
Simulating Water Cherenkov Detectors

Using WCSim

Thomas Dealtry, Alexander Himmel, Johannes Hoppenau, Joseph Lozier

February 10, 2016

Contents

1 Overview 2

2 The WCSim Geometry 2
2.1 Hierarchy of Volumes . 2

3 Setup your own detector 4
3.1 Parameters . 4
3.2 Example . 8
3.3 Warnings . 9
3.4 Input Files . 10

4 DAQ classes - for dark noise, digitization, and triggering 10
4.1 WCSimWCAddDarkNoise . 10
4.2 WCSimWCDigitizer . 11
4.3 WCSimWCTrigger . 12
4.4 Input files . 13

4.4.1 Digitizer options . 13
4.4.2 Trigger options . 14
4.4.3 Dark noise options . 15

5 Output Root File 16
5.1 The Class Hierarchy . 17
5.2 How to Use the Files . 19

1

1 Overview

WCSim is a flexible Geant4-based simulation of a water-Cherenkov detector with top and
side photo-multiplier tubes. Given basic parameters about the detector, it automatically
lays out the PMTs so you can get started simulating events as soon as possible. This
document will describe the detector geometry and all its elements. It describes how to set
up a new custom detector and how to configure the simulation options. Finally, it describes
the ROOT output file and how to access the stored data with some simple examples.

2 The WCSim Geometry

The WCSimDetectorConstruction::ConstructCylinder() method returns a pointer to a
logical volume that contains an upright cylindrical detector. The function is defined
in src/WCSimConstructCylinder.cc. The inner detector consists only of blacksheet and
PMTs, and the optional top veto outer detector contains only blacksheet, whitesheet, and
PMTs.

The PMTs and the blacksheet are organized into cells along the cylinder walls plus a
top and bottom cap. This structure makes it easy to add outer detector PMTs to the sides
and bottom or a steel structure behind the blacksheet. The method is written generically,
making it possible to simulate many different detectors.

2.1 Hierarchy of Volumes

This section describes the the volumes that make up the detector. (Figure 1)

ExpHall is the world volume. It is not constructed in src/WCSimConstructCylinder.cc

but in src/WCSimDetectorConstruction.cc.

WC is a tubs filled with air. At the moment it only contains one daughter volume:
WCBarrel is a tubs filed with water. It contains all of the current detector

structure (PMTs and blacksheet), divided into the annulus and the caps:
WCBarrelAnnulus is the main part of the detector wall. It is divided into

rings:
WCBarrelRing each one cell high, which are then divided into cells:
WCBarrelCell These cells contain one or more PMTs (WCPMT’s)

and the blacksheet (WCBarrelCellBlackSheet). Each cell is flat and
represents one modular detector section.

WCTopCapAssembly and WCBottomCapAssembly are two mirrored vol-
umes that close the ends of the barrel. They are constructed by calling
src/WCSimWCSimDetectorConstruction::ConstructCaps(G4int zflip),

2

where the argument, zflip, equals 1 to generate the BottomCapAssem-
bly and -1 to generate the TopCapAssembly. This method allows sym-
metric changes to the caps by editing ConstructCaps and avoids using
Geant’s built-in ReflectionFactory, which is incompatible with the Opti-
calSurface used to model certain PMT properties.
WCCap This volume contains all of the cap PMTs (WCPMT) and the

blacksheet behind them (WCCapBlackSheet) which extends around
the cylinder edges to connect to:

WCBarrelBorderRing This volume connects the annulus to the cap. It
is essentially the uppermost (or lowermost) ring of PMTs, but has a
modified bounding-box geometry and is contained in the CapAssem-
bly because it must mate at the corner with the caps. (N.B. See 3.3,
for information on corner geometry.) The border ring is divided into
cells:

WCBarrel

WCTopCapAssembly

WCBottomCapAssembly

WCTopCap

WCBottomCap

WCBarrelAnnulus

WCBarrelRing
(WCBarrelCells)

WCBarrelBorderRing

WCBarrelBorderRing
(WCBarrelBorderCells)

WCBarrelCellBlackSheet

Figure 1: On the left is a 3D schematic of the cylindrical detector and on the right is a 2D
cross-section that better shows the volume hierarchy contained in WCBarrel. The outermost
level is ExpHall (dotted black line) which is an air-filled rectangle. It contains WC (narrow
black line), the volume returned by WCSimDetectorConstruction::ConstructCylinder().
Inside it is the water-filled cylinder WCBarrel (blue) whose sub-volumes are labeled on the
right and described in the text below.

3

WCBarrelBorderCell that contain the same number of PMTs (WCPMT)
and the same blacksheet (WCBarrelCellBS) as the normal annulus
cells.

WCExtraTower is a tower that is narrower than the normal cells that is
added if the number of PMTs circumferentially is not divisible by the
number of PMTs horizontally in each cell. It is divided into cells:
WCExtraTowerCell that contains the remaining PMTs (WCPMT) and

blacksheet (WCTowerBlackSheet) (figure 2). The cap assemblies
contain a corresponding this corresponding extra cell called WCEx-
traBorderCell.

WCPMT is a single cylindrical volume containing a single PMT model that is placed
many times in the detector. The volume is described in src/WCSimWCSimConstructPMT.cc.
The surrounding volume is cylindrical with a coordinate origin where its axis intersects
the blacksheet (not a standard tubs) (red box, 5). The PMT is made up of two sub-volumes,
both spherical caps: the hollow glass outer face of the PMT (GlassFaceWCPMT) and the
inner vacuum (InteriorWCPMT). The optical inner coating of the PMT glass is modeled as
an OpticalSurface (not a volume) (GlassCathodeSurface) between the glass and vacuum.
(See also 5.) Any components added to this single volume (e.g., an acrylic pressure vessel)
are replicated and placed along with every PMT.

3 Setup your own detector

The dimensions of the detector to be setup must be described in member variables of
WCSimDetectorConstruction before calling WCSimDetectorConstruction::ConstructCylinder().
This section describes which geometric parameters must be set. The easiest and least error-
prone way to to set the variables is to add a method to the WCSimDetectorConfigs.cc file
that is a copy of an existing detector configuration with the necessary changes. You can
either call this function in the constructor of WCSimDetectorConstruction or add it to the
detector messenger (src/WCSimDetectorMessenger.cc) if you want call it in a macro file
or you want to change the detector setup dynamically. If you want to do this, you first have
to use the command that calls your function (/WCSim/WCgeom <geometry name>) to set the
parameters, and afterwards the detector construction command (/WCSim/Construct) to
(re)construct the geometry.

3.1 Parameters

To set up a new detector geometry the following parameters must be set:

CreatePMTObject("PMTType") instantiates a PMT of type PMTType as defined in the
WCSimPMTObject.cc file. This function also returns the pointer to the PMTObject

4

R
e
g
u
la

r C
e
ll

extra tower

Figure 2: If the number of PMTs in one cell (in this example, 2) does not divide the total
number of PMTs in one ring (in this example, 2), there is an extra tower that contains the
remaining PMTs

inn
erA

nn
ulu

sR
ad
ius

verticalSpacing

barrelCellWidth

b
a
rre

lC
e
llH

e
ig
h
t

dPhi

ou
ter

An
nu
lus

Ra
diu

s

Figure 3: Each cell holds blacksheet and multiple PMTs. All labeled lengths are calculated
automatically. In the current version, the PMTs are distributed equally in horizontal and
vertical direction.

5

WCIDDiameter

W
C
ID
H
e
ig
h
t

W
C
B
a
rre
lP
M
T
O
ff
se
t

WCPMTExposeHeight

WCPMTRadiusWCCapPMTSpacing

≤WCCapEdgeLimit

Figure 4: These are among the variables you have to set to create a new detector geometry.

and stores the pointer in memory to be accessed by other files which use the PMT
properties (for example, the pe conversion in WCSimWCPMT.cc). The current op-
tions are PMTType = PMT8inch, PMT10inch, PMT10inchHQE, PMT12inchHQE,
PMT20inch, or HPD20inchHQE.

WCPMTRadius, WCPMTExposeHeight (see figure 5) are the radius at blacksheet and
height above blacksheet, respectively, of the PMTs. This information is retrieved
using the pointer that is returned by CreatePMTObject.

WCPMTGlassThickness the thickness of the glass face. This information is retrieved
using the pointer that is returned by CreatePMTObject.

WCIDDiameter, WCIDHeight These two variables are used to setup the size of the de-

6

WCPMTExposeHeight

PMTOffset

WCPMTRadius

WCPMTGlassThickness

sphereRadius WCPMT

Figure 5: The PMTs are segments of spheres. All parts are contained in the bounding
cylinder, WCPMT (red). The PMT glass (GlassFaceWCPMT, blue) and the sensitive
volume, the inner vacuum (InteriorWCPMT, green) are contained within. Also present
is the optical coating between the glass and vacuum (GlassCathodeSurface, yellow).
To define the geometry of the PMTs you need to set the WCPMTGlassThickness, the
WCPMTRadius, and the WCPMTExposeHight

tector. The height is the distance between the inner surfaces of the top and bottom
blacksheets and the diameter is two times the shortest distance between the inner
surface of the wall blacksheet and the center of the detector (see figure 4). This
shortest radius occurs at the center of normal (not extra) cells, and is perpendicular
to the blacksheet.

WCBarrelPMTO�set The cap volumes contain vertical space in stripes along the edges of
the detector to make room for the cap PMTs (N.B. See 3.3, for information on corner
geometry). This variable defines the width of these stripes. Specifically, the offset is
the vertical distance from the inner surface of the cap blacksheet to the upper edge of
the top cell. This edge is half the vertical PMT spacing vertically above the center of
each PMT in the uppermost (or lowermost) ring.

WCPMTperCellHorizontal, WCPMTperCellVertical are two integers that define the ar-
rangement of PMTs within each cell, the product of which gives the number of PMTs
in each cell.

WCBarrelNumPMTHorizontal defines the number of PMTs circumferentially around the
detector. If WCPMTperCellHorizontal does not divide this number, there will be an
extra cell in each ring, which contains the remaining PMTs.

WCBarrelNRings defines how many rings of cells there will be vertically. The total number
of PMTs in a vertical column will be the product of this number and WCPMTperCel-
lVertical.

7

WCCapPMTSpacing defines the center-to-center spacing of the PMTs on the top and the
bottom caps of the detector.

WCCapEdgeLimit is the maximum distance between the center of the cap and the outer
edge of a cap PMT (the edge is WCPMTRadius away from the center of the PMT,
whose coordinates on the cap are half-integer multipules of WCCapPMTSpacing).
This length has to be smaller than half the WCIDDiameter. Otherwise there may be
PMTs that intersect the edge of the caps. The WCSimConstructCylinder places PMTs
on the caps in a grid subject only to this constraint. Note that the four centermost cap
PMTs are equidistant from the cylinder axis.

WCBlackSheetThickness the thickness of the blacksheet.

WCAddGd a boolean that, when true, dopes the water volume with .01% Gadolinium by
mass.

All other values needed to set up the geometry are derived from these variables.

3.2 Example

void WCSimDetectorConstruction :: SetSuperKGeometry ()

{

WCSimPMTObject * PMT = CreatePMTObject("PMT20inch");

WCPMTName = PMT ->GetPMTName ();

WCPMTExposeHeight = PMT ->GetExposeHeight ();

WCPMTRadius = PMT ->GetRadius ();

WCPMTGlassThickness = PMT ->GetPMTGlassThickness ();

WCIDDiameter = 33.6815*m;// 16.900*2*

//cos (2*pi*rad /75)*m;

WCIDHeight = 36.200*m;

WCBarrelPMTOffset = 0.0715*m; // offset from vertical

WCBarrelNumPMTHorizontal = 150;

WCBarrelNRings = 17.;

WCPMTperCellHorizontal= 4;

WCPMTperCellVertical = 3;

WCCapPMTSpacing = 0.707*m; // distance between centers

// of top and bottom pmts

WCCapEdgeLimit = 16.9*m;

WCBlackSheetThickness = 2.0*cm;

WCAddGd = false;

}

This is the Super-K setup. This method is located at the beginning of src/WCSimWCSimDetectorConfigs.cc.
It is called in the constructor of WCSimDetectorConstruction. In SK the PMTs are arranged
in 4× 3 cells (WCPMTperCellHorizontal and WCPMTperCellVertical). All in all there are

8

Figure 6: The topmost and bottommost PMTs could intersect the border of the cells.

51 rings of PMTs (3 lines in each cell times 17 lines of cells (WCBarrelNRings)). Each line
contains 150 PMTs (WCBarrelNumPMTHorizontal). As 150 divided by 4 is 37.5, there are 37
regular 4× 3 cells and one 2× 3 cell in one ring. Note that Super-K’s plans specify a 16.9
meter radius to the corner between cells, some trigonometry was required to translate this
to a perpendicular distance, almost 6 cm less.

The vertical spacing of the PMTs is

WCIDHeight− 2 · WCBarrelPMTOffset
WCBarrelNRings · WCPMTperCellVertical = 0.707m.

between the bottom (and top) blacksheet and the cells on the wall, there is a gap of 7.15 cm
(WCBarrelPMTOffset).

The caps are completely filled with PMTs, because WCCapEdgeLimit is equal to the
detector diameter.
3.3 Warnings

If the PMTs have a large WCPMTExposeHeight and there is not enough space between the
PMTs and the borders of the cells, the PMTs could intersect the edge of the border cells,
because the border of these cells are slanted (see figure 6).

This can also happen at the caps if WCCapEdgeLimit is close to the inner radius of the
detector and WCBarrelPMTOffset is small.

During the setup an incomplete checking for obvious overlaps occurs. You should see a
lot of the flowing lines:
Checking overlaps for volume WCBarrelPMT ... OK!

If you see warnings instead, it is likely that there are too large or too many PMTs. An
absence of warnings does not mean that there are no overlaps.

9

There is no check if the placement of the PMTs on caps is correct. It would take to much
time to do this check every time, because there are too many PMTs in side a single volume.

Some rules of thumb to avoid overlaps are: WCBarrelPMTOffset > WCPMTExposeHeight

or WCIDDiameter / 2 - WCCapEdgeLimit > WCPMTExposeHeight ensures cap PMTs are
fully within the cap volume, and vertical spacing of the PMTs / 2 > WCPMTExposeHeight

+ WCPMTRadius ensures the top and bottom ring PMTs are within WCBarrelBorderRing.
These rules are general, and PMTs may be placed closer with careful attention to geometry.
Collisions are not an issue in Super-K, and newer detectors with smaller, more-efficient
(and thus sparser) PMTs should have little issue provided reasonable specifications of
WCCapEdgeLimit and WCBarrelPMTOffset.

3.4 Input Files

Some tuning parameters are found in jobOptions.mac and tuning_parameters.mac, which
are in separate files because they must be loaded at specific times during initialization. The
bulk of options, however, may be found in WCSim.mac, the default input file. WCSim is a
GEANT4 program and accepts GEANT4 commands as an input file or at runtime. GEANT
documentation describes the commands not detailed here.

/WCSim/WCgeom selects a set of geometry parameters (see 3.1.) It does not create a new
geometry. New geometries are easily added and a full list of those already available
may be found in src/WCSimDetectorMessenger.cc

/WCSim/Construct constructs the detector geometry in memory based on the previously
selected parameters. Takes no arguments.

/WCSim/PMTQEMethod Selects the quantum efficiency method. Possible arguments
are: Stacking_Only, in which the QE is applied to reduce the total number of pho-
tons when the photons are generated; Stacking_And_SensitiveDetector, which
the (constant) QE at the most efficient wavelength is applied at photon creation,
then the remaining (wavelength-dependent) loss is applied at the detector; and
SensitiveDetector_Only, in which QE is applied at the detector only.

/WCSim/PMTCollE� Selects wavelength-dependent (on) or -independent (off) quan-
tum efficiency model.

/WCSim/SavePi0 Selects whether or not Pi0-specific information is saved, options are
true and false.

10

4 DAQ classes - for dark noise, digitization, and triggering

4.1 WCSimWCAddDarkNoise

In order for the effect of dark noise to be included correctly in the simulation it must be
added throughout the time of the event. The easiest way to do this would be to add dark
noise in a large window that is sure to incorporate any late activity (e.g. Michel electrons).
Unfortunately this is computationally expensive, so this class has various options to add
the dark noise only at relevant times.

In a prede�ned absolute time window Set the first/last time and fill in the area in-between
with dark noise.

In a prede�ned time window around each hit Set the duration of the window (note that
noise is added in the range hit time− τ/2 to hit time + τ/2, where τ is the window
value in the .mac file).

The optimal mode and values need to be tuned to each simulation type (e.g. electron
particle gun, muon particle gun, beam, atmospherics, ...).

4.2 WCSimWCDigitizer

This part of the code uses a base class (WCSimWCDigitizerBase), and concrete imple-
mentations (e.g. WCSimWCDigitizerSKI). The purpose of the class is to take an input
WCSimWCDigitsCollection (“WCRawPMTSignalCollection”, the collection of hits includ-
ing dark noise) and output a WCSimWCDigitsCollection (“WCDigitizedStoreCollection”,
the collection of digits). In this, a “hit” is a photoelectron (from a Cherenkov photon or
dark noise) depositing charge on a PMT, and a “digit” is an integration of photons which
includes electronics threshold effects.

In order to implement your own digitizer class, you must create your own class derived
from WCSimWCDigitizerBase in WCSimWCDigitizer.{hh,cc} and implement the following:

constructor This must:

• Call the base constructor i.e. WCSimWCDigitizerBase(name, myDetector, myMessenger,

DigitizerType_t)

• Set triggerClassName
• Call GetVariables()

void DigitizeHits(WCSimWCDigitsCollection*) Should do charge integration, pulse fit-
ting, etc.

static void Threshold(double& pe, int& i�ag) Should set conditions (e.g. charge cut)
when a digit is rejected

11

int GetDefaultDeadTime()

int GetDefaultIntegrationWindow()

If your new class has any options (e.g. integration time, deadtime, ...) these options should
be added to WCSimWCDigitizerBase and not the derived class. This is due to the way that
the options are read in.

The complete steps to add a new digitizer class are as follows:

• Create the new class, derived from WCSimWCDigitizerBase.

• Add the new digitizer type to WCSimEnumerations.hh.

• Add the creation of the new digitizer class to the WCSimEventAction constructor.

• Add the new option to the list of allowed digitizers in WCSimWCDAQMessenger (there
are 2 places in the code to add this!).

• If there are any new-digitizer-specific options:

– Add the new parameters to the WCSimWCDigitizerBase class, including set
methods.

– Add the new options to the WCSimWCDAQMessenger class, including calls to the
new WCSimWCDigitizerBase set methods.

– Document the new options in this document, and in daq.mac.

WCSimWCTriggerBase assumes that “WCDigitizedStoreCollection” has, on a given PMT,
its digits ordered in time. This ordering should be maintained in all new digitizer classes,
in order for trigger classes to function correctly.

4.3 WCSimWCTrigger

This part of the code uses a base class (WCSimWCTriggerBase), and concrete implemen-
tations (e.g. WCSimWCTriggerNDigits). The purpose of the class is to take an input
WCSimWCDigitsCollection (“WCDigitizedStoreCollection”, the collection of digits) and
output a WCSimWCDigitsCollection (“WCDigitizedCollection”, the collection of triggered
digits), and a series of vector’s with the trigger times, trigger types, and extra trigger
information.

In order to implement your own trigger class, you must create your own class derived
from WCSimWCTriggerBase in WCSimWCTrigger.{cc,hh} and implement the following:

constructor This must:

• Call the base constructor i.e. WCSimWCTriggerBase(name, myDetector, myMessenger)

• Set triggerClassName

12

• Call GetVariables()

void DoTheWork(WCSimWCDigitsCollection*) Calls the relevant trigger algorithm(s).
If calling multiple algorithms, also handles the creation/deletion of intermediate
WCSimWCDigitsCollection’s.

void Alg*(WCSimWCDigitsCollection*) Your new algorithm. Should fill the vector’s:
TriggerTimes, TriggerTypes, TriggerInfos with relevant information. Currently
all algorithms are added to WCSimWCTriggerBase in order for new triggers to use
multiple algorithms without copying code.

The following default values of trigger options can also be implemented, if an NDigits-like
trigger is used in the class:

int GetDefaultMultiDigitsPerTrigger()

int GetDefaultNDigitsWindow()

int GetDefaultNDigitsThreshold()

int GetDefaultNDigitsPreTriggerWindow()

int GetDefaultNDigitsPostTriggerWindow()

If your new class has any options (e.g. threshold, ...) these options should be added to
WCSimWCTriggerBase and not the derived class. This is due to the way that the options are
read in.

The complete steps to add a new trigger class are as follows:

• Add the new algorithm to WCSimWCTriggerBase.

• Add the new trigger type to WCSimEnumerations.hh (if applicable).

• Create the new class, derived from WCSimWCTriggerBase.

• Add the new option to the list of allowed triggers in WCSimWCDAQMessenger (there
are 2 places in the code to add this!).

• Add the creation of the new trigger class to the WCSimEventAction constructor.

• If there are any new-trigger-specific options:

– Add the new parameters to the WCSimWCTriggerBase class, including set meth-
ods.

– Add the new options to the WCSimWCDAQMessenger class, including calls to the
new WCSimWCTriggerBase set methods.

– Document the new options in this document, and in daq.mac.

13

4.4 Input �les

4.4.1 Digitizer options

The digitizer class to use is chosen in WCSim.mac, the default input file.

/DAQ/Digitizer selects the digitizer to use. Available arguments include SKI. New dig-
itizers are easily added and a full list of those already available may be found in
src/WCSimWCSimWCDAQMessenger.cc.

Digitizer-specific options are specified in daq.mac.

/DAQ/DigitizerOpt/IntegrationWindow selects how long the digitizer integrates for. The
default is class specific (for SKI it is 400 ns).

/DAQ/DigitizerOpt/DeadTime selects for how long after creating a digit the digitizer is
dead for. The default is class specific (for SKI it is 0 ns).

4.4.2 Trigger options

The trigger class to use is chosen in WCSim.mac, the default input file.

/DAQ/Trigger selects the trigger class to use. Available arguments include NDigits. New
triggers are easily added and a full list of those already available may be found in
src/WCSimWCSimWCDAQMessenger.cc.

Trigger-specific options are specified in daq.mac.

/DAQ/MultiDigitsPerTrigger specifies whether to allow multiple digits per PMT per
trigger, or restrict the saved digits in a trigger to the first on a PMT. The default is
class specific (for NDigits it is false).

/DAQ/TriggerNDigits/Threshold selects the threshold number of hits for the NDigits
trigger. The default is class specific (for NDigits it is 25).

/DAQ/TriggerNDigits/Window selects the time window to apply the NDigits trigger to.
The default is class specific (for NDigits it is 200 ns).

/DAQ/TriggerNDigits/AdjustForNoise specifies whether the NDigits threshold should
be automatically increased to take account of the average dark noise rate. The default
is true.

/DAQ/TriggerNDigits/PreTriggerWindow selects how far in the past (relative to the
trigger time) to save digits to the output file. The value is forced negative. The
default is class specific (for NDigits it is −400 ns).

14

/DAQ/TriggerNDigits/PostTriggerWindow selects how far in the future (relative to the
trigger time) to save digits to the output file. The value is forced positive. The default
is class specific (for NDigits it is +950 ns).

/DAQ/TriggerSaveFailures/Mode selects which triggers to save. Allowed options are:

0. Save only events which pass triggers;
1. Save both events which pass triggers, and events which fail triggers (with a

dummy trigger time);
2. Save only events which fail triggers (with a dummy trigger time).

The default mode is 0.

/DAQ/TriggerSaveFailures/TriggerTime selects the dummy trigger time for events which
fail all triggers. The default is 100 ns.

/DAQ/TriggerSaveFailures/PreTriggerWindow selects how far in the past (relative to
the trigger time) to save digits to the output file. The value is forced negative. The
default is −400 ns.

/DAQ/TriggerSaveFailures/PostTriggerWindow selects how far in the future (relative to
the trigger time) to save digits to the output file. The value is forced positive. The
default is +950 ns.

4.4.3 Dark noise options

Dark noise options may be chosen in WCSim.mac, the default input file.

/DarkRate/SetDarkRate selects the dark noise rate. Common values are 0 kHz (i.e. off),
4.2 kHz (SKI default), and 8.4 kHz (20” HPDs and box and line PMTs).

/DarkRate/SetConvert converts dark noise frequency before digitization to after digi-
tization by setting suitable factor. Common values are 1.367 (normal PMTs), 1.120
(HPDs), 1.126 (box and line PMTs).

/DarkRate/SetDarkMode selects how to add dark noise. Allowed options are:

0. Adds dark noise in range /DarkRate/SetDarkLow to /DarkRate/SetDarkHigh;
1. Adds dark noise in a ±(/DarkRate/SetDarkWindow)/2 window around each

hit.

The default mode is 1.

/DarkRate/SetDarkLow When using dark mode 0, add dark noise in a window starting
at this value.

15

WCSimRootEvent (0)
WCSimRootEvent (1)

WCSimRootEvent (i)

WCSimRootTrigger[0,1...]

WCSimRootHeader
Run number, event number, date

Event Vertex, N tracks, N hits, total charge...

WCSimRootTrack[0,1...]

Momentum, start/stop position, species, parent...

WCSimRootChenkovHit[0,1...]
Tube ID, N true hits, position of hits in HitTimes

WCSimRootCherenkovHitTime[0,1...]

True time, parent species

WCSimRootCherenkovDigiHit[0,1...]
Digitized charge, digitized time

Figure 7: The class hierarchy of the WCSimRootEvent written to the output file.

/DarkRate/SetDarkHigh When using dark mode 0, add dark noise in a window ending
at this value.

/DarkRate/SetDarkWindow When using dark mode 1, add dark noise in a±(/DarkRate/SetDarkWindow)/2
window around each hit.

5 Output Root File

WCSim writes the results of the simulation in a root file. You can set the name and path of
this file in the WCSim.mac file using the /WCSimIO/RootFile command. To read from the
root file, the command gSystem.Load("<WCSim Directory >/libWCSimRoot.so") should
be run in root to load shared classes. This shared object library is created by running
"gmake shared" on the command line.

A typical analysis will loop through events (one per simulated initial vertex), and in

16

each event loop through the observed triggers (usually one for the initial particles and
sometimes additional triggers for delayed decay products). In each tigger, you access a
list of digitized hits, each containing the charge, time, and ID of the hit PMT. To get the
location of the hit, you use the geometry object to access the PMT object that corresponds
to that Tube ID. This structure avoids having to store a list containing every PMT in every
sub-event.

The files sample-root-scripts/read_PMT.C and sample-root-scripts/testgeo.C pro-
vide general examples for how to read wcsimT and wcsimGeoT, and are probably the best
starting point for custom analysis. There is also some annotated example code in the next
subsection.

5.1 The Class Hierarchy

The root file itself contains 2 TTrees, each with only 1 branch containing a custom object:
wcsimT with branch wcsimrootevent and wcsimGeoT with branch wcsimrootgeom. The first
has an entry corresponding to each GEANT event and contains the truth and hit data, while
the second has only 1 entry which contains the geometry information for the simulated
detector. Below is a description of the class hierarchy for these two objects.

WCSimRootEvent is a container for the observed triggers. It always contains at least 1
trigger (number 0) which contains the information about the initial particle tracks
given to GEANT. If there are delayed decay particles, these “sub-events” are added
as additional triggers numbered from 1 onwards.

• GetTrigger(int i) - Return trigger number i, a WCSimRootTrigger*

• GetNumberOfEvents() - Total observed triggers
• GetNumberOfSubEvents() - Number of sub-event triggers (GetNumberOfEvents()-1)
• HasSubEvents() - Return true if there is more than 1 trigger

WCSimRootTrigger Container for all the information associated with a single trig-
ger
• GetHeader() - return the header with run and event numbers, etc.
• GetTriggerType() - return the trigger type enumeration
• GetTriggerInfo() - return additional trigger information (e.g. the number

of digits in the trigger decision window that caused the trigger to trigger)
• GetPi0Info() - return Pi0 information if it was set to be stored in the mac

file
• GetMode() - interaction mode code number
• GetVtx(int i) - event vertex, 0=x, 1=y, 2=z
• GetNpar() - number of true particles
• GetNtrack() - number of true particle tracks
• GetTracks() - TClonesArray of true particle tracks

17

• GetNumTubesHit() -number of tubes with a true hit (quantum efficiency is
already applied) (Note: “true” hit means either a photon or dark noise hit)

• GetNcherenkovhits() - number of tubes with a true hit (quantum efficiency
is already applied)

• GetCherenkovHits() - true PMT hits in each PMT (quantum efficiency is
already applied)

• GetNcherenkovhittimes() - number of true hits (quantum efficiency is
already applied)

• GetCherenkovHitTimes() - the true times of all the hits (quantum efficiency
is already applied)

• GetNcherenkovdigihits() - number of digitized hits
• GetSumQ() - sum of digitized charge
• GetCherenkovDigiHits() - digitized hits e.g. charge read out by the simu-

lated electronics
WCSimRootHeader is a simple container for the run number, event number,

and date of the event.
WCSimRootTrack is a true track of a particles generated in the simulation.

It contains all the information about the track, like particle species, mass,
momentum, the start and top volumes, and the parent species. In each
trigger the number of tracks is given by GetNTrack().

WCSimRootCherenkovHit These hits are records of photons hitting the PMTs
before the digitization step (and associated threshold, etc.). In each trigger
the number of true Cherenkov hits is given by GetNcherenkovhits().
• GetTotalPe(0) - the position in the array of HitTimes
• GetTotalPe(1) - the number of true photons that hit this PMT, which is

also the number of entries in that list that belong to this PMT
• GetTubeID() - tube id number

WCSimRootCherenkovHitTime This list stores the true time and parent ids of
each Cherenkov photon. So, by looking up the photons associated with a
particular PMT as above, the particles which contributed light to a particular
phototube can be determined.
• GetTruetime() - true time of the hit
• GetParentID() - ID number of parent, allowing each photon to be

traced to a specific true particle
WCSimRootCherenkovDigiHit These hits are the final output of the simulation.

In each trigger the number of digitized hits is given by GetNcherenkovdigihits().
The charge and time variables are those returned by the simulated electron-
ics.
• GetQ() - the total charge measured by the PMT
• GetT() - the measured time of the hit
• GetPhotonIds() - the position in WCSimRootCherenkovHitTime of the

18

raw hits that contribute to this digit. This allows tracing from digit to
specific true particle, or noise

• GetTubeId() - ID number of the PMT

WCSimRootGeom has methods GetWCCylRadius(), GetWCCylLength(), GetWCPMTRadius()
and GetWCNumPMT(), which return, respectively, the radius and length of the detector
cylinder, the PMT radius, and the total number of PMTs. The class can also return
PMT objects by tube number via GetPMT(i).

WCSimRootPMT contains information for each PMT in the detector.
• GetTubeNo() - the tube ID.
• GetCylLoc() - 0 for a PMT on the top cap, 2 for a PMT on the bottom cap,

and 1 for a PMT for a wall PMT.
• GetPosition(j) - where j is 0, 1, or 2. Returns the x, y, and z coordinates of

the center of the sphere that forms the PMT.
• GetOrientation(j) - where j is 0, 1, or 2. Returns the x, y, and z components

of the vector describing the direction the PMT faces.

5.2 How to Use the Files

There are example scripts showing how to use the root files in sample-root-scripts, but here
are the basics of how to get the information out of the root file.

First, you need to load the root library into memory and assign the two WCSim branches:

gROOT ->Load("libWCSimRoot.so");

TTree *wcsimT = f->Get("wcsimT");

WCSimRootEvent *wcsimrootevent = new WCSimRootEvent ();

wcsimT ->SetBranchAddress("wcsimrootevent",&wcsimrootevent);

TTree *wcsimGeoT = f->Get("wcsimGeoT");

WCSimRootGeom* wcsimrootgeom = new WCSimRootGeom ();

wcsimGeoT ->SetBranchAddress("wcsimrootgeom",&wcsimrootgeom);

wcsimrootgeom ->GetEntry (0);

Since the geometry tree has only one entry, you may as well load it right away. You loop
through the events as with any root tree. However, to get at any real information from
the events, you will need to load the triggers. The first trigger contains the main event
information so here we will only load the first trigger. Then from the trigger we can load
and loop through all the digitized hits.

wcsimT ->GetEntry(ev);

WCSimRootTrigger *wcsimroottrigger = wcsimrootevent ->GetTrigger (0);

int ncherenkovdigihits = wcsimrootevent ->GetNcherenkovdigihits ();

19

// Loop through elements in the TClonesArray

for (int i=0; i<ncherenkovdigihits; i++) {

WCSimRootCherenkovDigiHit *hit = (WCSimRootCherenkovDigiHit *)

(wcsimrootevent ->GetCherenkovDigiHits ()->At(i));

double charge = hit ->GetQ ();

}

If you want to know the position of the hit we extracted above, we use the geometry tree
to look up that information based on the TubeID.

int tubeId = hit ->GetTubeId ();

WCSimRootPMT pmt = wcsimrootgeom ->GetPMT(tubeId);

double pmtX = pmt.GetPosition (0);

double pmtY = pmt.GetPosition (1);

double pmtZ = pmt.GetPosition (2);

20

	Overview
	The WCSim Geometry
	Hierarchy of Volumes

	Setup your own detector
	Parameters
	Example
	Warnings
	Input Files

	DAQ classes - for dark noise, digitization, and triggering
	WCSimWCAddDarkNoise
	WCSimWCDigitizer
	WCSimWCTrigger
	Input files
	Digitizer options
	Trigger options
	Dark noise options

	Output Root File
	The Class Hierarchy
	How to Use the Files

