This example shows how to solve a mixed-integer linear program. The example is not complex, but it shows typical steps in formulating a problem for the problem-based approach. For a video showing this example, see Solve a Mixed-Integer Linear Programming Problem using Optimization Modeling.
For the solver-based approach to this problem, see Mixed-Integer Linear Programming Basics: Solver-Based.
You want to blend steels with various chemical compositions to obtain 25 tons of steel with a specific chemical composition. The result should have 5% carbon and 5% molybdenum by weight, meaning 25 tons*5% = 1.25 tons of carbon and 1.25 tons of molybdenum. The objective is to minimize the cost for blending the steel.
This problem is taken from Carl-Henrik Westerberg, Bengt Bjorklund, and Eskil Hultman,
“An Application of Mixed Integer Programming in a Swedish Steel
Mill.” Interfaces February 1977 Vol. 7, No. 2 pp. 39–43, whose abstract
is at http://interfaces.journal.informs.org/content/7/2/39.abstract
.
Four ingots of steel are available for purchase. Only one of each ingot is available.
Ingot | Weight in Tons | %Carbon | %Molybdenum | Cost/Ton |
---|---|---|---|---|
1 | 5 | 5 | 3 | $350 |
2 | 3 | 4 | 3 | $330 |
3 | 4 | 5 | 4 | $310 |
4 | 6 | 3 | 4 | $280 |
Three grades of alloy steel are available for purchase, and one grade of scrap steel. Alloy and scrap steels can be purchased in fractional amounts.
Alloy | %Carbon | %Molybdenum | Cost/Ton |
---|---|---|---|
1 | 8 | 6 | $500 |
2 | 7 | 7 | $450 |
3 | 6 | 8 | $400 |
Scrap | 3 | 9 | $100 |
To formulate the problem, first decide on the control variables. Take variable
ingots(1) = 1
to mean that you purchase ingot
1, and
ingots(1) = 0
to mean that you do not purchase
the ingot. Similarly, variables ingots(2)
through
ingots(4)
are binary variables indicating whether you
purchase ingots 2 through 4.
Variables alloys(1)
through alloys(3)
are the quantities in tons of alloys 1,
2, and 3
that you purchase. scrap
is the quantity in tons of scrap
steel that you purchase.
Create the optimization problem and the variables.
steelprob = optimproblem; ingots = optimvar('ingots',4,'Type','integer','LowerBound',0,'UpperBound',1); alloys = optimvar('alloys',3,'LowerBound',0); scrap = optimvar('scrap','LowerBound',0);
Create expressions for the costs associated with the variables.
weightIngots = [5,3,4,6]; costIngots = weightIngots.*[350,330,310,280]; costAlloys = [500,450,400]; costScrap = 100; cost = costIngots*ingots + costAlloys*alloys + costScrap*scrap;
Include the cost as the objective function in the problem.
steelprob.Objective = cost;
There are three equality constraints. The first constraint is that the total weight is 25 tons. Calculate the weight of the steel.
totalWeight = weightIngots*ingots + sum(alloys) + scrap;
The second constraint is that the weight of carbon is 5% of 25 tons, or 1.25 tons. Calculate the weight of the carbon in the steel.
carbonIngots = [5,4,5,3]/100; carbonAlloys = [8,7,6]/100; carbonScrap = 3/100; totalCarbon = (weightIngots.*carbonIngots)*ingots + carbonAlloys*alloys + carbonScrap*scrap;
The third constraint is that the weight of molybdenum is 1.25 tons. Calculate the weight of the molybdenum in the steel.
molybIngots = [3,3,4,4]/100; molybAlloys = [6,7,8]/100; molybScrap = 9/100; totalMolyb = (weightIngots.*molybIngots)*ingots + molybAlloys*alloys + molybScrap*scrap;
Include the constraints in the problem.
steelprob.Constraints.conswt = totalWeight == 25; steelprob.Constraints.conscarb = totalCarbon == 1.25; steelprob.Constraints.consmolyb = totalMolyb == 1.25;
Now that you have all the inputs, call the solver.
[sol,fval] = solve(steelprob);
LP: Optimal objective value is 8125.600000. Cut Generation: Applied 3 mir cuts. Lower bound is 8495.000000. Relative gap is 0.00%. Optimal solution found. Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).
View the solution.
sol.ingots sol.alloys sol.scrap fval
ans = 1 1 0 1 ans = 7.2500 0 0.2500 ans = 3.5000 fval = 8.4950e+03
The optimal purchase costs $8,495. Buy ingots 1, 2, and 4, but not 3, and buy 7.25 tons of alloy 1, 0.25 ton of alloy 3, and 3.5 tons of scrap steel.