# Comparative modeling by the automodel class from modeller import * from modeller.automodel import * # Load the automodel class env = environ() # create a new MODELLER environment to build this model in log.verbose() # request verbose output # directories for input atom files env.io.atom_files_directory = ['.', '../atom_files'] a = loopmodel(env, alnfile = 'alignment.ali', # alignment filename knowns = '5fd1', # codes of the templates sequence = '1fdx', # code of the target assess_methods = assess.GA341) # assess with GA341 score a.starting_model= 1 # index of the first model a.ending_model = 2 # index of the last model # (determines how many models to calculate) # Import all of the library restraints import modeller.library_restraints as lib # Use these restraints (rather than the CHARMM libraries) for both standard # modeling and loop refinement a.use_library_restraints(lib) a.loop.use_library_restraints(lib) a.loop.starting_model = 1 a.loop.ending_model = 2 a.loop.md_level = refine.fast a.loop.assess_methods = assess.DOPE a.make() # do the actual comparative modeling