#=============================================================================== # This file is part of TEMPy. # # TEMPy is a software designed to help the user in the manipulation # and analyses of macromolecular assemblies using 3D electron microscopy maps. # # Copyright 2015 Birkbeck College University of London. # # Authors: Maya Topf, Daven Vasishtan, Arun Prasad Pandurangan, # Irene Farabella, Agnel-Praveen Joseph, Harpal Sahota # # This software is made available under GPL V3 license # http://www.gnu.org/licenses/gpl-3.0.html # # # Please cite your use of TEMPy in published work: # # Farabella, I., Vasishtan, D., Joseph, A.P., Pandurangan, A.P., Sahota, H. & Topf, M. (2015). J. Appl. Cryst. 48. # #=============================================================================== from numpy import array, zeros, real,sqrt,exp, mgrid from scipy.fftpack import fftn, ifftn from scipy.ndimage import fourier_gaussian,gaussian_filter,uniform_filter from TEMPy.EMMap import Map class StructureBlurrer: """ A class to generates a density map from a structure instance. """ def __init__(self): pass def protMap(self, struct, apix, resolution,filename="None"): """ Returns an Map instance sized and centred based on the atomic structure. Arguments: *apix* Angstroms per pixel for the Map to be outputted. *resolution* Target resolution of the outputted map. *sigma_coeff* Sigma width of the Gaussian used to blur the atomic structure. *filename* output name of the map file. """ # Build empty template map based on the size of the protein and the resolution. extr = struct.get_extreme_values() edge = int(2*resolution/apix)+4 x_size = int((extr[1]-extr[0])/apix)+edge y_size = int((extr[3]-extr[2])/apix)+edge z_size = int((extr[5]-extr[4])/apix)+edge # Origin calculated such that the centre of the map is the centre of mass of the protein. half_x = max(struct.CoM.x - extr[0],extr[1]-struct.CoM.x) ##x_origin = struct.CoM.x-(apix*x_size/2.0) if half_x < (apix*x_size/2.0): half_x = apix*x_size/2.0 x_origin = struct.CoM.x - half_x - edge*apix # apj: if com is not near the geometric centre of protein x_size = int(half_x*2.0/apix + 2*edge) ##y_origin = struct.CoM.y-(apix*y_size/2.0) # apj: if com is not near the geometric centre of protein half_y = max(struct.CoM.y - extr[2],extr[3]-struct.CoM.y) if half_y < (apix*y_size/2.0): half_y = (apix*y_size/2.0) y_origin = struct.CoM.y - half_y - edge*apix y_size = int(half_y*2.0/apix+ 2*edge) ##z_origin = struct.CoM.z-(apix*z_size/2.0) # apj: if com is not near the geometric centre of protein half_z = max(struct.CoM.z - extr[4],extr[5]-struct.CoM.z) if half_z < (apix*z_size/2.0): half_z = apix*z_size/2.0 z_origin = struct.CoM.z - half_z - edge*apix z_size = int(half_z*2.0/apix+ 2*edge) newMap = zeros((z_size, y_size, x_size)) fullMap = Map(newMap, [x_origin, y_origin, z_origin], apix, filename) return fullMap #add by IF def protMapBox(self, struct, apix, resolution,box_size_x,box_size_y,box_size_z,filename): """ Create a Map instance sized and centered based on the atomic structure. Arguments: *struct* the Structure instance. *apix* Angstroms per pixel for the output Map. *resolution* the resolution, in Angstroms, to blur the protein to. *box_size_x* x dimension of output map box in Angstroms. *box_size_y* y dimension of output map box in Angstroms. *box_size_z* z dimension of output map box in Angstroms. *filename* output name of the map file. Return: A Map instance """ # Build empty template map based on the size of the protein and the resolution. x_size = int(box_size_x) y_size = int(box_size_y) z_size = int(box_size_z) # Origin calculated such that the centre of the map is the centre of mass of the protein. x_origin = struct.CoM.x-(apix*x_size/2.0) y_origin = struct.CoM.y-(apix*y_size/2.0) z_origin = struct.CoM.z-(apix*z_size/2.0) newMap = zeros((z_size, y_size, x_size)) fullMap = Map(newMap, [x_origin, y_origin, z_origin], apix, filename) return fullMap def mapGridPosition(self, densMap, atom): """ Returns the index of the nearest pixel to an atom, and atom mass (4 values in list form). Arguments: *densMap* Map instance the atom is to be placed on. *atom* Atom instance. """ origin = densMap.origin apix = densMap.apix box_size = densMap.box_size() x_pos = int(round((atom.x-origin[0])/apix,0)) y_pos = int(round((atom.y-origin[1])/apix,0)) z_pos = int(round((atom.z-origin[2])/apix,0)) #print "grid_pos", x_pos,y_pos,z_pos,atom.x-origin[0], atom.y-origin[1], atom.z-origin[2] #MODIFIED BY PAP if((box_size[2] > x_pos >= 0) and (box_size[1] > y_pos >= 0) and (box_size[0] > z_pos >= 0)): return (x_pos, y_pos, z_pos, atom.mass) else: return 0 def maptree(self,densMap,strmap=None): """ Returns the KDTree of coordinates from a map grid. Arguments: *densMap* Map instance the atom is to be placed on. """ origin = densMap.origin apix = densMap.apix box_size = densMap.box_size() nz,ny,nx = densMap.fullMap.shape #convert to real coordinates zg,yg,xg = mgrid[0:nz,0:ny,0:nx] #to get indices in real coordinates zg = zg*apix + origin[2] + apix/2.0 yg = yg*apix + origin[1] + apix/2.0 xg = xg*apix + origin[0] + apix/2.0 indi = zip(xg.ravel(), yg.ravel(), zg.ravel()) try: from scipy.spatial import cKDTree gridtree = cKDTree(indi) except ImportError: try: from scipy.spatial import KDTree gridtree = KDTree(indi) except ImportError: return return gridtree #voxels occupied by the atom density (3 sigma gaussian) def mapGridPositions(self,densMap, atom, gridtree,res_map,sim_sigma_coeff=0.187): """ Returns the indices of the nearest pixels to an atom as a list. Arguments: *densMap* Map instance the atom is to be placed on. *atom* Atom instance. *gridtree* KDTree of the map coordinates (absolute cartesian) *res_map* Map resolution """ origin = densMap.origin apix = densMap.apix box_size = densMap.box_size() x_pos = int(round((atom.x-origin[0])/apix,0)) y_pos = int(round((atom.y-origin[1])/apix,0)) z_pos = int(round((atom.z-origin[2])/apix,0)) #print atom.get_res_no(), x_pos,y_pos,z_pos if((densMap.x_size() > x_pos >= 0) and (densMap.y_size() > y_pos >= 0) and (densMap.z_size() > z_pos >= 0)): #search all points withing 1.5sigma list_points = gridtree.query_ball_point([atom.x,atom.y,atom.z], 1.5*max(sim_sigma_coeff*res_map,1.0)) return list_points else: print "Warning, atom out of map box" return [] def model_tree(self,list_coord1,distpot=6.0,list_coord2=None): """ Returns """ try: from scipy.spatial import cKDTree coordtree = cKDTree(list_coord1) if list_coord2 != None: coordtree1 = cKDTree(list_coord2) except ImportError: from scipy.spatial import KDTree coordtree = KDTree(list_coord1) if list_coord2 != None: coordtree1 = KDTree(list_coord2) if list_coord2 != None: neigh_points = coordtree.query_ball_tree(coordtree1,distpot) # use count_neighbors if the corresponding indices are not required else: neigh_points = coordtree.query_ball_tree(coordtree,distpot) return neigh_points def get_coordinates(self,structure_instance): """ Returns flat indices of the pixels occupied by each residue in a chain. Arguments: *structure_instance* Structure instance of the model. """ dict_res_CA = {} dict_res_indices = {} dict_chain_indices = {} dict_chain_CA = {} currentChain = structure_instance.atomList[0].chain for x in structure_instance.atomList: if not x.chain == currentChain: try: dict_chain_indices[x.model][currentChain] = dict_res_indices.copy() except KeyError: dict_chain_indices[x.model] = {} dict_chain_indices[x.model][currentChain] = dict_res_indices.copy() try: dict_chain_CA[x.model][currentChain] = dict_res_CA.copy() except KeyError: dict_chain_CA[x.model] = {} dict_chain_CA[x.model][currentChain] = dict_res_CA.copy() currentChain = x.chain dict_res_indices = {} dict_res_CA = {} cur_chain = x.chain cur_res = x.get_res_no() #save residue coords if x.atom_name == 'CA': #x.fullid #CA coordinates dict_res_CA[cur_res] = [x.x, x.y, x.z] try: dict_res_indices[cur_res].append([x.x, x.y, x.z]) except KeyError: dict_res_indices[cur_res] = [[x.x, x.y, x.z]] if not dict_chain_indices.has_key(currentChain): # try: dict_chain_CA[x.model][currentChain] = dict_res_CA.copy() except KeyError: dict_chain_CA[x.model] = {} dict_chain_CA[x.model][currentChain] = dict_res_CA.copy() try: dict_chain_indices[x.model][currentChain] = dict_res_indices.copy() except KeyError: dict_chain_indices[x.model] = {} dict_chain_indices[x.model][currentChain] = dict_res_indices.copy() #dict_chain_indices[currentChain] = dict_res_indices.copy() return dict_chain_indices, dict_chain_CA # get nearest grid indices for a residue atoms def get_indices(self,structure_instance,emmap,res_map,sim_sigma_coeff=0.187): """ Returns flat indices of the pixels occupied by each residue in a chain. Arguments: *structure_instance* Structure instance of the model. *emmap* Map instance the model is to be placed on. *res_map* Resolution of the map *sim_sigma_coeff* Sigma factor used for blurring """ dict_res_indices = {} dict_res_dist = {} dict_chain_res = {} dict_chain_indices = {} gridtree = self.maptree(emmap) points = [] #get chain details currentChain = structure_instance.atomList[0].chain for x in structure_instance.atomList: if not x.chain == currentChain: #uniquify lists for el in dict_res_indices: tmplist = dict_res_indices[el][:] setlist = set(tmplist) dict_res_indices[el] = list(setlist) dict_chain_indices[currentChain] = dict_res_indices.copy() currentChain = x.chain dict_res_indices = {} cur_chain = x.chain cur_res = x.get_res_no() #save residue numbers in order try: if not cur_res in dict_chain_res[currentChain]: dict_chain_res[currentChain].append(cur_res) except KeyError: dict_chain_res[currentChain] = [cur_res] points = self.mapGridPositions(emmap,x,gridtree,res_map,sim_sigma_coeff) if len(points) == 0: dict_res_indices[cur_res] = [] continue if x.atom_name == 'CA': #x.fullid #CA coordinates dict_res_dist[cur_res] = [x.x, x.y, x.z] # get points occupied by the residue if dict_res_indices.has_key(cur_res): dict_res_indices[cur_res].extend(points) else: dict_res_indices[cur_res] = points if not dict_chain_indices.has_key(currentChain): #uniquify lists for el in dict_res_indices: tmplist = dict_res_indices[el][:] setlist = set(tmplist) dict_res_indices[el] = list(setlist) dict_chain_indices[currentChain] = dict_res_indices.copy() return dict_chain_indices, dict_chain_res,dict_res_dist # get nearest grid indices for a residue atoms def _get_indices1(self,structure_instance,emmap,res_map,sim_sigma_coeff=0.187): """ Returns flat indices of the pixels occupied by each residue in a chain. Arguments: *structure_instance* Structure instance of the model. *emmap* Map instance the model is to be placed on. *res_map* Resolution of the map *sim_sigma_coeff* Sigma factor used for blurring """ dict_res_indices = {} dict_res_dist = {} dict_chain_indices = {} gridtree = self.maptree(emmap) points = [] #get chain details currentChain = structure_instance.atomList[0].chain for x in structure_instance.atomList: if not x.chain == currentChain: dict_chain_indices[currentChain] = dict_res_indices.copy() currentChain = x.chain dict_res_indices = {} cur_chain = x.chain cur_res = x.get_res_no() points = self.mapGridPositions(emmap,x,gridtree,res_map,sim_sigma_coeff) if len(points) == 0: dict_res_indices[int(cur_res)] = [] continue if x.atom_name == 'CA': #x.fullid #CA coordinates dict_res_dist[cur_res] = [x.x, x.y, x.z] if dict_res_indices.has_key(int(cur_res)): dict_res_indices[int(cur_res)].extend(points) else: dict_res_indices[int(cur_res)] = points #uniquify lists for el in dict_res_indices: tmplist = dict_res_indices[el][:] setlist = set(tmplist) dict_res_indices[el] = list(setlist) return dict_res_indices, dict_res_dist #this two can be merged and be a unique function that return either the density or 1 #added by PAP def make_atom_overlay_map(self, densMap, prot): """ Returns a Map instance with atom masses superposed on it. Arguments: *densMap* an empty (all densities zero) Map instance to superpose the atoms onto. *prot* a Structure instance. """ densMap = densMap.copy() for atom in prot.atomList: #print atom.atom_name #print vdw_radii pos = self.mapGridPosition(densMap, atom) #print pos if pos: densMap.fullMap[pos[2]][pos[1]][pos[0]] += pos[3] return densMap def make_atom_overlay_mapB(self, densMap, prot): """ Returns a Map instance with atom masses superposed on it. Arguments: *densMap* an empty (all densities zero) Map instance to superpose the atoms onto. *prot* a Structure instance. """ densMap = densMap.copy() for atom in prot.atomList: pos = self.mapGridPosition(densMap, atom) print pos if pos: densMap.fullMap[pos[2]][pos[1]][pos[0]] += pos[3] return densMap #ADDED BY PAP def make_atom_overlay_map1(self, densMap, prot): """ Returns a Map instance with atom locations recorded on the nearest voxel with a value of 1. Arguments: *densMap* an empty (all densities zero) Map instance to superpose the atoms onto. *prot* a Structure instance. """ densMap = densMap.copy() densMap.fullMap = densMap.fullMap * 0 for atom in prot.atomList: #print 'Atom name : ',atom.atom_name if (atom.atom_name == 'C' or atom.atom_name == 'N' or atom.atom_name == 'CA' or atom.atom_name == 'O' or atom.atom_name == 'CB'): pos = self.mapGridPosition(densMap, atom) #print 'overlay index', pos if pos: densMap.fullMap[pos[2]][pos[1]][pos[0]] = 1 return densMap def gaussian_blur(self, prot, resolution, densMap=False, sigma_coeff=0.356, normalise=True,filename="None"): """ Returns a Map instance based on a Gaussian blurring of a protein. The convolution of atomic structures is done in reciprocal space. Arguments: *prot* the Structure instance to be blurred. *resolution* the resolution, in Angstroms, to blur the protein to. *densMap* False to build a Map with dimensions based on the protein, or a Map instance to be used as a template. *sigma_coeff* the sigma value (multiplied by the resolution) that controls the width of the Gaussian. Default values is 0.356. Other values used : 0.187R corresponding with the Gaussian width of the Fourier transform falling to half the maximum at 1/resolution, as used in Situs (Wriggers et al, 1999); 0.225R which makes the Fourier transform of the distribution fall to 1/e of its maximum value at wavenumber 1/resolution, the default in Chimera (Petterson et al, 2004) 0.356R corresponding to the Gaussian width at 1/e maximum height equaling the resolution, an option in Chimera (Petterson et al, 2004); 0.425R the fullwidth half maximum being equal to the resolution, as used by FlexEM (Topf et al, 2008); 0.5R the distance between the two inflection points being the same length as the resolution, an option in Chimera (Petterson et al, 2004); 1R where the sigma value simply equal to the resolution, as used by NMFF (Tama et al, 2004). *filename* output name of the map file. """ #densMap= your map if you want to compare prot blurred with an exisiting map. #Daven always use that so that it blurred based on the experiment box if not densMap: densMap = self.protMap(prot, min(resolution/4., 3.5), resolution) print "WARNING: Use StructureBlurrer.gaussian_blur_box() to blured a map with a user defined defined cubic box" #from here till newMap.fullMap*=0 are few line of code that create an empty map with the new A/px of 1 #this replace the make_clash_map(apix) function. they do the job but they need to be replaced with something more rigorous x_s = int(densMap.x_size()*densMap.apix) y_s = int(densMap.y_size()*densMap.apix) z_s = int(densMap.z_size()*densMap.apix) ##newMap = densMap.resample_by_box_size([z_s, y_s, x_s]) ##newMap.fullMap *= 0 newMap = densMap.copy() newMap.fullMap = zeros((z_s, y_s, x_s)) newMap.apix = (densMap.apix*densMap.x_size())/x_s sigma = sigma_coeff*resolution newMap = self.make_atom_overlay_map(newMap, prot) fou_map = fourier_gaussian(fftn(newMap.fullMap), sigma) newMap.fullMap = real(ifftn(fou_map)) newMap = newMap.resample_by_box_size(densMap.box_size()) if normalise: newMap = newMap.normalise() newMap.filename=filename newMap.update_header return newMap #add IF def gaussian_blur_box(self, prot, resolution, box_size_x, box_size_y, box_size_z, sigma_coeff=0.356, normalise=True,filename="None"): """ Returns a Map instance based on a Gaussian blurring of a protein. The convolution of atomic structures is done in reciprocal space. Arguments: *prot* the Structure instance to be blurred. *resolution* the resolution, in Angstroms, to blur the protein to. *box_size_x* x dimension of map box in Angstroms. *box_size_y* y dimension of map box in Angstroms. *box_size_z* z dimension of map box in Angstroms. *sigma_coeff* the sigma value (multiplied by the resolution) that controls the width of the Gaussian. Default values is 0.356. Other values used : 0.187R corresponding with the Gaussian width of the Fourier transform falling to half the maximum at 1/resolution, as used in Situs (Wriggers et al, 1999); 0.225R which makes the Fourier transform of the distribution fall to 1/e of its maximum value at wavenumber 1/resolution, the default in Chimera (Petterson et al, 2004) 0.356R corresponding to the Gaussian width at 1/e maximum height equaling the resolution, an option in Chimera (Petterson et al, 2004); 0.425R the fullwidth half maximum being equal to the resolution, as used by FlexEM (Topf et al, 2008); 0.5R the distance between the two inflection points being the same length as the resolution, an option in Chimera (Petterson et al, 2004); 1R where the sigma value simply equal to the resolution, as used by NMFF (Tama et al, 2004). *filename* output name of the map file. """ densMap = self.protMapBox(prot, 1, resolution, box_size_x, box_size_y, box_size_z, filename) x_s = int(densMap.x_size()*densMap.apix) y_s = int(densMap.y_size()*densMap.apix) z_s = int(densMap.z_size()*densMap.apix) ##newMap = densMap.resample_by_box_size([z_s, y_s, x_s]) ##newMap.fullMap *= 0 newMap = densMap.copy() newMap.fullMap = zeros((z_s, y_s, x_s)) newMap.apix = (densMap.apix*densMap.x_size())/x_s sigma = sigma_coeff*resolution newMap = self.make_atom_overlay_map(newMap, prot) fou_map = fourier_gaussian(fftn(newMap.fullMap), sigma) newMap.fullMap = real(ifftn(fou_map)) newMap = newMap.resample_by_box_size(densMap.box_size()) if normalise: newMap = newMap.normalise() return newMap def hard_sphere(self,prot,resolution, densMap=False, normalise=True,filename="None"): """ Returns a Map instance based on a Hard Sphere model of a protein. Usefull for rigid fitting (Topf et al, 2008) Arguments: *prot* the Structure instance to be blurred. *resolution* the resolution, in Angstroms, to blur the protein to. *densMap* False to build a Map with dimensions based on the protein, or a Map instance to be used as a template. *filename* output name of the map file. """ gridpx=min(resolution/4., 3.5) if not densMap: densMap = self.protMap(prot, min(resolution/4., 3.5), resolution) print "WARNING: Use StructureBlurrer.hard_sphere() to create a map with a user defined defined cubic box" x_s = int(densMap.x_size()*densMap.apix) y_s = int(densMap.y_size()*densMap.apix) z_s = int(densMap.z_size()*densMap.apix) newMap = densMap.resample_by_box_size([z_s, y_s, x_s]) newMap.fullMap *= 0 newMap = self.make_atom_overlay_mapB(newMap, prot) #new_map.fullMap = laplace(self.fullMap) print gridpx #newMap.fullMap = uniform_filter(newMap.fullMap,size=gridpx,mode='constant',cval=0.0) newMap = newMap.resample_by_box_size(densMap.box_size()) #newMap.fullMap=newMap #newMap = newMap.resample_by_box_size(gridpx) if normalise: newMap = newMap.normalise() return newMap #add IF def hard_sphere_box(self, prot, resolution, box_size_x, box_size_y, box_size_z, normalise=True,filename="None"): """ Returns a Map instance based on a Hard Sphere model of a protein. Usefull for rigid fitting (Topf et al, 2008) Arguments: *prot* the Structure instance to be blurred. *resolution* the resolution, in Angstroms, to blur the protein to. *box_size_x* x dimension of map box in Angstroms. *box_size_y* y dimension of map box in Angstroms. *box_size_z* z dimension of map box in Angstroms. *filename* output name of the map file. """ densMap = self.protMapBox(prot, 1, resolution, box_size_x, box_size_y, box_size_z, filename) x_s = int(densMap.x_size()*densMap.apix) y_s = int(densMap.y_size()*densMap.apix) z_s = int(densMap.z_size()*densMap.apix) newMap = densMap.resample_by_box_size([z_s, y_s, x_s]) newMap.fullMap *= 0 newMap = self.make_atom_overlay_map(newMap, prot) #newMap.fullMap=newMap #newMap = newMap.resample_by_box_size(densMap.box_size()) if normalise: newMap = newMap.normalise() return newMap #add IF def gaussian_blur_real_space(self, prot, resolution, densMap=False, sigma_coeff=0.356, normalise=True,filename="None"): """ Returns a Map instance based on a Gaussian blurring of a protein. The convolution of atomic structures is done in real space Arguments: *prot* the Structure instance to be blurred. *resolution* the resolution, in Angstroms, to blur the protein to. *densMap* False to build a Map with dimensions based on the protein, or a Map instance to be used as a template. *sigma_coeff* the sigma value (multiplied by the resolution) that controls the width of the Gaussian. Default values is 0.356. Other values used : 0.187R corresponding with the Gaussian width of the Fourier transform falling to half the maximum at 1/resolution, as used in Situs (Wriggers et al, 1999); 0.225R which makes the Fourier transform of the distribution fall to 1/e of its maximum value at wavenumber 1/resolution, the default in Chimera (Petterson et al, 2004) 0.356R corresponding to the Gaussian width at 1/e maximum height equaling the resolution, an option in Chimera (Petterson et al, 2004); 0.425R the fullwidth half maximum being equal to the resolution, as used by FlexEM (Topf et al, 2008); 0.5R the distance between the two inflection points being the same length as the resolution, an option in Chimera (Petterson et al, 2004); 1R where the sigma value simply equal to the resolution, as used by NMFF (Tama et al, 2004). *filename* output name of the map file. """ if not densMap: #> densMap = self.protMap(prot, max(1.0,min(resolution/4., 3.5)), resolution) print "WARNING: Use StructureBlurrer.gaussian_blur_real_space_box() to blured a map with a user defined defined cubic box" x_s = int(densMap.x_size()*densMap.apix) y_s = int(densMap.y_size()*densMap.apix) z_s = int(densMap.z_size()*densMap.apix) ##newMap = densMap.resample_by_box_size([z_s, y_s, x_s]) ##newMap.fullMap *= 0 newMap = densMap.copy() newMap.fullMap = zeros((z_s, y_s, x_s)) newMap.apix = (densMap.apix*densMap.x_size())/x_s sigma = max(sigma_coeff*resolution,1.0) newMap = self.make_atom_overlay_map(newMap, prot) gauss_map = gaussian_filter(newMap.fullMap, sigma) newMap.fullMap = gauss_map newMap = newMap.resample_by_box_size(densMap.box_size()) if normalise: newMap = newMap.normalise() return newMap def gaussian_blur_real_space_box(self, prot, resolution, box_size_x, box_size_y, box_size_z, sigma_coeff=0.356, normalise=True,filename="None"): """ Returns a Map instance based on a Gaussian blurring of a protein. The convolution of atomic structures is done in real space Arguments: *prot* the Structure instance to be blurred. *resolution* the resolution, in Angstroms, to blur the protein to. *box_size_x* x dimension of map box in Angstroms. *box_size_y* y dimension of map box in Angstroms. *box_size_z* z dimension of map box in Angstroms. *sigma_coeff* the sigma value (multiplied by the resolution) that controls the width of the Gaussian. Default values is 0.356. Other values used : 0.187R corresponding with the Gaussian width of the Fourier transform falling to half the maximum at 1/resolution, as used in Situs (Wriggers et al, 1999); 0.225R which makes the Fourier transform of the distribution fall to 1/e of its maximum value at wavenumber 1/resolution, the default in Chimera (Petterson et al, 2004) 0.356R corresponding to the Gaussian width at 1/e maximum height equaling the resolution, an option in Chimera (Petterson et al, 2004); 0.425R the fullwidth half maximum being equal to the resolution, as used by FlexEM (Topf et al, 2008); 0.5R the distance between the two inflection points being the same length as the resolution, an option in Chimera (Petterson et al, 2004); 1R where the sigma value simply equal to the resolution, as used by NMFF (Tama et al, 2004). *filename* output name of the map file. """ densMap = self.protMapBox(prot, 1, resolution, box_size_x, box_size_y, box_size_z, filename) x_s = int(densMap.x_size()*densMap.apix) y_s = int(densMap.y_size()*densMap.apix) z_s = int(densMap.z_size()*densMap.apix) ##newMap = densMap.resample_by_box_size([z_s, y_s, x_s]) ##newMap.fullMap *= 0 newMap = densMap.copy() newMap.fullMap = zeros((z_s, y_s, x_s)) newMap.apix = (densMap.apix*densMap.x_size())/x_s sigma = max(sigma_coeff*resolution,1.0) newMap = self.make_atom_overlay_map(newMap, prot) gauss_map = gaussian_filter(newMap.fullMap, sigma) newMap.fullMap = gauss_map newMap = newMap.resample_by_box_size(densMap.box_size()) if normalise: newMap = newMap.normalise() return newMap #---BANDPASS FILTERING (NOT WORKING YET)--- add by DV# MAKE them PRIVITA _FUNCT #way of filtering the map using "Fourier-like" but it is too slow so abandon the idea. there are quiker and better way # Bsoft is a better way to go. http://lsbr.niams.nih.gov/bsoft/ # not spend time on it. def _bandpass_blur(self, atomList, densMap, lopass, lomin, lowid, hipass, hiwid): """ WARNING: BANDPASS FILTERING (NOT WORKING YET) """ pass def _bandpass_mask_gaussian(self, densMap, lopass, lopass_min, lowid, hipass, hiwid): """ WARNING: BANDPASS FILTERING (NOT WORKING YET) """ newMap = densMap.copy()#self.make_empty_map(densMap) centre = (array(newMap.box_size[:])-1)/2.0 from time import time for z in range(newMap.box_size[2]): for y in range(newMap.box_size[1]): for x in range(newMap.box_size[0]): t1 = time() dist = sqrt((x-centre[0])**2 + (y-centre[1])**2 + (z-centre[2])**2) t2 = time() newMap[z][y][x] = self.bandpass_eq_gaussian(dist, lopass, lopass_min, lowid, hipass, hiwid) t3 = time() print t2-t1, t3-t2 return newMap def _bandpass_eq_gaussian(self, dist, lopass, lopass_min, lowid, hipass, hiwid): """ WARNING: BANDPASS FILTERING (NOT WORKING YET) """ lp_max = lopass+lowid hp_min = hipass-hiwid if dist <= lp_max: return lopass_min+(1-lopass_min)*exp(-0.5*((dist-lp_max)/lowid)**2) elif lp_max < dist <= hp_min: return 1.0 else: return exp(-0.5*((dist-hp_min)/hiwid)**2) def _bandpass_test(self, lopass, lopass_min, lowid, hipass, hiwid, l_len): """ WARNING: BANDPASS FILTERING (NOT WORKING YET) """ from time import time start = time() a = zeros([l_len]) for x in range(l_len): a[x] = self.bandpass_eq_gaussian(x, lopass, lopass_min, lowid, hipass, hiwid) end = time() print end-start return a