# Comparative modeling by the automodel class, using multiple processors from modeller import * from modeller.automodel import * # Load the automodel class from modeller.parallel import * # Use 2 CPUs in a parallel job on this machine j = job() j.append(local_slave()) j.append(local_slave()) log.verbose() # request verbose output env = environ() # create a new MODELLER environment to build this model in # directories for input atom files env.io.atom_files_directory = ['.', '../atom_files'] a = automodel(env, alnfile = 'alignment.ali', # alignment filename knowns = '5fd1', # codes of the templates sequence = '1fdx') # code of the target a.starting_model= 1 # index of the first model a.ending_model = 5 # index of the last model # (determines how many models to calculate) a.use_parallel_job(j) # Use the job for model building a.make() # do the actual comparative modeling