#include "Python.h" #ifdef MS_WINDOWS #include /* struct timeval */ #endif #if defined(__APPLE__) #include /* mach_absolute_time(), mach_timebase_info() */ #endif #define _PyTime_check_mul_overflow(a, b) \ (assert(b > 0), \ (_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \ || _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a)) /* To millisecond (10^-3) */ #define SEC_TO_MS 1000 /* To microseconds (10^-6) */ #define MS_TO_US 1000 #define SEC_TO_US (SEC_TO_MS * MS_TO_US) /* To nanoseconds (10^-9) */ #define US_TO_NS 1000 #define MS_TO_NS (MS_TO_US * US_TO_NS) #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) /* Conversion from nanoseconds */ #define NS_TO_MS (1000 * 1000) #define NS_TO_US (1000) static void error_time_t_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp out of range for platform time_t"); } static void _PyTime_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp too large to convert to C _PyTime_t"); } _PyTime_t _PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div) { _PyTime_t intpart, remaining; /* Compute (ticks * mul / div) in two parts to prevent integer overflow: compute integer part, and then the remaining part. (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div The caller must ensure that "(div - 1) * mul" cannot overflow. */ intpart = ticks / div; ticks %= div; remaining = ticks * mul; remaining /= div; return intpart * mul + remaining; } time_t _PyLong_AsTime_t(PyObject *obj) { #if SIZEOF_TIME_T == SIZEOF_LONG_LONG long long val; val = PyLong_AsLongLong(obj); #else long val; Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long)); val = PyLong_AsLong(obj); #endif if (val == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) { error_time_t_overflow(); } return -1; } return (time_t)val; } PyObject * _PyLong_FromTime_t(time_t t) { #if SIZEOF_TIME_T == SIZEOF_LONG_LONG return PyLong_FromLongLong((long long)t); #else Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long)); return PyLong_FromLong((long)t); #endif } /* Round to nearest with ties going to nearest even integer (_PyTime_ROUND_HALF_EVEN) */ static double _PyTime_RoundHalfEven(double x) { double rounded = round(x); if (fabs(x-rounded) == 0.5) { /* halfway case: round to even */ rounded = 2.0*round(x/2.0); } return rounded; } static double _PyTime_Round(double x, _PyTime_round_t round) { /* volatile avoids optimization changing how numbers are rounded */ volatile double d; d = x; if (round == _PyTime_ROUND_HALF_EVEN) { d = _PyTime_RoundHalfEven(d); } else if (round == _PyTime_ROUND_CEILING) { d = ceil(d); } else if (round == _PyTime_ROUND_FLOOR) { d = floor(d); } else { assert(round == _PyTime_ROUND_UP); d = (d >= 0.0) ? ceil(d) : floor(d); } return d; } static int _PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator, long idenominator, _PyTime_round_t round) { double denominator = (double)idenominator; double intpart; /* volatile avoids optimization changing how numbers are rounded */ volatile double floatpart; floatpart = modf(d, &intpart); floatpart *= denominator; floatpart = _PyTime_Round(floatpart, round); if (floatpart >= denominator) { floatpart -= denominator; intpart += 1.0; } else if (floatpart < 0) { floatpart += denominator; intpart -= 1.0; } assert(0.0 <= floatpart && floatpart < denominator); if (!_Py_InIntegralTypeRange(time_t, intpart)) { error_time_t_overflow(); return -1; } *sec = (time_t)intpart; *numerator = (long)floatpart; assert(0 <= *numerator && *numerator < idenominator); return 0; } static int _PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator, long denominator, _PyTime_round_t round) { assert(denominator >= 1); if (PyFloat_Check(obj)) { double d = PyFloat_AsDouble(obj); if (Py_IS_NAN(d)) { *numerator = 0; PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); return -1; } return _PyTime_DoubleToDenominator(d, sec, numerator, denominator, round); } else { *sec = _PyLong_AsTime_t(obj); *numerator = 0; if (*sec == (time_t)-1 && PyErr_Occurred()) { return -1; } return 0; } } int _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) { if (PyFloat_Check(obj)) { double intpart; /* volatile avoids optimization changing how numbers are rounded */ volatile double d; d = PyFloat_AsDouble(obj); if (Py_IS_NAN(d)) { PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); return -1; } d = _PyTime_Round(d, round); (void)modf(d, &intpart); if (!_Py_InIntegralTypeRange(time_t, intpart)) { error_time_t_overflow(); return -1; } *sec = (time_t)intpart; return 0; } else { *sec = _PyLong_AsTime_t(obj); if (*sec == (time_t)-1 && PyErr_Occurred()) { return -1; } return 0; } } int _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, _PyTime_round_t round) { return _PyTime_ObjectToDenominator(obj, sec, nsec, SEC_TO_NS, round); } int _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, _PyTime_round_t round) { return _PyTime_ObjectToDenominator(obj, sec, usec, SEC_TO_US, round); } _PyTime_t _PyTime_FromSeconds(int seconds) { _PyTime_t t; /* ensure that integer overflow cannot happen, int type should have 32 bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30 bits). */ Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS); Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS); t = (_PyTime_t)seconds; assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS) || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS)); t *= SEC_TO_NS; return t; } _PyTime_t _PyTime_FromNanoseconds(_PyTime_t ns) { /* _PyTime_t already uses nanosecond resolution, no conversion needed */ return ns; } int _PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj) { long long nsec; _PyTime_t t; if (!PyLong_Check(obj)) { PyErr_Format(PyExc_TypeError, "expect int, got %s", Py_TYPE(obj)->tp_name); return -1; } Py_BUILD_ASSERT(sizeof(long long) == sizeof(_PyTime_t)); nsec = PyLong_AsLongLong(obj); if (nsec == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) { _PyTime_overflow(); } return -1; } /* _PyTime_t already uses nanosecond resolution, no conversion needed */ t = (_PyTime_t)nsec; *tp = t; return 0; } #ifdef HAVE_CLOCK_GETTIME static int pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise) { _PyTime_t t, nsec; int res = 0; Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t)); t = (_PyTime_t)ts->tv_sec; if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) { if (raise) { _PyTime_overflow(); } res = -1; t = (t > 0) ? _PyTime_MAX : _PyTime_MIN; } else { t = t * SEC_TO_NS; } nsec = ts->tv_nsec; /* The following test is written for positive only nsec */ assert(nsec >= 0); if (t > _PyTime_MAX - nsec) { if (raise) { _PyTime_overflow(); } res = -1; t = _PyTime_MAX; } else { t += nsec; } *tp = t; return res; } int _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts) { return pytime_fromtimespec(tp, ts, 1); } #endif #if !defined(MS_WINDOWS) static int pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise) { _PyTime_t t, usec; int res = 0; Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t)); t = (_PyTime_t)tv->tv_sec; if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) { if (raise) { _PyTime_overflow(); } res = -1; t = (t > 0) ? _PyTime_MAX : _PyTime_MIN; } else { t = t * SEC_TO_NS; } usec = (_PyTime_t)tv->tv_usec * US_TO_NS; /* The following test is written for positive only usec */ assert(usec >= 0); if (t > _PyTime_MAX - usec) { if (raise) { _PyTime_overflow(); } res = -1; t = _PyTime_MAX; } else { t += usec; } *tp = t; return res; } int _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv) { return pytime_fromtimeval(tp, tv, 1); } #endif static int _PyTime_FromDouble(_PyTime_t *t, double value, _PyTime_round_t round, long unit_to_ns) { /* volatile avoids optimization changing how numbers are rounded */ volatile double d; /* convert to a number of nanoseconds */ d = value; d *= (double)unit_to_ns; d = _PyTime_Round(d, round); if (!_Py_InIntegralTypeRange(_PyTime_t, d)) { _PyTime_overflow(); return -1; } *t = (_PyTime_t)d; return 0; } static int _PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round, long unit_to_ns) { if (PyFloat_Check(obj)) { double d; d = PyFloat_AsDouble(obj); if (Py_IS_NAN(d)) { PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); return -1; } return _PyTime_FromDouble(t, d, round, unit_to_ns); } else { long long sec; Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t)); sec = PyLong_AsLongLong(obj); if (sec == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) { _PyTime_overflow(); } return -1; } if (_PyTime_check_mul_overflow(sec, unit_to_ns)) { _PyTime_overflow(); return -1; } *t = sec * unit_to_ns; return 0; } } int _PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) { return _PyTime_FromObject(t, obj, round, SEC_TO_NS); } int _PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) { return _PyTime_FromObject(t, obj, round, MS_TO_NS); } double _PyTime_AsSecondsDouble(_PyTime_t t) { /* volatile avoids optimization changing how numbers are rounded */ volatile double d; if (t % SEC_TO_NS == 0) { _PyTime_t secs; /* Divide using integers to avoid rounding issues on the integer part. 1e-9 cannot be stored exactly in IEEE 64-bit. */ secs = t / SEC_TO_NS; d = (double)secs; } else { d = (double)t; d /= 1e9; } return d; } PyObject * _PyTime_AsNanosecondsObject(_PyTime_t t) { Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t)); return PyLong_FromLongLong((long long)t); } static _PyTime_t _PyTime_Divide(const _PyTime_t t, const _PyTime_t k, const _PyTime_round_t round) { assert(k > 1); if (round == _PyTime_ROUND_HALF_EVEN) { _PyTime_t x, r, abs_r; x = t / k; r = t % k; abs_r = Py_ABS(r); if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) { if (t >= 0) { x++; } else { x--; } } return x; } else if (round == _PyTime_ROUND_CEILING) { if (t >= 0) { return (t + k - 1) / k; } else { return t / k; } } else if (round == _PyTime_ROUND_FLOOR){ if (t >= 0) { return t / k; } else { return (t - (k - 1)) / k; } } else { assert(round == _PyTime_ROUND_UP); if (t >= 0) { return (t + k - 1) / k; } else { return (t - (k - 1)) / k; } } } _PyTime_t _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) { return _PyTime_Divide(t, NS_TO_MS, round); } _PyTime_t _PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round) { return _PyTime_Divide(t, NS_TO_US, round); } static int _PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us, _PyTime_round_t round) { _PyTime_t secs, ns; int usec; int res = 0; secs = t / SEC_TO_NS; ns = t % SEC_TO_NS; usec = (int)_PyTime_Divide(ns, US_TO_NS, round); if (usec < 0) { usec += SEC_TO_US; if (secs != _PyTime_MIN) { secs -= 1; } else { res = -1; } } else if (usec >= SEC_TO_US) { usec -= SEC_TO_US; if (secs != _PyTime_MAX) { secs += 1; } else { res = -1; } } assert(0 <= usec && usec < SEC_TO_US); *p_secs = secs; *p_us = usec; return res; } static int _PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv, _PyTime_round_t round, int raise) { _PyTime_t secs, secs2; int us; int res; res = _PyTime_AsTimeval_impl(t, &secs, &us, round); #ifdef MS_WINDOWS tv->tv_sec = (long)secs; #else tv->tv_sec = secs; #endif tv->tv_usec = us; secs2 = (_PyTime_t)tv->tv_sec; if (res < 0 || secs2 != secs) { if (raise) { error_time_t_overflow(); } return -1; } return 0; } int _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) { return _PyTime_AsTimevalStruct_impl(t, tv, round, 1); } int _PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) { return _PyTime_AsTimevalStruct_impl(t, tv, round, 0); } int _PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us, _PyTime_round_t round) { _PyTime_t secs; int res; res = _PyTime_AsTimeval_impl(t, &secs, us, round); *p_secs = secs; if (res < 0 || (_PyTime_t)*p_secs != secs) { error_time_t_overflow(); return -1; } return 0; } #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) int _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts) { _PyTime_t secs, nsec; secs = t / SEC_TO_NS; nsec = t % SEC_TO_NS; if (nsec < 0) { nsec += SEC_TO_NS; secs -= 1; } ts->tv_sec = (time_t)secs; assert(0 <= nsec && nsec < SEC_TO_NS); ts->tv_nsec = nsec; if ((_PyTime_t)ts->tv_sec != secs) { error_time_t_overflow(); return -1; } return 0; } #endif static int pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise) { #ifdef MS_WINDOWS FILETIME system_time; ULARGE_INTEGER large; assert(info == NULL || raise); GetSystemTimeAsFileTime(&system_time); large.u.LowPart = system_time.dwLowDateTime; large.u.HighPart = system_time.dwHighDateTime; /* 11,644,473,600,000,000,000: number of nanoseconds between the 1st january 1601 and the 1st january 1970 (369 years + 89 leap days). */ *tp = large.QuadPart * 100 - 11644473600000000000; if (info) { DWORD timeAdjustment, timeIncrement; BOOL isTimeAdjustmentDisabled, ok; info->implementation = "GetSystemTimeAsFileTime()"; info->monotonic = 0; ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled); if (!ok) { PyErr_SetFromWindowsErr(0); return -1; } info->resolution = timeIncrement * 1e-7; info->adjustable = 1; } #else /* MS_WINDOWS */ int err; #ifdef HAVE_CLOCK_GETTIME struct timespec ts; #else struct timeval tv; #endif assert(info == NULL || raise); #ifdef HAVE_CLOCK_GETTIME err = clock_gettime(CLOCK_REALTIME, &ts); if (err) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } if (pytime_fromtimespec(tp, &ts, raise) < 0) { return -1; } if (info) { struct timespec res; info->implementation = "clock_gettime(CLOCK_REALTIME)"; info->monotonic = 0; info->adjustable = 1; if (clock_getres(CLOCK_REALTIME, &res) == 0) { info->resolution = res.tv_sec + res.tv_nsec * 1e-9; } else { info->resolution = 1e-9; } } #else /* HAVE_CLOCK_GETTIME */ /* test gettimeofday() */ #ifdef GETTIMEOFDAY_NO_TZ err = gettimeofday(&tv); #else err = gettimeofday(&tv, (struct timezone *)NULL); #endif if (err) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } if (pytime_fromtimeval(tp, &tv, raise) < 0) { return -1; } if (info) { info->implementation = "gettimeofday()"; info->resolution = 1e-6; info->monotonic = 0; info->adjustable = 1; } #endif /* !HAVE_CLOCK_GETTIME */ #endif /* !MS_WINDOWS */ return 0; } _PyTime_t _PyTime_GetSystemClock(void) { _PyTime_t t; if (pygettimeofday(&t, NULL, 0) < 0) { /* should not happen, _PyTime_Init() checked the clock at startup */ Py_UNREACHABLE(); } return t; } int _PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info) { return pygettimeofday(t, info, 1); } static int pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise) { #if defined(MS_WINDOWS) ULONGLONG ticks; _PyTime_t t; assert(info == NULL || raise); ticks = GetTickCount64(); Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t)); t = (_PyTime_t)ticks; if (_PyTime_check_mul_overflow(t, MS_TO_NS)) { if (raise) { _PyTime_overflow(); return -1; } /* Hello, time traveler! */ Py_UNREACHABLE(); } *tp = t * MS_TO_NS; if (info) { DWORD timeAdjustment, timeIncrement; BOOL isTimeAdjustmentDisabled, ok; info->implementation = "GetTickCount64()"; info->monotonic = 1; ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled); if (!ok) { PyErr_SetFromWindowsErr(0); return -1; } info->resolution = timeIncrement * 1e-7; info->adjustable = 0; } #elif defined(__APPLE__) static mach_timebase_info_data_t timebase; static uint64_t t0 = 0; uint64_t ticks; if (timebase.denom == 0) { /* According to the Technical Q&A QA1398, mach_timebase_info() cannot fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ (void)mach_timebase_info(&timebase); /* Sanity check: should never occur in practice */ if (timebase.numer < 1 || timebase.denom < 1) { PyErr_SetString(PyExc_RuntimeError, "invalid mach_timebase_info"); return -1; } /* Check that timebase.numer and timebase.denom can be casted to _PyTime_t. In practice, timebase uses uint32_t, so casting cannot overflow. At the end, only make sure that the type is uint32_t (_PyTime_t is 64-bit long). */ assert(sizeof(timebase.numer) < sizeof(_PyTime_t)); assert(sizeof(timebase.denom) < sizeof(_PyTime_t)); /* Make sure that (ticks * timebase.numer) cannot overflow in _PyTime_MulDiv(), with ticks < timebase.denom. Known time bases: * always (1, 1) on Intel * (1000000000, 33333335) or (1000000000, 25000000) on PowerPC None of these time bases can overflow with 64-bit _PyTime_t, but check for overflow, just in case. */ if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) { PyErr_SetString(PyExc_OverflowError, "mach_timebase_info is too large"); return -1; } t0 = mach_absolute_time(); } if (info) { info->implementation = "mach_absolute_time()"; info->resolution = (double)timebase.numer / (double)timebase.denom * 1e-9; info->monotonic = 1; info->adjustable = 0; } ticks = mach_absolute_time(); /* Use a "time zero" to reduce precision loss when converting time to floatting point number, as in time.monotonic(). */ ticks -= t0; *tp = _PyTime_MulDiv(ticks, (_PyTime_t)timebase.numer, (_PyTime_t)timebase.denom); #elif defined(__hpux) hrtime_t time; time = gethrtime(); if (time == -1) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } *tp = time; if (info) { info->implementation = "gethrtime()"; info->resolution = 1e-9; info->monotonic = 1; info->adjustable = 0; } #else struct timespec ts; #ifdef CLOCK_HIGHRES const clockid_t clk_id = CLOCK_HIGHRES; const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; #else const clockid_t clk_id = CLOCK_MONOTONIC; const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; #endif assert(info == NULL || raise); if (clock_gettime(clk_id, &ts) != 0) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); return -1; } return -1; } if (info) { struct timespec res; info->monotonic = 1; info->implementation = implementation; info->adjustable = 0; if (clock_getres(clk_id, &res) != 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } info->resolution = res.tv_sec + res.tv_nsec * 1e-9; } if (pytime_fromtimespec(tp, &ts, raise) < 0) { return -1; } #endif return 0; } _PyTime_t _PyTime_GetMonotonicClock(void) { _PyTime_t t; if (pymonotonic(&t, NULL, 0) < 0) { /* should not happen, _PyTime_Init() checked that monotonic clock at startup */ Py_UNREACHABLE(); } return t; } int _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info) { return pymonotonic(tp, info, 1); } #ifdef MS_WINDOWS static int win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info) { static LONGLONG frequency = 0; static LONGLONG t0 = 0; LARGE_INTEGER now; LONGLONG ticksll; _PyTime_t ticks; if (frequency == 0) { LARGE_INTEGER freq; if (!QueryPerformanceFrequency(&freq)) { PyErr_SetFromWindowsErr(0); return -1; } frequency = freq.QuadPart; /* Sanity check: should never occur in practice */ if (frequency < 1) { PyErr_SetString(PyExc_RuntimeError, "invalid QueryPerformanceFrequency"); return -1; } /* Check that frequency can be casted to _PyTime_t. Make also sure that (ticks * SEC_TO_NS) cannot overflow in _PyTime_MulDiv(), with ticks < frequency. Known QueryPerformanceFrequency() values: * 10,000,000 (10 MHz): 100 ns resolution * 3,579,545 Hz (3.6 MHz): 279 ns resolution None of these frequencies can overflow with 64-bit _PyTime_t, but check for overflow, just in case. */ if (frequency > _PyTime_MAX || frequency > (LONGLONG)_PyTime_MAX / (LONGLONG)SEC_TO_NS) { PyErr_SetString(PyExc_OverflowError, "QueryPerformanceFrequency is too large"); return -1; } QueryPerformanceCounter(&now); t0 = now.QuadPart; } if (info) { info->implementation = "QueryPerformanceCounter()"; info->resolution = 1.0 / (double)frequency; info->monotonic = 1; info->adjustable = 0; } QueryPerformanceCounter(&now); ticksll = now.QuadPart; /* Use a "time zero" to reduce precision loss when converting time to floatting point number, as in time.perf_counter(). */ ticksll -= t0; /* Make sure that casting LONGLONG to _PyTime_t cannot overflow, both types are signed */ Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks)); ticks = (_PyTime_t)ticksll; *tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency); return 0; } #endif int _PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info) { #ifdef MS_WINDOWS return win_perf_counter(t, info); #else return _PyTime_GetMonotonicClockWithInfo(t, info); #endif } _PyTime_t _PyTime_GetPerfCounter(void) { _PyTime_t t; if (_PyTime_GetPerfCounterWithInfo(&t, NULL)) { Py_UNREACHABLE(); } return t; } int _PyTime_Init(void) { /* check that time.time(), time.monotonic() and time.perf_counter() clocks are working properly to not have to check for exceptions at runtime. If a clock works once, it cannot fail in next calls. */ _PyTime_t t; if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) { return -1; } if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) { return -1; } if (_PyTime_GetPerfCounterWithInfo(&t, NULL) < 0) { return -1; } return 0; } int _PyTime_localtime(time_t t, struct tm *tm) { #ifdef MS_WINDOWS int error; error = localtime_s(tm, &t); if (error != 0) { errno = error; PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #else /* !MS_WINDOWS */ if (localtime_r(&t, tm) == NULL) { #ifdef EINVAL if (errno == 0) { errno = EINVAL; } #endif PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #endif /* MS_WINDOWS */ } int _PyTime_gmtime(time_t t, struct tm *tm) { #ifdef MS_WINDOWS int error; error = gmtime_s(tm, &t); if (error != 0) { errno = error; PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #else /* !MS_WINDOWS */ if (gmtime_r(&t, tm) == NULL) { #ifdef EINVAL if (errno == 0) { errno = EINVAL; } #endif PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #endif /* MS_WINDOWS */ }