
ToolDAQ

Hi, I believe manuals should be short, to the point and with lots of examples. The idea is to
get you up and running as quickly as possible and then expand into the subtleties later.

If you have questions I can be reached here b.richards@qmul.ac.uk.

So off we go.

Basic quick start
Sec 1. Basic Concept
Sec 2. Installation
Sec 3. Tools
Sec 4. Variables and the DataModel
Sec 5. Simple Example

Detail
Sec 6. ToolChain and main
Sec 7. Logging
Sec 8. Root
Sec 9. Network
Sec 10. Parallelization

Sec 1. Basic Concept

ToolDAQ is a pure C++ framework for building DAQ systems built on the principle of the
sequential running of modular Tools and transient data storage. It has built in network
communications, dynamic service discovery, logging, execution and variable handling.

So if you followed that good, if not don't worry. ToolDAQ was built out of the frustration that
things could be done simpler, easier, faster and better. With that in mind there are only three
concepts to take away from this section and they are:

1. What is a ToolChain
2. What is a Tool
3. What is the DataModel

TOOL 1 TOOL 2 TOOL 3

Transient Shared DataModel Class:

Tool Chain

Input data object output data object

Start, Stop, Pause, Status

Initialise(), Execute(), Finalise(),

Execution order

mailto:b.richards@qmul.ac.UK
mailto:b.richards@qmul.ac.UK

1. What is a ToolChain

Put simply a ToolChain is just a class that holds Tools. It is also responsible for
running those tools one by one from start to end sequentially. First it Initialises each
tool, then it Executes each tool (as many times as needed), before finally Finalising
each tool.

2. What is a Tool

A Tool is just a class that does something. It can be anything from reading data from
hardware, to processing that data, to writing that data to disk. The idea is to make
your DAQ program as modular as possible by splitting the operations into Tools
which you then place in a ToolChain. Tools are just classes that contain your code
to do anything you like. They must however contain an Initialise, Execute and
Finalise function.

3. What is the DataModel

The DataModel is probably the most difficult concept in this section but it's actually
quite simple. Tools cannot directly interact with each other and don't share memory
and variables. So we have a transient data class called the DataModel. Think of it as
a data storage vault to keep anything used by multiple Tools. An example Tool A
reads data from some hardware and Tool B saves it to disk. To do this Tool A writes
the data to the DataModel and Tool B reads it from the data model and writes it to
disk.

And that’s all you need to know to get started. To create your own DAQ software all you
need to do is create your own Tools to interact with hardware, network, disk, databases or
whatever you like and fill the DataModel with the variables you need.

Sec 2. Installation

The ToolDAQ repository has a few branches:

 The master branch holds the core framework code

 The Application branch is what you should download to build your own application

 The Example branch contains an example application.

The following guide is for the Application branch (but should work on all branches).

First get the code by running

#git clone https://github.com/ToolDAQ/ToolDAQFramework.git -b Application

The prerequisites for building ToolDAQ are bellow so please make sure they are installed

with the package manager of your choice e.g.

#yum install make gcc-c++ gcc binutils libX11-devel libXpm-devel libXft-devel

libXext-devel git

The Application branch contains a template to build your own application from scratch. As

such it only contains the code specific your application all the core ToolDAQ code must now

be installed by running:

#./GetToolDAQ.sh

This will install all the core code and its prerequisites (zmq and boost) to a ToolDAQ folder.

Once installed it will make both the core code and your application code.

Next you will need to source the locally installed prerequisites by running the following form

the application install

#source Setup.sh

Now try and run the code with:

 #./main

If all worked well you should see some output like that shown below.

(Detail: Feel free to skip:

So the default ToolChain contains two instances of the same tool called DummyTool,

one called “test1” and one called “test2”.

The Application when executed just sequentially adds the tools to the toolchain and

then tells the Tools to Initialise, then Execute and then Finalise. The DummyTool

itself just prints to screen the words “test1” on initialise and “test2” on Execute as can

be seen in the output below.

)

Tool 1

DummyTool: “test1”

Transient DataModel

ToolChain

Tool 2

DummyTool: “test2”

#./main [1]: UUID = 7e511e61-649a-4bb1-bf7c-03db68e66387

**

**** Tool chain created ****

**

[1]: Adding Tool="test1" tool chain

[1]: Tool="test1" added successfully

[1]: Adding Tool="test2" tool chain

[1]: Tool="test2" added successfully

[1]: **

**** Initialising tools in toolchain ****

**

[2]: Initialising test1

[1]: test 1

[2]: test1 initialised successfully

[2]: Initialising test2

[1]: test 1

[2]: test2 initialised successfully

[1]:

**** Tool chain initialised ****

**

[1]: **

**** Executing toolchain 1 times ****

**

[3]: **

**** Executing tools in toolchain ****

**

[4]: Executing test1

[2]: test 2

[4]: test1 executed successfully

[4]: Executing test2

[2]: test 2

[4]: test2 executed successfully

[3]: **** Tool chain executed ****

**

[1]: **

**** Executed toolchain 1 times ****

**

[1]: **

**** Finalising tools in toolchain ****

**

[2]: Finalising test1

[2]: test1 Finalised successfully

[2]: Finalising test2

[2]: test2 Finalised successfully

[1]: **** Toolchain Finalised ****

**

Sec3. Tools

Great so now you have a working version of a ToolDAQ application now you want to make it
do stuff right. Well then you will need to make your own Tool.

Steps for making and adding your own tool:

1. Create a Tool
2. Add that Tool to the ToolChain
3. Compile and Run the application

1. Create a Tool

So this couldn’t be simpler all you need do is go to the UserTools directory and run the script
newTool.sh followed by the name of our new tool eg.

cd UserTools
./MakeTool MyFirstTool

(Detail: Feel free to skip

So to make a Tools you just need to create a class that inherits from an abstract
base class called Tool. This forces implementation of the Initialise Execute and
Finalise methods required. The script also adds the tool to a factory class for ease of
integration dynamically at run time but this is not strictly necessary if u wanted to
create your own main. But I suggest you read the ToolChain section before you head
down this route

)

2. Add that Tool to the ToolChain.

This somewhat relies on you knowing how ToolChains work which is a latter section but to
get you up and running for now, just edit the ASCI config file (configfiles/ToolsConfig) That
lists the Tools to add to the ToolChain.

Each line is an instruction to add a Tool to the ToolChain and contains three words.

ToolType ToolName ConfigFile

The Tool type is what we called our Tool when we used the newTool.sh script. The Tool
name can be anything we like (note u can have multiple instances of the same tool if you
like) and the config file is the path to an input ASCI file containing any input variables you
would like to use in that Tool.

So for our Tool we need to add

MyFirstTool MyFirstTool1 Null

(you can see a description of using a non Null config file in the variables section)

3. Compile and Run the application

This is pretty easy navigate to the application directory and run make clean, make and then
run the executable.

E.g

make clean
make
#./main

Well done. If all gone well you will now see in the messages that print put your tool is running
in the tool chain and is initialised executed and finalised along with the dummy tools.

(if not check your ToolsConfig file as the ToolType is case sensitive and must be exactly the
same as your created tool)

So that's fine but now you want to make your Tool Do something useful.

Time for some examples.

Example 1: Hello world

All coding examples start with a hello world.

Open up your Tools implementation file in your editor of choice eg.

$ emacs UserTools/MyFirstTool.cpp

From here you should see a constructor and 3 functions, Initialise, Execute and Finalise.
You will possibly be unsurprised to hear that these are the functions run when the main
executable tells you it is initialising executing and finalising your Tool.

(Details: can skip if you’re in a hurry

The idea is that Initialisation is use for your Tools setup (eg. Opening
sockets/databases, loading variables from config files, initialising hardware settings
etc). Execute is where you run whatever the tool is made to do (note: execute
function was designed to do a small amount multiple times rather than long
computation or blocking e.g the read of one event or one trigger from hardware). The
Finalise method is mean for clean up and disconnection of your tool and resources.

)

So we just want to print hello world so we can add a print out line in the execute function ion
to do just that.
Eg

std::cout<<”hello world”<<std::endl;

That should do it. Save the file rerun the make clean, make and then run the main and you
should see the print out when your tool Executes.

Sec 4. Variables and the DataModel

Ok so you now have the ability to add Tools and hopefully understand where to put your
code to do stuff. Next we need to talk about variables and the data model so you can start to
build useful applications.

When storing and using variables in a Tool you need to consider scope (when and what
needs to access it). The scope will determine the best place to put your variable. You’re free
to write your tool however you like in whatever style you like so part of this may fall into best
practice but scope is always worth considering. In the framework of ToolDAQ it's important
as Tools do not share memory and can only interact through the DataModel. So here is my
suggestion.

There are three basic scopes:

1. Function specific scope
2. Tool specific scope
3. ToolChain scope

1. If you only want a variable to be used inside the execute function, go ahead and

make it in the execute fiction as normal.

2. If you want to use a variable in many functions within the Tool class, e.g. initialise it in

the initialise function and use it in the execute function. Then put its definition in the
Tools header like a normal class

3. If you want multiple tools to have access to the variable. (Eg like data taken from a

card in one tool and written to disk in another, or configuration variables passed
between Tools) then put its definition in the DataModel header
(DataModel/DataModel.h) and access it inside you tools by m_data->VariableName.

Config files and initialisation variables

When Creating Tools sometimes you will want to pass Tool specific configuration settings to
the Tool.

This can be done manually by the user as you would in any other code implementation, or
using ToolDAQ’s own facility for this. You will recall in the Tool section that when adding a
Tool to the ToolsConfig file the third word is the path to a configuration file to pass to the
Tool e.g.

MyFirstTool MyFirstTool1 configfiles/MyFirstToolConfig

MyFirstToolConfig must have a specific format. It's an ASCI file where by each line defines
a variable. The first word of each line is the variable name and the second word is the value

e.g.

#myfirsttool config file
Var1 hello
Var2 6 #comments
#comments
Var3 38.53

Note variables can be any type just written in plain text (bools must be 1 or 0) and comments
can be added after a ‘#’ symbol.

This file will automatically be read by the Tool on initialisation using a universal storage class
known as a Store.

These variables can then be accessed within your tool in the following way.

std::string a;
Int b;
float c;

m_variables.Get(“Var1”, a);
m_variables.Get(“Var2”, b);
m_variables.Get(“Var3”, c);

The get function is templated where the first argument is the name of the variable in the
config file and the second is the variable to assign it to.

(Detail: Store Class

The universal store class whilst useful is not an efficient way to store data so should
not be used for large event based data. It does contain a Set function as well as a
Print which can be useful for listing all the variables inside the Store.

An instance of the Store class actually exists in the DataModel as well which can be
used to pass variables (again inefficiently) between tools. It can be useful for
counters and things of this nature.

)

Sec 5. Simple Example

Ok so let’s see how a full example of a DAQ implementation.

(You find the code for this example by downloading and installing the Example branch of

ToolDAQ following the steps in Sec 2). Make sure you also have all the root prerequisits

 gcc-c++ gcc binutils libX11-devel libXpm-devel libXft-devel libXext-devel

For this simple example we will make a DAQ application that simply simulates reading data

from a front end board and then saves that to disk. To do this we will create two Tools and a

data class. One Tool will simulate the board output and write it to the data class in the

DataModel and one Tool to write out the data to disk. The ToolDAQ diagram for this would

like this:

Detailed Description

1) Board Reader Tool: This tool simulates a simple ADC/TDC output namely a

single Time and Energy value for each channel in the card.

1. The Initialise method just stores three values form a config file to local

variables (random seed, Card ID and no. of channels)

2. The Execute method creates an instance of the CardData class and fills

it with a random number energy and random time stamp etc. This is

them pushed back into the data model.

2) CardData Class: This class stores the output of a Card so contains the Card

Id and a vector of energy and time stamps (one per channel). It also contains a

serialisation function for use with boost serialisation (not necessary).

3) DataOutput Tool: In this example I have created two data output tools

(RootWriter and BinaryWriter). The names should make their functions

obvious but for clarity the RootWiter creates a Root file of the output and the

BinaryWriter creates a simple binary file output using boost serialise (note: the

boost file in this simple form will be less space efficient and root

automatically reduces the size by compressing similar entries).

The operation of both tools are very similar.

1. The Initialise method reads in a config file variable to set the output

file path and name. It then creates and opens a file in this location. In

the case of the root version it sets up the necessary tree and branches

(note: it points to a local card data instance as the memory address

must be static for filling. Also the DataModel class contains functions

for holding trees so I have utilised those as an example. These could

therefore be used and filled by multiple tools and written out by a

single tool at the end of the chain).

2. The Execute method simple fills the output stream be it a direct

ofstream for the binary writer or in the root writer’s case copying it to

Tool 1

Board Reader

Transient DataModel

Card Data Class ToolChain

Tool 2

DataOutput

Disk

the local card data and then filling a ttree. Once done card data class in

the Data model is cleared for the next loop

3. The Finalise method writes the output to disk and clears the necessary

data objects.

And that’s it you have a fully functioning example. Let’s briefly see how to customise and

operate the program.

 The default operation is to have a single BoardReader class that has 4 channels. This

single board is read from 100 times and saved to a root file “out.root”.

 To change the number of channels per board simply edit the

configfiles/BoardReaderConfig file and change the channels variable. You can also

adjust the seed and card id here.

 To switch the output root file location you can edit the configfiles/RootWriterConfig

and adjust the outpat variable (for the BinaryWritter edit the

configfiles/BianryWriterConfig instead)

 To switch to the binary writer output instead you need to change tools inside the

configfiles/ToolsConfig file. Simply remove the ‘#’ from the BinaryWriter and add

one to the RootWriter.

 If you want to add more boards you can once again edit the configfiles/ToolsConfig

and add more BoardReaders eg.

BoardReader BoardReader1 configfiles/BoardReaderConfig1

BoardReader BoardReader2 configfiles/BoardReaderConfig2

BoardReader BoardReader3 configfiles/BoardReaderConfig3

BoardReader BoardReader4 configfiles/BoardReaderConfig4

 In the above I have reference a different config file for each BoardReader, this is not

strictly necessary but as the CardID is read in from there it’s useful to label each with their

own ID so you can see that they are all creating their own output

 Finally you can change the operation of the ToolChain by editing the

configfiles/ToolChainConfig file

1) Change the “verbose” from 0 to 9 to change the level of printouts

2) You can change the number of reads per execution of the application by

changing the “Inline” variable.

3) You can switch to interactive by setting “Interactive” to 1 and “Inline” to 0.

Then follow the onscreen instructions.

4) You can try remote operation by setting “Remote” to 1 and “Inline” and

“Interactive” to 0. To do this start you application in the background with

“./main &” and then launch the “./RemoteControl” application and follow the

on screen instructions.

Note: all of the above customisations are all runtime changes and don’t need any

recompilation no matter how many cards and channels you add or how you choose to control

the application.

Sec 6. ToolChain and the main

Ok now we come to the ToolChain, on the surface it’s simple but there is a lot of things
under the hood. We will start with what it does and how to use it to create your own main.
Then we will talk about the configuration and then some deeper detail for those interested.

So the ToolChain is just a container for Tools. Rather than manually initialising
executing and finalising tools we put them into a single container and then tell it to
run the initialise execute and finalise methods on all the tools inside.

The best way to explain it is with an example. You may have noticed that in the src
folder there is a single solitary file (main.cpp). This is the main of our application and
its intentionally short and simple (in fact most of the lines are commented out).

If we want to produce the simplest possible main with ToolDAQ it would look like
this.

It Should be self-explanatory but in case it isn’t, first we create a ToolChain called
tools. Then we create a DummyTool called dummytool. We then add this tool to the
ToolChain. Once added we Initialise, Execute and Finalise the ToolChain which calls
the Initialise Execute and Finalise functions of each Tool.

Very simple right?...

Ok now if we wanted to take hypothetically 100 events we could call “tools.Execute();”
100 times before “tools.Finalise();” but we can also do that by passing the variable 100 to the
Execute function. E.g.

#include "ToolChain.h"

#include "DummyTool.h"

int main(int argc, char* argv[]){

 ToolChain tools();

 DummyTool dummytool;

 tools.Add("DummyTool",&dummytool,"configfiles/DummyToolConfig");

 tools.Initialise();

 tools.Execute();

 tools.Finalise();

 return 0;

}

tools.Initialise();

tools.Execute(100);

tools.Finalise();

This is known as Inline operation of ToolDAQ. There are two other running modes
Interactive and Remote.

In Interactive execution will start a prompt where you can Initialise, Execute and
Finalise the Tools manually (good for debugging). You can also call Start Stop
Pause Unpause etc for continuous operation. E.g:

Start: calls Initialise then Execute in a Loop:
Stop: calls Finalise
Pause and Unpause: halt and continue the Execute loop

To do this in the main we just exchange the Initialise Execute and Finalise calls for
an Interactive one like the following:

Remote operation works the same way, The same Initialise….Start….etc. functions
as before can be sent from a remote machine rather than the current one. To use
remote mode we just exchange “tools.Interactive()” for “tools.Remote()” in the above
code.

Hopefully that’s quite simple and we will return to how to operate the code in remote
mode in a later section.

However whilst this is a good instructional example it has a flaw for operation,
namely you have to recompile every time you want to change Tools and Running
mode etc. What if we want to do it on the fly or remotely?

#include "ToolChain.h"

#include "DummyTool.h"

int main(int argc, char* argv[]){

 ToolChain tools();

 DummyTool dummytool;

 tools.Add("DummyTool",&dummytool,"configfiles/DummyToolConfig");

 tools.Interactive()

 return 0;

}

Well, you have already seen that Tools can be added from a config file so why not
make the operation modes and everything word dynamically via a config file? Well
that’s what I did. So your main shrinks to just this.

Which you will notice is exactly what’s in src/main.cpp. But now you need a config
file to run it so let’s look at the format of that.

The ToolChainConfig file

So let’s look at a ToolChainConfig file:

#include <string>

#include "ToolChain.h"

#include "DummyTool.h"

int main(int argc, char* argv[]){

 std::string conffile;

 if (argc==1)conffile="configfiles/ToolChainConfig";

 ToolChain tools(conffile);

 return 0;

}

Each variable of the file is in a section so let’s look at them one at a time

Tools To Add #####

Tools_File configfiles/ToolsConfig

This is the path the config file which lists the Tools to add to our ToolChain the form
of this file can be seen in the Tools section.

Run Type #####

Inline 1

Interactive 0

Remote 0

The Run Type should be self-explanatory if you have read the previous part about
creating a main, but it allows you to choose which of the three run types you want
using a bool 1 and 0. Node for Inline operation you can use an integer to define how
many executions you want. Eg for 100 events you could put “Inline 100”.

#ToolChain dynamic setup file

Runtime Parameters #####

verbose 9

error_level 0 # 0= do not exit, 1= exit on unhandeled errors only, 2= exit on unhandeled errors and

handeled errors

attempt_recover 1

remote_port 24004

Logging #####

log_mode Interactive # Interactive=cout , Remote= remote logging system "serservice_name

Remote_Logging" , Local = local file log;

log_local_path ./log

log_service LogStore

log_port 24010

Service discovery #####

service_discovery_address 239.192.1.1

service_discovery_port 5000

service_name main_service2

service_publish_sec 5

service_kick_sec 60

Tools To Add #####

Tools_File configfiles/ToolsConfig

Run Type #####

Inline 1

Interactive 0

Remote 0

To Be Continued…..

Sec 7. Logging

As always you’re free to write your own logs for your Tools separately but there is a
centralised log available for all output.

Technically if you use std::cout your already using it. As ToolDAQ hijacks the standard out
stream and redirects it through its own buffer class. This means that everything printed to
screen can be redirected to a file instead or over the network to a computer tasked with
storing the logs for all systems running ToolDAQ. Either if these three options are available
by changing the configfiles/TooChainConfig config file.

There are a lot of variables in here and they are discussed in detail in the ToolChain section
but for now your

To Be Continued…..

