// 3-d plot demo. // // Copyright (C) 2004 Alan W. Irwin // Copyright (C) 2004 Rafael Laboissiere // // This file is part of PLplot. // // PLplot is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published // by the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PLplot is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with PLplot; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // // // #include "plcdemos.h" // plexit not declared in public header! PLDLLIMPEXP void plexit( const char *errormsg ); // These values must be odd, for the middle // of the index range to be an integer, and thus // to correspond to the exact floating point centre // of the sombrero. #define XPTS 35 // Data points in x #define YPTS 45 // Data points in y static PLFLT alt[] = { 60.0, 40.0 }; static PLFLT az[] = { 30.0, -30.0 }; static void cmap1_init( int ); static const char *title[] = { "#frPLplot Example 8 - Alt=60, Az=30", "#frPLplot Example 8 - Alt=40, Az=-30", }; //-------------------------------------------------------------------------- // cmap1_init1 // // Initializes color map 1 in HLS space. // Basic grayscale variation from half-dark (which makes more interesting // looking plot compared to dark) to light. // An interesting variation on this: // s[1] = 1.0 //-------------------------------------------------------------------------- static void cmap1_init( int gray ) { PLFLT i[2], h[2], l[2], s[2]; i[0] = 0.0; // left boundary i[1] = 1.0; // right boundary if ( gray ) { h[0] = 0.0; // hue -- low: red (arbitrary if s=0) h[1] = 0.0; // hue -- high: red (arbitrary if s=0) l[0] = 0.5; // lightness -- low: half-dark l[1] = 1.0; // lightness -- high: light s[0] = 0.0; // minimum saturation s[1] = 0.0; // minimum saturation } else { h[0] = 240; // blue -> green -> yellow -> h[1] = 0; // -> red l[0] = 0.6; l[1] = 0.6; s[0] = 0.8; s[1] = 0.8; } plscmap1n( 256 ); c_plscmap1l( 0, 2, i, h, l, s, NULL ); } //-------------------------------------------------------------------------- // main // // Does a series of 3-d plots for a given data set, with different // viewing options in each plot. //-------------------------------------------------------------------------- static int rosen; static PLOptionTable options[] = { { "rosen", // Turns on use of Rosenbrock function NULL, NULL, &rosen, PL_OPT_BOOL, "-rosen", "Use the log_e of the \"Rosenbrock\" function" }, { NULL, // option NULL, // handler NULL, // client data NULL, // address of variable to set 0, // mode flag NULL, // short syntax NULL } // long syntax }; #define LEVELS 10 int main( int argc, const char *argv[] ) { int i, j, k; PLFLT *x, *y, **z, *z_row_major, *z_col_major; PLFLT dx = 2. / (PLFLT) ( XPTS - 1 ); PLFLT dy = 2. / (PLFLT) ( YPTS - 1 ); PLfGrid2 grid_c, grid_row_major, grid_col_major; PLFLT xx, yy, r; PLINT ifshade; PLFLT zmin, zmax, step; PLFLT clevel[LEVELS]; PLINT nlevel = LEVELS; PLINT indexxmin = 0; PLINT indexxmax = XPTS; PLINT *indexymin; PLINT *indexymax; PLFLT **zlimited; // parameters of ellipse (in x, y index coordinates) that limits the data. // x0, y0 correspond to the exact floating point centre of the index // range. PLFLT x0 = 0.5 * (PLFLT) ( XPTS - 1 ); PLFLT a = 0.9 * x0; PLFLT y0 = 0.5 * (PLFLT) ( YPTS - 1 ); PLFLT b = 0.7 * y0; PLFLT square_root; // Parse and process command line arguments plMergeOpts( options, "x08c options", NULL ); (void) plparseopts( &argc, argv, PL_PARSE_FULL ); // Initialize plplot plinit(); // Allocate data structures x = (PLFLT *) calloc( XPTS, sizeof ( PLFLT ) ); y = (PLFLT *) calloc( YPTS, sizeof ( PLFLT ) ); plAlloc2dGrid( &z, XPTS, YPTS ); z_row_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) ); z_col_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) ); if ( !z_row_major || !z_col_major ) plexit( "Memory allocation error" ); grid_c.f = z; grid_row_major.f = (PLFLT **) z_row_major; grid_col_major.f = (PLFLT **) z_col_major; grid_c.nx = grid_row_major.nx = grid_col_major.nx = XPTS; grid_c.ny = grid_row_major.ny = grid_col_major.ny = YPTS; for ( i = 0; i < XPTS; i++ ) { x[i] = -1. + (PLFLT) i * dx; if ( rosen ) x[i] *= 1.5; } for ( j = 0; j < YPTS; j++ ) { y[j] = -1. + (PLFLT) j * dy; if ( rosen ) y[j] += 0.5; } for ( i = 0; i < XPTS; i++ ) { xx = x[i]; for ( j = 0; j < YPTS; j++ ) { yy = y[j]; if ( rosen ) { z[i][j] = pow( 1. - xx, 2. ) + 100. * pow( yy - pow( xx, 2. ), 2. ); // The log argument might be zero for just the right grid. if ( z[i][j] > 0. ) z[i][j] = log( z[i][j] ); else z[i][j] = -5.; // -MAXFLOAT would mess-up up the scale } else { r = sqrt( xx * xx + yy * yy ); z[i][j] = exp( -r * r ) * cos( 2.0 * M_PI * r ); } z_row_major[i * YPTS + j] = z[i][j]; z_col_major[i + XPTS * j] = z[i][j]; } } // Allocate and calculate y index ranges and corresponding zlimited. plAlloc2dGrid( &zlimited, XPTS, YPTS ); indexymin = (PLINT *) malloc( XPTS * sizeof ( PLINT ) ); indexymax = (PLINT *) malloc( XPTS * sizeof ( PLINT ) ); if ( !indexymin || !indexymax ) plexit( "Memory allocation error" ); //printf("XPTS = %d\n", XPTS); //printf("x0 = %f\n", x0); //printf("a = %f\n", a); //printf("YPTS = %d\n", YPTS); //printf("y0 = %f\n", y0); //printf("b = %f\n", b); // These values should all be ignored because of the i index range. #if 0 for ( i = 0; i < indexxmin; i++ ) { indexymin[i] = 0; indexymax[i] = YPTS; for ( j = indexymin[i]; j < indexymax[i]; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; } #endif for ( i = indexxmin; i < indexxmax; i++ ) { square_root = sqrt( 1. - MIN( 1., pow( ( (PLFLT) i - x0 ) / a, 2. ) ) ); // Add 0.5 to find nearest integer and therefore preserve symmetry // with regard to lower and upper bound of y range. indexymin[i] = MAX( 0, (PLINT) ( 0.5 + y0 - b * square_root ) ); // indexymax calculated with the convention that it is 1 // greater than highest valid index. indexymax[i] = MIN( YPTS, 1 + (PLINT) ( 0.5 + y0 + b * square_root ) ); //printf("i, b*square_root, indexymin[i], YPTS - indexymax[i] = %d, %e, %d, %d\n", i, b*square_root, indexymin[i], YPTS - indexymax[i]); #if 0 // These values should all be ignored because of the j index range. for ( j = 0; j < indexymin[i]; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; #endif for ( j = indexymin[i]; j < indexymax[i]; j++ ) zlimited[i][j] = z[i][j]; #if 0 // These values should all be ignored because of the j index range. for ( j = indexymax[i]; j < YPTS; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; #endif } #if 0 // These values should all be ignored because of the i index range. for ( i = indexxmax; i < XPTS; i++ ) { indexymin[i] = 0; indexymax[i] = YPTS; for ( j = indexymin[i]; j < indexymax[i]; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; } #endif plMinMax2dGrid( (const PLFLT * const *) z, XPTS, YPTS, &zmax, &zmin ); step = ( zmax - zmin ) / ( nlevel + 1 ); for ( i = 0; i < nlevel; i++ ) clevel[i] = zmin + step + step * i; pllightsource( 1., 1., 1. ); for ( k = 0; k < 2; k++ ) { for ( ifshade = 0; ifshade < 5; ifshade++ ) { pladv( 0 ); plvpor( 0.0, 1.0, 0.0, 0.9 ); plwind( -1.0, 1.0, -0.9, 1.1 ); plcol0( 3 ); plmtex( "t", 1.0, 0.5, 0.5, title[k] ); plcol0( 1 ); if ( rosen ) plw3d( 1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt[k], az[k] ); else plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax, alt[k], az[k] ); plbox3( "bnstu", "x axis", 0.0, 0, "bnstu", "y axis", 0.0, 0, "bcdmnstuv", "z axis", 0.0, 0 ); plcol0( 2 ); if ( ifshade == 0 ) // diffuse light surface plot { cmap1_init( 1 ); plfsurf3d( x, y, plf2ops_c(), (PLPointer) z, XPTS, YPTS, 0, NULL, 0 ); } else if ( ifshade == 1 ) // magnitude colored plot { cmap1_init( 0 ); plfsurf3d( x, y, plf2ops_grid_c(), ( PLPointer ) & grid_c, XPTS, YPTS, MAG_COLOR, NULL, 0 ); } else if ( ifshade == 2 ) // magnitude colored plot with faceted squares { cmap1_init( 0 ); plfsurf3d( x, y, plf2ops_grid_row_major(), ( PLPointer ) & grid_row_major, XPTS, YPTS, MAG_COLOR | FACETED, NULL, 0 ); } else if ( ifshade == 3 ) // magnitude colored plot with contours { cmap1_init( 0 ); plfsurf3d( x, y, plf2ops_grid_col_major(), ( PLPointer ) & grid_col_major, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel ); } else // magnitude colored plot with contours and index limits. { cmap1_init( 0 ); plsurf3dl( x, y, (const PLFLT * const *) zlimited, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel, indexxmin, indexxmax, indexymin, indexymax ); } } } // Clean up free( (void *) x ); free( (void *) y ); plFree2dGrid( z, XPTS, YPTS ); free( (void *) z_row_major ); free( (void *) z_col_major ); plFree2dGrid( zlimited, XPTS, YPTS ); free( (void *) indexymin ); free( (void *) indexymax ); plend(); exit( 0 ); }