""" Functions which are common and require SciPy Base and Level 1 SciPy (special, linalg) """ from __future__ import division, print_function, absolute_import import numpy import numpy as np from numpy import (exp, log, asarray, arange, newaxis, hstack, product, array, zeros, eye, poly1d, r_, sum, fromstring, isfinite, squeeze, amax, reshape) from scipy._lib._version import NumpyVersion __all__ = ['logsumexp', 'central_diff_weights', 'derivative', 'pade', 'lena', 'ascent', 'face'] _NUMPY_170 = (NumpyVersion(numpy.__version__) >= NumpyVersion('1.7.0')) def logsumexp(a, axis=None, b=None, keepdims=False): """Compute the log of the sum of exponentials of input elements. Parameters ---------- a : array_like Input array. axis : None or int or tuple of ints, optional Axis or axes over which the sum is taken. By default `axis` is None, and all elements are summed. Tuple of ints is not accepted if NumPy version is lower than 1.7.0. .. versionadded:: 0.11.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array. .. versionadded:: 0.15.0 b : array-like, optional Scaling factor for exp(`a`) must be of the same shape as `a` or broadcastable to `a`. .. versionadded:: 0.12.0 Returns ------- res : ndarray The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))`` is returned. See Also -------- numpy.logaddexp, numpy.logaddexp2 Notes ----- Numpy has a logaddexp function which is very similar to `logsumexp`, but only handles two arguments. `logaddexp.reduce` is similar to this function, but may be less stable. Examples -------- >>> from scipy.misc import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 With weights >>> a = np.arange(10) >>> b = np.arange(10, 0, -1) >>> logsumexp(a, b=b) 9.9170178533034665 >>> np.log(np.sum(b*np.exp(a))) 9.9170178533034647 """ a = asarray(a) # keepdims is available in numpy.sum and numpy.amax since NumPy 1.7.0 # # Because SciPy supports versions earlier than 1.7.0, we have to handle # those old versions differently if not _NUMPY_170: # When support for Numpy < 1.7.0 is dropped, this implementation can be # removed. This implementation is a bit hacky. Similarly to old NumPy's # sum and amax functions, 'axis' must be an integer or None, tuples and # lists are not supported. Although 'keepdims' is not supported by these # old NumPy's functions, this function supports it. # Solve the shape of the reduced array if axis is None: sh_keepdims = (1,) * a.ndim else: sh_keepdims = list(a.shape) sh_keepdims[axis] = 1 a_max = amax(a, axis=axis) if a_max.ndim > 0: a_max[~isfinite(a_max)] = 0 elif not isfinite(a_max): a_max = 0 if b is not None: b = asarray(b) tmp = b * exp(a - reshape(a_max, sh_keepdims)) else: tmp = exp(a - reshape(a_max, sh_keepdims)) # suppress warnings about log of zero with np.errstate(divide='ignore'): out = log(sum(tmp, axis=axis)) out += a_max if keepdims: # Put back the reduced axes with size one out = reshape(out, sh_keepdims) else: # This is a more elegant implementation, requiring NumPy >= 1.7.0 a_max = amax(a, axis=axis, keepdims=True) if a_max.ndim > 0: a_max[~isfinite(a_max)] = 0 elif not isfinite(a_max): a_max = 0 if b is not None: b = asarray(b) tmp = b * exp(a - a_max) else: tmp = exp(a - a_max) # suppress warnings about log of zero with np.errstate(divide='ignore'): out = log(sum(tmp, axis=axis, keepdims=keepdims)) if not keepdims: a_max = squeeze(a_max, axis=axis) out += a_max return out def central_diff_weights(Np, ndiv=1): """ Return weights for an Np-point central derivative. Assumes equally-spaced function points. If weights are in the vector w, then derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx) Parameters ---------- Np : int Number of points for the central derivative. ndiv : int, optional Number of divisions. Default is 1. Notes ----- Can be inaccurate for large number of points. """ if Np < ndiv + 1: raise ValueError("Number of points must be at least the derivative order + 1.") if Np % 2 == 0: raise ValueError("The number of points must be odd.") from scipy import linalg ho = Np >> 1 x = arange(-ho,ho+1.0) x = x[:,newaxis] X = x**0.0 for k in range(1,Np): X = hstack([X,x**k]) w = product(arange(1,ndiv+1),axis=0)*linalg.inv(X)[ndiv] return w def derivative(func, x0, dx=1.0, n=1, args=(), order=3): """ Find the n-th derivative of a function at a point. Given a function, use a central difference formula with spacing `dx` to compute the `n`-th derivative at `x0`. Parameters ---------- func : function Input function. x0 : float The point at which `n`-th derivative is found. dx : int, optional Spacing. n : int, optional Order of the derivative. Default is 1. args : tuple, optional Arguments order : int, optional Number of points to use, must be odd. Notes ----- Decreasing the step size too small can result in round-off error. Examples -------- >>> def f(x): ... return x**3 + x**2 ... >>> derivative(f, 1.0, dx=1e-6) 4.9999999999217337 """ if order < n + 1: raise ValueError("'order' (the number of points used to compute the derivative), " "must be at least the derivative order 'n' + 1.") if order % 2 == 0: raise ValueError("'order' (the number of points used to compute the derivative) " "must be odd.") # pre-computed for n=1 and 2 and low-order for speed. if n == 1: if order == 3: weights = array([-1,0,1])/2.0 elif order == 5: weights = array([1,-8,0,8,-1])/12.0 elif order == 7: weights = array([-1,9,-45,0,45,-9,1])/60.0 elif order == 9: weights = array([3,-32,168,-672,0,672,-168,32,-3])/840.0 else: weights = central_diff_weights(order,1) elif n == 2: if order == 3: weights = array([1,-2.0,1]) elif order == 5: weights = array([-1,16,-30,16,-1])/12.0 elif order == 7: weights = array([2,-27,270,-490,270,-27,2])/180.0 elif order == 9: weights = array([-9,128,-1008,8064,-14350,8064,-1008,128,-9])/5040.0 else: weights = central_diff_weights(order,2) else: weights = central_diff_weights(order, n) val = 0.0 ho = order >> 1 for k in range(order): val += weights[k]*func(x0+(k-ho)*dx,*args) return val / product((dx,)*n,axis=0) def pade(an, m): """ Return Pade approximation to a polynomial as the ratio of two polynomials. Parameters ---------- an : (N,) array_like Taylor series coefficients. m : int The order of the returned approximating polynomials. Returns ------- p, q : Polynomial class The pade approximation of the polynomial defined by `an` is `p(x)/q(x)`. Examples -------- >>> from scipy import misc >>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0] >>> p, q = misc.pade(e_exp, 2) >>> e_exp.reverse() >>> e_poly = np.poly1d(e_exp) Compare ``e_poly(x)`` and the pade approximation ``p(x)/q(x)`` >>> e_poly(1) 2.7166666666666668 >>> p(1)/q(1) 2.7179487179487181 """ from scipy import linalg an = asarray(an) N = len(an) - 1 n = N - m if n < 0: raise ValueError("Order of q must be smaller than len(an)-1.") Akj = eye(N+1, n+1) Bkj = zeros((N+1, m), 'd') for row in range(1, m+1): Bkj[row,:row] = -(an[:row])[::-1] for row in range(m+1, N+1): Bkj[row,:] = -(an[row-m:row])[::-1] C = hstack((Akj, Bkj)) pq = linalg.solve(C, an) p = pq[:n+1] q = r_[1.0, pq[n+1:]] return poly1d(p[::-1]), poly1d(q[::-1]) def lena(): """ Get classic image processing example image, Lena, at 8-bit grayscale bit-depth, 512 x 512 size. Parameters ---------- None Returns ------- lena : ndarray Lena image Notes ----- Though safe for work in most places, this sexualized image is drawn from Playboy and makes some viewers uncomfortable. It has been very widely used as an example in image processing and is therefore made available for compatibility. For new code that needs an example image we recommend `face` or `ascent`. Examples -------- >>> import scipy.misc >>> lena = scipy.misc.lena() >>> lena.shape (512, 512) >>> lena.max() 245 >>> lena.dtype dtype('int32') >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(lena) >>> plt.show() """ import pickle import os fname = os.path.join(os.path.dirname(__file__),'lena.dat') f = open(fname,'rb') lena = array(pickle.load(f)) f.close() return lena def ascent(): """ Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos The image is derived from accent-to-the-top.jpg at http://www.public-domain-image.com/people-public-domain-images-pictures/ Parameters ---------- None Returns ------- ascent : ndarray convenient image to use for testing and demonstration Examples -------- >>> import scipy.misc >>> ascent = scipy.misc.ascent() >>> ascent.shape (512, 512) >>> ascent.max() 255 >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(ascent) >>> plt.show() """ import pickle import os fname = os.path.join(os.path.dirname(__file__),'ascent.dat') with open(fname, 'rb') as f: ascent = array(pickle.load(f)) return ascent def face(gray=False): """ Get a 1024 x 768, color image of a raccoon face. raccoon-procyon-lotor.jpg at http://www.public-domain-image.com Parameters ---------- gray : bool, optional If True then return color image, otherwise return an 8-bit gray-scale Returns ------- face : ndarray image of a racoon face Examples -------- >>> import scipy.misc >>> face = scipy.misc.face() >>> face.shape (768, 1024, 3) >>> face.max() 230 >>> face.dtype dtype('uint8') >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(face) >>> plt.show() """ import bz2 import os with open(os.path.join(os.path.dirname(__file__), 'face.dat'), 'rb') as f: rawdata = f.read() data = bz2.decompress(rawdata) face = fromstring(data, dtype='uint8') face.shape = (768, 1024, 3) if gray is True: face = (0.21 * face[:,:,0] + 0.71 * face[:,:,1] + 0.07 * face[:,:,2]).astype('uint8') return face