XMM-Newton SAS Home Page
XMM-Newton Science Analysis System


bkgfit (ebkgmap-2.9) [xmmsas_20141104_1833-14.0.0]

Bottom-up explanation: Description Constraints on the model Home Index

Meta Index / Home Page / Description

Fitting algorithm:

The vector of amplitudes $\mathbf{a}_{\rm {opt}}$ which minimizes $L$ is approximated by a Newtonian method in $N$ dimensions. In this method, the formula


\begin{displaymath}
\nabla L = \mathbf{C} \, (\mathbf{a}_{i+1} - \mathbf{a}_{i})
\end{displaymath}

where $\mathbf{C}$ is an $N \times N$ matrix of curvature terms given by


\begin{displaymath}
C_{i,j} = \frac{\partial^2 L}{\partial a_i \partial a_j},
\end{displaymath} (3)

is iteratively inverted until it is judged to have converged.

$\nabla L$ and $\mathbf{C}$ can be expressed in closed form as


\begin{displaymath}
(\nabla L)_i = \frac{\partial L}{\partial a_i} = 2\sum_{x=1}...
...i} \bigg[1 - \frac{I_{x,y}}{B_{x,y}(\mathbf{a})} \bigg]\bigg),
\end{displaymath}


\begin{displaymath}
C_{i,j} = \frac{\partial^2 L}{\partial a_i \partial a_j} = 2...
...,y,i} \, b_{x,y,j} \, I_{x,y}}{B_{x,y}^2(\mathbf{a} )} \bigg].
\end{displaymath}



Subsections

XMM-Newton SOC/SSC -- 2014-11-04