
XMM-Newton Science Analysis System Page: 1

emchain

February 1, 2016

Abstract

Generate the EPIC-MOS event list product.

1 Instruments/Modes

Instrument Mode

EPIC MOS IMAGING, TIMING

2 Use

pipeline processing no
interactive analysis yes

3 Description

The emchain script chains and loops over all first-level EPIC MOS tasks to produce event lists for all
exposures, ready to be exported as PPS products.

3.1 Generalities

By default all events flagged for rejection during the chain are physically removed from the output file (to
save space) except those OUT OF FOV (useful for cosmic-ray background subtraction) and REJECTED BY GATTI

(used for proton flare rejection). To keep all events in output set rejectbadevents=N. To use a different
mask on FLAG set rejectionflag to another hexadecimal value (binary flags are described in evatt, and
in the header of the EVENTS table of the event lists).

All text output is sent to standard error, and may be redirected to a file (very useful to investigate
problems). It is good practice to look at the warnings sent by the tasks and emchain itself. If
the SAS VERBOSITY environment variable is set to 1, emchain will tell which tasks it called. If
SAS VERBOSITY is set to 4 (suggested value), its constituent tasks will provide useful information.
Larger values of SAS VERBOSITY may result in large output files. If SAS VERBOSITY=0, emchain

will be mute, except for warnings and error messages.

../emchain/index.html
../evatt/index.html
../emchain/index.html
../emchain/index.html
../emchain/index.html

XMM-Newton Science Analysis System Page: 2

All files are recognized by their name. Input files are looked for in the directory entered via the odf

parameter or the SAS ODF environment variable, which must also contain the general ODF files (attitude,
time, summary file). Output files are created in the current directory. Intermediate files are removed at
the end, unless keepintermediate=Y or an error occurred. Intermediate and output files are overwritten
unless clobber=Y.

If one constituent task ends in error, emchain will continue anyway with the next CCD, exposure or
instrument unless stoponerror=Y.

3.2 Main loop

The main subroutine (processOdf, Fig 1) loops over all exposures and instruments (MOS1/MOS2) present
in the input directory (looking for event list files).

If withatthkgen is true or if the tracking history file does not exist already, atthkgen is run first.
tabgtigen is run on the output to generate the attitude GTI. The tolerance on attitude variations may
be modified via atttol. hkgtigen is run if the HK GTI does not exist already. Those GTI files are not
applied by default, they are generated for information. They can be applied by setting filteratt=Y
and/or filterhk=Y. They are then merged with the user GTI (if ingtiset is set) into the external GTI
used by emframes.

processOdf creates one (or two, if a CCD is operated in TIMING mode) event list for every selected expo-
sure, from all relevant ODF material and (if they exist) the good time intervals generated by tabgtigen

and the list of bad pixels (from the CCF or produced internally).

In a first step it loops over all CCD/nodes, calling in sequence, as shown in Fig 2:

1. emframes on the auxiliary file, the events file and the external GTI file (if any), creating
a frame file as expected by emevents and a CCD/node specific GTI file which will be
reinjected in the final call to evselect.

2. badpix on the events list, adding the BADPIX extension. If a bad pixels file exists, it is
used instead of the CAL calls for the non-uplinked bad pixels, (i.e. badpix is called with
getuplnkbadpix=Y getotherbadpix=N getnewbadpix=Y).

3. emevents on the events list, the offset/variance file and the frame file, creating a new events
list which will be propagated through attcalc and emenergy to evlistcomb.

4. gtialign on the external GTI file and the events file, then gtimerge to merge the resulting
aligned GTI and the CCD/node specific GTI.

5. attcalc on the new events list, filling the X/Y columns.

6. emenergy on the new events list, filling the FLAG, PHA and PI columns.

By default position, energy and time of each photon are randomised within their respective bins (one
CCD pixel for position, one ADU for energy, one frame for time).

Then (Fig 1) all the event list files created (one per CCD/node) are merged by evlistcomb, creating
one events list per mode (IMAGING, TIMING). Finally evselect is called on the resulting events list(s),
with (CCDNR==$node$ccd) && GTI(merged GTI file,TIME) for all CCD/nodes. emtaglenoise loops
over all CCDs (except the central one) to check occurrence of low-energy electronic noise and write the
LENOISnn keyword, set to 1 if a CCD is affected. The list of calibration files used to analyse the data is
added to the output files as a CALINDEX extension.

../emchain/index.html
../atthkgen/index.html
../tabgtigen/index.html
../hkgtigen/index.html
../emframes/index.html
../tabgtigen/index.html
../emframes/index.html
../emevents/index.html
../evselect/index.html
../badpix/index.html
../badpix/index.html
../emevents/index.html
../attcalc/index.html
../emenergy/index.html
../evlistcomb/index.html
../gtialign/index.html
../gtimerge/index.html
../attcalc/index.html
../emenergy/index.html
../evlistcomb/index.html
../evselect/index.html
../emtaglenoise/index.html

XMM-Newton Science Analysis System Page: 3

Event list 4Event list 4 Event list 4 CCD k+1CCD k−1

Final event list

evselect

evlistcomb

Final event list

evselect

Timing event list Imaging event list

(Imaging)(Timing)

CCD k

merged GTI filesmerged GTI files

evselect

TIME histogramtabgtigenFlare GTI file

EPIC/MOS

atthkgen

per exposurechain

Loop over CCDs

Tracking history filetabgtigenAttitude GTI filegtimerge

User GTI fileHK GTI file

hkgtigen

external GTI file

Figure 1: Organisation of the EPIC-MOS chain: merging the event lists. The files in boldly dashed boxes
are used (or produced) if they exist. The files in simply dashed boxes are options of the individual tasks
not used in the current chain.

XMM-Newton Science Analysis System Page: 4

Event list 1

Event list 3

Event list 4

Event list 2

Tracking history file

(other node)Event list 1

MOS GTI file

Frame file

Offset/variance file

Frame file

Frame file (other node)

emframes

badpix

emevents

attcalc

emenergy

Auxiliary file

List of new bad pixels

Gatti histograms

(Imaging mode only)

gtialign

merged GTI file

gtimerge

EPIC/MOS chain per CCD

external GTI file

external GTI file

CCD background

Figure 2: Organisation of the EPIC-MOS chain at CCD/node level with file inputs. Same conventions
as in Fig 1

XMM-Newton Science Analysis System Page: 5

3.3 Flare rejection

If makeflaregti=Y, for all merged files (*MIEVLI*), an additional call to evselect (Fig 1) produces a
light curve of single events from CCDs in Imaging mode flagged with REJECTED BY GATTI (with actual
energy above 14 keV), with time bins defined by flaretimebin (if that time bin is too small to give
reasonable statistics per bin, it will be increased automatically). This is aimed at finding efficiently
periods of flaring activity when the focal plane is illuminated by low-energy protons. Those are mostly
singles and are not cut-off by the mirror efficiency above 10 keV (contrary to astronomical sources). The
result is divided by the area of the external CCDs within the field of view, and expressed in cts/ks/arcmin2.
A fractional exposure column FRACEXP accounts for incomplete time bins.

If globalflare=Y (default), timeseries are built for all MOS event lists in the current directory, then
summed together (the ERROR columns are summed quadratically) to build a single global timeseries. This
allows to apply the same GTI to both MOS instruments, and to improve the statistics in the timeseries.

This light curve is sent to tabgtigen which selects all intervals when the number of cts/ks/arcmin2 is
lower than flaremaxrate, and produces a Good Time Intervals file. This file is filtered to avoid intervals
only one flaretimebin long, which are usually negative fluctuations during a moderately strong flare.
This file is NOT applied to the events list, unless applyflaregti=Y.

The quiet level is around 0.8 cts/ks/arcmin2. The default value of flaremaxrate is conservative (to
avoid rejecting too many intervals) and should be all right in most situations. The default value of
flaretimebin is such that it covers an integer number of frames (20). It should not be chosen too small
if TIME is not randomised (no ’T’ option in randomize).

If applyflaregti=Y, the resulting Good Time Intervals are applied only if they total more than 10%
of the exposure time. Otherwise the events list is left unscreened. This applies in particular to the bad
pixels detection (Sect. 3.4).

3.4 Bad pixels detection

In most cases relying on the bad pixels registered in the CCF is not enough. This is because the CCF
stores only the bright pixels of relatively high occurrence, but bright pixels at a low level may be a
nuisance as well.
If badpixfindalgo=EM (default) or EP, the whole analysis of one exposure (Fig 1) is run first with
emevents and emenergy in a simplified mode, and skipping badpix and attcalc. Then one of two
bad pixel finding algorithms is called (Fig 3), depending on badpixfindalgo.

• If badpixfindalgo is set to ’EP’, badpixfind is called. This is a conservative algorithm
which will find clear-cut bright pixels or columns.

• If badpixfindalgo is not set or set to ’EM’, embadpixfind is called. This is a more
sensitive algorithm which will detect bad pixels, segments of columns or rows down to the
statistical limit of Poisson counts.

If part of the exposure is affected by flares, this can seriously reduce the power of the bad pixels search
(flares act as noise for the bad pixels and make detecting them more difficult). Therefore an intermediate
flare screening (like in Sect. 3.3) is necessary (Fig 4). The bright pixels (which can perturb the flare
screening) are flagged using ebadpixupdate. The resulting files are used to generate Good Time Intervals
outside flares. Those Good Time Intervals are exposure specific whatever the value of globalflare. Then
the bad pixel search is run a second time on the data outside flares, in incremental mode.

../evselect/index.html
../tabgtigen/index.html
../emevents/index.html
../emenergy/index.html
../badpix/index.html
../attcalc/index.html
../badpixfind/index.html
../embadpixfind/index.html
../ebadpixupdate/index.html

XMM-Newton Science Analysis System Page: 6

Event list 4

EPIC/MOS bad pixels finder

evselect

Event list 5

emeventsproj

badpixfindalgo=em

Flare GTI file

badpixfindalgo=ep

badpixfind

embadpixfind

List of new bad pixels

Raw map

choice

Figure 3: Organisation of the EPIC-MOS chain: Bad pixels search. Same conventions as in Fig 1

XMM-Newton Science Analysis System Page: 7

Event list 4Event list 4 Event list 4 CCD k+1CCD k−1

evlistcomb

Imaging event list

CCD k

evselect

TIME histogramtabgtigenFlare GTI file

Flare screening for bad pixels search

ebadpixupdateBad pixel lists (one per CCD)

Flagged event list

Figure 4: Organisation of the EPIC-MOS chain: Flare screening between first and second bad pixels
searches. Same conventions as in Fig 1

XMM-Newton Science Analysis System Page: 8

For badpixfindalgo=EM (or not set), the algorithm is called a third time (incrementally) on energies
below 500 eV (and after flare screening), unless lowenerbadpix=N. This sometimes detects bad pixels
more easily, because most appear at low energy.

The resulting bad pixels file is then used by badpix in the main pass on the data (Fig 1). Bad pixels
declared in the CCF are read as well, and merged with those found in the local search. This second pass
restarts just after emframes. The stopafterbadpixfind parameter allows to stop emchain before the
main pass, to investigate in detail how the bad pixels detection worked.

If badpixfindalgo is set to NO, then the first loop is not done and the bright pixels are read from the
CCF.

3.5 Customisation

Many options allow to run emchain on a subset of the data, restart from previous output, change the
options of constituent tasks.

• The exposures, instruments and ccds parameters allow to run emchain on a subset of
the data files (select an explicit list of exposures, instruments or CCDs).

• If addvigweight=Y, then evigweight is called to add a WEIGHT column to the events list
(for extended source analysis).

• All individual steps in emchain except emframesmay be skipped (withbadpix, withemevents,
withattcalc, withemenergy, runevlistcomb, applyccdgti, makeflaregti). The whole
loop over CCDs may be skipped if runccdloop=N (the only available functionalities are
then those of Fig 1).

• If runevlistcomb=N, the merged event files are not built and the output is the collection
of individual event and frame files. For example, the event files are called eventnn.out.mos,
where nn is the same as CCDNR of the merged file (10*node+ccd). To avoid overwriting the
files of one exposure with the next, they are renamed eventnn.out.MkEEEE where k is 1
or 2 and EEEE is EXPIDSTR (exposure number including S or U). They are not renamed if
only one exposure is processed. Note that all the files must be renamed manually back to
*.out.mos to allow restarting emchain from them (startfromodf=N).

• If randomize does not contain the letter P, emevents is run with randomizeposition=N.
If randomize does not contain the letter T, emevents is run with randomizetime=N. If
randomize does not contain the letter E, emenergy is run with randomizeenergy=N.

• Parameters may be passed to constituent tasks. The syntax is ’taskname:paramname=soandso’,
where ’paramname’ is the parameter name for task ’taskname’. This will be passed as
’paramname=soandso’ when calling ’taskname’.
For example, ’emenergy:useccfdarkframe=Y’ allows using the CCF dark frame for the CCD
background correction (this corrects for variations at the pixel scale, whereas the E4 data
allows to correct for variations on scales larger than 5 pixels).
This syntax does not allow to specify different parameter values on different occurrences of
’taskname’ within emchain. The additional parameter will be passed on all occasions.
Parameters specified in that way supersede possible settings of the same parameters by
emchain itself.

• For calibration purposes (offsets’ evolution), or checking optical loading, it can be useful to
look at the background (base level) of a CCD. If writeccdbackground=Y, then emchain
writes one file per CCD and per exposure, containing the CCD background (as determined
by emenergy). This is similar to passing backgroundset to emenergy, but allows to save
all such files under a different name.

../badpix/index.html
../emframes/index.html
../emchain/index.html
../emchain/index.html
../emchain/index.html
../evigweight/index.html
../emframes/index.html
../emchain/index.html
../emevents/index.html
../emevents/index.html
../emenergy/index.html
../emchain/index.html
../emchain/index.html
../emenergy/index.html
../emenergy/index.html

XMM-Newton Science Analysis System Page: 9

• emchain normally ignores data obtained with CCD read-out gain set to low (/10). This
behaviour may be overridden by setting processlowgain=Y. Low gain data is then treated
as if it was normal data, and included in the merged events file in output, in addition to
normal data. Its PI will still be wrong, and the flare screening mechanism will not work
normally (because there are very few events at energy more than 100 keV even during flares).

• If fulloutput=Y, all columns originally present in the events files (in the ODF) are pre-
served in the output file (this about doubles the size of the file).

• If intermediate files from a previous call to emchain still exist (for example eventnn.in.mos
files), emchain may use them as a starting point instead of the ODF (startfromodf=N).

3.6 Examples

emchain takes some time to run. It is usually better run as a batch job (at command). Here are a few
examples of how to use it. They assume that the SAS CCF environment variable was set to the relevant
Calibration Index File.

• Standard run (get calibrated event files from an ODF located in your odf dir), sending the
output to a log file:

emchain odf=your_odf_dir > emchain.log 2> emchain.err (sh shell)

emchain odf=your_odf_dir > emchain.log >& emchain.err (csh shell)

• Same, but getting the bad pixels from the CCF instead of the data and applying attitude
and HK GTIs:

emchain odf=your_odf_dir badpixfindalgo=NO filteratt=Y filterhk=Y

• Select particular exposure, instrument and CCDs, keep intermediate files and stop at first
error:

emchain instruments=M2 exposures=S002 ccds=’1 3 4’ stoponerror=Y \

keepintermediate=Y

• Keep events flagged for rejection and all original columns in the ODF, apply user GTI and
no TIME randomization:

emchain rejectbadevents=N fulloutput=Y randomize=’PE’ ingtiset=hkgti.ds

• Rebuild the flare GTI files with different settings, keep them exposure specific and add the
WEIGHT column:

emchain runccdloop=N runevlistcomb=N addvigweight=Y \

globalflare=N flaretimebin=104 flaremaxrate=1.2

• Run attcalc with fixed attitude:

emchain attcalc:attitudelabel=fixed attcalc:fixedra=204.6877 \

attcalc:fixeddec=-27.6984 attcalc:fixedposangle=59.378

../emchain/index.html
../emchain/index.html
../emchain/index.html
../emchain/index.html
../attcalc/index.html

XMM-Newton Science Analysis System Page: 10

• Specify source position manually (instead of using RA OBJ and DEC OBJ) for Timing mode:

emchain emframes:withsrccoords=Y \

emframes:srcra=204.6877 emframes:srcdec=-27.6984

• Run bad pixels finder on existing intermediate files:

rm badpix*.out.mos evmap.in.mos medmap.in.mos

emchain startfromodf=N clobber=N stopafterbadpixfind=Y

• Regenerate event files, using new bad pixels files and intermediate files (this will remove the
intermediate files on successful output):

rm event*.out.mos

emchain startfromodf=N

• Relaunch emchain after an error which occurred on MOS 2, exposure 4, using already
existing intermediate files:

rm PooooooooooM2S004*.FIT

emchain instruments=M2 exposures=4 clobber=N

3.7 How to deal with an error

If an error occurred, the very last output of emchain will be something like

emchain: BEWARE: One or more of the tasks ended in error !

You should then look into the log file for a specific message like

emchain: BEWARE: That task ended in error !

The associated messages may help you understand what happened. If the error occurred in the last
exposure, the intermediate files will not be erased, you may also inspect them (if they were erased, rerun
emchain for the particular instrument and exposure where the error occurred, setting stoponerror=Y).

If you think you have found a workaround (editing a file for example), you may relaunch the task which
ended in error, duplicating the call written after ’CMD:’ in the log file. You may also relaunch emchain
from the intermediate files (see example above).

If the error is of general significance (not just a corrupted file at your site), feel free to send an Observation
Report.

../emchain/index.html

XMM-Newton Science Analysis System Page: 11

4 Parameters

This section documents the parameters recognized by this task (if any).
Parameter Mand Type Default Constraints

General parameters

ingtiset no string none
user-supplied good time intervals

filteratt no boolean no yes/no
filter data on bad attitude

filterhk no boolean no yes/no
filter data on bad housekeeping

badpixfindalgo no string EM none
EP for badpixfind, EM for embadpixfind, NO for nothing

randomize no string PET
randomize multiswitch (P for position, E for energy, T for time). ” for no randomisation at all

applyflaregti no boolean no yes/no
apply the proton flare GTI

Selection parameters

odf no string SAS ODF none
input directory name (this is a standard SAS parameter)

exposures no list of
strings

all none

selected exposures (like S004, or simply 4 if non ambiguous)

instruments no list of
strings

both M1/M2

selected instruments

ccds no list of in-
tegers

all 1-7

selected CCDs

Parameters for running part of emchain

../badpixfind/index.html
../embadpixfind/index.html

XMM-Newton Science Analysis System Page: 12

runccdloop no boolean yes yes/no
loop over CCDs

startfromodf no boolean yes yes/no
analyse raw ODF files

stopafterbadpixfind no boolean no yes/no
stop just after bad pixels detection to investigate

runevlistcomb no boolean yes yes/no
merge the CCD-specific events files

makeflaregti no boolean yes yes/no
build GTI for proton flare rejection

Parameters for debugging or calibration

rejectbadevents no boolean yes yes/no
reject events with any of the flags in rejectionflag set

rejectionflag no string 762aa000 none
hexadecimal representation of the flags triggering deletion

writeccdbackground no boolean no yes/no
save CCD background for offset calibration (one file per CCD)

processlowgain no boolean no yes/no
process data obtained in low gain read-out mode (as well as normal)

fulloutput no boolean no yes/no
keep all columns in event list (rather than only the ones in SSC products)

applyccdgti no boolean yes yes/no
apply the CCD-specific GTI

keepintermediate no boolean no yes/no
keep intermediate files (or remove them on output)

stoponerror no boolean no yes/no
stop at first error in task call

clobber no boolean yes yes/no
overwrite existing output files

Parameters for individual tasks

withatthkgen no boolean no yes/no

XMM-Newton Science Analysis System Page: 13

rerun atthkgen

atttol no real 0.05 > 0
tolerance for attitude filtering (degrees)

withbadpix no boolean yes yes/no
run badpix

withemevents no boolean yes yes/no
run emevents

withattcalc no boolean yes yes/no
run attcalc

withemenergy no boolean yes yes/no
run emenergy

lowenerbadpix no boolean yes yes/no
run embadpixfind a second time for energies < 500 eV

addtaglenoise no boolean yes yes/no
run emtaglenoise

addvigweight no boolean no yes/no
run evigweight

globalflare no boolean yes yes/no
build single flare screening timeseries for the whole observation

flaretimebin no real 52.0 > 2.6
time bin for flare rejection (s)

flaremaxrate no real 2.0 > 0

threshold on rate of truncated singles for tabgtigen (cts/ks/arcmin2)

The syntax taskname:parametername=soandso may be used to pass parameters to individual tasks called
by emchain. See Sect. 3.5 for details.

Standard SAS parameters

Because emchain is a standalone Perl script, it does not deal with the standard SAS parameters (see
taskmain) in exactly the same way as normal SAS tasks do:

• It does not support the ’-d’ (dialog) option. Actually emchain may not be called at all via
the SAS GUI.

• It does not support the ’-c’ (noclobber) option because some constituent tasks do not work
with that option set. That option is replaced by the clobber parameter specific to emchain.

../atthkgen/index.html
../badpix/index.html
../emevents/index.html
../attcalc/index.html
../emenergy/index.html
../embadpixfind/index.html
../emtaglenoise/index.html
../evigweight/index.html
../tabgtigen/index.html
../emchain/index.html
../emchain/index.html
../taskmain/index.html
../emchain/index.html
../emchain/index.html

XMM-Newton Science Analysis System Page: 14

• It emulates the ’-h’ (help), ’-m’ (manpage), ’-p’ (param), ’-v’ (version) parameters giving
information on emchain itself.

• It passes all other standard SAS parameters to its constituent tasks. Specific OAL (’-o’)
and CAL (’-a’,’-f’,’-i’) options are passed only to the tasks making use of the OAL or CAL,
respectively. By default constituent tasks are called with ’-w 10’ (at most 10 warnings per
task).

• All syntaxes (e.g. ’-o your odf dir’, ’odf=your odf dir’, ’-–odf your odf dir’) are supported.

Some SAS options are also interpreted at emchain level before being passed to its constituent tasks:

• ’-V’ (verbosity) is used in the same way as the SAS VERBOSITY environment variable (see
Sect. 3.1).

• ’-o’ (odf) is used to define the directory where the data resides in the same way as the
SAS ODF environment variable (see Sect. 3.1).

• ’-i’ (ccf) is used in the same way as the SAS CCF environment variable to append a CALINDEX
extension to the output file.

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

odf (error)
No or non existing or empty input directory

odffiles (error)
No ODF-like file in input directory

lowGain (warning)
a CCD was operated in low gain mode. It is scientifically useless and emchain will normally
not process it. If processlowgain is set, it will be processed but the flare screening light
curve will be wrong unless this is the central CCD
corrective action: set processlowgain=Y if you want that CCD to be processed

badexposure (warning)
the event*.out files are incompatible with the requested exposure. The merged events list
will not be created. This is possible only when clobber=N and event*.out files exist
corrective action: check the event*.out files and rerun

badinstrument (warning)
the event*.out files are not MOS files. The merged events list will not be created. This is
possible only when clobber=N and event*.out files exist
corrective action: check the event*.out files and rerun

../emchain/index.html
../emchain/index.html
../emchain/index.html

XMM-Newton Science Analysis System Page: 15

protonflare (warning)
The GTI fraction after flare screening is less than 10%. It is not applied
corrective action: reassess the flare GTI manually, or change flaremaxrate if you wish

noIN FOV (warning)
the EXPOSUnn extensions of the merged events file do not contain the IN FOV keyword.
The flare detection cannot proceed
corrective action: rerun emchain on the ODF to regenerate the merged events file

badstring (warning)
a keyword does not have the expected length. It is truncated or padded with . This should
not happen on a regular ODF
corrective action: check whether a file is not corrupted in the ODF (you may know which
file contains the offending keyword by looking at the messages), and that the substitution
is all right

6 Input Files

1. event list files * Mn*xxE.FIT (one per CCD/node and per exposure), straight from the ODF
(n is 1 or 2, xx is IM or TI).

2. auxiliary files * Mn*AUX.FIT (one per exposure), straight from the ODF.

3. offset/variance files * Mn*OVE.FIT (one per CCD/node and per mode), straight from the
ODF.

4. optionally, a user-supplied GTI file (entered through ingtiset) with STDGTI extension.

5. optionally, bad pixels files with BADPIX extension (one per CCD/node and per instrument).
They are looked for in the current directory and their names must be P??????????DD????BADPIXij00.FIT,
where i is the CCD number and j the node number. A file with matching observation and
exposure fields is preferred, but any observation and exposure is accepted.

The structure of files in the ODF is described in [1]. The event and offset files in the ODF may be gzipped
(end in .gz or .FTZ).

7 Output Files

1. event list files (one per instrument, exposure and per mode), as in the SSC Data Products
ICD [2], except they are uncompressed. Their names are POOOOOOOOOODDUEEEMIEVLI0000.FIT
(IMAGING mode) and POOOOOOOOOODDUEEETIEVLI0000.FIT (TIMING mode). If
addvigweight=Y, a WEIGHT column is added.

2. timeseries files (one per instrument and per exposure) in RATE format of truncated single
events per ks per arcmin2, which are used to generate the good time intervals for flare screen-
ing. Their names are POOOOOOOOOODDUEEEFBKTSR0000.FIT. They contain the
columns RATE, ERROR, TIME and FRACEXP. If globalflare=Y, a global timeseries is created in
addition, named POOOOOOOOOOEMX000FBKTSR0000.FIT. In that one FRACEXP may
be larger than 1.

3. good time interval files (one per instrument and per exposure) which may be used to select
out proton flares in the data. Their names are POOOOOOOOOODDUEEEFBKGTI0000.FIT.
If globalflare=Y, a single GTI file is created, named POOOOOOOOOOEMX000FBKGTI0000.FIT.

XMM-Newton Science Analysis System Page: 16

4. tracking history file POOOOOOOOOOOBX000ATTTSR0000.FIT generated by atthkgen

(also useful for later tasks like eexpmap).

5. attitude GTI file POOOOOOOOOOOBX000ATTGTI0000.FIT generated by tabgtigen

from the tracking history file.

6. HK GTI files (one per instrument) generated by hkgtigen. Their names are POOOOOOOOOODDX000HK GTI0000.FIT.

7. Optionally (if writeccdbackground=Y), CCD background maps (one per CCD and per
exposure) which may be used to check optical loading and the offsets map. Their names are
POOOOOOOOOODDUEEECCDBKGij00.FIT, where i is the CCD number and j the node
number.

8 Intermediate Files

1. framenn.out.mos: frame file for a given CCD/node in output of emframes, where nn is
the same as the CCDNR column in the final output file (10*node + CCD).

2. badpixnn.out.mos: bad pixels file for a given CCD/node in output of badpixfind or
embadpixfind.

3. ccdgtinn.in.mos: GTI file for a given CCD/node in output of emframes.

4. extgti.in.mos: external GTI file for a given instrument (merged from user, attitude and
HK GTIs).

5. hkgti.in.mos: external GTI file aligned to frame readout boundaries for the current
CCD/node in output of gtialign.

6. gtinn.out.mos: GTI file for a given CCD/node, intersection of the latter two.

7. eventnn.in.mos: input event list file for a given CCD/node, with BADPIX extension ap-
pended by badpix.

8. eventnn.out.mos: event list file for a given CCD/node in output of emevents, with BADPIX,
OFFSETS0, OFFSETS and EXPOSURE extensions, propagated through attcalc and emenergy.

9. merged.img.mos: merged event list in IMAGING mode in output of evlistcomb.

10. merged.tim.mos: merged event list in TIMING mode in output of evlistcomb.

11. merged.truncated.mos: selection of events with truncated energy (for flare screening).

9 Algorithm

subroutine emchain

Read parameters.

if startfromodf then call processOdf

else if runevlistcomb then call mergeEvents

if makeflaregti then

Loop over the *MIEVLI0000.FIT files

call makeFlareTS

../atthkgen/index.html
../eexpmap/index.html
../tabgtigen/index.html
../hkgtigen/index.html
../emframes/index.html
../badpixfind/index.html
../embadpixfind/index.html
../emframes/index.html
../gtialign/index.html
../badpix/index.html
../emevents/index.html
../attcalc/index.html
../emenergy/index.html
../evlistcomb/index.html
../evlistcomb/index.html

XMM-Newton Science Analysis System Page: 17

if globalflare call mergeTS else call tsToGTI

end loop

if globalflare call tsToGTI

endif

Loop over the *MIEVLI0000.FIT files

if addtaglenoise call emtaglenoise

if withflaregti call applyFlareGTI

if addvigweight call evigweight ineventset=eventfile

end loop

if not keepintermediate then rm -f *.in.mos *.out.mos merged.*.mos

end subroutine emchain

subroutine processOdf

Set SAS_ODF to odf (for OAL).

Call atthkgen if no tracking history file or withatthkgen is true.

Call tabgtigen with expression=’!isNull(DAHFPNT) && DAHFPNT<atttol’

Call hkgtigen if no HK GTI is present.

gtiin = ’extgti.in.mos’

Call gtimerge gtitable=$gtiin on attitude GTI (if filteratt),

HK GTI (if filterhk) and user GTI (if present)

Look in odf for ODF files pertaining to selected instrument,

ending in IME, TIE, RIE or CTE.FIT (possibly .gz or .FTZ).

Deduce all exposures present.

Loop over selected exposures

if badpixfindalgo ne ’NO’ then

call ccdLoop (forbadpixfind=Y)

call badpixLoop (no flare screening)

call mergeEvents

call ebadpixpixupdate

call buildFlareGTI

call badpixLoop (with flare screening and low energy run)

endif

call ccdLoop (forbadpixfind=N)

if runevlistcomb then call mergeEvents

end loop over exposures

end subroutine processOdf

subroutine ccdLoop

Loop over selected CCDs and nodes

Identify event file name event0 ending in IME, TIE, RIE or CTE.FIT.

Deduce ccd and node.

aux = substring($event0 - last 9 characters) // ’00AUX.FIT’

gtiout = ’gti’ // node // ccd // ’.out.mos’

XMM-Newton Science Analysis System Page: 18

frameout = ’frame’ // node // ccd // ’.out.mos’

emframes auxiliaryset=frame.in odfeventset=$event0 \

frameset=$frameout writegtiset=Y outgtiset=$gtiout

if ($gtiin exists) then

flagbadtimes=Y ingtiset=$gtiin

if (not processlowgain and GAIN_CCD=’LOW’) next

bad = ’badpix’ // node // ccd // ’.out.mos’

if $bad does not exist then

bad = ’P*’ // instrument // ’*BADPIX’ // ccd // node // ’00.FIT’

if withbadpix and not forbadpixfind then

badpix eventset=$event0 withoutset=Y outset=event.in windowfilter=Y

if ($bad exists) then

getuplnkbadpix=Y getotherbadpix=N getnewbadpix=Y badpixset=$bad

else

cp $event0 event.in.mos

endif

eventout = ’event’ // node // ccd // ’.out.mos’

off = odf // * // instrument // * // ccd // node // ’OVE.FIT’

emevents withframeset=Y frameset=$frameout odfeventset=event.in \

eventset=$eventout

if ($off exists) then withoffvarsets=Y offvarsets=$off

if not randomizeP then randomizeposition=N

if randomizeT then randomizetime=Y

if forbadpixfind then analysepatterns=N flagbadpixels=N \

splitdiagonals=N randomizeposition=N

if ($gtiin exists) then

gtialign gtitable=$gtiin:STDGTI eventset=$eventout \

outset=hkgti.in.mos

extname = ’STDGTI’ // node // ccd

gtimerge tables="hkgti.in.mos ccdgti.in.mos" mergemode=and \

gtitable=$gtiout:$extname

if withattcalc and not forbadpixfind then

attcalc eventset=$eventout

emenergy ineventset=$eventout

if not imaging mode then getccdbkg=N

if not randomizeE then randomizeenergy=N

if forbadpixfind then correctcti=N correctgain=N randomizeenergy=N

bkg = ’P’//obsid//instrument//expid//’CCDBKG’//ccd//node//’00.FIT’

if writeccdbackground then backgroundset=$bkg

if rejectbadevents or forbadpixfind then

evselect table=$eventout destruct=Y keepfilteroutput=Y \

expression="(FLAG & 0x$rejectionflag) == 0"

end loop over CCDs and nodes

end subroutine ccdLoop

XMM-Newton Science Analysis System Page: 19

subroutine badpixLoop

Loop over selected CCDs and nodes

eventout = ’event’ // node // ccd // ’.out.mos’

bad = ’badpix’ // node // ccd // ’.out.mos’

evselect table=$eventout withfilteredset=Y filteredset=event.in.mos \

keepfilteroutput=Y destruct=Y writedss=Y updateexposure=Y \

expression="TIME in GTI($gtiflare)"

if badpixfindalgo == ’EM’ then

emeventsproj eventset=event.in.mos rejectbadevents=Y \

evimageset=evmap.in.mos

embadpixfind evimageset=evmap.in.mos badpixset=$bad

if (lowenerbadpix) select PHA < 150 and run again incrementally

else

badpixfind eventset=event.in.mos thresholdlabel=rate \

badpixset=$bad \

hithresh=0.005 narrowerthanpsf=3.0 backgroundrate=1.E-5

endif

end loop over CCDs and nodes

if stopafterbadpixfind stop

end subroutine badpixLoop

subroutine mergeEvents

evlistcomb eventsets=’event*.out.mos’ imagingset=merged.img.mos \

timingset=merged.tim.mos maintable=’EVENTS OFFSETS’

if fulloutput then

emosimgcolnames="TIME RAWX RAWY DETX DETY X Y PHA PI FLAG PATTERN

FRAME ENERGYE1 ENERGYE2 ENERGYE3 ENERGYE4 PERIPIX OFFSETX OFFSETY"

emosimgcoltypes="double int16 int16 int16 int16 int32 int32 int16

int16 int32 int8 int32 int16 int16 int16 int16 int8 int16 int16"

endif

if applyccdgti then

Loop over gti*.out.mos files

expr = expr // ’|| (CCDNR==’ //node//ccd // ’ && GTI($gtiout,TIME))’

endif

eventim = ’P’ // obsid // instrument // expid // ’MIEVLI0000.FIT’

evselect table=merged.img.mos withfilteredset=Y filteredset=$eventim \

expression=$expr destruct=Y keepfilteroutput=Y

fparkey "EPIC MOS IMAGING MODE EVENT LIST" $eventim[0] CONTENT \

add=Y insert=DATE"

fappend $sasccf[CALINDEX] $eventim

if (merged.tim exists) then

eventti = ’P’ // obsid // instrument // expid // ’TIEVLI00001.FIT’

XMM-Newton Science Analysis System Page: 20

evselect table=merged.tim.mos withfilteredset=Y filteredset=$eventti \

expression=$expr destruct=Y keepfilteroutput=Y

fparkey "EPIC TIMING MODE EVENT LIST" $eventti[0] CONTENT \

add=Y insert=DATE"

fappend $sasccf[CALINDEX] $eventti

endif

end subroutine mergeEvents

subroutine makeFlareTs

expr = "(PATTERN==0) && ((FLAG & 0x762b8000) == 0) && #XMMEA_22"

flarets = ’P’ // obsid // instrument // expid // ’FBKTSR0000.FIT’

check that expected counts per bin in quiet conditions is > 10,

otherwise increase $flaretimebin

evselect table=$eventim expression=$expr updateexposure=N \

withrateset=Y rateset=$flarets timebinsize=$flaretimebin \

timecolumn=TIME maketimecolumn=Y makeratecolumn=Y

add FRACEXP column (currently done by looking at full timeseries)

divide by CCD area (IN_FOV keyword) and FRACEXP

end subroutine makeFlareTs

subroutine mergeTs

globts = ’P’ // obsid // ’EMX000FBKTSR0000.FIT’

if $globts exists then

multiply by CCD area and FRACEXP

merge columns of $flarets and $globts:

RATE = RATE1 + RATE2

ERROR = SQRT(ERROR1**2 + ERROR2**2)

FRACEXP = FRACEXP1 + FRACEXP2

divide by CCD area and FRACEXP

endif else then

cp $flarets $globts

endelse

end subroutine mergeTs

subroutine tsToGTI

gtiflare = timeseries prefix // ’FBKGTI0000.FIT’

tabgtigen table=$flarets expression="RATE<$flaremaxrate" \

gtiset=$gtiflare

evselect table=$gtiflare writedss=N updateexposure=N keepfilteroutput=Y \

expression="(STOP - START) > 1.5*$flaretimebin"

end subroutine tsToGTI

subroutine applyFlareGTI

expr = "GTI($gtiflare,TIME)"

evselect table=$eventim destruct=Y keepfilteroutput=Y expression=$expr

evselect table=$eventti destruct=Y keepfilteroutput=Y expression=$expr

end subroutine applyFlareGTI

10 Comments

The script does not use the SAS’ parameter and error interfaces, to allow easy modifications by users.

XMM-Newton Science Analysis System Page: 21

11 Future developments

The chain will adapt to the evolution of its constituents and to the organisation of the pipeline.

References

[1] ESA. XMM Interface Control Document: Observation and Slew Data Files (XSCS to SSC) (SciSIM to SOCSIM).
Technical Report XMM-SOC-ICD-0004-SSD Issue 2.5, ESA/SSD, June 2000. Found at the URL:
ftp://astro.estec.esa.nl/pub/XMM/documents/odf icd.ps.gz.

[2] SSC. XMM Survey Science Centre to Science Operations ICD for SSC Products. Technical Report
XMM-SOC-ICD-0006-SSC Issue 2.1, SSC, Mar 2000.

ftp://astro.estec.esa.nl/pub/XMM/documents/odf_icd.ps.gz

	Instruments/Modes
	Use
	Description
	Generalities
	Main loop
	Flare rejection
	Bad pixels detection
	Customisation
	Examples
	How to deal with an error

	Parameters
	Errors
	Input Files
	Output Files
	Intermediate Files
	Algorithm
	Comments
	Future developments

