# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Utility functions that cannot be categorised anywhere else. @undocumented: _is_running_in_ipython """ from contextlib import contextmanager from collections import MutableMapping from itertools import chain import os import tempfile __all__ = ["dbl_epsilon", "multidict", "named_temporary_file", "rescale", \ "safemin", "safemax"] __docformat__ = "restructuredtext en" __license__ = u"""\ Copyright (C) 2006-2012 Tamás Nepusz Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ def _is_running_in_ipython(): """Internal function that determines whether igraph is running inside IPython or not.""" try: # get_ipython is injected into the Python builtins by IPython so # this should succeed in IPython but throw a NameError otherwise get_ipython return True except NameError: return False @contextmanager def named_temporary_file(*args, **kwds): """Context manager that creates a named temporary file and returns its name. All parameters are passed on to ``tempfile.mkstemp``, see its documentation for more info. """ handle, tmpfile = tempfile.mkstemp(*args, **kwds) os.close(handle) try: yield tmpfile finally: os.unlink(tmpfile) def rescale(values, out_range = (0., 1.), in_range = None, clamp = False, scale = None): """Rescales a list of numbers into a given range. `out_range` gives the range of the output values; by default, the minimum of the original numbers in the list will be mapped to the first element in the output range and the maximum will be mapped to the second element. Elements between the minimum and maximum values in the input list will be interpolated linearly between the first and second values of the output range. `in_range` may be used to override which numbers are mapped to the first and second values of the output range. This must also be a tuple, where the first element will be mapped to the first element of the output range and the second element to the second. If `clamp` is ``True``, elements which are outside the given `out_range` after rescaling are clamped to the output range to ensure that no number will be outside `out_range` in the result. If `scale` is not ``None``, it will be called for every element of `values` and the rescaling will take place on the results instead. This can be used, for instance, to transform the logarithm of the original values instead of the actual values. A typical use-case is to map a range of values to color identifiers on a logarithmic scale. Scaling also applies to the `in_range` parameter if present. Examples: >>> rescale(range(5), (0, 8)) [0.0, 2.0, 4.0, 6.0, 8.0] >>> rescale(range(5), (2, 10)) [2.0, 4.0, 6.0, 8.0, 10.0] >>> rescale(range(5), (0, 4), (1, 3)) [-2.0, 0.0, 2.0, 4.0, 6.0] >>> rescale(range(5), (0, 4), (1, 3), clamp=True) [0.0, 0.0, 2.0, 4.0, 4.0] >>> rescale([0]*5, (1, 3)) [2.0, 2.0, 2.0, 2.0, 2.0] >>> from math import log10 >>> rescale([1, 10, 100, 1000, 10000], (0, 8), scale=log10) [0.0, 2.0, 4.0, 6.0, 8.0] >>> rescale([1, 10, 100, 1000, 10000], (0, 4), (10, 1000), scale=log10) [-2.0, 0.0, 2.0, 4.0, 6.0] """ if scale is not None: values = [scale(value) for value in values] if in_range is None: mi, ma = min(values), max(values) else: mi, ma = in_range if scale is not None: mi, ma = scale(mi), scale(ma) ratio = float(ma - mi) if not ratio: return [(out_range[0] + out_range[1]) / 2.] * len(values) min_out, max_out = map(float, out_range) ratio = (max_out - min_out) / ratio result = [(x - mi) * ratio + min_out for x in values] if clamp: return [max(min(x, max_out), min_out) for x in result] else: return result def str_to_orientation(value, reversed_horizontal=False, reversed_vertical=False): """Tries to interpret a string as an orientation value. The following basic values are understood: ``left-right``, ``bottom-top``, ``right-left``, ``top-bottom``. Possible aliases are: - ``horizontal``, ``horiz``, ``h`` and ``lr`` for ``left-right`` - ``vertical``, ``vert``, ``v`` and ``tb`` for top-bottom. - ``lr`` for ``left-right``. - ``rl`` for ``right-left``. ``reversed_horizontal`` reverses the meaning of ``horizontal``, ``horiz`` and ``h`` to ``rl`` (instead of ``lr``); similarly, ``reversed_vertical`` reverses the meaning of ``vertical``, ``vert`` and ``v`` to ``bt`` (instead of ``tb``). Returns one of ``lr``, ``rl``, ``tb`` or ``bt``, or throws ``ValueError`` if the string cannot be interpreted as an orientation. """ aliases = {"left-right": "lr", "right-left": "rl", "top-bottom": "tb", "bottom-top": "bt", "top-down": "tb", "bottom-up": "bt", "top-bottom": "tb", "bottom-top": "bt", "td": "tb", "bu": "bt"} dir = ["lr", "rl"][reversed_horizontal] aliases.update(horizontal=dir, horiz=dir, h=dir) dir = ["tb", "bt"][reversed_vertical] aliases.update(vertical=dir, vert=dir, v=dir) result = aliases.get(value, value) if result not in ("lr", "rl", "tb", "bt"): raise ValueError("unknown orientation: %s" % result) return result def consecutive_pairs(iterable, circular=False): """Returns consecutive pairs of items from the given iterable. When `circular` is ``True``, the pair consisting of the last and first elements is also returned. Example: >>> list(consecutive_pairs(range(5))) [(0, 1), (1, 2), (2, 3), (3, 4)] >>> list(consecutive_pairs(range(5), circular=True)) [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)] >>> list(consecutive_pairs([])) [] >>> list(consecutive_pairs([], circular=True)) [] >>> list(consecutive_pairs([0])) [] >>> list(consecutive_pairs([0], circular=True)) [(0, 0)] """ it = iter(iterable) try: prev = it.next() except StopIteration: return first = prev for item in it: yield prev, item prev = item if circular: try: yield item, first except UnboundLocalError: yield first, first class multidict(MutableMapping): """A dictionary-like object that is customized to deal with multiple values for the same key. Each value in this dictionary will be a list. Methods which emulate the methods of a standard Python `dict` object will return or manipulate the first items of the lists only. Special methods are provided to deal with keys having multiple values. """ def __init__(self, *args, **kwds): self._dict = {} if len(args) > 1: raise ValueError("%r expected at most 1 argument, got %d" % \ (self.__class__.__name__, len(args))) if args: args = args[0] self.update(args) self.update(kwds) def __contains__(self, key): """Returns whether there are any items associated to the given `key`.""" try: return len(self._dict[key]) > 0 except KeyError: return False def __delitem__(self, key): """Removes all the items associated to the given `key`.""" del self._dict[key] def __getitem__(self, key): """Returns an arbitrary item associated to the given key. Raises ``KeyError`` if no such key exists. Example: >>> d = multidict([("spam", "eggs"), ("spam", "bacon")]) >>> d["spam"] 'eggs' """ try: return self._dict[key][0] except IndexError: raise KeyError(key) def __iter__(self): """Iterates over the keys of the multidict.""" return iter(self._dict) def __len__(self): """Returns the number of distinct keys in this multidict.""" return len(self._dict) def __setitem__(self, key, value): """Sets the item associated to the given `key`. Any values associated to the key will be erased and replaced by `value`. Example: >>> d = multidict([("spam", "eggs"), ("spam", "bacon")]) >>> d["spam"] = "ham" >>> d["spam"] 'ham' """ self._dict[key] = [value] def add(self, key, value): """Adds `value` to the list of items associated to `key`. Example: >>> d = multidict() >>> d.add("spam", "ham") >>> d["spam"] 'ham' >>> d.add("spam", "eggs") >>> d.getlist("spam") ['ham', 'eggs'] """ try: self._dict[key].append(value) except KeyError: self._dict[key] = [value] def clear(self): """Removes all the items from the multidict.""" self._dict.clear() def get(self, key, default=None): """Returns an arbitrary item associated to the given `key`. If `key` does not exist or has zero associated items, `default` will be returned.""" try: items = self._dict[key] return items[0] except (KeyError, IndexError): return default def getlist(self, key): """Returns the list of values for the given `key`. An empty list will be returned if there is no such key.""" try: return self._dict[key] except KeyError: return [] def iterlists(self): """Iterates over ``(key, values)`` pairs where ``values`` is the list of values associated with ``key``.""" return self._dict.iteritems() def lists(self): """Returns a list of ``(key, values)`` pairs where ``values`` is the list of values associated with ``key``.""" return self._dict.items() def update(self, arg, **kwds): if hasattr(arg, "keys") and callable(arg.keys): for key in arg.keys(): self.add(key, arg[key]) else: for key, value in arg: self.add(key, value) for key, value in kwds.iteritems(): self.add(key, value) def safemax(iterable, default=0): """Safer variant of ``max()`` that returns a default value if the iterable is empty. Example: >>> safemax([-5, 6, 4]) 6 >>> safemax([]) 0 >>> safemax((), 2) 2 """ it = iter(iterable) try: first = it.next() except StopIteration: return default else: return max(chain([first], it)) def safemin(iterable, default=0): """Safer variant of ``min()`` that returns a default value if the iterable is empty. Example: >>> safemin([-5, 6, 4]) -5 >>> safemin([]) 0 >>> safemin((), 2) 2 """ it = iter(iterable) try: first = it.next() except StopIteration: return default else: return min(chain([first], it)) def dbl_epsilon(): """Approximates the machine epsilon value for doubles.""" epsilon = 1.0 while 1.0 + epsilon / 2.0 != 1.0: epsilon /= 2 return epsilon dbl_epsilon = dbl_epsilon()