// plmtex3, plptex3 demo. // // Copyright (C) 2007, 2008, 2009 Alan W. Irwin // // This file is part of PLplot. // // PLplot is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published // by the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PLplot is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with PLplot; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // // #include "plcdemos.h" // Choose these values to correspond to tick marks. #define XPTS 2 #define YPTS 2 #define NREVOLUTION 16 #define NROTATION 8 #define NSHEAR 8 //-------------------------------------------------------------------------- // main // // Demonstrates plotting text in 3D. //-------------------------------------------------------------------------- int main( int argc, const char *argv[] ) { PLFLT *x, *y, **z, xmin = 0., xmax = 1.0, xmid = 0.5 * ( xmax + xmin ), xrange = xmax - xmin, ymin = 0., ymax = 1.0, ymid = 0.5 * ( ymax + ymin ), yrange = ymax - ymin, zmin = 0., zmax = 1.0, zmid = 0.5 * ( zmax + zmin ), zrange = zmax - zmin, ysmin = ymin + 0.1 * yrange, ysmax = ymax - 0.1 * yrange, ysrange = ysmax - ysmin, dysrot = ysrange / (PLFLT) ( NROTATION - 1 ), dysshear = ysrange / (PLFLT) ( NSHEAR - 1 ), zsmin = zmin + 0.1 * zrange, zsmax = zmax - 0.1 * zrange, zsrange = zsmax - zsmin, dzsrot = zsrange / (PLFLT) ( NROTATION - 1 ), dzsshear = zsrange / (PLFLT) ( NSHEAR - 1 ), ys, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, omega, sin_omega, cos_omega, domega; int i, j; PLFLT radius, pitch, xpos, ypos, zpos; // p1string must be exactly one character + the null termination // character. char p1string[] = "O"; const char *pstring = "The future of our civilization depends on software freedom."; // Allocate and define the minimal x, y, and z to insure 3D box x = (PLFLT *) calloc( XPTS, sizeof ( PLFLT ) ); y = (PLFLT *) calloc( YPTS, sizeof ( PLFLT ) ); plAlloc2dGrid( &z, XPTS, YPTS ); for ( i = 0; i < XPTS; i++ ) { x[i] = xmin + (double) i * ( xmax - xmin ) / (double) ( XPTS - 1 ); } for ( j = 0; j < YPTS; j++ ) y[j] = ymin + (double) j * ( ymax - ymin ) / (double) ( YPTS - 1 ); for ( i = 0; i < XPTS; i++ ) { for ( j = 0; j < YPTS; j++ ) { z[i][j] = 0.; } } // Parse and process command line arguments (void) plparseopts( &argc, argv, PL_PARSE_FULL ); plinit(); // Page 1: Demonstrate inclination and shear capability pattern. pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); // z = zmin. plschr( 0., 1.0 ); for ( i = 0; i < NREVOLUTION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NREVOLUTION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_inclination = 0.5 * xrange * cos_omega; y_inclination = 0.5 * yrange * sin_omega; z_inclination = 0.; x_shear = -0.5 * xrange * sin_omega; y_shear = 0.5 * yrange * cos_omega; z_shear = 0.; plptex3( xmid, ymid, zmin, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.0, " revolution" ); } // x = xmax. plschr( 0., 1.0 ); for ( i = 0; i < NREVOLUTION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NREVOLUTION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_inclination = 0.; y_inclination = -0.5 * yrange * cos_omega; z_inclination = 0.5 * zrange * sin_omega; x_shear = 0.; y_shear = 0.5 * yrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; plptex3( xmax, ymid, zmid, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.0, " revolution" ); } // y = ymax. plschr( 0., 1.0 ); for ( i = 0; i < NREVOLUTION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NREVOLUTION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_inclination = 0.5 * xrange * cos_omega; y_inclination = 0.; z_inclination = 0.5 * zrange * sin_omega; x_shear = -0.5 * xrange * sin_omega; y_shear = 0.; z_shear = 0.5 * zrange * cos_omega; plptex3( xmid, ymax, zmid, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.0, " revolution" ); } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 2: Demonstrate rotation of string around its axis. pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); // y = ymax. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; x_shear = 0.; for ( i = 0; i < NROTATION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NROTATION ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = 0.5 * yrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsrot * (PLFLT) i; plptex3( xmid, ymax, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "rotation for y = y#dmax#u" ); } // x = xmax. plschr( 0., 1.0 ); x_inclination = 0.; y_inclination = -1.; z_inclination = 0.; y_shear = 0.; for ( i = 0; i < NROTATION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NROTATION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_shear = 0.5 * xrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsrot * (PLFLT) i; plptex3( xmax, ymid, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "rotation for x = x#dmax#u" ); } // z = zmin. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; x_shear = 0.; for ( i = 0; i < NROTATION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NROTATION ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = 0.5 * yrange * cos_omega; z_shear = 0.5 * zrange * sin_omega; ys = ysmax - dysrot * (PLFLT) i; plptex3( xmid, ys, zmin, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "rotation for z = z#dmin#u" ); } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 3: Demonstrate shear of string along its axis. // Work around xcairo and pngcairo (but not pscairo) problems for // shear vector too close to axis of string. (N.B. no workaround // would be domega = 0.) domega = 0.05; pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); // y = ymax. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; y_shear = 0.; for ( i = 0; i < NSHEAR; i++ ) { omega = domega + 2. * M_PI * ( (PLFLT) i / (PLFLT) NSHEAR ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_shear = 0.5 * xrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsshear * (PLFLT) i; plptex3( xmid, ymax, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "shear for y = y#dmax#u" ); } // x = xmax. plschr( 0., 1.0 ); x_inclination = 0.; y_inclination = -1.; z_inclination = 0.; x_shear = 0.; for ( i = 0; i < NSHEAR; i++ ) { omega = domega + 2. * M_PI * ( (PLFLT) i / (PLFLT) NSHEAR ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = -0.5 * yrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsshear * (PLFLT) i; plptex3( xmax, ymid, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "shear for x = x#dmax#u" ); } // z = zmin. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; z_shear = 0.; for ( i = 0; i < NSHEAR; i++ ) { omega = domega + 2. * M_PI * ( (PLFLT) i / (PLFLT) NSHEAR ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = 0.5 * yrange * cos_omega; x_shear = 0.5 * xrange * sin_omega; ys = ysmax - dysshear * (PLFLT) i; plptex3( xmid, ys, zmin, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "shear for z = z#dmin#u" ); } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 4: Demonstrate drawing a string on a 3D path. pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 40., -30. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); plschr( 0., 1.2 ); // domega controls the spacing between the various characters of the // string and also the maximum value of omega for the given number // of characters in *pstring. domega = 2. * M_PI / (double) strlen( pstring ); omega = 0.; // 3D function is a helix of the given radius and pitch radius = 0.5; pitch = 1. / ( 2. * M_PI ); while ( *pstring ) { sin_omega = sin( omega ); cos_omega = cos( omega ); xpos = xmid + radius * sin_omega; ypos = ymid - radius * cos_omega; zpos = zmin + pitch * omega; // In general, the inclination is proportional to the derivative of // the position wrt theta. x_inclination = radius * cos_omega;; y_inclination = radius * sin_omega; z_inclination = pitch; // The shear vector should be perpendicular to the 3D line with Z // component maximized, but for low pitch a good approximation is // a constant vector that is parallel to the Z axis. x_shear = 0.; y_shear = 0.; z_shear = 1.; *p1string = *pstring; plptex3( xpos, ypos, zpos, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, p1string ); pstring++; omega += domega; } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 5: Demonstrate plmtex3 axis labelling capability pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); plschr( 0., 1.0 ); plmtex3( "xp", 3.0, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "xp", 4.5, 0.5, 0.5, "primary X-axis label" ); plmtex3( "xs", -2.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "xs", -1.0, 0.5, 0.5, "secondary X-axis label" ); plmtex3( "yp", 3.0, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "yp", 4.5, 0.5, 0.5, "primary Y-axis label" ); plmtex3( "ys", -2.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "ys", -1.0, 0.5, 0.5, "secondary Y-axis label" ); plmtex3( "zp", 4.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "zp", 3.0, 0.5, 0.5, "primary Z-axis label" ); plmtex3( "zs", -2.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "zs", -1.0, 0.5, 0.5, "secondary Z-axis label" ); // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Clean up. free( (void *) x ); free( (void *) y ); plFree2dGrid( z, XPTS, YPTS ); plend(); exit( 0 ); }