original line (string) It is designed to match the working of the Python tokenizer exactly, except that it produces COMMENT tokens for comments and gives type OP for all operators Older entry points tokenize_loop(readline, tokeneater) tokenize(readline, tokeneater=printtoken) are the same, except instead of generating tokens, tokeneater is a callback function to which the 5 fields described above are passed as 5 arguments, each time a new token is found.""" import builtins import sys from typing import ( Callable, Final, Iterable, Iterator, List, Optional, Pattern, Set, Tuple, Union, ) from blib2to3.pgen2.grammar import Grammar from blib2to3.pgen2.token import ( ASYNC, AWAIT, COMMENT, DEDENT, ENDMARKER, ERRORTOKEN, FSTRING_END, FSTRING_MIDDLE, FSTRING_START, INDENT, LBRACE, NAME, NEWLINE, NL, NUMBER, OP, RBRACE, STRING, tok_name, ) __author__ = "Ka-Ping Yee <ping@lfw.org>" __credits__ = "GvR, ESR, Tim Peters, Thomas Wouters, Fred Drake, Skip Montanaro" import re from codecs import BOM_UTF8, lookup from . import token __all__ = [x for x in dir(token) if x[0] != "_"] + [ "tokenize", "generate_tokens", "untokenize", ] del token def group(*choices: str) -> str: return "(" + "|".join(choices) + ")" def any(*choices: str) -> str: return group(*choices) + "*" def maybe(*choices: str) -> str: return group(*choices) + "?" def _combinations(*l: str) -> Set[str]: return {x + y for x in l for y in l + ("",) if x.casefold() != y.casefold()} Whitespace = r"[ \f\t]*" Comment = r"#[^\r\n]*" Ignore = Whitespace + any(r"\\\r?\n" + Whitespace) + maybe(Comment) Name = ( # this is invalid but it's fine because Name comes after Number in all groups r"[^\s#\(\)\[\]\{\}+\-*/!@$%^&=|;:'\",\.<>/?`~\\]+" ) Binnumber = r"0[bB]_?[01]+(?:_[01]+)*" Hexnumber = r"0[xX]_?[\da-fA-F]+(?:_[\da-fA-F]+)*[lL]?" Octnumber = r"0[oO]?_?[0-7]+(?:_[0-7]+)*[lL]?" Decnumber = group(r"[1-9]\d*(?:_\d+)*[lL]?", "0[lL]?") Intnumber = group(Binnumber, Hexnumber, Octnumber, Decnumber) Exponent = r"[eE][-+]?\d+(?:_\d+)*" Pointfloat = group(r"\d+(?:_\d+)*\.(?:\d+(?:_\d+)*)?", r"\.\d+(?:_\d+)*") + maybe( Exponent ) Expfloat = r"\d+(?:_\d+)*" + Exponent Floatnumber = group(Pointfloat, Expfloat) Imagnumber = group(r"\d+(?:_\d+)*[jJ]", Floatnumber + r"[jJ]") Number = group(Imagnumber, Floatnumber, Intnumber) # Tail end of ' string. Single = r"(?:\\.|[^'\\])*'" # Tail end of " string. Double = r'(?:\\.|[^"\\])*"' # Tail end of ''' string. Single3 = r"(?:\\.|'(?!'')|[^'\\])*'''" # Tail end of """ string. Double3 = r'(?:\\.|"(?!"")|[^"\\])*"""' _litprefix = r"(?:[uUrRbB]|[rR][bB]|[bBuU][rR])?" _fstringlitprefix = r"(?:rF|FR|Fr|fr|RF|F|rf|f|Rf|fR)" Triple = group( _litprefix + "'''", _litprefix + '"""', _fstringlitprefix + '"""', _fstringlitprefix + "'''", ) # beginning of a single quoted f-string. must not end with `{{` or `\N{` SingleLbrace = r"(?:\\N{|\\.|{{|[^'\\{])*(?<!\\N){(?!{)" DoubleLbrace = r'(?:\\N{|\\.|{{|[^"\\{])*(?<!\\N){(?!{)' # beginning of a triple quoted f-string. must not end with `{{` or `\N{` Single3Lbrace = r"(?:\\N{|\\[^{]|{{|'(?!'')|[^'{\\])*(?<!\\N){(?!{)" Double3Lbrace = r'(?:\\N{|\\[^{]|{{|"(?!"")|[^"{\\])*(?<!\\N){(?!{)' # ! format specifier inside an fstring brace, ensure it's not a `!=` token Bang = Whitespace + group("!") + r"(?!=)" bang = re.compile(Bang) Colon = Whitespace + group(":") colon = re.compile(Colon) FstringMiddleAfterColon = group(Whitespace + r".*?") + group("{", "}") fstring_middle_after_colon = re.compile(FstringMiddleAfterColon) # Because of leftmost-then-longest match semantics, be sure to put the # longest operators first (e.g., if = came before ==, == would get # recognized as two instances of =). Operator = group( r"\*\*=?", r">>=?", r"<<=?", r"<>", r"!=", r"//=?", r"->", r"[+\-*/%&@|^=<>:]=?", r"~", ) Bracket = "[][(){}]" Special = group(r"\r?\n", r"[:;.,`@]") Funny = group(Operator, Bracket, Special) _string_middle_single = r"(?:[^\n'\\]|\\.)*" _string_middle_double = r'(?:[^\n"\\]|\\.)*' # FSTRING_MIDDLE and LBRACE, must not end with a `{{` or `\N{` _fstring_middle_single = r"(?:\\N{|\\[^{]|{{|[^\n'{\\])*(?<!\\N)({)(?!{)" _fstring_middle_double = r'(?:\\N{|\\[^{]|{{|[^\n"{\\])*(?<!\\N)({)(?!{)' # First (or only) line of ' or " string. ContStr = group( _litprefix + "'" + _string_middle_single + group("'", r"\\\r?\n"), _litprefix + '"' + _string_middle_double + group('"', r"\\\r?\n"), group(_fstringlitprefix + "'") + _fstring_middle_single, group(_fstringlitprefix + '"') + _fstring_middle_double, group(_fstringlitprefix + "'") + _string_middle_single + group("'", r"\\\r?\n"), group(_fstringlitprefix + '"') + _string_middle_double + group('"', r"\\\r?\n"), ) PseudoExtras = group(r"\\\r?\n", Comment, Triple) PseudoToken = Whitespace + group(PseudoExtras, Number, Funny, ContStr, Name) pseudoprog: Final = re.compile(PseudoToken, re.UNICODE) singleprog = re.compile(Single) singleprog_plus_lbrace = re.compile(group(SingleLbrace, Single)) doubleprog = re.compile(Double) doubleprog_plus_lbrace = re.compile(group(DoubleLbrace, Double)) single3prog = re.compile(Single3) single3prog_plus_lbrace = re.compile(group(Single3Lbrace, Single3)) double3prog = re.compile(Double3) double3prog_plus_lbrace = re.compile(group(Double3Lbrace, Double3)) _strprefixes = _combinations("r", "R", "b", "B") | {"u", "U", "ur", "uR", "Ur", "UR"} _fstring_prefixes = _combinations("r", "R", "f", "F") - {"r", "R"} endprogs: Final = { "'": singleprog, '"': doubleprog, "'''": single3prog, '"""': double3prog, **{f"{prefix}'": singleprog for prefix in _strprefixes}, **{f'{prefix}"': doubleprog for prefix in _strprefixes}, **{f"{prefix}'": singleprog_plus_lbrace for prefix in _fstring_prefixes}, **{f'{prefix}"': doubleprog_plus_lbrace for prefix in _fstring_prefixes}, **{f"{prefix}'''": single3prog for prefix in _strprefixes}, **{f'{prefix}"""': double3prog for prefix in _strprefixes}, **{f"{prefix}'''": single3prog_plus_lbrace for prefix in _fstring_prefixes}, **{f'{prefix}"""': double3prog_plus_lbrace for prefix in _fstring_prefixes}, } triple_quoted: Final = ( {"'''", '"""'} | {f"{prefix}'''" for prefix in _strprefixes | _fstring_prefixes} | {f'{prefix}"""' for prefix in _strprefixes | _fstring_prefixes} ) single_quoted: Final = ( {"'", '"'} | {f"{prefix}'" for prefix in _strprefixes | _fstring_prefixes} | {f'{prefix}"' for prefix in _strprefixes | _fstring_prefixes} ) fstring_prefix: Final = ( {f"{prefix}'" for prefix in _fstring_prefixes} | {f'{prefix}"' for prefix in _fstring_prefixes} | {f"{prefix}'''" for prefix in _fstring_prefixes} | {f'{prefix}"""' for prefix in _fstring_prefixes} ) tabsize = 8 class TokenError(Exception): pass class StopTokenizing(Exception): pass Coord = Tuple[int, int] def printtoken( type: int, token: str, srow_col: Coord, erow_col: Coord, line: str ) -> None: # for testing (srow, scol) = srow_col (erow, ecol) = erow_col print( "%d,%d-%d,%d:\t%s\t%s" % (srow, scol, erow, ecol, tok_name[type], repr(token)) ) TokenEater = Callable[[int, str, Coord, Coord, str], None] def tokenize(readline: Callable[[], str], tokeneater: TokenEater = printtoken) -> None: """ The tokenize() function accepts two parameters: one representing the input stream, and one providing an output mechanism for tokenize(). The first parameter, readline, must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string. The second parameter, tokeneater, must also be a callable object. It is called once for each token, with five arguments, corresponding to the tuples generated by generate_tokens(). """ try: tokenize_loop(readline, tokeneater) except StopTokenizing: pass # backwards compatible interface def tokenize_loop(readline: Callable[[], str], tokeneater: TokenEater) -> None: for token_info in generate_tokens(readline): tokeneater(*token_info) GoodTokenInfo = Tuple[int, str, Coord, Coord, str] TokenInfo = Union[Tuple[int, str], GoodTokenInfo] class Untokenizer: tokens: List[str] prev_row: int prev_col: int def __init__(self) -> None: self.tokens = [] self.prev_row = 1 self.prev_col = 0 def add_whitespace(self, start: Coord) -> None: row, col = start assert row <= self.prev_row col_offset = col - self.prev_col if col_offset: self.tokens.append(" " * col_offset) def untokenize(self, iterable: Iterable[TokenInfo]) -> str: for t in iterable: if len(t) == 2: self.compat(t, iterable) break tok_type, token, start, end, line = t self.add_whitespace(start) self.tokens.append(token) self.prev_row, self.prev_col = end if tok_type in (NEWLINE, NL): self.prev_row += 1 self.prev_col = 0 return "".join(self.tokens) def compat(self, token: Tuple[int, str], iterable: Iterable[TokenInfo]) -> None: startline = False indents = [] toks_append = self.tokens.append toknum, tokval = token if toknum in (NAME, NUMBER): tokval += " " if toknum in (NEWLINE, NL): startline = True for tok in iterable: toknum, tokval = tok[:2] if toknum in (NAME, NUMBER, ASYNC, AWAIT): tokval += " " if toknum == INDENT: indents.append(tokval) continue elif toknum == DEDENT: indents.pop() continue elif toknum in (NEWLINE, NL): startline = True elif startline and indents: toks_append(indents[-1]) startline = False toks_append(tokval) cookie_re = re.compile(r"^[ \t\f]*#.*?coding[:=][ \t]*([-\w.]+)", re.ASCII) blank_re = re.compile(rb"^[ \t\f]*(?:[#\r\n]|$)", re.ASCII) def _get_normal_name(orig_enc: str) -> str: """Imitates get_normal_name in tokenizer.c.""" # Only care about the first 12 characters. enc = orig_enc[:12].lower().replace("_", "-") if enc == "utf-8" or enc.startswith("utf-8-"): return "utf-8" if enc in ("latin-1", "iso-8859-1", "iso-latin-1") or enc.startswith( ("latin-1-", "iso-8859-1-", "iso-latin-1-") ): return "iso-8859-1" return orig_enc def detect_encoding(readline: Callable[[], bytes]) -> Tuple[str, List[bytes]]: """ The detect_encoding() function is used to detect the encoding that should be used to decode a Python source file. It requires one argument, readline, in the same way as the tokenize() generator. It will call readline a maximum of twice, and return the encoding used (as a string) and a list of any lines (left as bytes) it has read in. It detects the encoding from the presence of a utf-8 bom or an encoding cookie as specified in pep-0263. If both a bom and a cookie are present, but disagree, a SyntaxError will be raised. If the encoding cookie is an invalid charset, raise a SyntaxError. Note that if a utf-8 bom is found, 'utf-8-sig' is returned. If no encoding is specified, then the default of 'utf-8' will be returned. """ bom_found = False encoding = None default = "utf-8" def read_or_stop() -> bytes: try: return readline() except StopIteration: return b"" def find_cookie(line: bytes) -> Optional[str]: try: line_string = line.decode("ascii") except UnicodeDecodeError: return None match = cookie_re.match(line_string) if not match: return None encoding = _get_normal_name(match.group(1)) try: codec = lookup(encoding) except LookupError: # This behaviour mimics the Python interpreter raise SyntaxError("unknown encoding: " + encoding) if bom_found: if codec.name != "utf-8": # This behaviour mimics the Python interpreter raise SyntaxError("encoding problem: utf-8") encoding += "-sig" return encoding first = read_or_stop() if first.startswith(BOM_UTF8): bom_found = True first = first[3:] default = "utf-8-sig" if not first: return default, [] encoding = find_cookie(first) if encoding: return encoding, [first] if not blank_re.match(first): return default, [first] second = read_or_stop() if not second: return default, [first] encoding = find_cookie(second) if encoding: return encoding, [first, second] return default, [first, second] def untokenize(iterable: Iterable[TokenInfo]) -> str: """Transform tokens back into Python source code. Each element returned by the iterable must be a token sequence with at least two elements, a token number and token value. If only two tokens are passed, the resulting output is poor. Round-trip invariant for full input: Untokenized source will match input source exactly Round-trip invariant for limited input: # Output text will tokenize the back to the input t1 = [tok[:2] for tok in generate_tokens(f.readline)] newcode = untokenize(t1) readline = iter(newcode.splitlines(1)).next t2 = [tok[:2] for tokin generate_tokens(readline)] assert t1 == t2 """ ut = Untokenizer() return ut.untokenize(iterable) def is_fstring_start(token: str) -> bool: return builtins.any(token.startswith(prefix) for prefix in fstring_prefix) def _split_fstring_start_and_middle(token: str) -> Tuple[str, str]: for prefix in fstring_prefix: _, prefix, rest = token.partition(prefix) if prefix != "": return prefix, rest raise ValueError(f"Token {token!r} is not a valid f-string start") STATE_NOT_FSTRING: Final = 0 # not in an f-string STATE_MIDDLE: Final = 1 # in the string portion of an f-string (outside braces) STATE_IN_BRACES: Final = 2 # between braces in an f-string # in the format specifier (between the colon and the closing brace) STATE_IN_COLON: Final = 3 class FStringState: """Keeps track of state around f-strings. The tokenizer should call the appropriate method on this class when it transitions to a different part of an f-string. This is needed because the tokenization depends on knowing where exactly we are in the f-string. For example, consider the following f-string: f"a{1:b{2}c}d" The following is the tokenization of this string and the states tracked by this class: 1,0-1,2: FSTRING_START 'f"' # [STATE_NOT_FSTRING, STATE_MIDDLE] 1,2-1,3: FSTRING_MIDDLE 'a' 1,3-1,4: LBRACE '{' # [STATE_NOT_FSTRING, STATE_IN_BRACES] 1,4-1,5: NUMBER '1' 1,5-1,6: OP ':' # [STATE_NOT_FSTRING, STATE_IN_COLON] 1,6-1,7: FSTRING_MIDDLE 'b' 1,7-1,8: LBRACE '{' # [STATE_NOT_FSTRING, STATE_IN_COLON, STATE_IN_BRACES] 1,8-1,9: NUMBER '2' 1,9-1,10: RBRACE '}' # [STATE_NOT_FSTRING, STATE_IN_COLON] 1,10-1,11: FSTRING_MIDDLE 'c' 1,11-1,12: RBRACE '}' # [STATE_NOT_FSTRING, STATE_MIDDLE] 1,12-1,13: FSTRING_MIDDLE 'd' 1,13-1,14: FSTRING_END '"' # [STATE_NOT_FSTRING] 1,14-1,15: NEWLINE '\n' 2,0-2,0: ENDMARKER '' Notice that the nested braces in the format specifier are represented by adding a STATE_IN_BRACES entry to the state stack. The stack is also used if there are nested f-strings. """ def __init__(self) -> None: self.stack: List[int] = [STATE_NOT_FSTRING] def is_in_fstring_expression(self) -> bool: return self.stack[-1] not in (STATE_MIDDLE, STATE_NOT_FSTRING) def current(self) -> int: return self.stack[-1] def enter_fstring(self) -> None: self.stack.append(STATE_MIDDLE) def leave_fstring(self) -> None: state = self.stack.pop() assert state == STATE_MIDDLE def consume_lbrace(self) -> None: current_state = self.stack[-1] if current_state == STATE_MIDDLE: self.stack[-1] = STATE_IN_BRACES elif current_state == STATE_IN_COLON: self.stack.append(STATE_IN_BRACES) else: assert False, current_state def consume_rbrace(self) -> None: current_state = self.stack[-1] assert current_state in (STATE_IN_BRACES, STATE_IN_COLON) if len(self.stack) > 1 and self.stack[-2] == STATE_IN_COLON: self.stack.pop() else: self.stack[-1] = STATE_MIDDLE def consume_colon(self) -> None: assert self.stack[-1] == STATE_IN_BRACES, self.stack self.stack[-1] = STATE_IN_COLON def generate_tokens( readline: Callable[[], str], grammar: Optional[Grammar] = None ) -> Iterator[GoodTokenInfo]: """ The generate_tokens() generator requires one argument, readline, which must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string. Alternately, readline can be a callable function terminating with StopIteration: readline = open(myfile).next # Example of alternate readline The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow, scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow, ecol) of ints specifying the row and column where the token ends in the source; and the line on which the token was found. The line passed is the logical line; continuation lines are included. """ lnum = parenlev = continued = 0 parenlev_stack: List[int] = [] fstring_state = FStringState() formatspec = "" numchars: Final[str] = "0123456789" contstr, needcont = "", 0 contline: Optional[str] = None indents = [0] # If we know we're parsing 3.7+, we can unconditionally parse `async` and # `await` as keywords. async_keywords = False if grammar is None else grammar.async_keywords # 'stashed' and 'async_*' are used for async/await parsing stashed: Optional[GoodTokenInfo] = None async_def = False async_def_indent = 0 async_def_nl = False strstart: Tuple[int, int] endprog_stack: List[Pattern[str]] = [] formatspec_start: Tuple[int, int] while 1: # loop over lines in stream try: line = readline() except StopIteration: line = "" lnum += 1 pos, max = 0, len(line) if contstr: # continued string assert contline is not None if not line: raise TokenError("EOF in multi-line string", strstart) endprog = endprog_stack[-1] endmatch = endprog.match(line) if endmatch: end = endmatch.end(0) token = contstr + line[:end] spos = strstart epos = (lnum, end) tokenline = contline + line if ( fstring_state.current() == STATE_NOT_FSTRING and not is_fstring_start(token) ): yield (STRING, token, spos, epos, tokenline) endprog_stack.pop() parenlev = parenlev_stack.pop() else: if is_fstring_start(token): fstring_start, token = _split_fstring_start_and_middle(token) fstring_start_epos = (lnum, spos[1] + len(fstring_start)) yield ( FSTRING_START, fstring_start, spos, fstring_start_epos, tokenline, ) fstring_state.enter_fstring() # increase spos to the end of the fstring start spos = fstring_start_epos if token.endswith("{"): fstring_middle, lbrace = token[:-1], token[-1] fstring_middle_epos = lbrace_spos = (lnum, end - 1) yield ( FSTRING_MIDDLE, fstring_middle, spos, fstring_middle_epos, line, ) yield (LBRACE, lbrace, lbrace_spos, epos, line) fstring_state.consume_lbrace() else: if token.endswith(('"""', "'''")): fstring_middle, fstring_end = token[:-3], token[-3:] fstring_middle_epos = end_spos = (lnum, end - 3) else: fstring_middle, fstring_end = token[:-1], token[-1] fstring_middle_epos = end_spos = (lnum, end - 1) yield ( FSTRING_MIDDLE, fstring_middle, spos, fstring_middle_epos, line, ) yield ( FSTRING_END, fstring_end, end_spos, epos, line, ) fstring_state.leave_fstring() endprog_stack.pop() parenlev = parenlev_stack.pop() pos = end contstr, needcont = "", 0 contline = None elif needcont and line[-2:] != "\\\n" and line[-3:] != "\\\r\n": yield ( ERRORTOKEN, contstr + line, strstart, (lnum, len(line)), contline, ) contstr = "" contline = None continue else: contstr = contstr + line contline = contline + line continue # new statement elif ( parenlev == 0 and not continued and not fstring_state.is_in_fstring_expression() ): if not line: break column = 0 while pos < max: # measure leading whitespace if line[pos] == " ": column += 1 elif line[pos] == "\t": column = (column // tabsize + 1) * tabsize elif line[pos] == "\f": column = 0 else: break pos += 1 if pos == max: break if stashed: yield stashed stashed = None if line[pos] in "\r\n": # skip blank lines yield (NL, line[pos:], (lnum, pos), (lnum, len(line)), line) continue if line[pos] == "#": # skip comments comment_token = line[pos:].rstrip("\r\n") nl_pos = pos + len(comment_token) yield ( COMMENT, comment_token, (lnum, pos), (lnum, nl_pos), line, ) yield (NL, line[nl_pos:], (lnum, nl_pos), (lnum, len(line)), line) continue if column > indents[-1]: # count indents indents.append(column) yield (INDENT, line[:pos], (lnum, 0), (lnum, pos), line) while column < indents[-1]: # count dedents if column not in indents: raise IndentationError( "unindent does not match any outer indentation level", ("<tokenize>", lnum, pos, line), ) indents = indents[:-1] if async_def and async_def_indent >= indents[-1]: async_def = False async_def_nl = False async_def_indent = 0 yield (DEDENT, "", (lnum, pos), (lnum, pos), line) if async_def and async_def_nl and async_def_indent >= indents[-1]: async_def = False async_def_nl = False async_def_indent = 0 else: # continued statement if not line: raise TokenError("EOF in multi-line statement", (lnum, 0)) continued = 0 while pos < max: if fstring_state.current() == STATE_MIDDLE: endprog = endprog_stack[-1] endmatch = endprog.match(line, pos) if endmatch: # all on one line start, end = endmatch.span(0) token = line[start:end] if token.endswith(('"""', "'''")): middle_token, end_token = token[:-3], token[-3:] middle_epos = end_spos = (lnum, end - 3) else: middle_token, end_token = token[:-1], token[-1] middle_epos = end_spos = (lnum, end - 1) # TODO: unsure if this can be safely removed if stashed: yield stashed stashed = None yield ( FSTRING_MIDDLE, middle_token, (lnum, pos), middle_epos, line, ) if not token.endswith("{"): yield ( FSTRING_END, end_token, end_spos, (lnum, end), line, ) fstring_state.leave_fstring() endprog_stack.pop() parenlev = parenlev_stack.pop() else: yield (LBRACE, "{", (lnum, end - 1), (lnum, end), line) fstring_state.consume_lbrace() pos = end continue else: # multiple lines strstart = (lnum, end) contstr = line[end:] contline = line break if fstring_state.current() == STATE_IN_COLON: match = fstring_middle_after_colon.match(line, pos) if match is None: formatspec += line[pos:] pos = max continue start, end = match.span(1) token = line[start:end] formatspec += token brace_start, brace_end = match.span(2) brace_or_nl = line[brace_start:brace_end] if brace_or_nl == "\n": pos = brace_end yield (FSTRING_MIDDLE, formatspec, formatspec_start, (lnum, end), line) formatspec = "" if brace_or_nl == "{": yield (LBRACE, "{", (lnum, brace_start), (lnum, brace_end), line) fstring_state.consume_lbrace() end = brace_end elif brace_or_nl == "}": yield (RBRACE, "}", (lnum, brace_start), (lnum, brace_end), line) fstring_state.consume_rbrace() end = brace_end formatspec_start = (lnum, brace_end) pos = end continue if fstring_state.current() == STATE_IN_BRACES and parenlev == 0: match = bang.match(line, pos) if match: start, end = match.span(1) yield (OP, "!", (lnum, start), (lnum, end), line) pos = end continue match = colon.match(line, pos) if match: start, end = match.span(1) yield (OP, ":", (lnum, start), (lnum, end), line) fstring_state.consume_colon() formatspec_start = (lnum, end) pos = end continue pseudomatch = pseudoprog.match(line, pos) if pseudomatch: # scan for tokens start, end = pseudomatch.span(1) spos, epos, pos = (lnum, start), (lnum, end), end token, initial = line[start:end], line[start] if initial in numchars or ( initial == "." and token != "." ): # ordinary number yield (NUMBER, token, spos, epos, line) elif initial in "\r\n": newline = NEWLINE if parenlev > 0 or fstring_state.is_in_fstring_expression(): newline = NL elif async_def: async_def_nl = True if stashed: yield stashed stashed = None yield (newline, token, spos, epos, line) elif initial == "#": assert not token.endswith("\n") if stashed: yield stashed stashed = None yield (COMMENT, token, spos, epos, line) elif token in triple_quoted: endprog = endprogs[token] endprog_stack.append(endprog) parenlev_stack.append(parenlev) parenlev = 0 if is_fstring_start(token): yield (FSTRING_START, token, spos, epos, line) fstring_state.enter_fstring() endmatch = endprog.match(line, pos) if endmatch: # all on one line if stashed: yield stashed stashed = None if not is_fstring_start(token): pos = endmatch.end(0) token = line[start:pos] epos = (lnum, pos) yield (STRING, token, spos, epos, line) endprog_stack.pop() parenlev = parenlev_stack.pop() else: end = endmatch.end(0) token = line[pos:end] spos, epos = (lnum, pos), (lnum, end) if not token.endswith("{"): fstring_middle, fstring_end = token[:-3], token[-3:] fstring_middle_epos = fstring_end_spos = (lnum, end - 3) yield ( FSTRING_MIDDLE, fstring_middle, spos, fstring_middle_epos, line, ) yield ( FSTRING_END, fstring_end, fstring_end_spos, epos, line, ) fstring_state.leave_fstring() endprog_stack.pop() parenlev = parenlev_stack.pop() else: fstring_middle, lbrace = token[:-1], token[-1] fstring_middle_epos = lbrace_spos = (lnum, end - 1) yield ( FSTRING_MIDDLE, fstring_middle, spos, fstring_middle_epos, line, ) yield (LBRACE, lbrace, lbrace_spos, epos, line) fstring_state.consume_lbrace() pos = end else: # multiple lines if is_fstring_start(token): strstart = (lnum, pos) contstr = line[pos:] else: strstart = (lnum, start) contstr = line[start:] contline = line break elif ( initial in single_quoted or token[:2] in single_quoted or token[:3] in single_quoted ): maybe_endprog = ( endprogs.get(initial) or endprogs.get(token[:2]) or endprogs.get(token[:3]) ) assert maybe_endprog is not None, f"endprog not found for {token}" endprog = maybe_endprog if token[-1] == "\n": # continued string endprog_stack.append(endprog) parenlev_stack.append(parenlev) parenlev = 0 strstart = (lnum, start) contstr, needcont = line[start:], 1 contline = line break else: # ordinary string if stashed: yield stashed stashed = None if not is_fstring_start(token): yield (STRING, token, spos, epos, line) else: if pseudomatch[20] is not None: fstring_start = pseudomatch[20] offset = pseudomatch.end(20) - pseudomatch.start(1) elif pseudomatch[22] is not None: fstring_start = pseudomatch[22] offset = pseudomatch.end(22) - pseudomatch.start(1) elif pseudomatch[24] is not None: fstring_start = pseudomatch[24] offset = pseudomatch.end(24) - pseudomatch.start(1) else: fstring_start = pseudomatch[26] offset = pseudomatch.end(26) - pseudomatch.start(1) start_epos = (lnum, start + offset) yield (FSTRING_START, fstring_start, spos, start_epos, line) fstring_state.enter_fstring() endprog = endprogs[fstring_start] endprog_stack.append(endprog) parenlev_stack.append(parenlev) parenlev = 0 end_offset = pseudomatch.end(1) - 1 fstring_middle = line[start + offset : end_offset] middle_spos = (lnum, start + offset) middle_epos = (lnum, end_offset) yield ( FSTRING_MIDDLE, fstring_middle, middle_spos, middle_epos, line, ) if not token.endswith("{"): end_spos = (lnum, end_offset) end_epos = (lnum, end_offset + 1) yield (FSTRING_END, token[-1], end_spos, end_epos, line) fstring_state.leave_fstring() endprog_stack.pop() parenlev = parenlev_stack.pop() else: end_spos = (lnum, end_offset) end_epos = (lnum, end_offset + 1) yield (LBRACE, "{", end_spos, end_epos, line) fstring_state.consume_lbrace() elif initial.isidentifier(): # ordinary name if token in ("async", "await"): if async_keywords or async_def: yield ( ASYNC if token == "async" else AWAIT, token, spos, epos, line, ) continue tok = (NAME, token, spos, epos, line) if token == "async" and not stashed: stashed = tok continue if token in ("def", "for"): if stashed and stashed[0] == NAME and stashed[1] == "async": if token == "def": async_def = True async_def_indent = indents[-1] yield ( ASYNC, stashed[1], stashed[2], stashed[3], stashed[4], ) stashed = None if stashed: yield stashed stashed = None yield tok elif initial == "\\": # continued stmt # This yield is new; needed for better idempotency: if stashed: yield stashed stashed = None yield (NL, token, spos, (lnum, pos), line) continued = 1 elif ( initial == "}" and parenlev == 0 and fstring_state.is_in_fstring_expression() ): yield (RBRACE, token, spos, epos, line) fstring_state.consume_rbrace() formatspec_start = epos else: if initial in "([{": parenlev += 1 elif initial in ")]}": parenlev -= 1 if stashed: yield stashed stashed = None yield (OP, token, spos, epos, line) else: yield (ERRORTOKEN, line[pos], (lnum, pos), (lnum, pos + 1), line) pos += 1 if stashed: yield stashed stashed = None for _indent in indents[1:]: # pop remaining indent levels yield (DEDENT, "", (lnum, 0), (lnum, 0), "") yield (ENDMARKER, "", (lnum, 0), (lnum, 0), "") assert len(endprog_stack) == 0 assert len(parenlev_stack) == 0 if __name__ == "__main__": # testing if len(sys.argv) > 1: tokenize(open(sys.argv[1]).readline) else: tokenize(sys.stdin.readline)