// Demo of multiple stream/window capability (requires Tk or Tcl-DP). // // Maurice LeBrun // IFS, University of Texas at Austin // // Copyright (C) 2004 Alan W. Irwin // // This file is part of PLplot. // // PLplot is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published // by the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PLplot is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with PLplot; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // // #include "plcdemos.h" static PLFLT x[101], y[101]; static PLFLT xscale, yscale, xoff, yoff, xs[6], ys[6]; static PLINT space0 = 0, mark0 = 0, space1 = 1500, mark1 = 1500; void plot1( void ); void plot2( void ); void plot3( void ); void plot4( void ); void plot5( void ); void mypltr( PLFLT x, PLFLT y, PLFLT *tx, PLFLT *ty, void *pltr_data ); //-------------------------------------------------------------------------- // main // // Plots several simple functions from other example programs. // // This version sends the output of the first 4 plots (one page) to two // independent streams. //-------------------------------------------------------------------------- int main( int argc, const char *argv[] ) { int digmax; // Select either TK or DP driver and use a small window // Using DP results in a crash at the end due to some odd cleanup problems // The geometry strings MUST be in writable memory char geometry_master[] = "500x410+100+200"; char geometry_slave[] = "500x410+650+200"; char driver[80] = ""; PLINT fam, num, bmax; PLFLT xp0, yp0; PLINT xleng0, yleng0, xoff0, yoff0; int valid_geometry; // plplot initialization // Parse and process command line arguments (void) plparseopts( &argc, argv, PL_PARSE_FULL ); // If valid geometry specified on command line, use it for both streams. plgpage( &xp0, &yp0, &xleng0, &yleng0, &xoff0, &yoff0 ); valid_geometry = ( xleng0 > 0 && yleng0 > 0 ); // Set up first stream if ( valid_geometry ) plspage( xp0, yp0, xleng0, yleng0, xoff0, yoff0 ); else plsetopt( "geometry", geometry_master ); plssub( 2, 2 ); plinit(); plgdev( driver ); plgfam( &fam, &num, &bmax ); printf( "Demo of multiple output streams via the %s driver.\n", driver ); printf( "Running with the second stream as slave to the first.\n" ); printf( "\n" ); // Start next stream plsstrm( 1 ); if ( valid_geometry ) plspage( xp0, yp0, xleng0, yleng0, xoff0, yoff0 ); else plsetopt( "geometry", geometry_slave ); // Turn off pause to make this a slave (must follow master) plspause( 0 ); plsdev( driver ); plsfam( fam, num, bmax ); // Currently number of digits in format number can only be // set via the command line option plsetopt( "fflen", "2" ); plinit(); // Set up the data & plot // Original case plsstrm( 0 ); xscale = 6.; yscale = 1.; xoff = 0.; yoff = 0.; plot1(); // Set up the data & plot xscale = 1.; yscale = 1.e+6; plot1(); // Set up the data & plot xscale = 1.; yscale = 1.e-6; digmax = 2; plsyax( digmax, 0 ); plot1(); // Set up the data & plot xscale = 1.; yscale = 0.0014; yoff = 0.0185; digmax = 5; plsyax( digmax, 0 ); plot1(); // To slave // The pleop() ensures the eop indicator gets lit. plsstrm( 1 ); plot4(); pleop(); // Back to master plsstrm( 0 ); plot2(); plot3(); // To slave plsstrm( 1 ); plot5(); pleop(); // Back to master to wait for user to advance plsstrm( 0 ); pleop(); // Call plend to finish off. plend(); exit( 0 ); } //-------------------------------------------------------------------------- void plot1( void ) { int i; PLFLT xmin, xmax, ymin, ymax; for ( i = 0; i < 60; i++ ) { x[i] = xoff + xscale * ( i + 1 ) / 60.0; y[i] = yoff + yscale * pow( x[i], 2. ); } xmin = x[0]; xmax = x[59]; ymin = y[0]; ymax = y[59]; for ( i = 0; i < 6; i++ ) { xs[i] = x[i * 10 + 3]; ys[i] = y[i * 10 + 3]; } // Set up the viewport and window using PLENV. The range in X is // 0.0 to 6.0, and the range in Y is 0.0 to 30.0. The axes are // scaled separately (just = 0), and we just draw a labelled // box (axis = 0). plcol0( 1 ); plenv( xmin, xmax, ymin, ymax, 0, 0 ); plcol0( 6 ); pllab( "(x)", "(y)", "#frPLplot Example 1 - y=x#u2" ); // Plot the data points plcol0( 9 ); plpoin( 6, xs, ys, 9 ); // Draw the line through the data plcol0( 4 ); plline( 60, x, y ); plflush(); } //-------------------------------------------------------------------------- void plot2( void ) { int i; // Set up the viewport and window using PLENV. The range in X is -2.0 to // 10.0, and the range in Y is -0.4 to 2.0. The axes are scaled separately // (just = 0), and we draw a box with axes (axis = 1). plcol0( 1 ); plenv( -2.0, 10.0, -0.4, 1.2, 0, 1 ); plcol0( 2 ); pllab( "(x)", "sin(x)/x", "#frPLplot Example 1 - Sinc Function" ); // Fill up the arrays for ( i = 0; i < 100; i++ ) { x[i] = ( i - 19.0 ) / 6.0; y[i] = 1.0; if ( x[i] != 0.0 ) y[i] = sin( x[i] ) / x[i]; } // Draw the line plcol0( 3 ); plline( 100, x, y ); plflush(); } //-------------------------------------------------------------------------- void plot3( void ) { int i; // For the final graph we wish to override the default tick intervals, and // so do not use PLENV pladv( 0 ); // Use standard viewport, and define X range from 0 to 360 degrees, Y range // from -1.2 to 1.2. plvsta(); plwind( 0.0, 360.0, -1.2, 1.2 ); // Draw a box with ticks spaced 60 degrees apart in X, and 0.2 in Y. plcol0( 1 ); plbox( "bcnst", 60.0, 2, "bcnstv", 0.2, 2 ); // Superimpose a dashed line grid, with 1.5 mm marks and spaces. plstyl // expects a pointer!! plstyl( 1, &mark1, &space1 ); plcol0( 2 ); plbox( "g", 30.0, 0, "g", 0.2, 0 ); plstyl( 0, &mark0, &space0 ); plcol0( 3 ); pllab( "Angle (degrees)", "sine", "#frPLplot Example 1 - Sine function" ); for ( i = 0; i < 101; i++ ) { x[i] = 3.6 * i; y[i] = sin( x[i] * M_PI / 180.0 ); } plcol0( 4 ); plline( 101, x, y ); plflush(); } //-------------------------------------------------------------------------- void plot4( void ) { int i, j; PLFLT dtr, theta, dx, dy, r; char text[4]; PLFLT x0[361], y0[361]; PLFLT x1[361], y1[361]; dtr = M_PI / 180.0; for ( i = 0; i <= 360; i++ ) { x0[i] = cos( dtr * i ); y0[i] = sin( dtr * i ); } // Set up viewport and window, but do not draw box plenv( -1.3, 1.3, -1.3, 1.3, 1, -2 ); for ( i = 1; i <= 10; i++ ) { for ( j = 0; j <= 360; j++ ) { x1[j] = 0.1 * i * x0[j]; y1[j] = 0.1 * i * y0[j]; } // Draw circles for polar grid plline( 361, x1, y1 ); } plcol0( 2 ); for ( i = 0; i <= 11; i++ ) { theta = 30.0 * i; dx = cos( dtr * theta ); dy = sin( dtr * theta ); // Draw radial spokes for polar grid pljoin( 0.0, 0.0, dx, dy ); sprintf( text, "%d", ROUND( theta ) ); // Write labels for angle // Slightly off zero to avoid floating point logic flips at 90 and 270 deg. if ( dx >= -0.00001 ) plptex( dx, dy, dx, dy, -0.15, text ); else plptex( dx, dy, -dx, -dy, 1.15, text ); } // Draw the graph for ( i = 0; i <= 360; i++ ) { r = sin( dtr * ( 5 * i ) ); x1[i] = x0[i] * r; y1[i] = y0[i] * r; } plcol0( 3 ); plline( 361, x1, y1 ); plcol0( 4 ); plmtex( "t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh" ); plflush(); } //-------------------------------------------------------------------------- // Demonstration of contour plotting #define XPTS 35 #define YPTS 46 #define XSPA 2. / ( XPTS - 1 ) #define YSPA 2. / ( YPTS - 1 ) PLFLT tr[6] = { XSPA, 0.0, -1.0, 0.0, YSPA, -1.0 }; // pltr_data argument is unused so mark it with the PL_UNUSED macro void mypltr( PLFLT xx, PLFLT yy, PLFLT *tx, PLFLT *ty, void * PL_UNUSED( pltr_data ) ) { *tx = tr[0] * xx + tr[1] * yy + tr[2]; *ty = tr[3] * xx + tr[4] * yy + tr[5]; } static PLFLT clevel[11] = { -1., -.8, -.6, -.4, -.2, 0, .2, .4, .6, .8, 1. }; void plot5( void ) { int i, j; PLFLT xx, yy; PLFLT **z, **w; static PLINT mark = 1500, space = 1500; // Set up function arrays plAlloc2dGrid( &z, XPTS, YPTS ); plAlloc2dGrid( &w, XPTS, YPTS ); for ( i = 0; i < XPTS; i++ ) { xx = (double) ( i - ( XPTS / 2 ) ) / (double) ( XPTS / 2 ); for ( j = 0; j < YPTS; j++ ) { yy = (double) ( j - ( YPTS / 2 ) ) / (double) ( YPTS / 2 ) - 1.0; z[i][j] = xx * xx - yy * yy; w[i][j] = 2 * xx * yy; } } plenv( -1.0, 1.0, -1.0, 1.0, 0, 0 ); plcol0( 2 ); plcont( (const PLFLT * const *) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL ); plstyl( 1, &mark, &space ); plcol0( 3 ); plcont( (const PLFLT * const *) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL ); plcol0( 1 ); pllab( "X Coordinate", "Y Coordinate", "Streamlines of flow" ); plflush(); // Clean up plFree2dGrid( z, XPTS, YPTS ); plFree2dGrid( w, XPTS, YPTS ); }