
XMM-Newton Science Analysis System Page: 1

eimsim

November 4, 2014

Abstract

Contains several tasks to help make simulated XMM-Newton x-ray images, to

detect sources on them, then to assess the efficiency of the source detection.

1 Instruments/Modes

Instrument Mode

EPIC Imaging

2 Use

pipeline processing no
interactive analysis yes

XMM-Newton Science Analysis System Page: 2

3 Which documents to read

At last count, there are 25 tasks within the package eimsim, each with its own documentation (well,
they will have, eventually). However, you don’t need to read 25 sets of documentation! I recommend
that you read the documentation for only 4 of the tasks, in the following order:

1. eimsim (ie, the present document)

2. eimsimprep

3. eimsimbatch

4. eimsimreduce

4 Description

4.1 Quick cookbook

For a minimum-fuss run of the simulation code, do as follows:

1. Create a subdirectory ‘product’ off your present working directory (PWD).

2. Put into this directory the following files:

• A Calibration Index File (CIF);

• An attitude history file;

• calibrated event lists for one or more EPIC instruments;

• for each of the instruments for which you have supplied an event list, vignetted exposure
maps in 5 energy bands.

These files are expected to have the standard XMM-SSC product filenames. Examples for
EPIC MOS1 are as follows:

P0123456789OBX000CALIND0000.FIT

P0123456789OBX000ATTTSR0000.FIT

P0123456789M1S002MIEVLI0000.FIT

P0123456789M1S002EXPMAP1000.FIT

P0123456789M1S002EXPMAP2000.FIT

P0123456789M1S002EXPMAP3000.FIT

P0123456789M1S002EXPMAP4000.FIT

P0123456789M1S002EXPMAP5000.FIT

Note that all these files are used merely as templates - that is, the only parts of them which
are used by eimsim are those parts which give information about image exposure, plus
the pixel grid location (from the WCS keywords) and dimensions. No data values are used
which depend on real, observed x-ray events.

3. Set the SAS CCFPATH environment variable to the location of a CCF set which you know
to be valid for the version of the SAS which you are running.

../eimsim/index.html
../eimsim/index.html
../eimsimprep/index.html
../eimsimbatch/index.html
../eimsimreduce/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 3

4. Copy the source template dataset srcspec 1xmm.fits (or srcspec 2xmm.fits) from the
directory $SAS DIR/lib/data/eimsimdata/ to your PWD and rename it ‘srcspec.fits’.

5. Run in succession the following commands:

eimsimprep

eimsimbatch

eimsimreduce

The files produced are described in the ‘Output Files’ sections in the documentation for these three tasks.
Expect the middle script to take on the order of 10 minutes to run (the 1st and 3rd should be much
quicker). If you want to understand exactly what these commands have done you will have to find out
what the default values of all parameters were set to, either by looking in the <command>.par file or
doing ‘<command> -h’ or ‘<command> -d’.

4.2 Overview of the eimsim package.

The primary function of the eimsim package is to test procedures for detecting sources in images taken
by the EPIC x-ray cameras on XMM-Newton. Simulated EPIC images are constructed; these images are
subjected to a source-detection procedure; finally, the detection results are assayed.

4.2.1 What is and isn’t simulated

Not all features found in real XMM-Newton EPIC images are reproduced in the simulated images. The
following table summarises these differences:

Feature: Simulated:

Poisson noise yes
Off-axis PSF yes
Chip gaps yes
Vignetting yes
Dead pixels (as expressed in the exposure maps) yes
Background statistics yes
Attitude wander (as expressed in the exposure maps) yes
Bright pixels no
Out-of-time events no
Scatter from RGA no
PN low-energy instrumental features no
Pile up no
Random source spectra no
Extended sources no

../eimsim/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 4

4.2.2 Relations between the components of the package

The sequence in which the eimsim tasks are called, and the command relations between them, can be
diagrammed as follows:

• eimsimprep

– mosaicprep

– padmask

– bkgtemplategen

– A user-definable ‘detprep’ task. Examples provided are eimsimdetprep1xmm and
eimsimdetprep2xmm.

• eimsimbatch

– eimsim (see ‘task’ doco starting at section 4.3 below)

∗ srclistsim

∗ newcolgen

∗ srcmap

∗ A user-definable source-detection task. Examples provided are eimsimdetect1xmm
and eimsimdetect2xmm.

· Optionally edetaux

· Optionally eratetoflux

∗ fluxlinearize

∗ srccompare

• eimsimreduce

– eimsimbias

– eimsimcompleteness

– eimsimreliability

Other tasks from SAS packages other than eimsim are also called, as well as some ftools; but these
‘foreign’ calls have not been listed here.

As described in the cookbook (subsection 4.1 above), the minimum procedure still requires the user to run
three separate tasks, eimsimprep, eimsimbatch and eimsimreduce. Why three - why can’t all these
functions be bundled into a single script? The answer is that the functionality has been divided between
these three tasks to make it easier to run the simulations N times in order to generate an ensemble
of statistically independent results. Some jobs need only to be done once: these are sequestered into
eimsimprep or eimsimreduce as appropriate. Those jobs which need to be performed anew for each
simulation run are performed by eimsimbatch. However, a glance at the eimsimbatch documentation
will show that this task contains little more than a loop: at each iteration of the loop, eimsim is called.
Thus eimsim performs the bulk of the simulation work, from generating a list of random sources to
assaying the output of the detection procedure.

4.2.3 Input and output directories and many-observation mosaics:

The tasks in the eimsim package need to know the names of the directories in which they can respectively
read input files and write output files. All the tasks construct these directory names in the same way:
via parameters obsidroots, prdssubdir, simgensubdir and simopsubdir. (There is an additional

../eimsim/index.html
../eimsimprep/index.html
../mosaicprep/index.html
../padmask/index.html
../bkgtemplategen/index.html
../eimsimdetprep1xmm/index.html
../eimsimdetprep2xmm/index.html
../eimsimbatch/index.html
../eimsim/index.html
../srclistsim/index.html
../newcolgen/index.html
../srcmap/index.html
../eimsimdetect1xmm/index.html
../eimsimdetect2xmm/index.html
../edetaux/index.html
../eratetoflux/index.html
../fluxlinearize/index.html
../srccompare/index.html
../eimsimreduce/index.html
../eimsimbias/index.html
../eimsimcompleteness/index.html
../eimsimreliability/index.html
../eimsim/index.html
../eimsimprep/index.html
../eimsimbatch/index.html
../eimsimreduce/index.html
../eimsimprep/index.html
../eimsimreduce/index.html
../eimsimbatch/index.html
../eimsimbatch/index.html
../eimsim/index.html
../eimsim/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 5

‘directory’ parameter pseudoprodsubdir which is intended just to contain non-vignetted exposure maps.
If these ever become part of the standard product set, this parameter would become obsolete.) The
parameter obsidroots is intended to contain a list of directory stem names (although at time of writing
only 1 element is permitted). For each member of this list, the tasks append the string from parameter
prdssubdir to the stem to generate the name of the directory in which to look for inputs. These input
directories must be present before any eimsim tasks are run. The string from parameter simopsubdir
is appended to the stem to generate the name of the directory in which to write observation-specific
outputs; whereas simgensubdir gives rise to a single subdirectory off the PWD, which is to contain all
the non-observation-specific output files. The eimsim tasks will ‘mkdir’ the appropriate simopsubdir

and simgensubdir subdirectories if these are not already present.

As described in the cookbook subsection (4.1), the input files comprise templates taken from the SSC
product files for a particular XMM observation. Each ‘input’ directory, derived from successive elements
of the obsidroots list, must contain template files which relate to no more than a single XMM ob-
servation. Now, in the cookbook section, you will note that I specified that these files should be in a
subdirectory named ‘product’ off the present working directory; the reason for this is that the default
value of obsidroots is ‘.’ and the default value of prdssubdir is ‘product’.

To illustrate with an example in which some non-default values are used: The command

eimsimprep obsidroots=’/mydisk/obs1 /mydisk/otherfiles/obs2’ \

prdssubdir=infiles simopsubdir=sim_output simgensubdir=generic \

pseudoprodsubdir=nonvig_files

generates the following subdirectory names:

Must pre-exist, and contain the proper products:

/mydisk/obs1/infiles

/mydisk/otherfiles/obs2/infiles

Created by the eimsim tasks:

./generic

/mydisk/obs1/sim_output

/mydisk/obs1/nonvig_files

/mydisk/otherfiles/obs2/sim_output

/mydisk/otherfiles/obs2/nonvig_files

The task will look for product templates from the first observation in /mydisk/obs1/infiles and in /my-
disk/otherfiles/obs2/infiles for those from the second.

4.2.4 Multiple entry and exit points

All four of the central tasks (which are perl scripts) can be entered and exited at several places in
the script. This behaviour is mediated via parameters entrystage and finalstage. The individual
behaviours of these parameters are described more fully in the ‘parameters’ sections of the respective
task documents.

4.2.5 Choice of source detection scheme

It is possible to run the simulation with different schemes for detecting sources in the simulated images.
The task eimsim calls a separate script to perform the source detection. The user may either select

../eimsim/index.html
../eimsim/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 6

one from the (small) range available, or supply their own. It is usually also necessary to supply a
matching ‘preparation’ script to eimsimprep. Exact details of the necessary calls can be found in the
documentation for these respective tasks. In ‘cookbook’ terms however, the two styles appear as follows:

• If the user chooses one of the supplied detection schemes, eg the 2xmm scheme, the ‘cook-
book’ procedure changes to the following:

1. Do items 1 to 3 from the ‘cookbook’ (section 4.1).

2. Copy $SAS DIR/lib/data/eimsimdata/srcspec 2xmm.fits into the PWD and re-
name it ‘srcspec.fits’.

3. Run the tasks as follows:

eimsimprep dettype=2xmm

eimsimbatch

eimsimreduce

• If the user wishes to supply their own detection and det-prep tasks, the ‘cookbook’ procedure
changes to the following:

1. Do items 1 to 3 from the ‘cookbook’ (section 4.1).

2. Copy an appropriate template file from $SAS DIR/lib/data/eimsimdata/ into the
PWD, or otherwise generate one; if you want to adhere to the present simple cookbook
style you will then need to rename it ‘srcspec.fits’.

3. Run the tasks as follows:

eimsimprep detpreptask=<name of my det prep task>

eimsimbatch dettask=<name of my detection task>

eimsimreduce

Of course you can also use this command style to run one of the supplied detection schemes
if you wish. If you do this you will find that there is some protection in place to prevent
you running clashing preparation and detection scripts. You will also be warned if you try
to use a 1xmm template set with 2xmm detection scheme, for example.

4.2.6 Parameter ‘astest’

Most of the eimsim perl tasks have astest as a parameter. This offers a way to test the perl grammar
without running any non-perl tasks.

4.2.7 Generic nature of many of the tasks

From general principles it seemed advisable to make as many of the sub-tasks as possible independent of
XMM-Newton. These are tasks whose names don’t start with an ‘e’.

4.3 The task eimsim

It is not expected that the user will run this task directly: instead, the user should run eimsimbatch,
which calls eimsim N times, where N is a user-specifiable number. All necessary eimsim parameters
are also parameters of eimsimbatch, which passes them straight through to the subtask. eimsimbatch

../eimsimprep/index.html
../eimsim/index.html
../eimsim/index.html
../eimsimbatch/index.html
../eimsim/index.html
../eimsim/index.html
../eimsimbatch/index.html
../eimsimbatch/index.html

XMM-Newton Science Analysis System Page: 7

just contains a loop for performing the N calls, plus some machinery for cleaning up, and for ‘nice’
stopping. Thus it makes sense to place most of the detailed description of the simulation within the
present document rather than in the documentation for eimsimbatch.

Task eimsim does 9 things in sequence, described in the following subsubsections:

4.3.1 Make list of simulated sources

This function may be performed alone by calling the script with entrystage and finalstage=‘makesimlist’.

The tasks srclistsim and newcolgen are called within this section. The first of these performs the
bulk of the work of the section, which is to generate a list of random source positions and fluxes. The
description of the probability distributions these sources are to follow is given in the template set pointed
to by parameter srcspecset. This template file is a FITS dataset. Its structure is described in section
7: I’d advise you to print this section out and have it beside you to refer to as you read the remainder of
the present section (4.3.1).

The explanation for the tables, keywords and columns in the template set is as follows. Table SRCSPECS
contains information about the probability distributions of the source positions and fluxes; table FLUX SCALES

contains information about the source spectrum. (The template set contains other tables which are used
in other parts of eimsim.)

The spatial locations of the sources are distributed evenly on the celestial sphere, but are restricted to a
cone delimited by the CONE RA, CONE DEC and CONE RAD keywords. The number density function n(S) of
source fluxes S is a piecewise power law

n(S) = ki S
−γi for Si ≤ S < Si+1

such that the reverse-cumulative integral N of n is also a piecewise power law:

N(> S) =
ki

γi − 1
S1−γi for Si ≤ S < Si+1,

where the units of N are sources deg−2. For N to also be given by a piecewise power law it is necessary
that γi > 1 for all i and that

ki
γi − 1

S1−γi

i+1 =
ki+1

γi+1 − 1
S
1−γi+1

i+1 .

The logN -logS of such a function appears like a sequence of m connected line segments. The function is
defined in table SRCSPECS by the ‘knee’ points of this logN -logS. The ith row of the FLUX and DENSITY

columns record Si and N(Si) respectively. There must be m ≥ 1 rows, since each row defines the left-
hand anchor point of its line segment. The first row defines the faint-end cutoff of the logN -logS - in
other words, no source may be fainter than S1. There is no need for a bright-end cutoff: it is assumed
that the last power law continues to infinite flux. This means however that there is no uppermost ‘knee’
to anchor this last, mth power law. This mth line segment is defined instead by storing the value of
1 − γm in the HI SLOPE keyword. A Euclidian distribution of sources in space would therefore result in
a HI SLOPE value of -1.5.

The FLUX SCALES table records information relating to the source spectrum. At present, all the simulated
sources are assigned the same spectrum. (This is not very realistic, and may be changed in future.) The
spectrum is an absorbed power law, the photon spectral index being given by keyword SPECINDX and the
HI column density by keyword HI. The keyword FLUX gives the total flux, within the band defined via
the keywords E MIN and E MAX, from a source of such spectrum, in the case that the source flux density
per unit energy is equal to 1 erg cm−2 s−1 keV−1 at 1 keV. The flux values of the simulated sources are
given for this same band.

../eimsimbatch/index.html
../eimsim/index.html
../srclistsim/index.html
../newcolgen/index.html

XMM-Newton Science Analysis System Page: 8

The eimsim package makes images in N energy bands. Exactly which bands are used is defined by the
occurrence of the respective exposure-map templates (see section 7). In other words, if exposure maps
are found only for bands 1, 2 and 4, then these are the only bands for which images will be made within
eimsim. The FLUX SCALES table must have a row for each of these bands. It may have additional rows
for other bands, but these will be ignored by eimsim.

The first column of the FLUX SCALES table records the ID integer of each tabulated energy band. Columns
E LO and E HI define the band edges. Column FLUX records the flux in this band from a source of the
spectrum defined by the keywords mentioned just above. Thus the flux of any simulated source in any of
the N bands may be calculated by dividing the source flux by the keyword FLUX above, then multiplying
by the appropriate value of the column FLUX.

The remaining columns of table FLUX SCALES record the ‘Energy Conversion Factors’ or ECFs for each
EPIC instrument and for four filters. These ECFs are used to convert fluxes S to count rates R as follows:

R = S × ECF × 1011.

The output of the ‘makesimlist’ function of eimsim is a FITS dataset containing a binary table extension
SRCLIST which has the following columns:

Name Data type Units

INDEX
4-byte int

FLUX
4-byte real erg cm−2 s−1

RA
8-byte real deg

DEC
8-byte real deg

FLUXRAND
4-byte real

STREAM N
4-byte int

FIELD N
4-byte int

Column INDEX is initially the same as the row number (starting at 1), but the INDEX value obviously
follows the source if the list is filtered or sorted in any way. It offers therefore an unambiguous way to
identify each source.

The FLUX value is the flux of the source within the band defined by the E MIN and E MAX keywords of
table FLUX SCALES in the template set, as described above.

Columns RA and DEC don’t require any explanation.

The explanation of the FLUXRAND value is as follows. One well-known technique for generating random
values of a coordinate x which have a probability distribution P (x) is to integrate P then invert the
result. That is, the random x values are generated from the formula

x = I−1(y) (1)

where y is an evenly-distributed random variable, I−1 denotes the inverse of I and

I(x) =

∫ x

−∞
dxP (x)

∫

∞

−∞
dxP (x)

. (2)

In the present case in which P and x are respectively the normalized differential sky density n/nmax and
the flux S, the FLUXRAND value is the evenly-distributed random variable (y in equation 1) associated

../eimsim/index.html
../eimsim/index.html
../eimsim/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 9

with the generated random flux value S (x in equation 1). This value is retained to assist in the matching
of detected with simulated sources, as described in subsection 4.3.9.

Columns STREAM N and FIELD N are fully described in the eimsimbatch documentation, but briefly
speaking, STREAM N is created to allow eimsim to be run in parallel in different streams; whereas FIELD N

records the sequence number in the iteration performed by eimsimbatch.

A copy of the template table SRCSPECS is also appended to the source list.

4.3.2 Flag those sources outside the region of detectability

This function may be performed alone by calling the script with entrystage and finalstage=‘imsample’.

When the list of detected sources is matched with the list of simulated sources, it is undesirable to match
with simulated sources which lie outside the region of sky where the exposure is significant. Such sources
are, in essence, flagged at this stage by use of the task imsample. I say ‘in essence’ because what actually
happens is that imsample measures the value of a reciprocal sensitivity map at each source position
and writes this to a column INV SENSY. The value of this column has no effect on the likelihood of a
particular simulated source being matched with a detection, but sources which have a zero value in this
column are screened out within the eimsimcompleteness and eimsimreliability tasks (called during
script eimsimreduce).

4.3.3 Make a counts/pixel/sec image

This function may be performed alone by calling the script with entrystage and finalstage=‘makerateimg’.

The process of converting the list of source positions and fluxes into a realistic XMM-Newton image
consists of three stages:

1. For each EPIC instrument, and within each band, make an ideal count-rate image (in theory
of the whole sky, though in practice we don’t bother with most of it). The units of this are
(expected) counts per image pixel per second.

2. Multiply this by the exposure map to create an ideal event-count image. In other words,
what this creates is a map of the expectation value for the event counts at each pixel.

3. Convert the expectation values to random, Poisson-distributed integer event counts.

The present function performs the first of these stages. Essentially this is done by adding an appropriate
Point Spread Function (PSF) to the image for each sky location in the input source list. Ideally this would
be done by reading a PSF from the XMM-Newton calibration data (the CCF). However in practice one
finds that accessing this data is rather slow. Since there may be tens of thousands of simulated sources
in the list, it is desirable to find some better procedure. For this reason it has been decided to use the
CCF PSF only for those sources which are brighter than a user-settable flux level. For sources fainter
than this level, the following axially-symmetric King function is used:

S(x− x0, y − y0) = S0

(

1 +
[x− x0]

2 + [y − y0]
2

ρ2

)

−α

.

The parameters ρ and α are also settable by the user, but the default values, which are taken from values
fitted to the on-axis PSF for the MOS camera (********** ref to RDS cal document XMM-SOC-CAL-
TN-0018), should be perfectly adequate.

../eimsimbatch/index.html
../eimsim/index.html
../eimsimbatch/index.html
../imsample/index.html
../imsample/index.html
../eimsimcompleteness/index.html
../eimsimreliability/index.html
../eimsimreduce/index.html

XMM-Newton Science Analysis System Page: 10

As said, the flux cutoff is a free parameter fluxcutoff of the eimsim script; the user is however advised
to choose a value such that the proper, CCF PSF is used for all sources bright enough to be detectable.
A few preliminary runs of eimsim may be required to determine a safe value.

Another point to consider is the size of the PSF ‘patches’ which are added to the image. There are two
related issues:

1. How large should one make the patch array? ‘Twice the size of the image’ is the ideal answer
from a theoretical standpoint, so that there would always be complete overlap between the
patch and the image, no matter where on the image the centre of the PSF was located. On
the other hand, practical issues to do with memory and computing time argue for as small
an array as possible. Another consideration is the detection procedure - if a PSF fitting
algorithm is employed as part of this, for example as in the sas task emldetect, then it is
clear that the PSF patch used here within eimsim must be at least as large as that used
within the fitting procedure. Failure to do this will result in bias in the fitted flux values,
as seems to have been the case in previous versions of eimsim.

2. Should one vignet or ‘feather’ the PSF patch in order to avoid an abrupt drop to zero at
the edges of the patch? This becomes particularly important if a small patch size is chosen.
On the other hand, an unwise choice of feathering function will give rise to flux biases in
any fitting procedure employed in the source detection (see above).

The PSF array size in eimsim is at present ‘hard-wired’ to the value of 21 by 21 pixels. The PSF
parameters used for the faint sources result in a PSF which drops to about 9% of its central value at
these array edges.

The feathering function chosen, let’s call it y, is a piecewise inverted parabola, viz: y = 1 for |x| < fs,

y = 1−

(

|x| − fs

s(1− f)

)2

for fs ≤ |x| < s, y = 0 else. Here x is the distance from the centre of the array, s is the array half size
(=10 in the present case) and f (which should be between 0 and 1) is set somewhat arbitrarily to 0.7.

The effect of the feathering on the PSF is illustrated schematically in figures 1 to 3.

The bright sources are applied by use of the (XMM-specific) task esrcmap. This task obtains the
PSF from the XMM calibration data via the cal library interface call CAL getPSF, with the cal state
variable accuracyLevel set to ACCURACY MEDIUM. This returns a PSF which is interpolated from
samples generated via a ray-tracing method. The source-detection task emldetect uses the same PSF
by default.

The faint sources are added to the image by use of the non-XMM-specific equivalent task srcmap. This
task uses the same PSF for each source, namely a King function. The relevant scale values are settable
via srcmap, but not eimsim, parameters.

In order to preserve something close to realistic statistics in the background, it is usual to include,
in the list of simulated sources, a large fraction which are too faint to be detected. This carpet of
faint, confused sources supplies the desired ‘lumpiness’, but at the cost of raising the average level
of vignetted background. The approximate amount of the added background (in terms of flux in the
simulated source energy band per unit sky area) can be estimated either from the first plot created by
eimsimcompleteness, or by use of faintbackcalc. Once the added flux per square arcsec is known, it
can be subtracted from the source images by use of eimsim (and srcmap) parameters withfluxoffset
and fluxoffset.

../eimsim/index.html
../eimsim/index.html
../emldetect/index.html
../eimsim/index.html
../eimsim/index.html
../eimsim/index.html
../esrcmap/index.html
../cal/index.html
../cal/index.html
../emldetect/index.html
../srcmap/index.html
../srcmap/index.html
../eimsim/index.html
../eimsimcompleteness/index.html
../faintbackcalc/index.html
../srcmap/index.html

XMM-Newton Science Analysis System Page: 11

4.3.4 Make a counts/pixel expectation-value image

This function may be performed alone by calling the script with entrystage and finalstage=‘makectsimg’.

This performs the second of the three stages listed above. Essentially it just consists of multiplying
each of the rate images obtained from the previous (first) stage by the appropriate exposure map. The
background expectation-counts image which was made in eimsimprep is then added.

Figure 1: Section through the raw, truncated PSF.

Figure 2: The vignetting or feathering function.

Figure 3: The PSF after feathering.

../eimsimprep/index.html

XMM-Newton Science Analysis System Page: 12

4.3.5 Make a random, Poisson-distributed events image

This function may be performed alone by calling the script with entrystage and finalstage=‘poissonize’.
The randomisation is performed by the task impoissonize. The result is an integer-valued image which
should look similar to a real XMM-Newton EPIC image of the given exposure.

4.3.6 Perform source detection

This function may be performed alone by calling the script with entrystage and finalstage=‘detect’.

This is the core of the simulation process: the detection of ‘sources’ in the simulated images. Exactly
how this is performed is up to the user - ie the user can write their own detection script, and arrange
very easily for this to be called by eimsim. In this way, several different schemes can be compared.
At present, the eimsim package contains two example detection scripts: eimsimdetect1xmm and
eimsimdetect2xmm, corresponding to the respective ‘prep’ scripts and template sets. The name of
the detection script can be supplied to parameter dettask of eimsim, although a more robust way is
available, as described in section 4.2.5 of the package documentation.

A user-written detection script must supply the detected sources in a FITS binary table called SRCLIST.
There must be no more than 1 row per source. The table must contain columns as follows:

Name Data type Units

SRC NUM
4-byte int

FLUX
4-byte real erg cm−2 s−1

FLUX ERR
4-byte real erg cm−2 s−1

RA
8-byte real decimal deg

DEC
8-byte real decimal deg

RADEC ERR
4-byte real arcseconds

DETEC PNULL
4-byte real

Column SRC NUM is an positive-valued integer which is unique to the source. Note that, for 1xmm and
2xmm detection schemes, the name of the output source ID column is hard-wired into emldetect or
srcmatch, whichever is relevant; SRC NUM contains these identical values; the column is just given a new,
common name for convenience. The ‘original’ column name is written to the keyword ID COL.

Note that the FLUX and FLUX ERR values should be valid for the same energy band as the simulated
sources. This band is defined by the E MIN and E MAX keywords of the FLUX SCALES table in the source
template file.

Column DETEC PNULL records the probability Pnull that the source is detected by chance. At present,
both eimsimdetect1xmm and eimsimdetect2xmm take, for each source, the value of DET ML from
the row with ID INST==0 and ID BAND==0, and process it as follows to get DETEC PNULL:

DETEC_PNULL = exp(-DET_ML).

Task eimsim calls the supplied detection script using the same command-line format as for sas tasks,
viz:

../impoissonize/index.html
../eimsim/index.html
../eimsim/index.html
../eimsimdetect1xmm/index.html
../eimsimdetect2xmm/index.html
../eimsim/index.html
../emldetect/index.html
../srcmatch/index.html
../eimsimdetect1xmm/index.html
../eimsimdetect2xmm/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 13

<detection task> obsidroots=’<list>’ refband=2 <etc>

The full list of parameters supplied to this command line is as follows:

Parameter Passed in from eimsim Comment

obsidroots yes
refband yes
prdssubdir yes
simopsubdir yes
simgensubdir yes
astest yes
srcspecset yes
srclistset no Name of the output source list
streamnumber yes
idnumber yes
entrystage no passed in from eimsim parameter –detentrystage
finalstage no passed in from eimsim parameter –detfinalstage

In order to avoid cross-talk when running several simulations in parallel, any intermediate files written
by the detection script should have names which contain both the stream and id numbers. In addition,
it is helpful to construct the detection script so that it has an optional entry point named ‘cleanup’. The
function of this portion of the detection script should be just to delete all intermediate files. In other
words, the detection script should be so designed, that it deletes all its intermediate files if invoked as
follows:

<detection task> entrystage=cleanup

If you opt to use one of the supplied detection scripts instead of writing your own, PLEASE NOTE that
the 1xmm and 2xmm detection schemes employed different energy band definitions and different versions
of non-eimsim sas tasks. You can obtain the correct band scheme by making use of the relevant template
file in $SAS DIR/lib/data/eimsimdata/. The filenames have 1xmm or 2xmm in them so it is not hard
to tell which to use. The non-eimsim sas task versions are as follows:

Task 1XMM version 2XMM version

emask 2.7 2.9
eboxdetect 4.13.1 4.15.2
emldetect 4.32.1 4.44.25
esplinemap 4.0.3 4.4
srcmatch 3.15.1 not used

The matching det prep tasks will check these versions and issue a warning if the incorrect ones are found.

4.3.7 Transform the flux coordinate

This function may be performed alone by calling the script with entrystage and finalstage=‘fluxtorand’.

The purpose of this function is to prepare for the matching stage (section 4.3.9). In section 4.3.1, it is
described how, for each simulated source, the original random number which became transformed into
the flux value for that source was retained in the column FLUXRAND. Actually this number can easily be
recalculated from equation 2, if one has the flux value. (In this equation x represents the flux, I(x) the
desired evenly-distributed random number and P (x) is the differential logN-logS curve.) For purposes
of matching detected and simulated sources it is desirable to apply the same transform to the detected

../eimsim/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 14

source flux values. This is done by the present function, which calls eimsim task fluxlinearize. The
result, and its uncertainty, are written respectively to 4-byte-real columns LINF and LINF ERR in the list
of detected sources.

4.3.8 Add various bits and bobs

This function may be performed alone by calling the script with entrystage and finalstage=‘addbits’.
Added to the list of detected sources are (i) a keyword SKY AREA which records the total area in square
degrees of the area of non-zero exposure; (ii) columns STREAM N and FIELD N which record the values
passed into the streamnumber and idnumber parameters. For the latter columns, all rows have of
course the same value: they become useful only when several lists are merged during processing by
eimsimreduce.

4.3.9 Attempt to match detected and simulated sources

This function may be performed alone by calling the script with entrystage and finalstage=‘compare’.
The actual processing is done by a task called srccompare.

In order to asses how well the source detection machinery performs, we need some way to (i) match every
detection with a unique member of the list of simulated sources which is the most likely identification, and
(ii) measure the probablity that the match arose by chance. The obvious answer to the first requirement
seems to be to find that simulated source which is ‘nearest’ in both position and flux to the detected
source. This intuition can be quantified by imagining that both simulated and detected sources are
represented by points in an abstract 3-dimensional space in which the first two axes record the source
position,1 and the third records the source flux. Let us define a quantity R in this space by the equation

R2 =

(

xsim − xdet

σx

)2

+

(

ysim − ydet
σy

)2

+

(

Ssim − Sdet

σS

)2

,

where x, y and S represent position and flux respectively. The σ quantities represent the uncertainties
which were determined by the source-detection procedure. For each detected source, we define its ‘match-
ing simulated source’ as the one which minimizes R for that detection. Let us denote this minimum value
of R by Rmatch. The probability can then be obtained as follows. First, consider the ellipsoidal surface
defined by

R2
match =

(

x− xdet

σx

)2

+

(

y − ydet
σy

)2

+

(

S − Sdet

σS

)2

.

From the definition of Rmatch, this ellipsoid has the following properties:

• It is centred on the ‘position’ in this abstract 3-dimensional space of the detected source.

• The principle axes of the ellipse preserve the ratios between the uncertainties. Indeed one
can visualize the process of searching for a match as ‘inflating’ the ellipsoid as one inflates
a balloon, until its edge intersects a simulated source.

• The ellipsoid just touches the matching simulated source.

• No other simulated source is found inside it.

1The RAs and decs are projected onto a plane tangent to the celestial sphere at the reference direction recorded in the

WCS keywords CRVAL1 and CRVAL2 of the original template exposure maps. Use of such planar coordinates for x and y

forces the x− y − S space to be cartesian, in which it is straightforward to measure distances.

../eimsim/index.html
../fluxlinearize/index.html
../eimsimreduce/index.html
../srccompare/index.html

XMM-Newton Science Analysis System Page: 15

Intuition suggests that the larger the ellipse, or the larger the value of Rmatch, the less likely it is that the
detection is ‘genuine’. Again we quantify this intuition by integrating the probability density distribution
of simulated sources in position and flux over the ellipsoidal volume to give η, the expectation value for
the number of simulated sources which would fall inside the ellipsoid by chance. Ok, we said above that
there are zero sim sources within the ellipsoid - but that was in a single, particular case. What we want
to test now is the null hypothesis, ie to ask how many simulated sources, on average, we would expect to
land inside our ellipsoid if we threw the chips at random.

Having calculated η, it is fairly easy to see that the probability Pnull of the null hypothesis is given by

Pnull = 1− exp(−η). (3)

There is a slight issue here, in that the simulated sources are not evenly distributed in S: the number
of sources per flux interval increases greatly at low flux. This leads to a bias towards matching with
fainter sources. In previous versions of eimsim I assumed that this was a bad thing, and took steps to
transform the flux coordinate to correct for this. This is the point of the FLUXRAND business described in
section 4.3.1. Now I am no longer sure that this is the case. In real life, we expect the gradient of number
density with flux to bias the detected flux - this is called Eddington bias. Maintaining this bias during
the matching stage ought to help correct for this. What concerns me more now is that the + and - flux
uncertainties ought not to be the same in a simple flux scale: one would expect that the + one ought to
be larger. Perhaps then the correct way to transform the flux scale before matching is to take its square
root, which should even up the uncertainties. What I have done is provide the facility in eimsim to do
any one of three things, namely (i) leave the flux alone; (ii) transform it to the FLUXRAND scale, in which
the simulated sources are evenly distributed; (iii) transform the flux scale by taking square roots of flux.
Comparison of empirical results ought to show which is the best procedure.

The following additional columns are written to the list of detected sources:

Name Data type Units Comment

X
4-byte real arcsec X-coordinate of det source.

Y
4-byte real arcsec Y -coordinate of det source.

X ERR
4-byte real arcsec X-coordinate error of det source.

Y ERR
4-byte real arcsec Y -coordinate error of det source.

SIM X
4-byte real arcsec X-coordinate of matching sim source.

SIM Y
4-byte real arcsec Y -coordinate of matching sim source.

SIM FLUX
4-byte real erg cm−2 s−1 Flux of matching sim source.

SIM INDX
4-byte int From simlist column INDEX.

SIM INV SENSY
4-byte real From simlist column INV SENSY.

R SIGMAS
4-byte real Rmatch.

MATCH PNULL
4-byte real Pnull from equation 3.

SIM LINF
4-byte real From simlist column FLUXRAND.

FLAG
4-byte int

If the user chooses to take the square root of the flux coordinate then the following additional columns
are written:

../eimsim/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 16

ROOTF
4-byte real Square root of det source FLUX.

ROOTF ERR
4-byte real The appropriate error in L.

SIM ROOTF
4-byte real Square root of sim source FLUX.

The FLAG column is hardly used at present, but may be found useful in further analysis. Only bit 0 is
set by task srccompare. If the same simulated source is ‘claimed’ by more than one detected source, bit
0 of the flag column is set for all the claimants except that with the smallest value of MATCH PNULL.

This section also writes a keyword COMPARED=‘T’ to the table header.

5 Parameters

This section documents the parameters recognized by this task (if any).
Parameter Mand Type Default Constraints

obsidroots no string .
A list of directory names. For each member of the list, the task constructs subdirectory names by append-
ing ‘/’ followed respectively by the strings in prdssubdir and simopsubdir. Please see the respective
parameter descriptions for further information.

entrystage no string makesimlist makesimlist-
imsample-
makerateimg-
makectsimg-
poissonize-detect-
fluxtorand-addbits-
compare-cleanup

This allows the user to enter the eimsim script at one of several places in its processing sequence.

finalstage no string compare makesimlist-
imsample-
makerateimg-
makectsimg-
poissonize-detect-
fluxtorand-addbits-
compare-cleanup

This allows the user to exit the eimsim script at one of several places in its processing sequence.

refband no string 1
Where only one file is required out of a set spanning several energy bands, for example an exposure map
to be used to create a detection mask, the band used is specified by this parameter.

prdssubdir no string product
For each member of the list obsidroots, the task constructs subdirectory names by appending ‘/’ fol-
lowed by the string in prdssubdir. The task expects to find input files in the prdssubdir subdirectory,
namely a set of template files in the form of XMM products (see section 7 for a detailed description).
Product templates from only 1 observation may be present in any one prdssubdir subdirectory.

simopsubdir no string sim output
For each member of the list obsidroots, the task constructs subdirectory names by appending ‘/’ fol-

../eimsim/index.html
../eimsim/index.html

XMM-Newton Science Analysis System Page: 17

lowed by the string in simopsubdir. The task writes observation-specific outputs to this directory.

simgensubdir no string sim generic
The task writes non-observation-specific output to this directory.

streamnumber no int 1
See the eimsimbatch documentation for a description of this.

idnumber no int 1
See the eimsimbatch documentation for a description of this.

srcspecset no dataset srcspec.fits
This is the name of a FITS dataset which contains specification of the source probability distributions
and also band-related specifications. See section 7 for a detailed description. Example files can be found
in $SAS DIR/lib/data/eimsimdata/ .

withsimsources no bool yes
If the user sets this to ‘no’, images with no sources will be created. This provides a way to assess the
number of false detections.

energyfraction no real 0.95
This parameter is read only if withsimsources is set to ‘yes’. The value is piped through to the param-
eter of the same name of task esrcmap.

fluxcutoff no real 2.0e-15
This parameter is read only if withsimsources is set to ‘yes’. For simulated sources which have fluxes
above this value, esrcmap is called to add an XMM point spread function (PSF) to the simulated image;
for sources fainter than this cutoff, srcmap (no ‘e’) is called, which employs a rotationally-symmetric
King function as PSF.

withfluxoffset no bool no
This parameter is read only if withsimsources is set to ‘yes’. If withfluxoffset=‘yes’, fluxoffset is
subtracted from each pixel of the output image of srcmap. The reason for this is to allow the user to
compensate for the increase in vignetted background caused by the accumulation of numerous too-faint-
to-be-detectable point sources.

fluxoffset no real 0
This parameter is read only if both withsimsources and withfluxoffset are set to ‘yes’.

dettaskstyle no string auto user—auto
The user is able to specify which source detection program or script should be used by the simulations.
The user may either choose between alternatives provided in the package, or write their own source-
detection script. Matters are somewhat complicated by the need to also provide a ‘detection preparation’
script to eimsimprep. The preparation and detection scripts must match. Some guidance for coordi-
nating these choices at package level is given in section 4.2.5. If dettaskstyle is left at its default of
‘auto’, eimsim attempts to read the detection style code from a file in the PWD called ‘eimsim config’.
This config file is written by eimsimprep. Failure to find the file, or non-recognition of the style code,
will both generate an error. Otherwise the style code is translated into the name of the detection task
to be used. If dettaskstyle is set to ‘user’, the task reads the name of the detection task directly from
the parameter dettask.

dettask no string eimsimdetect1xmm
This parameter is read if dettaskstyle is set to ‘user’. It gives the name of the task or script which
is to perform the source detection. The user may either choose between alternatives provided in the
package, or write their own source-detection script. For users wishing to ‘roll their own’, a description of

../eimsimbatch/index.html
../eimsimbatch/index.html
../esrcmap/index.html
../esrcmap/index.html
../srcmap/index.html
../srcmap/index.html
../eimsimprep/index.html
../eimsim/index.html
../eimsimprep/index.html

XMM-Newton Science Analysis System Page: 18

the ‘handshaking’ required of such a task is given in section 4.3.6.

withdetentrystage no bool no
If ‘yes’, the task looks for parameter detentrystage.

detentrystage yes string
A parameter to allow the user to enter the detection script (if that’s what it is) at one of several points
in its processing sequence.

withdetfinalstage no bool no
If ‘yes’, the task looks for parameter withdetfinalstage.

detfinalstage yes string
A parameter to allow the user to exit the detection script (if that’s what it is) at one of several points in
its processing sequence.

astest no bool no
If ‘yes’, no tasks are called except the source-detection script, which is also passed this parameter value
to allow it to do the same.

6 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

label (error)
explanation

label (warning)
explanation
corrective action: this is the corrective action

7 Input Files

1. A FITS template file, as described in item 1 of the ‘input files’ section of the eimsimprep
documentation, but with the following additional keywords in the SRCSPECS table header:

• String keyword FIELD ID (‘CONE’ is currently the only accepted value).

• 8-byte real keyword CONE RA in deg.

• 8-byte real keyword CONE DEC in deg.

• 8-byte real keyword CONE RAD in arcsec.

• 8-byte real keyword SKY AREA in deg2.

2. Various XMM product files, as described in item 2 of the ‘input files’ section of the eimsimprep
documentation.

../eimsimprep/index.html
../eimsimprep/index.html

XMM-Newton Science Analysis System Page: 19

3. A single map which is supposed to be a mosaic of all reciprocal-sensitivity maps relevant
to the simulation in hand. (In fact at present the exposure maps at the refband are used
instead of reciprocal-sensitivity maps.) The image header must also contain the keyword
SKY AREA. This file is created by eimsimprep.

4. For each observation, instrument, exposure and band: a mask image dataset which specifies
those parts of the sky on which simulated sources are to be placed. These are created by
eimsimprep.

5. For each observation, instrument, exposure and band: a real-valued image of the expectation
value, in average counts per image pixel, of the instrumental background. These are created
by eimsimprep.

8 Output Files

1. A FITS dataset which contains a list of simulated sources in a table named SRCLIST. This
file is written to the simgensubdir subdirectory. The SRCLIST table contains the following
columns:

• INDEX

• FLUX

• RA

• DEC

• FLUXRAND

• STREAM N

• FIELD N

• INV SENSY

• DET SRC ID

All these except for the last are described in section 4.3.1. The last column is added during
the comparison process (section 4.3.9).

2. A FITS dataset which contains a list of detected sources in a table named SRCLIST. This
file is written to the simgensubdir subdirectory. The SRCLIST table contains the following
columns:

• Described in section 4.3.6:

– String keyword ID COL

– SRC NUM

– FLUX

– FLUX ERR

– RA

– DEC

– RADEC ERR

– DETEC PNULL

• Described in section 4.3.7:

– LINF

– LINF ERR

• Described in section 4.3.8:

– STREAM N

../eimsimprep/index.html
../eimsimprep/index.html
../eimsimprep/index.html

XMM-Newton Science Analysis System Page: 20

– FIELD N

• Described in section 4.3.9:

– X

– Y

– X ERR

– Y ERR

– SIM X

– SIM Y

– SIM FLUX

– SIM INDX

– SIM INV SENSY

– R SIGMAS

– MATCH PNULL

– SIM LINF

– FLAG

– (Optional) ROOTF

– (Optional) ROOTF ERR

– (Optional) SIM ROOTF

References

	Instruments/Modes
	Use
	Which documents to read
	Description
	Quick cookbook
	Overview of the eimsim../eimsim/index.html package.
	What is and isn't simulated
	Relations between the components of the package
	Input and output directories and many-observation mosaics:
	Multiple entry and exit points
	Choice of source detection scheme
	Parameter `astest'
	Generic nature of many of the tasks

	The task eimsim../eimsim/index.html
	Make list of simulated sources
	Flag those sources outside the region of detectability
	Make a counts/pixel/sec image
	Make a counts/pixel expectation-value image
	Make a random, Poisson-distributed events image
	Perform source detection
	Transform the flux coordinate
	Add various bits and bobs
	Attempt to match detected and simulated sources

	Parameters
	Errors
	Input Files
	Output Files

