

epchain

November 12, 2014

Abstract

The task **epchain** generates the EPIC-PN event list product making use of the tasks **atthkgen**, **epframes**, **badpixfind**, **badpix**, **epreject**, **epnoise**, **epevents**, **attcalc**, **evlistcomb**, **epfast**, **epexposure**, **epatplot**, **tabgtigen**, and **evselect**.

1 Instruments/Modes

Instrument	Mode
EPIC PN	all (IMAGING, TIMING, BURST)

2 Use

pipeline processing	no	
interactive analysis	yes	

3 Description

3.1 General

The **epchain** task chains and loops over all first-level EPIC PN tasks to produce an event list ready to be exported as a PPS product. The **epchain** script is executed with a number of command line input parameters (arguments to the script). All parameters are optional, the parameter order is arbitrary. Parameters are given in the form "parameter=value". The implemented list of parameters and the corresponding default values are shown below. Note that in the case of the same parameter appearing twice on the command line the first instance is used (this behavior is different from other SAS tasks where the second instance is used).

Input files corresponding to the specified readout mode, CCD and exposure number are searched for in the given ODF directory. If desired **epchain** can also be directed to select all exposures or all exposures using the selected readout mode for processing. Badpixfind files (created by **badpixfind** and to be used by **badpix**) will be placed in **badpixset**. Output files are created in the current working directory.

The PN mini pipeline is sketched out in Fig. 1. At the beginning of the **epchain** script the task **atthkgen** creates an attitude history file, called atthk.dat, which will be used by **attcalc**. The main subchain

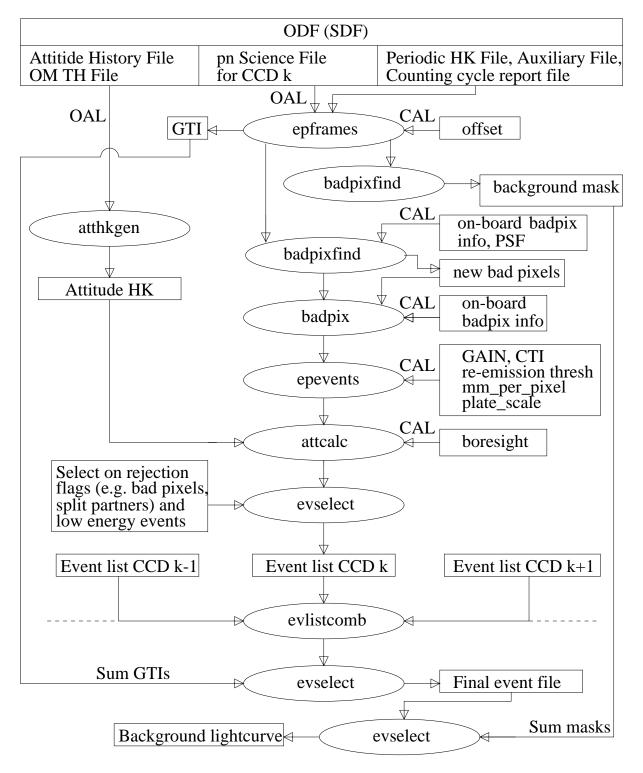


Figure 1: Organization of the EPIC-pn chain (only main tasks shown for clarity)

(epframes, badpixfind, badpix, epevents and attcalc) creates one event list for a single exposure and for a given list of CCDs from all the relevant ODF material and bad pixel lists.

The main subchain loops over all specified CCDs, calling in sequence:

1. **epframes** to process a CCD, exposure and datamode specific ODF file, creating the output events list rawevents##.dat and the GTI data set gti##.dat (## is the loop index, i.e. the CCD number currently in use)

Page:

3

- 2. **badpixfind** to find new bad pixel [optional]
- 3. **badpix** to process the rawevents list, adding the BADPIX extension
- 4. **epreject** to optionally correct the energy scale in specific pixels, and to flag soft flare events (turned off by default; see description of task **epreject** for details)
- 5. **epnoise** to optionally flag low energy detector noise (turned off by default; see description of task **epnoise** for details)
- 6. **epevents** to process the event list file, flag trailing events, perform pattern recognition, gain and CTI corrections, and compute linearized detector coordinates to create the calibrated events list events##.dat
- 7. attcalc to calculate the X and Y sky coordinates
- 8. epfast for RDCTI correction in FAST modes
- 9. epexposure for TIME randomization and EXPOSURE extension screening

Finally, making use of the common PN and MOS task **evlistcomb**, the CCD specific data sets are merged into a single events list. **evselect** selects all those events arriving in good time intervals and writes an output file according to XMM-SOC-ICD-0006-SSC (v2.1) ([1]).

It is highly recommended to also read the documentation of **epframes** and **epevents**.

3.2 Out-of-time events

Depending on the observation mode a certain fraction of the events recorded are due to out-of-time events, i.e. are registered during readout of a CCD and thus will be assigned an incorrect position in RAWY and consequently an incorrect CTI correction. Typical values are 6.3% for full frame mode, and 2.3% for extended full frame mode (with frame time parameter 3).

If withoutoftime=Y the task epevents does not create the "normal" events file but uses the output of epframes instead to create an event file where all events are treated as out-of-time events. After the pattern recognition for the same TIME, PHA, and RAWX a new RAWY is simulated by randomly shifting the pattern along the RAWY axis and performing the gain and CTI correction afterwards.

This out-of-time events file has the same temporal variations and pattern distribution as the "normal" event file. All events have an energy correction corresponding to the (randomly distributed) RAWY column. You can apply a selection on both the "normal" and "out-of-time" event file, scale with a mode-dependent factor and subtract the "out-of-time" contribution from the other. You can create "out-of-time"-corrected spectra and images for an arbitrary time and energy range.

Note: When using epchain with parameter withoutoftime=Y it is highly recommended to follow the order as illustrated in the examples section (see Sect.3.6): first with parameter setting

withoutoftime=Y keepintermediate=raw
and then second with
 withoutoftime=N (is default and can thus be omitted)
making use of intermediate files.

The current (experimental) implementation does not automatically detect the instrument and bad pixel setting. The RAWY range to distribute the out-of-time events is instead derived from the RAWY range of the actual events in the data. The mode-dependent conversion factor has thus to be applied manually and is about 95% of the out-of-time event fraction (e.g. 0.060 for full frame mode) due to setting the top 10 rows to "bad". This will we improved in later versions.

Page:

A different approach is done via the setting withctisrcpos=Y: all event energy corrections do not use the actual RAWY coordinate but the corresponding RAWY location of the source (SRCPOS) as determined by the task epframes (either automatically or via setting withsrccoords=Y). So all events are assumed to originate from the source position. Events that really occur at a RAWY different from SRCPOS get a wrong (usually too high) CTI correction instead. (Note, that this procedure is the correct handling for TIMING and BURST mode – where it is performed automatically). A spatial selection should be applied in the final event analysis to deal only with detector portions dominated by Out-of-Time events. epchain may be used with the setting ccds=4 withctisrcpos=Y to process only the CCD 4 where usually the bright source is located that causes the Out-of-Time events.

3.3 Incomplete ODFs

In the early phase of the XMM mission correct ODFs were not available. To be able to analyse EPIC-pn flight data obtained during the commissioning phase a couple of temporary parameters were introduced to mimic the interface to the housekeeping files (PMH, PAH) needed in **epframes** (see the corresponding task description for more details). All these parameters are not relevant for data from the Guest Observer programme. To reduce the number of warnings due to missing files and columns use the setting "odfok=N hkok=N".

3.4 Creation of background spectrum and lightcurve; screening of periods of high background

If requested (runbackground=Y), the task creates a background lightcurve, as well as a background spectrum for the imaging modes (FF, eFF, LW, SW) using background masks. These are not used for the fast modes as there is no useful background region, in which case the total lightcurve is produced. The usage of background masks can be controlled by parameter withmask (default value: yes). The background masks are created by task badpixfind using threshold parameters, appropriate for the detection of real X-ray sources. The background lightcurves and corresponding masks are created in the 7.0 - 15.0 keV energy band, while masks created in the 0.2-10.0 keV energy band are used for the creation of the background spectrum.

Depending on the individual observation and on the requested timebinsize one can then create a GTI file via tabgtigen (e.g.):

tabgtigen table=rate_bkg.fits gtiset=bkg_GTI.fits expression='COUNTS<500'

or using the count rate column

tabgtigen table=rate_bkg.fits gtiset=bkg_GTI.fits expression='RATE<8'

Page: 5

where the output rate is in counts ks⁻¹ arcmin⁻². Typical low-background rates for PN are of the order 3 - 5 counts ks⁻¹ arcmin⁻² in the 7.0 to 15.0 keV energy range.

The GTI file can then be used to screen the event list via evselect (e.g.):

```
evselect expression='GTI(bkg_GTI.fits,TIME)' ...
```

As the GTIs strongly depend on the intended science this screening is not performed and only background masks, the lightcurve, and a GTI file are created by **epchain**.

3.5 Optical loading

As the final event file does not contain events below 150 eV, the information to assess the presence of optical loading in a straight forward way is not available in the event file anymore. Parameter optloadingimage therefore controls the optional creation of an image in the ADU 20–30 range where optical loading is easily visible.

3.6 Examples

Let us assume we have an observation $0084_0099280101$ with three exposures, one TIMING mode exposure PNS008, and two imaging exposures PNS010 (in Small Window Mode) and PNS018 (in Full Frame Mode). Here follow some typical calls to epchain:

epchain

This processes the first IMAGING mode exposure (i.e. PNS010) and is equivalent to one of the calls

```
epchain datamode=IMAGING odfaccess=odf exposure=010 schedule=S epchain datamode=IMAGING odfaccess=oal exposure=1 epchain datamode=IMAGING exposure=1 epchain odfaccess=name odf=0084\_0099280101\_PNS01000AUX.FIT
```

If you are interested in the second IMAGING exposure then you may enter

```
epchain exposure=2
```

or (if you like it more verbose) any one of these:

```
epchain datamode=IMAGING odfaccess=odf exposure=018 schedule=S epchain datamode=IMAGING odfaccess=oal exposure=2 epchain odfaccess=name odf=0084_0099280101_PNS01800AUX.FIT
```

Finally, the TIMING mode exposure (if existent) is processed via any of the calls

```
epchain datamode=TIMING
```

Page: 6

```
epchain datamode=TIMING exposure=1
epchain datamode=TIMING odfaccess=oal exposure=1
epchain datamode=TIMING odfaccess=odf exposure=008
epchain datamode=TIMING odfaccess=odf exposure=008 schedule=Y
epchain odfaccess=name odf=0084_0099280101_PNS00800AUX.FIT
```

The commands

```
epchain odfaccess=all epchain datamode=IMAGING odfaccess=all
```

will process all IMAGING mode exposures in the selected ODF in one call to **epchain**. All TIMING mode or BURST mode exposures (if available) may be selected accordingly. The call

```
epchain datamode=ALL odfaccess=all
```

will process all exposures of an ODF, independent of observing mode. Sometimes one is interested just in particular (e.g. central) CCDs:

```
epchain ccds=1,4,7,10 exposure=2 ...
```

or one does not want to search for bad pixels (e.g. for short exposures) and no background lightcurve:

```
epchain runbadpix=N getnewbadpix=N runbackground=N ...
```

To create the output filenames according to the ODF (i.e. P0099280101PNS010*.FIT) use the parameter switch (this is the default in the meanwhile)

```
epchain usecanonicalnames=Y ...
```

Finally, the next example shows how to create a "normal" events file together with an "out-of-time" events file by re-using intermediate files (the order of the two calls to **epchain** is relevant):

```
epchain runbackground=N keepintermediate=raw withoutoftime=Y epchain runatthkgen=N runepframes=N runbadpixfind=N runbadpix=N
```

Some special settings that may be useful for particular observations:

If you have a very soft source and you want to have also the very softest photons to be included in the final event list (e.g. lower threshold $100\,\mathrm{eV}$ instead of $150\,\mathrm{eV}$) then (be prepared for a very large event file):

```
epchain screenlowthresh=0 ... # default: 150
```

If you have an offset pointing in TIMING or BURST mode (either intentionally or because the sky position of the source was not accurately known at the time of the scheduling e.g. for an "Target of Opportunity") then the correct source position can be entered via parameters (see also Sect. 4) to ensure correct timing and CTI corrections:

Page: 7

epchain ... withsrcccords=Y srcra=83.633208 srcdec=22.0124194

If you are interested in diagnostic images and plots and the EPEA rejection setup

epchain ... witheventmap=Y withphotonmap=Y withpatplot=Y showpah=Y

4 Parameters

This section documents the parameters recognized by this task (if any).

			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Parameter	Mand	Type	Default	Constraints

General

10			40.40.000	
odf	no	string	\$SAS_ODF	

input ODF directory name

odfaccess	no	string	oal	oal/odf/name/all
 1 1 11 11 05	-			

how oal should access the ODF

schedule	no	string	S	S/U
1 1 1 0 1	1	1.0		

exposure schedule flag, only used if odfaccess=odf

datamode	no	string	IMAGING	IMAGING, TIMING,
				BURST or ALL

data modes to be processed

exposure	no	integer	1	

exposure number to be processed, see oal documentation

ccds no	string	1-12	1-12
---------	--------	------	------

list of CCDs to be processed, in a form like: 1,6-9,12 or 7,3,11

keepintermediate	no	string	none	all/raw/cal/clean/
				notmerged/none

indicator which type of intermediate files should not be deleted, default is to delete all intermediate files during or at the end of the processing

Page:

withdefaultcal no boolean Y Y/N

whether mode-dependent calibration-related settings should be used automatically, this will use for:

BURST: withrdpha="N", withxrlcorrection="Y", runepreject="Y", runepfast="Y" TIMING: withrdpha="Y", withxrlcorrection="Y", runepreject="Y", runepfast="N"

The control of the co

IMAGING: withrdpha="N", withxrlcorrection="N", runepreject as user-supplied, runepfast="N"

usecanonicalnames	no	boolean	Y	Y/N

auto-create output filenames?

outset no	string	events.fits	
------------------	--------	-------------	--

name of output events file if usecanonicalnames=N

ingtiset no string

name of input HK GTI file [not active yet]

optloadingimage	no	boolean	N	Y/N
-----------------	----	---------	---	-----

creation of diagnostic ADU 20-30 sky image to assess optical loading

optloadingimageset	no	string	optloading.img	

name of optical loading image

atthkgen

runatthkgen no boolean	Y	Y/N
------------------------	---	-----

atthkgen: run atthkgen?

timestep	no	real	1.0	$> 0.0 \mathrm{s}$

atthkgen: Duration (in sec) of 'step' through attitude quality information

epframes

runepframes	no	boolean	Y	Y/N
_				,

epframes: run epframes?

Page:

withsrccoords	no	boolean	N	Y/N
---------------	----	---------	---	-----

whether to use user-supplied values for RA and DEC for TIMING and BURST modes, default is N. See the warning in epframes (Sect.??)

9	srcra no	angle	0.0	0360
---	----------	-------	-----	------

source right ascension (J2000)

srcdec	no	angle	0.0	-90 +90

source right ascension (J2000)

withsrcrawy no boolean N Y/N

whether to use user-supplied value for source RAWY position for TIMING and BURST modes, default is N, if both withsrccoords=N and withsrcrawy=N then the RA_OBJ and DEC_OBJ from the ProposalInfo are used. See the warning at withsrccoords!

srcposition no integer	190	1-200
------------------------	-----	-------

epframes: source position for TIMING and BURST mode (in RAWY pixel coordinates)

withfinetime	no	boolean	Y	Y/N
whather to apply fine time as	nnoation for	TIMING on	d DIIDCT modes by usin	g gourge DAWV position

whether to apply fine time correction for TIMING and BURST modes by using source RAWY position, default is Y

lowerthreshold	no	integer	20	0-4095

disregard low-energy events (with amplitudes < lowerthreshold [adu]) already at this stage, default lowerthreshold=0 preserves recommended (old) behavior. This may be useful when comparing early mission data with recent observations as the setup was different (lowertreshold=23 instead of 20 now)

wrongpixlimit	no	integer	10	0-100

epframes: allowed percentage of 'wrong' events before sending a warning

|--|

epframes: method to handle MIPs in raw events data (mainly for commissioning phase)

qualmax	no	integer	0	
quantitui	110	11100801		

epframes: maximum allowed value of the quality flag to keep event in list (mainly for commissioning phase)

Page: 10

ecntempqb1	no	real	-9999.9			
epframes: quadrant box temperature [deg C] E_Cn_TEMPQB1 [F1576 F1676 F1776 F1876], (temporary						
parameter mainly for calibrat	ion, overwri	tten by exist	ting PAH file values)			

f1294	no	integer	0		0-31
	 . [1 0 .1		0 1 7 1 1	

epframes: quadrant wait states [F1294], defines the length of the Extended Full Frame Mode frame time, typical values are 0, 3, or 5 (temporary parameter, overwritten by existing summary file values)

f1118	no	string	Unknown	UNKNOWN Open
				Closed Thin1 Thin2
				Medium Thick
				CalOpen CalClosed
				CalThin1 CalThin2
				CalMedium CalThick

epframes: filter name (temporary parameter, overwritten by existing summary file values)

anchop	no	integer	0	0-255

epframes: An_CHOP [F1534 F1634 F1734 F1834] (temporary parameter, overwritten by existing summary file values)

automode	no	boolean	N	Y/N
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	10 [4 1	. 1 .1	

try to determine mode from the data itself [not implemented yet]

autofilter	no	boolean	N	Y/N

try to determine filter from the data itself [not implemented yet]

odfok	no	boolean	Y	Y/N
C	1 1 0	DD		

epframes: assume a correct/complete ODF

hkok	no	boolean	Y	Y/N

epframes: assume correct/complete HK files

guessdeltap	no	boolean	N	Y,N

whether to estimate the shift of the PN oscillator frequency due to temperature and ageing effects from HK data, could be used to estimate SAS_JUMP_TOLERANCE (divide by 6).

Page: 11

showaux	no	boolean	N	Y/N
epframes: increase internally	verbosity f	or AUX-rela	ated output	
showccx	no	boolean	N	Y/N
epframes: increase internally	verbosity f	or CCX-rela	ated output	
showpmh	no	boolean	N	Y/N
epframes: increase internally	verbosity f		_	
showpah epframes: increase internally	no	boolean	N	Y/N
ancmcorr	no	integer	512	0-4095
epframes: An_CMCORR F1	525 F1625 F	F1725 F1825	5	
aneamipsel	no	integer	1	0-63
epframes: An_EAMIPSEL F anmaxmip epframes: An_MAXMIP F15	no	integer	63	0-4095
anmip	no	integer	3512	0-4095
epframes: An_MIP F1526 F1	1626 F1726	F1826		
ccfok	no	boolean	Y	Y/N
epframes: Is this correct/nor	minal ODF/	SDF?		

ϵ	pframes:	Create	several	eve	$_{ m nt}$	CCD	ma	ps	?

no

witheventmap

event	\mathbf{mapset}		no	file	./eventmap##.dat	
_	3.7	-	 . aa	0.1		

boolean

Ν

Page:

12

f1052 no integer 32400 0-32767

epframes: DTIMAUTRSTPREVAL coarse time reset [s]

mipdist no boolean N Y/N

epframes: Create MIPDIST columns and MIPHIST extension in output?

mipthreshold no integer 3000 0-4095

epframes: maximum PHA for non-MIP events [adu]

photonmapset no file ./photonmap##.dat

epframes: Name of output photon CCD map file

setup for badpix/offset correction vector (used only if ccfok=N)

showve no boolean N Y/N

epframes: Display valid event intervals? (not in use yet)

badpixfind

runbadpixfind	no	boolean	Y	Y/N

badpixfind: run badpixfind?

badpixset no string ./bpxf_##.fits

badpixfind, badpix: path of bad pixel set, the substring ## will internally be replaced with the CCD number currently in use (two digits)

badpix

runbadpix	no	boolean	Y	Y/N

badpix: run badpix?

Page: 13

getuplnkbadpix	no	boolean	Y	Y/N
	1 (0 0	$\alpha \pi \gamma \sigma$		

badpix: get uplinked bad pixels (from CCF)?

getotherbadpix no boolean Y Y/N

badpix: get non-uplinked bad pixels (from CCF)?

getnewbadpix no boolean Y Y/N

badpix: get new pixels from task badpixfind? Not applicable (active) for TIMING and BURST mode

emptyextension no boolean N Y/N

badpix: create an empty BADPIX extension?

 windowfilter
 no
 boolean
 N
 Y/N

badpix: just get pixels within input file X/Y window?

epreject

runepreject	no	boolean	N	Y/N

epreject: run epreject?

badcolumnset	no	string	badcolumn.tab		
' 11 1 1 1' / ''\					

optional bad column list (ascii)

	sigma	no	real	4.0	
--	-------	----	------	-----	--

sigma threshold for offset correction

noiseparameters	no	$13 \times \text{real}$	$0.98\ 12 \times 1.0$	
-----------------	----	-------------------------	-----------------------	--

noise fraction parameters (cutoff parameter and 12 chip specific correction factors; only for expert use)

withxrlcorrection	no	boolean	N	Y/N
. 37 1 1.	1 / 0	TOT DIT	1 \ 0	

execute X-ray loading correction code (for TI+BU modes)?

withsoftflarescreening no boolean	N	Y/N
-----------------------------------	---	-----

Page: 14

execute soft flare screening code (for TI mode) ?

${\it softflarethreshold 1}$	no	real	10.0	

threshold 1 for flare screening (unit: counts/0.1 s)

softflarethreshold2	no	real	1.0	
---------------------	----	------	-----	--

threshold 2 for flare screening

softflaresmooth	no	string	BOX	BOX GAUSS FLARE
11 1 6 0				

smoothing method for flare screening

softflareenergyrange	no	$2 \times \text{inte-}$	40 50	
		ger		

energy range for flare screening (ADU)

softflaresmoothparams	no	real	2.0 1.0 1.0	
-----------------------	----	------	-------------	--

smoothing parameters

epnoise

runepnoise	no	boolean	N	Y/N
------------	----	---------	---	-----

epnoise: run epnoise?

identifynoisyframes	no	boolean	Y	Y/N
TI CONT. IN				

Identify Noisy Frames

sigmacut	no	real	3.0	

sigma cut for bright sources

applyfilter	no	boolean	Y	Y/N
T. C. O.1.	0			

Keep output of filtering process?

savemasks	no	boolean	N	Y/N

Save CCDs mask to a file

Page: 15

epxrlcorr

runepxrlcorr	no	boolean	N	Y/N

epxrlcorr: run epxrlcorr?

This task (for IMAGING modes) requires an offsetmap to be present in the ODF, which was generally not the case in the first years (it would stop then).

epevents

runepevents	no	boolean	Y	Y/N

epevents: run epevents?

withphotonmap	no	boolean	N	Y/N
---------------	----	---------	---	-----

epevents: whether to create diagnostic photon map file with 4 image extensions

reemissionthresh	no	integer	0	

epevents: selection parameter: trigger threshold (in adu) for preceding events

randomizeposition	no	boolean	Y	Y/N

epevents: yes, if the computation of physical camera detector coordinates is done with randomization

randomizeenergy no boolean i i/N	randomizeenergy	no	boolean	Y	Y/N
----------------------------------	-----------------	----	---------	---	-----

epevents: yes, if the raw amplitudes should be randomized within a pulseheight bin

gainctiaccuracy	no	integer	2	0-2

epevents: Accuracy of gain/cti correction

patternanalysis	no	boolean	Y	Y/N

epevents: no, if pattern recognition has been done already (future development)

withoutoftime	no	boolean	N	Y/N
an arranta, rea if "out of time	orronta", file	s abould be	areated instead of "norms	1 granta" fla (only mann

epevents: yes, if "out-of-time events" file should be created instead of "normal events" file (only mean-

Page: 16

ingful for IMAGING modes) (considered as $\it experimental$)

withctisrcpos	no	boolean	N	Y/N
epevents: yes, if not the R				1 /
energy correction routines (Sect.3.2.				
withbackgroundgain	no	boolean	Y	Y/N
epevents: yes, if backgroun	d gain corre	ctions shoul	d be applied	, ,
withpatternoffset	no	boolean	Y	Y/N
epevents: yes, if pattern en	ergy onset c			
withctilongterm epevents: yes, if long-term	no	boolean	Y	Y/N
ctilongtermsoft epevents: yes, if special sof tions (considered as experim		boolean nction should	Y d be included in the long	Y/N g-term CTI increase correc-
ctilongtermy	no	boolean	Y	Y/N
epevents: yes, if special Y of withcodoffsets	no	should be in	cluded in the long-term	CTI increase corrections Y/N
epevents: yes, if CCD offse	t corrections	s should be a	applied (considered as ex	
withtempcorrection	no	boolean	Y	Y/N
epevents: yes, if temperatu	re-gain corre	ections shou	ld be applied	· · ·
withgainburst	no	boolean	Y	Y/N
epevents: apply special gain	n if BURST	mode?		

withgaintiming boolean Y Y/N no epevents: apply special gain if TIMING mode?

Page: 17

withgainff no boolean N Y/N

epevents: apply special gain if FULL FRAME mode?

withgaineff no boolean Y Y/N

epevents: apply special gain if EXTENDED FULL FRAME mode?

withphagaincolumn no boolean N Y/N

epevents: Whether to create intermediate column PHA_GAIN. If set to "Y" then propagatecolumns is reset to "all".

lowgainenergyscale no boolean N Y/N

epevents: When switching on the energy correction for low-gain mode data then most of the events will fall outside the 2-byte-limit for the PI column (i.e. $> 32757\,\mathrm{eV}$) as the energy range is then about $2-280\,\mathrm{keV}$; if one is interested in this full range the setting "N" should be used and energy values be multiplied later with 18.4 to obtain "real" event energies. Only effective for the few low-gain mode exposures, of course.

checksasmip no boolean N Y/N

yes, if the MIP rejection information obtained by task **epframes** shall be printed (only meaningful if on-board rejection is switched off, i.e. for SW, TI, BU modes).

withrdpha no boolean Y Y/N

yes, if a correction for rate-dependent PHA effects for TI and BU modes should be applied. The logical keyword PHA_RDCO indicates whether this correction has been applied or not. If applied, then the keyword PHA_RDCB gives the scaling factor B used in the correction, derived from block RDPHA_DERIV in the CTI.CCF.

rdphatimebinsize no boolean 100

time-bin size for rate-dependent PHA correction for TI and BU modes [s]

withframecti no boolean N Y/N

yes, if TIME-derived frame numbers should be used in CTI correction for non-imaging modes (TI, BU) instead of the ODF frame numbers. For FF, eFF, LW, SW modes internally always the TIME-derived frame numbers instead of the dummy ODF numbers are used (should not be changed).

testenergywidth	no	boolean	Y	Y/N
rea if was non standard anone	1_:: 141_	(: - 1 - 17	:	1 F - W 1:: :

Page: 18

PI column

attcalc

runattcalc	no	boolean	Y	Y/N
attcalc: run attcalc?				

attitudelabel	no	string	ahf	ahf/fixed/om

attcalc: source of attitude data

refpointlabel	no	string	nom	nom/obj/pnt/user

attcalc: source of celestial coordinates of central reference point

fixedra	no	real		
attable: S/C'a attitude (DA)	in the caus	torial carth	controd reference fro	mo (if attitudalabal—fixed)

attcalc: S/C's attitude (RA) in the equatorial, earth-centred reference frame (if attitudelabel=fixed)

${f fixeddec}$	no	real		
attacle, C/C/a attitude (DEC	in the serve	tamial samth	santual nataranaa fransa l	(:f -++:+d-]-b-1

attcalc: S/C's attitude (DEC) in the equatorial, earth-centred reference frame (if attitudelabel=fixed)

fixedposangle	no	real			
1 C/C! 1 (DA)	1	• 1 41	, 1 C	c /	(·C

attcalc: S/C's attitude (PA) in the equatorial, earth-centred reference frame (if attitudelabel=fixed)

nominalra no real		
-------------------	--	--

attcalc: celestial coordinate RA of central reference point (if refpointlabel=user)

nominaldec	no	real		
		1 C	· / /·C	

attcalc: celestial coordinate DEC of central reference point (if refpointlabel=user)

imagesize	no	real	0.36	
1 1 10 1 00 11	/• 1	\		

attcalc: half-size of final image (in degrees)

Page: 19

runepexposure	no	boolean	Y	Y/N
D	9			

epexposure: Run epexposure?

screenexposure		no	boolean	Y		Y/N	

epexposure: remove all columns in EXPOSUnn extensions that are beyond the ICD

spatialexposure	no	boolean	Y	Y/N

epexposure: yes, if spatial exposure inhomogeneities (CCD columns) should be determined and to be taken into account by subsequent SAS tasks (not yet implemented)

randomizetime	no	boolean	Y	Y/N
				,

epexposure: yes, if the event arrival times should be randomized within a readout frame

event screening

screen	no	boolean	Y	Y/N

reject all events with rejection flags and below low-energy threshold

runscreen	no	boolean	Y	Y/N

perform the screening (otherwise use existing files)

screenlowthresh	no	real	150	
:	1	T 7	1	

reject all events with lower (recombined) energies [eV]

screenrejected	no	boolean	N	Y/N

reject all events with rejection flags (apply #XMMEA_EP in screening)

evlistcomb

evlistcomb: run evlistcomb?

memorymodel	no	string	high	low/highlow/high
memory model for task evlist	comb, all o	ther tasks a	re controlled via SAS_ME	MORY_MODEL [current
SAS default: high]				-

Page:

20

withmedianpnt	no	boolean	Y	Y/N

evlistcomb: Get median values from atthkgen file (otherwise mean)?

othertables	no	list	of	BADPIX	EXPO-	none
		upper	-	SURE		
		case				
		string	S			

evlistcomb: names of secondary tables or arrays to propagate

epnimgcolnames	no	list of upper- case strings	TIME RAWX RAWY DETX DETY X Y PHA PI FLAG PATTERN PAT ID	none
			PAT_SEQ	

evlistcomb: columns to propagate in main table (IMAGING mode)

epnimgcoltypes	no	list of	double int16 int16	int8/int16/int32/single/
		strings	int16 int16 int32 int32	double/boolean/string
			int16 int16 int32 int8	
			int16 int8	

evlistcomb: output type of IMAGING mode columns

epntimcolnames	no	list of	TIME RAWX RAWY	none
		upper-	DETX DETY X	
		case	Y PHA PI FLAG	
		strings	PATTERN PAT_ID	
			PAT_SEQ	

evlistcomb: columns to propagate in main table (TIMING mode)

epntimcoltypes	no	list of	double int16 int16	int8/int16/int32/single/
		strings	int16 int16 int32 int32	double/boolean/string
			int16 int16 int32 int8	
			int16 int8	

evlistcomb: output type of TIMING mode columns

propagatecolumns	no	string	auto	auto/imaging/subset/
				icd/all

Page: 21

means values via epntimcoltypes and epntimcolnames, "imaging" uses the values as for epnimgcolnames and epnimgcoltypes, "subset" similar to "imaging" but without X, Y, and PAT_SEQ, whereas "icd" uses only the columns that are explicitly mentioned in the Data Products ICD, and "all" uses all output columns of epevents for IMAGING and TIMING modes

final GTI screening

runevselect	no	boolean	Y	Y/N

evselect: run evselect?

RDCTI correction

runepfast	no	boolean	N	Y/N
mun anfact for rate dependent	CTI (DDC	TI) composti	ong in TI DII modes? Ic	manad if rri+hndnha_"V"

run epfast for rate-dependent CTI (RDCTI) corrections in TI+BU modes? Ignored if withrdpha="Y" or if IMAGING mode.

pattern distribution

	withpatplot	no	boolean	N	Y/N
--	-------------	----	---------	---	-----

run epatplot to create pattern plot and FLAG=0 masks

background lightcurve

runbackground	no	boolean	Y	Y/N	
create background lightcurve?					

create background lightcurve?

withmask no boolean Y	Y/N
-----------------------	-----

use masks for lightcurve?

maskset	no	string	./mask_##.fits	
path of point source mask set	, the substr	ing ## will	internally be replaced wi	ith the CCD number cur-
11 · (/ 1· ·/) ID		0.0.10.0.1	37 NT / 1. 11 / /.	COMPATE WITHOUT

path of point source mask set, the substring ## will internally be replaced with the CCD number currently in use (two digits). Energy range: 0.2-10.0 keV. Not applicable (active) for SMALL_WINDOW, TIMING, and BURST mode

withhardmask	no	boolean	Y	Y/N

Page:

22

use hard energy band for maskset instead of soft?

hrdmskset	no	string	$./hrdmask_{-}\#\#.fits$	

same as above but for energy range 7.0-15.0 keV

rateset	no	string	rate_bkg.fits	

name of background lightcurve file

specset	no	string	spec_bkg.fits	
---------	----	--------	---------------	--

name of background spectrum file

timebinsize	no	real	0.0	

time bin for background lightcurve [s], if set to 0 then the task chooses default values according to the instrument mode and energy range: withhardmask=Y 100 [s] for FF eFF modes, 200 for LW, 350 for SW, and 100 for TI BU modes, withhardmask=N 10 [s] for FF eFF modes, 20 for LW, 350 for SW, and 10 [s] for TI BU modes

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and errors can also be generated in the SAS infrastructure libraries, in which case they would not be documented here. Refer to the index of all errors and warnings available in the HTML version of the SAS documentation.

```
odf (error)
```

SAS_ODF environment variable does not exist and no data directory given

indir (error)

given data directory could not be found

odffiles (error)

no valid file found for given specifications (data mode, exposure, etc.)

badpixset (error)

parameter does not contain CCD number place-marker ##

refpoint (error)

no values given for RA, DEC in the case of refpointlabel=user

attitude (error)

no values given for RA, DEC, PA in the case of attitudelabel=fixed

Page: 23

ccdlist (error)

list of CCDs cannot be expanded, e.g. "2-4-6" or "3,-5"

ccd (error)

CCD number out of range [1-12]

exposure (error)

exposure not found in ODF directory

constituent (error)

one (or more) of the constituent calls ended in error

SAS_CCF (warning)

ccf.cif or environment variable SAS_CCF not found corrective action: continue, check SAS_CCF environment variable

notInODF (warning)

requested CCD file seems to be non-existent in ODF, skip processing for this CCD corrective action: continue, check ODF or give other CCD list parameter when reprocessing

6 Input Files

- 1. badpixset with ## replaced by CCD number: bad pixel files (one per CCD, extension BADPIX) (if getnewbadpix set to "true" and runbadbixfind to "false")
- 2. event list files (one per CCD and exposure), straight from the ODF (PNIME1 or PNTIE1 or PNBUE1, depending on datamode)
- 3. corresponding auxiliary (PNAUX1, PNAUX2), counting cycle report (PNCCX1), housekeeping (PNPMH1, PNPAH1), and attitude history (SCATS1) files, straight from the ODF. Time correlation (SCTCS1) file and summary file are accessed by OAL.

7 Output Files

In the case of usenanonicalnames=N the output files have fixed names or can be given via parameter settings. If usenanonicalnames=Y then the task creates the file names automatically according to the ODF, where ooooooooo denotes the 10-digit observation identifier and PNxnnn is the exposure identifier with x being the schedule flag (S or U) and nnn the 3-digit exposure number.

1. merged and calibrated event list file (one per exposure, EVENTS), as defined in the Data Products ICD ([1])¹ with CCD specific bad pixel (BADPIXnn), exposure (EXPOSUNN), GTI extensions (STDGTINN), as well as OFFSETS with all columns with a non-zero offset and CALINDEX with all relevant CCF entries (EPN, XRT3, XMM).

If usenanonicalnames=Y: depending on the setting of withoutoftime and withctisrcpos: NN: PoooooooooooPNxnnnPIEVLI0000.FIT (imaging modes, i.e. FF, eFF, LW, SW) or PoooooooooooPNxnnnTIEVLI0000.FIT (fast modes, i.e. TI, BU)

YN: PoooooooooPNxnnnOOEVLI0000.FIT

NY: PoooooooooPNxnnnPSEVLI0000.FIT

YY: PoooooooooPNxnnnOSEVLI0000.FIT (note that this setting is possible but not very meaningful ;-)

¹For TIMING and BURST modes the columns RAWY and PAT_ID are produced beyond the current version of the ICD.

- Page: 24
- 2. atthk.dat: output file from atthkgen containing the entire attitude information (ATTHK). If usenanonicalnames=Y: PoooooooooOBX000ATTTSR0000.FIT
- 3. gti##.dat (with ## replaced by CCD number): CCD specific GTI files (STDGTInn)
- 4. mask_##.fits: CCD specific (source-free) background masks with ## replaced by CCD number (created by **badpixfind** if runbackground set to "true").

 If usenanonicalnames=Y: PoooooooooooPNxnnnBPFMSK00##.FIT
- 5. bpxf_##.fits: CCD specific bad pixel list with ## replaced by CCD number (created by badpixfind if runbadpixfind set to "true").
 If usenanonicalnames=Y: PoooooooooooPNxnnnBPXFLI00##.FIT
- 6. eventmap##.dat (with ## replaced by CCD number): CCD event intensity maps (if witheventmap=Y), for details see epframes
- 7. photonmap##.dat (with ## replaced by CCD number): CCD photon intensity maps (if withphotonmap=Y), for details see epevents
- 8. flag0_map_##.dat (with ## replaced by CCD number): CCD maps with regions FLAG=0 set to 1 (if withpatplot=Y), for details see epatplot.

 If usenanonicalnames=Y: PoooooooooooPNxnnnFLGMSK00##.FIT
- 9. value of parameter rateset: background lightcurve using source masks with columns COUNTS and RATE where the latter is scaled by timebinsize and the sum of all non-masked pixels, in units of cts/ks/arcmin². There is also a GTI file created with name bkg_GTI.fits. If usenanonicalnames=Y: PoooooooooooPNxnnnFBKTSR0000.FIT for the lightcurve and PooooooooooPNxnnnFBKGTI0000.FIT for the GTI file.

8 Intermediate Files

- 1. rawevents##.dat: re-formatted EPIC pn ODF event lists, created by **epframes**, with ## replaced by CCD number
- 2. events##.dat.dat: calibrated event lists produced by **epevents**, with ## replaced by CCD number
- 3. cleanevents##.dat.dat: calibrated event lists produced by evselect, with ## replaced by CCD number if runscreen=Y

9 Algorithm


```
srcposition=$srcposition mipthreshold=$mipthreshold \
                mipmethod=$mipmethod qualmax=$qualmax \
                witheventmap=$witheventmap
   if ($runbadpixfind == "y") {
      badpixfind eventset=$outfileO badpixset=$bad
   badpix eventset=$outfile0 badpixset=$bad
                getuplnkbadpix=$getuplnkbadpix \
                getotherbadpix=$getotherbadpix \
                getnewbadpix=$getnewbadpix
                emptyextension=$emptyextension \
                windowfilter=$windowfilter
   epevents eventset=$outfile1 outset=$outfile2
                reemissionthresh=$reemissionthresh
                randomizeenergy=$randomizeenergy
                randomizeposition=$randomizeposition
                gainctiaccuray=$gainctiaccuracy
                withphotonmap=$withphotonmap
   attcalc eventset=$outfile2 attitudelabel=$attsou \
                refpointlabel=$refpoint atthkset=$atthkset \
                withmedianpnt=$withmedianpnt imagesize=$imagesize \
              [ fixedra=$attra fixeddec=$attdec fixedposangle=$attPA ]
              [ nominalra=$nominalra nominaldec=$nominaldec ]
SAS_MEMORY_MODEL = $memorymodel
evlistcomb eventsets=\"$evlist\" instrument=epn imagingset=$imagingset \
                timingset=$timingset othertables=$othertables
evselect table=[$imagingset $timingset] expression=\"$evselexpr\" \
                withfilteredset=Y keepfilteroutput=Y filteredset=$outfil \
                writedss=Y updateexposure=N destruct=Y
SAS_MEMORY_MODEL = original_value
```

10 Comments

}

- Parameter odf takes precedence over SAS_ODF.
- SAS_VERBOSITY should be set to 4 or 5 for normal processing.
- SAS_MEMORY_MODEL should be set to 'high' for normal processing.
- The current implementation is a Perl script. It is not yet fully embedded in SAS and thus does not support all SAS task options. **epchain** --v (or -v) lists the version number of all chain tasks. epchain --p (or -p) gives a list of all available parameters with its default values.

Page: 26

11 Future developments

The chain will adapt to the evolution of its constituents and to the organisation of the pipeline.

References

[1] SSC. XMM Survey Science Centre to Science Operations ICD for SSC Products. Technical Report XMM-SOC-ICD-0006-SSC Issue 2.1, SSC, Mar 2000.