// ROOT headers #include "TCanvas.h" #include "TMath.h" // RooFit headers #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooPlot.h" #include "RooUnitTest.h" #include "RooRealVar.h" #include "RooDataSet.h" // RooStats headers #include "RooStats/NumberCountingUtils.h" #include "RooStats/RooStatsUtils.h" #include "RooStats/TestStatistic.h" #include "RooStats/HypoTestCalculatorGeneric.h" #include "stressRooStats_models.cxx" // Global functions that build complex RooStats models using namespace ROOT::Math; using namespace RooFit; using namespace RooStats; // testStatType = 0 Simple Likelihood Ratio (the LEP TestStat) // = 1 Ratio of Profiled Likelihood Ratios (the Tevatron TestStat) // = 2 Profile Likelihood Ratio (the LHC TestStat) // = 3 Profile Likelihood One Sided (pll = 0 if mu < mu_hat) // = 4 Profile Likelihood Signed (pll = -pll if mu < mu_hat) // = 5 Max Likelihood Estimate as test statistic // = 6 Number of Observed Events as test statistic enum ECalculatorType { kAsymptotic = 0, kFrequentist = 1, kHybrid = 2 }; enum ETestStatType { kSimpleLR = 0, kRatioLR = 1, kProfileLR = 2, kProfileLROneSided = 3, kProfileLROneSidedDiscovery = 4, kProfileLRSigned = 5, kMLE = 6, kNObs = 7 }; static const char * const kECalculatorTypeString[] = { "Asymptotic", "Frequentist", "Hybrid" }; static const char * const kETestStatTypeString[] = { "Simple-Likelihood-Ratio", "Ratio-Of-Profiled-Likelihoods", "Profile-Likelihood-Ratio", "Profile-Likelihood-One-Sided", "Profile-Likelihood-One-Sided-Discovery", "Profile-Likelihood-Signed", "Max-Likelihood-Estimate", "Number-Of-Observed-Events" }; // static const char * const kETestStatTypeString[] = { "Simple Likelihood Ratio", "Ratio Of Profiled Likelihoods", // "Profile Likelihood Ratio", "Profile Likelihood One-Sided", "Profile Likelihood One-Sided Discovery", // "Profile Likelihood Signed", "Max Likelihood Estimate", "Number Of Observed Events" }; static HypoTestCalculatorGeneric * buildHypoTestCalculator(const ECalculatorType calculatorType, RooAbsData &data, const ModelConfig &nullModel, const ModelConfig &altModel, const UInt_t toysNull, const UInt_t toysAlt); static TestStatistic *buildTestStatistic(const ETestStatType testStatType, const ModelConfig &sbModel, const ModelConfig &bModel); //_____________________________________________________________________________ /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // // PART ONE: // PROFILE LIKELIHOOD CALCULATOR UNIT TESTS // #include "RooStats/ProfileLikelihoodCalculator.h" #include "RooStats/LikelihoodInterval.h" #include "RooStats/LikelihoodIntervalPlot.h" #include "RooStats/HypoTestResult.h" /////////////////////////////////////////////////////////////////////////////// // // PROFILE LIKELIHOOD CALCULATOR - LIKELIHOOD INTERVAL - GAUSSIAN DISTRIBUTION // // Test the likelihood interval computed by the profile likelihood calculator // on a Gaussian distribution. Reference interval limits are computed via // analytic methods: solve equation 2*(ln(LL(xMax))-ln(LL(x)) = q, where q = // normal_quantile_c(testSize/2, 1). In the case of a Gaussian distribution, the // interval limits are equal to: mean +- normal_quantile_c(testSize/2, sigma/sqrt(N)). // // ModelConfig (implicit) : // Observable -> x // Parameter of Interest -> mean // Nuisance parameter (Constant !) -> sigma // // Input Parameters: // confidenceLevel -> Confidence Level of the interval we are calculating // // 03/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestProfileLikelihoodCalculator1 : public RooUnitTest { private: Double_t fConfidenceLevel; public: TestProfileLikelihoodCalculator1( TFile* refFile, Bool_t writeRef, Int_t verbose, Double_t confidenceLevel = 0.95 ) : RooUnitTest("ProfileLikelihoodCalculator Interval - Gaussian Model", refFile, writeRef, verbose), fConfidenceLevel(confidenceLevel) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fConfidenceLevel <= 0.0 || fConfidenceLevel >= 1.0) { Warning("isTestAvailable", "Confidence level must be in the range (0,1). Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { const Int_t N = 10; // number of observations // the compared values / objects must have the same name in write / compare modes const TString lowerLimitString = TString::Format("tplc2_lower_limit_mean_%lf", fConfidenceLevel); const TString upperLimitString = TString::Format("tplc2_upper_limit_mean_%lf", fConfidenceLevel); //TODO: see why it fails for a small number of observations // Create Gaussian model, generate data set and define RooWorkspace* w = new RooWorkspace("w", kTRUE); w->factory("Gaussian::gauss(x[-5,5], mean[0,-5,5], sigma[1])"); RooDataSet *data = w->pdf("gauss")->generate(*w->var("x"), N); if (_write == kTRUE) { // Calculate likelihood interval from data via analytic methods Double_t estMean = data->mean(*w->var("x")); Double_t intervalHalfWidth = normal_quantile_c((1.0 - fConfidenceLevel) / 2.0, w->var("sigma")->getValV() / sqrt((double)N)); Double_t lowerLimit = estMean - intervalHalfWidth; Double_t upperLimit = estMean + intervalHalfWidth; // Compare the limits obtained via ProfileLikelihoodCalculator with analytically estimated values regValue(lowerLimit, lowerLimitString); regValue(upperLimit, upperLimitString); } else { // Calculate likelihood interval using the ProfileLikelihoodCalculator ProfileLikelihoodCalculator *plc = new ProfileLikelihoodCalculator(*data, *w->pdf("gauss"), *w->var("mean")); plc->SetConfidenceLevel(fConfidenceLevel); LikelihoodInterval *interval = plc->GetInterval(); // Register analytically computed limits in the reference file regValue(interval->LowerLimit(*w->var("mean")), lowerLimitString); regValue(interval->UpperLimit(*w->var("mean")), upperLimitString); // Cleanup branch objects delete plc; delete interval; } // Cleanup local objects delete data; delete w; return kTRUE ; } }; /////////////////////////////////////////////////////////////////////////////// // // PROFILE LIKELIHOOD CALCULATOR - LIKELIHOOD INTERVAL - POISSON DISTRIBUTION // // Test the 68% likelihood interval computed by the profile likelihood calculator // on a Poisson distribution, from only one observed value. Reference values are // computed via analytic methods: solve equation 2*[ln(LL(xMax)) - ln(LL(x))] = 1. // // ModelConfig (implicit) : // Observable -> x // Parameter of Interest -> mean // // Input Parameters: // obsValue -> observed value in experiment // // 03/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestProfileLikelihoodCalculator2 : public RooUnitTest { private: Int_t fObsValue; public: TestProfileLikelihoodCalculator2( TFile* refFile, Bool_t writeRef, Int_t verbose, Int_t obsValue = 5 ) : RooUnitTest("ProfileLikelihoodCalculator Interval - Poisson Simple Model", refFile, writeRef, verbose), fObsValue(obsValue) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValue < 0 || fObsValue > 1000) { Warning("isTestAvailable", "Observed value must be in the range [0,1000]. Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { // the compared values / objects must have the same name in write / compare modes const TString lowerLimitString = TString::Format("tplc2_lower_limit_mean_%d", fObsValue); const TString upperLimitString = TString::Format("tplc2_upper_limit_mean_%d", fObsValue); // write reference values if (_write == kTRUE) { // Solutions of equation 2*[ln(LL(xMax)) - ln(LL(x))] = 1, where xMax is the point of maximum likelihood // For the special case of the Poisson distribution with N = 1, xMax = obsValue TString llRatioExpression = TString::Format("2*(x-%d*log(x)-%d+%d*log(%d))", fObsValue, fObsValue, fObsValue, fObsValue); // Special case fObsValue = 0 because log(0) not computable, the limit of n * log(n), n->0 must be taken if (fObsValue == 0) llRatioExpression = TString::Format("2*x"); TF1 *llRatio = new TF1("llRatio", llRatioExpression, 1e-100, fObsValue); // lowerLimit < obsValue Double_t lowerLimit = llRatio->GetX(1); llRatio->SetRange(fObsValue, 1000); // upperLimit > obsValue Double_t upperLimit = llRatio->GetX(1); // Compare the limits obtained via ProfileLikelihoodCalculator with the likelihood ratio analytic computations regValue(lowerLimit, lowerLimitString); regValue(upperLimit, upperLimitString); // Cleanup branch objects delete llRatio; // compare with reference values } else { // Set a 68% confidence level for the interval const Double_t confidenceLevel = 2 * normal_cdf(1) - 1.0; // Create Poisson model and dataset RooWorkspace* w = new RooWorkspace("w", kTRUE); w->factory(TString::Format("Poisson::poiss(x[%d,0,1000], mean[0,1000])", fObsValue)); RooDataSet *data = new RooDataSet("data", "data", *w->var("x")); data->add(*w->var("x")); // Calculate likelihood interval using the ProfileLikelihoodCalculator ProfileLikelihoodCalculator *plc = new ProfileLikelihoodCalculator(*data, *w->pdf("poiss"), *w->var("mean")); plc->SetConfidenceLevel(confidenceLevel); LikelihoodInterval *interval = plc->GetInterval(); // Register externally computed limits in the reference file regValue(interval->LowerLimit(*w->var("mean")), lowerLimitString); regValue(interval->UpperLimit(*w->var("mean")), upperLimitString); // Cleanup branch objects delete plc; delete interval; delete data; delete w; } return kTRUE ; } }; /////////////////////////////////////////////////////////////////////////////// // // PROFILE LIKELIHOOD CALCULATOR - LIKELIHOOD INTERVAL - POISSON PRODUCT MODEL // // Test the 68% likelihood interval computed by the ProfileLikelihoodCalculator // on a complex model. Reference values and test values are both computed with // the ProfileLikelihoodCalculator. As such, this test can only confirm if the // ProfileLikelihoodCalculator has the same behaviour across different computer // platforms or RooStats revisions. // // ModelConfig (explicit) : Poisson Product Model // built in stressRooStats_models.cxx // // Input Parameters: // obsValueX -> observed value "x" when measuring sig + bkg1 // obsValueY -> observed value "y" when measuring 2*sig*1.2^beta + bkg2 // confidenceLevel -> Confidence Level of the interval we are calculating // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestProfileLikelihoodCalculator3 : public RooUnitTest { private: Int_t fObsValueX; Int_t fObsValueY; Double_t fConfidenceLevel; public: TestProfileLikelihoodCalculator3( TFile* refFile, Bool_t writeRef, Int_t verbose, Int_t obsValueX = 15, Int_t obsValueY = 30, Double_t confidenceLevel = 2 * normal_cdf(1) - 1 ) : RooUnitTest("ProfileLikelihoodCalculator Interval - Poisson Product Model", refFile, writeRef, verbose), fObsValueX(obsValueX), fObsValueY(obsValueY), fConfidenceLevel(confidenceLevel) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValueX < 0 || fObsValueX > 30) { Warning("isTestAvailable", "Observed value X=s+b must be in the range [0,30]. Skipping test..."); return kFALSE; } if (fObsValueY < 0 || fObsValueY > 80) { Warning("isTestAvailable", "Observed value Y=2*s*1.2^beta+b must be in the range [0,80]. Skipping test..."); return kFALSE; } if (fConfidenceLevel <= 0.0 || fConfidenceLevel >= 1.0) { Warning("isTestAvailable", "Confidence level must be in the range (0,1). Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { // Create workspace and model RooWorkspace *w = new RooWorkspace("w", kTRUE); buildPoissonProductModel(w); ModelConfig *model = (ModelConfig *)w->obj("S+B"); // add observed values to data set w->var("x")->setVal(fObsValueX); w->var("y")->setVal(fObsValueY); w->data("data")->add(*model->GetObservables()); const RooArgSet * initialVariables = model->GetPdf()->getVariables(); w->saveSnapshot("initialVariables",*initialVariables); delete initialVariables; // build likelihood interval with ProfileLikelihoodCalculator ProfileLikelihoodCalculator *plc = new ProfileLikelihoodCalculator(*w->data("data"), *model); plc->SetConfidenceLevel(fConfidenceLevel); LikelihoodInterval *interval = plc->GetInterval(); regValue( interval->LowerLimit(*w->var("sig")), TString::Format("tplc3_lower_limit_sig_%d_%d_%lf", fObsValueX, fObsValueY, fConfidenceLevel) ); regValue( interval->UpperLimit(*w->var("sig")), TString::Format("tplc3_upper_limit_sig_%d_%d_%lf", fObsValueX, fObsValueY, fConfidenceLevel) ); if (_verb > 1) { w->loadSnapshot("initialVariables"); w->writeToFile(TString::Format("stressRooStats_PoissonProductModel_%d_%d.root",fObsValueX, fObsValueY)); } // cleanup delete interval; delete plc; delete w; return kTRUE ; } }; /////////////////////////////////////////////////////////////////////////////// // // PROFILE LIKELIHOOD CALCULATOR HYPOTHESIS TEST - ON / OFF MODEL // // Perform a hypothesis test using the ProfileLikelihoodCalculator on the // on/off model. Reference values and test values are both computed with the // ProfileLikelihoodCalculator. As such, this test can only confirm if the // ProfileLikelihoodCalculator has the same behaviour accross different // computing platforms or RooStats revisions. // // ModelConfig (explicit) : Poisson On / Off Model // built in stressRooStats_models.cxx // // For a detailed description of the on/off model, see the paper: "Evaluation // of three methods for calculating statistical significance when incorporating // a systematic uncertainty into a test of the background-only hypothesis for // a Poisson process" by Robert D. Cousins, James T. Linnemann, Jordan Tucker // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestProfileLikelihoodCalculator4 : public RooUnitTest { public: TestProfileLikelihoodCalculator4( TFile* refFile, Bool_t writeRef, Int_t verbose ) : RooUnitTest("ProfileLikelihoodCalculator Hypothesis Test", refFile, writeRef, verbose) {}; // Override test value tolerance // A larger tolerance is needed since the values in the Cousins paper are given with 1e-2 precision Double_t vtol() { return 1e-2; } Bool_t testCode() { // For testing purposes, we consider four special cases for which the values are known from // the Cousins et al. paper mentioned above. The inputs for each of these cases are (using // the notations from the paper): n_on, n_off and Z_PL. We provide a certain fixed input set // for each case. const Int_t numberTestSets = 3; const Int_t numberOnEvents[numberTestSets] = {4, 50, 67}; const Int_t numberOffEvents[numberTestSets] = {5, 55, 15}; const Double_t tau[numberTestSets] = {5.0, 2.0, 0.5}; const Double_t significance[numberTestSets] = {1.95, 3.02, 3.04}; for (Int_t i = 0; i < numberTestSets; ++i) { TString stringSignificance = TString::Format("tplc4_significance_%d_%d_%lf", numberOnEvents[i], numberOffEvents[i], tau[i]); if (_write == kTRUE) { // register reference values from Cousins et al. paper regValue(significance[i], stringSignificance); } else { // build workspace and model RooWorkspace *w = new RooWorkspace("w", kTRUE); buildOnOffModel(w); ModelConfig *sbModel = (ModelConfig *)w->obj("S+B"); ModelConfig *bModel = (ModelConfig *)w->obj("B"); // add observable values to data set w->var("n_on")->setVal(numberOnEvents[i]); w->var("n_off")->setVal(numberOffEvents[i]); w->var("tau")->setVal(tau[i]); w->var("tau")->setConstant(); w->data("data")->add(*sbModel->GetObservables()); // set snapshots w->var("sig")->setVal(numberOnEvents[i] - numberOffEvents[i] / tau[i]); sbModel->SetSnapshot(*sbModel->GetParametersOfInterest()); w->var("sig")->setVal(0); bModel->SetSnapshot(*bModel->GetParametersOfInterest()); // has as initial value a non-zero value for sig (i.e start with the S+B value) sbModel->LoadSnapshot(); // get significance using the ProfileLikelihoodCalculator ProfileLikelihoodCalculator *plc = new ProfileLikelihoodCalculator(*w->data("data"), *sbModel); plc->SetNullParameters(*bModel->GetSnapshot()); //plc->SetAlternateParameters(*sbModel->GetSnapshot()); // not needed for PLC regValue(plc->GetHypoTest()->Significance(), stringSignificance); // cleanup delete plc; delete w; } } return kTRUE ; } }; // // END OF PART ONE // /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________________________ //_____________________________________________________________________________ /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // // PART TWO: // BAYESIAN CALCULATOR UNIT TESTS // #include "RooStats/BayesianCalculator.h" #include "RooCFunction1Binding.h" // for prior building purposes /////////////////////////////////////////////////////////////////////////////// // // BAYESIAN CENTRAL INTERVAL - SIMPLE MODEL // // Test the Bayesian central interval computed by the BayesianCalculator on a // Poisson distribution, using different priors. The parameter of interest is // the mean of the Poisson distribution, and there are no nuisance parameters. // The priors used are: // 1. constant / uniform // 2. inverse of the mean // 3. square root of the inverse of the mean // 4. gamma distribution // The posterior distribution is easily obtained analytically for these cases. // Therefore, the reference interval limits will be computed analytically. // // ModelConfig (implicit) : // Observable -> x // Parameter of Interest -> mean // // Input Parameters: // obsValue -> observed value in experiment // confidenceLevel -> Confidence Level of the interval we are calculating // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestBayesianCalculator1 : public RooUnitTest { private: Int_t fObsValue; Double_t fConfidenceLevel; static Double_t priorInv(Double_t mean) { return 1.0 / mean; } static Double_t priorInvSqrt(Double_t mean) { return 1.0 / sqrt(mean); } public: TestBayesianCalculator1( TFile* refFile, Bool_t writeRef, Int_t verbose, Int_t obsValue = 3, Double_t confidenceLevel = 2 * normal_cdf(1) - 1 ) : RooUnitTest("BayesianCalculator Central Interval - Poisson Simple Model", refFile, writeRef, verbose), fObsValue(obsValue), fConfidenceLevel(confidenceLevel) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValue < 0 || fObsValue > 100) { Warning("isTestAvailable", "Observed value must be in the range [0,100]. Skipping test..."); return kFALSE; } if (fConfidenceLevel <= 0.0 || fConfidenceLevel >= 1.0) { Warning("isTestAvailable", "Confidence level must be in the range (0,1). Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { // Set the confidence level for a 68.3% CL central interval const Double_t gammaShape = 2; // shape of the gamma distribution prior (gamma = alpha) const Double_t gammaRate = 1; // rate = 1/scale of the gamma distribution prior (beta = 1/theta) const Int_t numberScans = 10000; // tested to be sufficient for the scan of the Bayesian posterior // names of tested variables must be the same in write / comparison modes const TString lowerLimitString = TString::Format("tbc1_lower_limit_unif_%d_%lf", fObsValue, fConfidenceLevel); const TString upperLimitString = TString::Format("tbc1_upper_limit_unif_%d_%lf", fObsValue, fConfidenceLevel); const TString lowerLimitInvString = TString::Format("tbc1_lower_limit_inv_%d_%lf", fObsValue, fConfidenceLevel); const TString upperLimitInvString = TString::Format("tbc1_upper_limit_inv_%d_%lf", fObsValue, fConfidenceLevel); const TString lowerLimitInvSqrtString = TString::Format("tbc1_lower_limit_inv_sqrt_%d_%lf", fObsValue, fConfidenceLevel); const TString upperLimitInvSqrtString = TString::Format("tbc1_upper_limit_inv_sqrt_%d_%lf", fObsValue, fConfidenceLevel); const TString lowerLimitGammaString = TString::Format("tbc1_lower_limit_gamma_%d_%lf", fObsValue, fConfidenceLevel); const TString upperLimitGammaString = TString::Format("tbc1_upper_limit_gamma_%d_%lf", fObsValue, fConfidenceLevel); if (_write == kTRUE) { Double_t lowerLimit = gamma_quantile((1.0 - fConfidenceLevel) / 2, fObsValue + 1, 1); // integrate to 16% Double_t upperLimit = gamma_quantile_c((1.0 - fConfidenceLevel) / 2, fObsValue + 1, 1); // integrate to 84% Double_t lowerLimitInv = gamma_quantile((1.0 - fConfidenceLevel) / 2, fObsValue, 1); Double_t upperLimitInv = gamma_quantile_c((1.0 - fConfidenceLevel) / 2, fObsValue, 1); Double_t lowerLimitInvSqrt = gamma_quantile((1.0 - fConfidenceLevel) / 2, fObsValue + 0.5, 1); Double_t upperLimitInvSqrt = gamma_quantile_c((1.0 - fConfidenceLevel) / 2, fObsValue + 0.5, 1); Double_t lowerLimitGamma = gamma_quantile((1.0 - fConfidenceLevel) / 2, fObsValue + gammaShape, 1.0 / (1 + gammaRate)); Double_t upperLimitGamma = gamma_quantile_c((1.0 - fConfidenceLevel) / 2, fObsValue + gammaShape, 1.0 / (1 + gammaRate)); // Compare the limits obtained via BayesianCalculator with quantile values regValue(lowerLimit, lowerLimitString); regValue(upperLimit, upperLimitString); regValue(lowerLimitInv, lowerLimitInvString); regValue(upperLimitInv, upperLimitInvString); regValue(lowerLimitInvSqrt, lowerLimitInvSqrtString); regValue(upperLimitInvSqrt, upperLimitInvSqrtString); regValue(lowerLimitGamma, lowerLimitGammaString); regValue(upperLimitGamma, upperLimitGammaString); } else { // Create Poisson model RooWorkspace* w = new RooWorkspace("w", kTRUE); w->factory("Poisson::poiss(x[0,100], mean[1e-6,100])"); // TODO: see why it does not work so well for boundary observed values {0, 100} // create prior pdfs w->factory("Uniform::prior(mean)"); w->import(*(new RooCFunction1PdfBinding("priorInv", "priorInv", &priorInv, *w->var("mean")))); w->import(*(new RooCFunction1PdfBinding("priorInvSqrt", "priorInvSqrt", priorInvSqrt, *w->var("mean")))); w->factory(TString::Format("Gamma::priorGamma(mean, %lf, %lf, 0)", gammaShape, gammaRate)); // build argument sets and data set w->defineSet("obs", "x"); w->defineSet("poi", "mean"); w->var("x")->setVal(fObsValue); RooDataSet *data = new RooDataSet("data", "data", *w->set("obs")); data->add(*w->set("obs")); // NOTE: RooIntegrator1D is too slow and gives poor results RooAbsReal::defaultIntegratorConfig()->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D"); // Uniform prior on mean BayesianCalculator *bc = new BayesianCalculator(*data, *w->pdf("poiss"), *w->set("poi"), *w->pdf("prior"), NULL); bc->SetConfidenceLevel(fConfidenceLevel); bc->SetScanOfPosterior(numberScans); SimpleInterval *interval = bc->GetInterval(); regValue(interval->LowerLimit(), lowerLimitString); regValue(interval->UpperLimit(), upperLimitString); delete bc; delete interval; // Inverse of mean prior bc = new BayesianCalculator(*data, *w->pdf("poiss"), *w->set("poi"), *w->pdf("priorInv"), NULL); bc->SetConfidenceLevel(fConfidenceLevel); bc->SetScanOfPosterior(numberScans); interval = bc->GetInterval(); regValue(interval->LowerLimit(), lowerLimitInvString); regValue(interval->UpperLimit(), upperLimitInvString); delete bc; delete interval; // Square root of inverse of mean prior bc = new BayesianCalculator(*data, *w->pdf("poiss"), *w->set("poi"), *w->pdf("priorInvSqrt"), NULL); bc->SetConfidenceLevel(fConfidenceLevel); bc->SetScanOfPosterior(numberScans); interval = bc->GetInterval(); regValue(interval->LowerLimit(), lowerLimitInvSqrtString); regValue(interval->UpperLimit(), upperLimitInvSqrtString); delete bc; delete interval; // Gamma distribution prior bc = new BayesianCalculator(*data, *w->pdf("poiss"), *w->set("poi"), *w->pdf("priorGamma"), NULL); bc->SetConfidenceLevel(fConfidenceLevel); bc->SetScanOfPosterior(numberScans); interval = bc->GetInterval(); regValue(interval->LowerLimit(), lowerLimitGammaString); regValue(interval->UpperLimit(), upperLimitGammaString); // Cleanup branch objects delete bc; delete interval; delete data; delete w; } return kTRUE ; } }; /////////////////////////////////////////////////////////////////////////////// // // BAYESIAN SHORTEST INTERVAL - SIMPLE POISSON MODEL // // Test the Bayesian shortest interval computed by the BayesianCalculator on a // Poisson distribution, using different priors. The parameter of interest is // the mean of the Poisson distribution, and there are no nuisance parameters. // The priors used are: // 1. constant / uniform // 2. inverse of the mean // The reference interval limits are taken from the paper: "Why isn't every // physicist a Bayesian?" by Robert D. Cousins. // // ModelConfig (implicit) : // Observable -> x // Parameter of Interest -> mean // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestBayesianCalculator2 : public RooUnitTest { public: TestBayesianCalculator2( TFile* refFile, Bool_t writeRef, Int_t verbose ) : RooUnitTest("BayesianCalculator Shortest Interval - Poisson Simple Model", refFile, writeRef, verbose) {}; // the references values in the paper have a precision of only two decimal points // in such a situation, it is natural that we increase the value tolerance Double_t vtol() { return 1e-2; } Bool_t testCode() { // Put the confidence level so that we obtain a 68% confidence interval const Double_t confidenceLevel = 2 * normal_cdf(1) - 1; const Int_t obsValue = 3; // observed experiment value const Int_t numberScans = 10000; // sufficient number of scans // names of tested variables must be the same in write / comparison modes const TString lowerLimitString = "tbc2_lower_limit_unif"; const TString upperLimitString = "tbc2_upper_limit_unif"; const TString lowerLimitInvString = "tbc2_lower_limit_inv"; const TString upperLimitInvString = "tbc2_upper_limit_inv"; if (_write == kTRUE) { // Compare the limits obtained via BayesianCalculator with given reference values regValue(1.55, lowerLimitString); regValue(5.15, upperLimitString); regValue(0.86, lowerLimitInvString); regValue(3.85, upperLimitInvString); } else { // Create Poisson model RooWorkspace* w = new RooWorkspace("w", kTRUE); w->factory("Poisson::poiss(x[0,100], mean[1e-6,100])"); w->factory("Uniform::prior(mean)"); w->factory("EXPR::priorInv('1/mean', mean)"); // build argument sets and data set w->defineSet("poi", "mean"); w->defineSet("obs", "x"); w->var("x")->setVal(obsValue); RooDataSet *data = new RooDataSet("data", "data", *w->set("obs")); data->add(*w->set("obs")); // NOTE: RooIntegrator1D is too slow and gives poor results RooAbsReal::defaultIntegratorConfig()->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D"); // Uniform prior on mean BayesianCalculator *bc = new BayesianCalculator(*data, *w->pdf("poiss"), *w->set("poi"), *w->pdf("prior"), NULL); bc->SetConfidenceLevel(confidenceLevel); bc->SetShortestInterval(); bc->SetScanOfPosterior(numberScans); SimpleInterval *interval = bc->GetInterval(); regValue(interval->LowerLimit(), lowerLimitString); regValue(interval->UpperLimit(), upperLimitString); delete bc; delete interval; // Inverse of mean prior bc = new BayesianCalculator(*data, *w->pdf("poiss"), *w->set("poi"), *w->pdf("priorInv"), NULL); bc->SetConfidenceLevel(confidenceLevel); bc->SetShortestInterval(); bc->SetScanOfPosterior(numberScans); interval = bc->GetInterval(); regValue(interval->LowerLimit(), lowerLimitInvString); regValue(interval->UpperLimit(), upperLimitInvString); // Cleanup branch objects delete bc; delete interval; delete data; delete w; } return kTRUE ; } }; /////////////////////////////////////////////////////////////////////////////// // // BAYESIAN CENTRAL INTERVAL - POISSON PRODUCT MODEL // // Test the validity of the central interval computed by the BayesianCalculator // on a complex Poisson model distribution. Reference values and test values // are both computed with the BayesianCalculator. As such, this test can only // confirm if the BayesianCalculator has the same behaviour across different // computing platforms or RooStats revisions. A uniform prior PDF is used for the // parameter of interest ("sig"). // // ModelConfig (explicit) : Poisson Product Model // built in stressRooStats_models.cxx // // Input Parameters: // obsValueX -> observed value "x" when measuring sig + bkg1 // obsValueY -> observed value "y" when measuring 2*sig*1.2^beta + bkg2 // confidenceLevel -> Confidence Level of the interval we are calculating // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestBayesianCalculator3 : public RooUnitTest { private: Int_t fObsValueX; Int_t fObsValueY; Double_t fConfidenceLevel; public: TestBayesianCalculator3( TFile* refFile, Bool_t writeRef, Int_t verbose, Int_t obsValueX = 15, Int_t obsValueY = 30, Double_t confidenceLevel = 2 * normal_cdf(1) - 1 ) : RooUnitTest("BayesianCalculator Central Interval - Poisson Product Model", refFile, writeRef, verbose), fObsValueX(obsValueX), fObsValueY(obsValueY), fConfidenceLevel(confidenceLevel) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValueX < 0 || fObsValueX > 30) { Warning("isTestAvailable", "Observed value X=s+b must be in the range [0,30]. Skipping test..."); return kFALSE; } if (fObsValueY < 0 || fObsValueY > 80) { Warning("isTestAvailable", "Observed value Y=2*s*1.2^beta+b must be in the range [0,80]. Skipping test..."); return kFALSE; } if (fConfidenceLevel <= 0.0 || fConfidenceLevel >= 1.0) { Warning("isTestAvailable", "Confidence level must be in the range (0,1). Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { const Int_t numberScans = 10; // sufficient number of scans // Create workspace and model RooWorkspace *w = new RooWorkspace("w", kTRUE); buildPoissonProductModel(w); ModelConfig *model = (ModelConfig *)w->obj("S+B"); // add observed values to data set w->var("x")->setVal(fObsValueX); w->var("y")->setVal(fObsValueY); w->data("data")->add(*model->GetObservables()); const RooArgSet * initialVariables = model->GetPdf()->getVariables(); w->saveSnapshot("initialVariables",*initialVariables); delete initialVariables; // NOTE: Roo1DIntegrator is too slow and gives poor results RooAbsReal::defaultIntegratorConfig()->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D"); // Create BayesianCalculator and BayesianCalculator *bc = new BayesianCalculator(*w->data("data"), *model); bc->SetConfidenceLevel(fConfidenceLevel); bc->SetScanOfPosterior(numberScans); // Obtain confidence interval by scanning the posterior function in the given number of points SimpleInterval *interval = bc->GetInterval(); regValue( interval->LowerLimit(), TString::Format("tbc3_lower_limit_sig_%d_%d_%lf", fObsValueX, fObsValueY, fConfidenceLevel) ); regValue( interval->UpperLimit(), TString::Format("tbc3_upper_limit_sig_%d_%d_%lf", fObsValueX, fObsValueY, fConfidenceLevel) ); // Cleanup delete bc; delete interval; delete w; return kTRUE ; } }; // // END OF PART TWO // /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________________________ //_____________________________________________________________________________ /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // // PART THREE: // MARKOV CHAIN MONTE CARLO CALCULATOR UNIT TESTS // #include "RooStats/MCMCCalculator.h" #include "RooStats/SequentialProposal.h" /////////////////////////////////////////////////////////////////////////////// // // MCMC INTERVAL CALCULATOR - POISSON PRODUCT MODEL // // Test the validity of the confidence interval computed by the MCMCCalculator // on a complex Poisson model distribution. Reference values and test values // are both computed with the MCMCCalculator. As such, this test can only // confirm if the MCMCCalculator has the same behaviour across different // computing platforms or RooStats revisions. // // ModelConfig (explicit) : Poisson Product Model // built in stressRooStats_models.cxx // // Input Parameters: // obsValueX -> observed value "x" when measuring sig + bkg1 // obsValueY -> observed value "y" when measuring 2*sig*1.2^beta + bkg2 // confidenceLevel -> Confidence Level of the interval we are calculating // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestMCMCCalculator : public RooUnitTest { private: Int_t fObsValueX; Int_t fObsValueY; Double_t fConfidenceLevel; public: TestMCMCCalculator( TFile* refFile, Bool_t writeRef, Int_t verbose, Int_t obsValueX = 15, Int_t obsValueY = 30, Double_t confidenceLevel = 2 * normal_cdf(1) - 1 ) : RooUnitTest("MCMCCalculator Interval - Poisson Product Model", refFile, writeRef, verbose), fObsValueX(obsValueX), fObsValueY(obsValueY), fConfidenceLevel(confidenceLevel) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValueX < 0 || fObsValueX > 30) { Warning("isTestAvailable", "Observed value X=s+b must be in the range [0,30]. Skipping test..."); return kFALSE; } if (fObsValueY < 0 || fObsValueY > 80) { Warning("isTestAvailable", "Observed value Y=2*s*1.2^beta+b must be in the range [0,80]. Skipping test..."); return kFALSE; } if (fConfidenceLevel <= 0.0 || fConfidenceLevel >= 1.0) { Warning("isTestAvailable", "Confidence level must be in the range (0,1). Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { // Create workspace and model RooWorkspace *w = new RooWorkspace("w", kTRUE); buildPoissonProductModel(w); ModelConfig *model = (ModelConfig *)w->obj("S+B"); // add observed values to data set w->var("x")->setVal(fObsValueX); w->var("y")->setVal(fObsValueY); w->data("data")->add(*model->GetObservables()); const RooArgSet * initialVariables = model->GetPdf()->getVariables(); w->saveSnapshot("initialVariables",*initialVariables); delete initialVariables; // NOTE: Roo1DIntegrator is too slow and gives poor results RooAbsReal::defaultIntegratorConfig()->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D"); // create and configure MCMC calculator SequentialProposal *sp = new SequentialProposal(0.1); MCMCCalculator *mcmcc = new MCMCCalculator(*w->data("data"), *model); mcmcc->SetProposalFunction(*sp); mcmcc->SetNumIters(100000); // Metropolis-Hastings algorithm iterations mcmcc->SetNumBurnInSteps(50); // first 50 steps to be ignored as burn-in mcmcc->SetConfidenceLevel(fConfidenceLevel); // calculate the confidence interval MCMCInterval *interval = mcmcc->GetInterval(); regValue( interval->LowerLimit(*w->var("sig")), TString::Format("mcmcc_lower_limit_sig_%d_%d_%lf", fObsValueX, fObsValueY, fConfidenceLevel) ); regValue( interval->UpperLimit(*w->var("sig")), TString::Format("mcmcc_upper_limit_sig_%d_%d_%lf", fObsValueX, fObsValueY, fConfidenceLevel) ); // cleanup delete interval; delete mcmcc; delete sp; delete w; return kTRUE ; } }; // // END OF PART THREE // /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________________________ //_____________________________________________________________________________ /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // // PART FOUR: // HYPOTHESIS TEST CALCULATOR UNIT TESTS // // Hypo Test Calculators #include "RooStats/HypoTestCalculatorGeneric.h" #include "RooStats/FrequentistCalculator.h" #include "RooStats/HybridCalculator.h" #include "RooStats/AsymptoticCalculator.h" #include "RooStats/HypoTestPlot.h" // Test Statistics #include "RooStats/ProfileLikelihoodTestStat.h" #include "RooStats/RatioOfProfiledLikelihoodsTestStat.h" #include "RooStats/SimpleLikelihoodRatioTestStat.h" #include "RooStats/ProfileLikelihoodCalculator.h" #include "RooStats/MaxLikelihoodEstimateTestStat.h" #include "RooStats/NumEventsTestStat.h" ///////////////////////////////////////////////////////////////////////// // // ZBI - ON / OFF MODEL // // Evaluate the functionality of the top level functions in RooStats // called NumberCountingUtils::BinomialWithTauObsZ. This function // computes the significance of a hypothesis test via a frequentist // solution. This significance, called ZBi, is detailed in the article // "Evaluation of three methods for calculating statistical significance // when incorporating a systematic uncertainty into a test of the // background-only hypothesis for a Poisson process" by Robert D. Cousins, // James T. Linnemann, Jordan Tucker. The reference values are taken // from the paper, as well as the On / Off model on which the test is // evaluated. // // ModelConfig (implicit) : Poisson On / Off Model // built in stressRooStats_models.cxx // implicit in NumberCountingUtils::BinomialWithTauObsZ // // 05/2012 - Wouter Verkerke, Lorenzo Moneta, Ioan Gabriel Bucur // ///////////////////////////////////////////////////////////////////////// class TestZBi : public RooUnitTest { public: TestZBi( TFile* refFile, Bool_t writeRef, Int_t verbose ) : RooUnitTest("ZBi Significance - On / Off Model", refFile, writeRef, verbose) {}; // Override test value tolerance // A larger tolerance is needed since the values in the Cousins paper are given with 1e-2 precision Double_t vtol() { return 1e-2; } Bool_t testCode() { // For testing purposes, we consider four special cases for which the values are known from // the Cousins et al. paper mentioned above. The inputs for each of these cases are (using // the notations from the paper): n_on, n_off and Z_PL. We provide a certain fixed input set // for each case. const Int_t numberTestSets = 4; const Int_t numberOnEvents[numberTestSets] = {4, 50, 67, 200}; const Int_t numberOffEvents[numberTestSets] = {5, 55, 15, 10}; const Double_t tau[numberTestSets] = {5.0, 2.0, 0.5, 0.1}; const Double_t significance[numberTestSets] = {1.66, 2.93, 2.89, 2.2}; for (Int_t i = 0; i < numberTestSets; ++i) { TString stringSignificance = TString::Format("tzbi_significance_%d_%d_%lf", numberOnEvents[i], numberOffEvents[i], tau[i]); if (_write == kTRUE) { // register reference values from Cousins et al. paper regValue(significance[i], stringSignificance); } else { // call top level function regValue( NumberCountingUtils::BinomialWithTauObsZ(numberOnEvents[i], numberOffEvents[i], tau[i]), stringSignificance ); } } return kTRUE ; } }; /////////////////////////////////////////////////////////////////////////////// // // ASYMPTOTIC CALCULATOR VS PROFILE LIKELIHOOD CALCULATOR HYPOTHESIS TEST // // This test evaluates the functionality of the AsymptoticCalculator by // comparing the significance given from a hypothesis test on the on/off model // with the significance given by the ProfileLikelihoodCalculator. The validity // of the PLC hypothesis test is evaluated in TestProfileLikelihoodCalculator4. // If working properly, the two methods should yield identical results. // // ModelConfig (explicit) : Poisson On / Off Model // built in stressRooStats_models.cxx // // Input Parameters: // obsValueOn -> observed value "n_on" of sig + bkg // obsValueOff -> observed value "n_off" of tau * bkg // tau -> parameter of the model (constant with regard to integration) // // 05/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestHypoTestCalculator1 : public RooUnitTest { private: Int_t fObsValueOn; Int_t fObsValueOff; Double_t fTau; public: TestHypoTestCalculator1( TFile* refFile, Bool_t writeRef, Int_t verbose, Int_t obsValueOn = 150, Int_t obsValueOff = 100, Double_t tau = 1.0 ) : RooUnitTest("AsymptoticCalculator vs ProfileLikelihoodCalculator Significance - On / Off Model", refFile, writeRef, verbose), fObsValueOn(obsValueOn), fObsValueOff(obsValueOff), fTau(tau) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValueOn < 0 || fObsValueOn > 300) { Warning("isTestAvailable", "Observed value on_source=s+b must be in the range [0,300]. Skipping test..."); return kFALSE; } if (fObsValueOff < 0 || fObsValueOff > 1100) { Warning("isTestAvailable", "Observed value off_source=tau*b must be in the range [0,1100]. Skipping test..."); return kFALSE; } if (fTau < 0.1 || fTau > 5.0) { Warning("isTestAvailable", "On/Off model parameter 'tau' must be in the range [0.1,5.0]. Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { // names of tested variables must be the same in write / comparison modes TString significanceString = TString::Format("thtc1_significance_%d_%d_%lf", fObsValueOn, fObsValueOff, fTau); // build workspace and model RooWorkspace* w = new RooWorkspace("w", kTRUE); buildOnOffModel(w); ModelConfig *sbModel = (ModelConfig *)w->obj("S+B"); ModelConfig *bModel = (ModelConfig *)w->obj("B"); // add observable values to data set and fix other parameters w->var("n_on")->setVal(fObsValueOn); w->var("n_off")->setVal(fObsValueOff); w->var("tau")->setVal(fTau); w->var("tau")->setConstant(); w->data("data")->add(*sbModel->GetObservables()); w->var("bkg")->setVal(fObsValueOff / fTau); // Make snapshots w->var("sig")->setVal(fObsValueOn - fObsValueOff / fTau); sbModel->SetSnapshot(*sbModel->GetParametersOfInterest()); w->var("sig")->setVal(0.0); bModel->SetSnapshot(*bModel->GetParametersOfInterest()); // Do hypothesis test with ProfileLikelihoodCalculator if (_write == kTRUE) { ProfileLikelihoodCalculator *plc = new ProfileLikelihoodCalculator(*w->data("data"), *sbModel); plc->SetNullParameters(*bModel->GetSnapshot()); plc->SetAlternateParameters(*sbModel->GetSnapshot()); regValue(plc->GetHypoTest()->Significance(), significanceString); // cleanup branch delete plc; } else { // Do hypothesis test with AsymptoticCalculator AsymptoticCalculator::SetPrintLevel(_verb); // disable superfluous messaging AsymptoticCalculator *atc = new AsymptoticCalculator(*w->data("data"), *sbModel, *bModel); atc->SetOneSidedDiscovery(kTRUE); regValue(atc->GetHypoTest()->Significance(), significanceString); // cleanup branch delete atc; } // cleanup delete w; return kTRUE ; } } ; /////////////////////////////////////////////////////////////////////////////// // // HYPOTHESIS TEST CALCULATOR TEST - SIMULTANEOUS PDF MODEL // // This test evaluates the functionality of the HypoTestCalculator by // calculating the significance of the signal on a simple Simultaneous Pdf // model with two channels. Reference values and test values are both computed // with the HypoTestCalculator. As such, this test can only confirm if the // HypoTestCalculator has the same behaviour across different computing // platforms or RooStats revisions. // // ModelConfig (explicit) : Simultaneous Model // built in stressRooStats_models.cxx // // Input Parameters: // calculatorType -> Frequentist, Hybrid or Asymptotic // testStatType -> Profile Likelihood Ratio, Simple Likelihood Ratio, etc... // // 06/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestHypoTestCalculator2 : public RooUnitTest { private: ECalculatorType fCalculatorType; ETestStatType fTestStatType; public: TestHypoTestCalculator2( TFile* refFile, Bool_t writeRef, Int_t verbose, ECalculatorType calculatorType = kAsymptotic, ETestStatType testStatType = kProfileLROneSidedDiscovery ) : RooUnitTest(TString::Format("HypoTestCalculator Significance - Simultaneous Pdf - %s - %s", kECalculatorTypeString[calculatorType], kETestStatTypeString[testStatType]), refFile, writeRef, verbose), fCalculatorType(calculatorType), fTestStatType(testStatType) {}; Bool_t testCode() { // Build workspace and models RooWorkspace* w = new RooWorkspace("w", kTRUE); buildSimultaneousModel(w); ModelConfig *sbModel = (ModelConfig *)w->obj("S+B"); ModelConfig *bModel = (ModelConfig *)w->obj("B"); // set snapshots sbModel->SetSnapshot(*sbModel->GetParametersOfInterest()); // value set in model w->var("sig")->setVal(0); bModel->SetSnapshot(*bModel->GetParametersOfInterest()); AsymptoticCalculator::SetPrintLevel(_verb); // is static (don;t care if we don't use it) HypoTestCalculatorGeneric *calc = buildHypoTestCalculator(fCalculatorType, *w->data("data"), *bModel, *sbModel, 500, 50); if(fCalculatorType == kAsymptotic) { ((AsymptoticCalculator *)calc)->SetOneSidedDiscovery(kTRUE); } // ToyMCSampler configuration ToyMCSampler *tmcs = (ToyMCSampler *)calc->GetTestStatSampler(); tmcs->SetTestStatistic(buildTestStatistic(fTestStatType, *bModel, *sbModel)); tmcs->SetUseMultiGen(kTRUE); // speedup // Register result (test significance) HypoTestResult *htr = calc->GetHypoTest(); regValue(htr->Significance(), TString::Format("thtc2_significance_%s_%s", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType])); // corresponding visual plots (in verbose mode) - from tutorials/roostats/StandardHypoTestDemo.C if (_verb >= 1) { if(fCalculatorType != kAsymptotic) { TCanvas *c = new TCanvas("thtc2_canvas", "THTC2 Canvas"); c->cd(1); HypoTestPlot *plot = new HypoTestPlot(*htr,100); plot->SetLogYaxis(kTRUE); plot->Draw(); SamplingDistribution *altDist = htr->GetAltDistribution(); HypoTestResult htExp("Expected result"); htExp.Append(htr); // find quantiles in alt (S+B) distribution Double_t p[5], q[5]; for(Int_t i = 0; i < 5; ++i) { Double_t sig = -2 + i; p[i] = ROOT::Math::normal_cdf(sig,1); } std::vector values = altDist->GetSamplingDistribution(); TMath::Quantiles( values.size(), 5, &values[0], q, p, kFALSE); for(Int_t i = 0; i < 5; ++i) { htExp.SetTestStatisticData( q[i] ); Double_t sig = -2 + i; std::cout << "Expected p-value and significance at " << sig << " sigma = " << htExp.NullPValue() << " significance " << htExp.Significance() << " sigma " << std::endl; } c->SaveAs(TString::Format("thtc2_scan_%s_%s.pdf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType])); } else { for(Int_t i = 0; i < 5; ++i) { Double_t sig = -2 + i; Double_t pval = AsymptoticCalculator::GetExpectedPValues(htr->NullPValue(), htr->AlternatePValue(), -sig, kFALSE); std::cout << "Expected p-value and significance at " << sig << " sigma = " << pval << " significance " << ROOT::Math::normal_quantile_c(pval,1) << " sigma " << std::endl; } } } delete calc; delete htr; delete w; return kTRUE ; } } ; // // END OF PART FOUR // /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________________________ //_____________________________________________________________________________ /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // // PART FIVE: // HYPOTHESIS TEST INVERTER UNIT TESTS // #include "RooStats/HypoTestInverter.h" #include "RooStats/HypoTestInverterResult.h" #include "RooStats/ToyMCSampler.h" #include "RooStats/HypoTestInverterPlot.h" #include "RooStats/SamplingDistPlot.h" /////////////////////////////////////////////////////////////////////////////// // // HYPOTESTINVERTER INTERVAL - POISSON PRODUCT MODEL // // Test the validity of the confidence interval computed by the HypoTestInverter // on a complex Poisson model distribution. Reference values and test values // are both computed with the HypoTestInverter. As such, this test can only // confirm if the HypoTestInverter has the same behaviour across different // computing platforms or RooStats revisions. // // ModelConfig (explicit) : Poisson Product Model // built in stressRooStats_models.cxx // // Input Parameters: // calculatorType -> Frequentist, Hybrid or Asymptotic // testStatType -> Profile Likelihood Ratio, Simple Likelihood Ratio, etc... // obsValueX -> observed value "x" when measuring sig + bkg1 // obsValueY -> observed value "y" when measuring 2*sig*1.2^beta + bkg2 // confidenceLevel -> Confidence Level of the interval we are calculating // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestHypoTestInverter1 : public RooUnitTest { private: ECalculatorType fCalculatorType; ETestStatType fTestStatType; Int_t fObsValueX; Int_t fObsValueY; Double_t fConfidenceLevel; public: TestHypoTestInverter1( TFile* refFile, Bool_t writeRef, Int_t verbose, ECalculatorType calculatorType = kAsymptotic, ETestStatType testStatType = kProfileLR, Int_t obsValueX = 15, Int_t obsValueY = 30, Double_t confidenceLevel = 2 * normal_cdf(1) - 1 ) : RooUnitTest(TString::Format("HypoTestInverter Interval - Poisson Product Model - %s - %s", kECalculatorTypeString[calculatorType], kETestStatTypeString[testStatType]), refFile, writeRef, verbose), fCalculatorType(calculatorType), fTestStatType(testStatType), fObsValueX(obsValueX), fObsValueY(obsValueY), fConfidenceLevel(confidenceLevel) {}; // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValueX < 0 || fObsValueX > 30) { Warning("isTestAvailable", "Observed value X=s+b must be in the range [0,30]. Skipping test..."); return kFALSE; } if (fObsValueY < 0 || fObsValueY > 80) { Warning("isTestAvailable", "Observed value Y=2*s*1.2^beta+b must be in the range [0,80]. Skipping test..."); return kFALSE; } if (fConfidenceLevel <= 0.0 || fConfidenceLevel >= 1.0) { Warning("isTestAvailable", "Confidence level must be in the range (0,1). Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { // Create workspace and model RooWorkspace *w = new RooWorkspace("w", kTRUE); buildPoissonProductModel(w); ModelConfig *sbModel = (ModelConfig *)w->obj("S+B"); ModelConfig *bModel = (ModelConfig *)w->obj("B"); // add observed values to data set w->var("x")->setVal(fObsValueX); w->var("y")->setVal(fObsValueY); w->data("data")->add(*sbModel->GetObservables()); const RooArgSet * initialVariables = sbModel->GetPdf()->getVariables(); w->saveSnapshot("initialVariables",*initialVariables); delete initialVariables; // set snapshots w->var("sig")->setVal(fObsValueX - w->var("bkg1")->getValV()); sbModel->SetSnapshot(*sbModel->GetParametersOfInterest()); w->var("sig")->setVal(0); bModel->SetSnapshot(*bModel->GetParametersOfInterest()); // build and configure HypoTestInverter AsymptoticCalculator::SetPrintLevel(_verb); HypoTestCalculatorGeneric *calc = buildHypoTestCalculator(fCalculatorType, *w->data("data"), *sbModel, *bModel, 100, 1); HypoTestInverter *hti = new HypoTestInverter(*calc, NULL, 1.0 - fConfidenceLevel); hti->SetTestStatistic(*buildTestStatistic(fTestStatType, *sbModel, *bModel)); hti->SetVerbose(_verb); int nscanPoints = 10; if(fCalculatorType == kAsymptotic) { ((AsymptoticCalculator *)calc)->SetTwoSided(); ((AsymptoticCalculator *)calc)->SetPrintLevel(_verb); nscanPoints = 40; } hti->SetFixedScan(nscanPoints, w->var("sig")->getMin(), w->var("sig")->getMax()); // significant speedup // ToyMCSampler configuration ToyMCSampler *tmcs = (ToyMCSampler *)hti->GetHypoTestCalculator()->GetTestStatSampler(); tmcs->SetNEventsPerToy(1); // needed because we don't have an extended pdf tmcs->SetUseMultiGen(kTRUE); // speedup HypoTestInverterResult *interval = hti->GetInterval(); regValue(interval->LowerLimit(), TString::Format("thti1_lower_limit_sig_%s_%s_%d_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fObsValueY, fConfidenceLevel)); regValue(interval->UpperLimit(), TString::Format("thti1_upper_limit_sig_%s_%s_%d_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fObsValueY, fConfidenceLevel)); if (_verb >= 1) { HypoTestInverterPlot *plot = new HypoTestInverterPlot("thti1_scan", "Two-Sided Scan", interval); TCanvas *c1 = new TCanvas("thti1_canvas", "THTI Canvas"); c1->SetLogy(false); plot->Draw("2CL CLB"); c1->SaveAs(TString::Format("thti1_scan_%s_%s_%d_%d_%lf.pdf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fObsValueY, fConfidenceLevel)); if (_verb == 2) { const int n = interval->ArraySize(); if (n > 0 && interval->GetResult(0)->GetNullDistribution()) { TCanvas *c2 = new TCanvas("thti1_teststat_dist", "HTI Test Statistic Distributions", 2); if (n > 1) { int ny = TMath::CeilNint(sqrt((double)n)); int nx = TMath::CeilNint(double(n) / ny); c2->Divide(nx, ny); } for (int i = 0; i < n; ++i) { if (n > 1) c2->cd(i + 1); SamplingDistPlot *pl = plot->MakeTestStatPlot(i); if (pl == NULL) return kTRUE; pl->SetLogYaxis(kTRUE); pl->Draw(); } c2->SaveAs(TString::Format("thti1_teststat_distrib_%s_%s_%d_%d_%lf.pdf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fObsValueY, fConfidenceLevel)); } } } // in case of debug write the workspace in a file if (_verb > 1) { w->loadSnapshot("initialVariables"); w->writeToFile(TString::Format("stressRooStats_PoissonProductModel_%d_%d.root",fObsValueX, fObsValueY)); } // cleanup delete interval; delete hti; delete w; return kTRUE ; } }; /////////////////////////////////////////////////////////////////////////////// // // HYPOTESTINVERTER UPPER LIMIT - SIGNAL + BACKGROUND + EFFICIENCY MODEL // // Test the validity of the upper limit computed by the HypoTestInverter // on a complex model distribution with signal, background and efficiency. // Reference values and test values are both computed with the HypoTestInverter. // As such, this test can only confirm if the HypoTestInverter has the same // behaviour across different computing platforms or RooStats revisions. // // ModelConfig (explicit) : Poisson Signal + Background + Efficiency // built in stressRooStats_models.cxx // /// Input Parameters: // calculatorType -> Frequentist, Hybrid or Asymptotic // testStatType -> Profile Likelihood Ratio, Simple Likelihood Ratio, etc... // obsValueX -> observed value "x" when measuring sig * eff + bkg // confidenceLevel -> Confidence Level of the upper limit we are calculating // // 04/2012 - Ioan Gabriel Bucur // /////////////////////////////////////////////////////////////////////////////// class TestHypoTestInverter2 : public RooUnitTest { private: ECalculatorType fCalculatorType; ETestStatType fTestStatType; Int_t fObsValueX; Double_t fConfidenceLevel; public: TestHypoTestInverter2( TFile* refFile, Bool_t writeRef, Int_t verbose, ECalculatorType calculatorType = kAsymptotic, ETestStatType testStatType = kProfileLROneSided, Int_t obsValueX = 10, Double_t confidenceLevel = 2 * normal_cdf(1) - 1 ) : RooUnitTest(TString::Format("HypoTestInverter Upper Limit - Poisson Efficiency Model - %s - %s", kECalculatorTypeString[calculatorType], kETestStatTypeString[testStatType]), refFile, writeRef, verbose), fCalculatorType(calculatorType), fTestStatType(testStatType), fObsValueX(obsValueX), fConfidenceLevel(confidenceLevel) {}; Double_t vtol() { return 2e-2 ; } // set value test tolerance to 2e-2 (inherited default is 1e-3) // Basic checks for the parameters passed to the test // In case of invalid parameters, a warning is printed and the test is skipped Bool_t isTestAvailable() { if (fObsValueX < 0 || fObsValueX > 50) { Warning("isTestAvailable", "Observed value X=s*e+b must be in the range [0,70]. Skipping test..."); return kFALSE; } if (fConfidenceLevel <= 0.0 || fConfidenceLevel >= 1.0) { Warning("isTestAvailable", "Confidence level must be in the range (0,1). Skipping test..."); return kFALSE; } return kTRUE; } Bool_t testCode() { // Create workspace and model RooWorkspace *w = new RooWorkspace("w", kTRUE); buildPoissonEfficiencyModel(w); ModelConfig *sbModel = (ModelConfig *)w->obj("S+B"); ModelConfig *bModel = (ModelConfig *)w->obj("B"); // add observed values to data set w->var("x")->setVal(fObsValueX); w->data("data")->add(*sbModel->GetObservables()); const RooArgSet * initialVariables = sbModel->GetPdf()->getVariables(); w->saveSnapshot("initialVariables",*initialVariables); delete initialVariables; // set snapshots sbModel->SetSnapshot(*sbModel->GetParametersOfInterest()); w->var("sig")->setVal(0); bModel->SetSnapshot(*bModel->GetParametersOfInterest()); // calculate upper limit with HypoTestInverter AsymptoticCalculator::SetPrintLevel(_verb); HypoTestCalculatorGeneric *calc = buildHypoTestCalculator(fCalculatorType, *w->data("data"), *sbModel, *bModel, 100, 100); HypoTestInverter *hti = new HypoTestInverter(*calc, NULL, 1.0 - fConfidenceLevel); hti->SetTestStatistic(*buildTestStatistic(fTestStatType, *sbModel, *bModel)); hti->SetVerbose(_verb); int npoints = 10; if(fCalculatorType == kAsymptotic) { ((AsymptoticCalculator *)calc)->SetOneSided(kTRUE); ((AsymptoticCalculator *)calc)->SetPrintLevel(_verb); npoints = 40; } hti->SetFixedScan(npoints, w->var("sig")->getMin(), w->var("sig")->getMax()); // significant speedup // needed because we have no extended pdf and the ToyMC Sampler evaluation returns an error ToyMCSampler *tmcs = (ToyMCSampler *)hti->GetHypoTestCalculator()->GetTestStatSampler(); tmcs->SetNEventsPerToy(1); tmcs->SetUseMultiGen(kTRUE); // make ToyMCSampler faster // calculate interval and extract observed upper limit and expected upper limit (+- sigma) HypoTestInverterResult *interval = hti->GetInterval(); regValue(interval->UpperLimit(), TString::Format("thti2_upper_limit_sig_%s_%s_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); regValue(interval->GetExpectedUpperLimit( 0), TString::Format("thti2_exp_upper_limit_sig_%s_%s_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); regValue(interval->GetExpectedUpperLimit(-2), TString::Format("thti2_exp_upper_limit_-2_sig_%s_%s_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); regValue(interval->GetExpectedUpperLimit(-1), TString::Format("thti2_exp_upper_limit_-1_sig_%s_%s_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); regValue(interval->GetExpectedUpperLimit( 1), TString::Format("thti2_exp_upper_limit_+1_sig_%s_%s_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); regValue(interval->GetExpectedUpperLimit( 2), TString::Format("thti2_exp_upper_limit_+2_sig_%s_%s_%d_%lf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); if (_verb >= 1) { HypoTestInverterPlot *plot = new HypoTestInverterPlot("thti2_scan", "HTI Upper Limit Scan", interval); TCanvas *c1 = new TCanvas("HypoTestInverter Scan"); c1->SetLogy(false); plot->Draw("2CL CLB"); c1->SaveAs(TString::Format("thti2_scan_%s_%s_%d_%lf.pdf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); if (_verb == 2) { const int n = interval->ArraySize(); if (n > 0 && interval->GetResult(0)->GetNullDistribution()) { TCanvas *c2 = new TCanvas("thti2_teststat_dist", "HTI Test Statistic Distributions", 2); if (n > 1) { int ny = TMath::CeilNint(sqrt((double)n)); int nx = TMath::CeilNint(double(n) / ny); c2->Divide(nx, ny); } for (int i = 0; i < n; ++i) { if (n > 1) c2->cd(i + 1); SamplingDistPlot *pl = plot->MakeTestStatPlot(i); if (pl == NULL) return kTRUE; pl->SetLogYaxis(kTRUE); pl->Draw(); } c2->SaveAs(TString::Format("thti2_teststat_distrib_%s_%s_%d_%lf.pdf", kECalculatorTypeString[fCalculatorType], kETestStatTypeString[fTestStatType], fObsValueX, fConfidenceLevel)); } } } if (_verb > 1) { w->loadSnapshot("initialVariables"); w->writeToFile("stressRooStats_PoissonEfficiencyModel.root"); } // cleanup delete interval; delete hti; delete w; return kTRUE ; } }; // // END OF PART FIVE // /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________________________ // Other tests currently not included in any suite class TestHypoTestCalculator : public RooUnitTest { public: TestHypoTestCalculator(TFile* refFile, Bool_t writeRef, Int_t verbose) : RooUnitTest("HypoTestCalculator - On / Off Problem", refFile, writeRef, verbose) {}; Bool_t testCode() { const Int_t xValue = 150; const Int_t yValue = 100; const Double_t tauValue = 1.0; if (_write == kTRUE) { // register analytical Z_Bi value Double_t Z_Bi = NumberCountingUtils::BinomialWithTauObsZ(xValue, yValue, tauValue); regValue(Z_Bi, "thtc_significance_hybrid"); } else { // Make model for prototype on/off problem // Pois(x | s+b) * Pois(y | tau b ) RooWorkspace* w = new RooWorkspace("w", kTRUE); w->factory(TString::Format("Poisson::on_pdf(x[%d,0,500],sum::splusb(sig[0,0,100],bkg[100,0,300]))", xValue)); w->factory(TString::Format("Poisson::off_pdf(y[%d,0,500],prod::taub(tau[%lf],bkg))", yValue, tauValue)); w->factory("PROD::prod_pdf(on_pdf, off_pdf)"); w->var("x")->setVal(xValue); w->var("y")->setVal(yValue); w->var("y")->setConstant(); w->var("tau")->setVal(tauValue); // construct the Bayesian-averaged model (eg. a projection pdf) // p'(x|s) = \int db p(x|s+b) * [ p(y|b) * prior(b) ] w->factory("Uniform::prior(bkg)"); w->factory("PROJ::averagedModel(PROD::foo(on_pdf|bkg,off_pdf,prior),bkg)") ; // define sets of variables obs={x} and poi={sig} // x is the only observable in the main measurement and y is treated as a separate measurement, // which is used to produce the prior that will be used in the calculation to randomize the nuisance parameters w->defineSet("obs", "x"); w->defineSet("poi", "sig"); // Add observable value to a data set RooDataSet *data = new RooDataSet("data", "data", *w->set("obs")); data->add(*w->set("obs")); // Build S+B and B models ModelConfig *sbModel = new ModelConfig("SB_ModelConfig", w); sbModel->SetPdf(*w->pdf("prod_pdf")); sbModel->SetObservables(*w->set("obs")); sbModel->SetParametersOfInterest(*w->set("poi")); w->var("sig")->setVal(xValue - yValue / tauValue); // important ! sbModel->SetSnapshot(*w->set("poi")); ModelConfig *bModel = new ModelConfig("B_ModelConfig", w); bModel->SetPdf(*w->pdf("prod_pdf")); bModel->SetObservables(*w->set("obs")); bModel->SetParametersOfInterest(*w->set("poi")); w->var("sig")->setVal(0.0); // important ! bModel->SetSnapshot(*w->set("poi")); // alternate priors w->factory("Gaussian::gauss_prior(bkg, y, expr::sqrty('sqrt(y)', y))"); w->factory("Lognormal::lognorm_prior(bkg, y, expr::kappa('1+1./sqrt(y)',y))"); // build test statistic SimpleLikelihoodRatioTestStat *slrts = new SimpleLikelihoodRatioTestStat(*bModel->GetPdf(), *sbModel->GetPdf()); slrts->SetNullParameters(*bModel->GetSnapshot()); slrts->SetAltParameters(*sbModel->GetSnapshot()); slrts->SetAlwaysReuseNLL(kTRUE); RatioOfProfiledLikelihoodsTestStat *roplts = new RatioOfProfiledLikelihoodsTestStat(*bModel->GetPdf(), *sbModel->GetPdf()); roplts->SetAlwaysReuseNLL(kTRUE); ProfileLikelihoodTestStat *pllts = new ProfileLikelihoodTestStat(*bModel->GetPdf()); pllts->SetAlwaysReuseNLL(kTRUE); MaxLikelihoodEstimateTestStat *mlets = new MaxLikelihoodEstimateTestStat(*sbModel->GetPdf(), *((RooRealVar *)sbModel->GetParametersOfInterest()->first())); NumEventsTestStat *nevts = new NumEventsTestStat(*sbModel->GetPdf()); HybridCalculator *htc = new HybridCalculator(*data, *sbModel, *bModel); ToyMCSampler *tmcs = (ToyMCSampler *)htc->GetTestStatSampler(); tmcs->SetNEventsPerToy(1); htc->SetToys(5000, 1000); htc->ForcePriorNuisanceAlt(*w->pdf("off_pdf")); htc->ForcePriorNuisanceNull(*w->pdf("off_pdf")); tmcs->SetTestStatistic(pllts); HypoTestResult *htr = htc->GetHypoTest(); htr->Print(); std::cout<< "PLLTS " << htr->Significance() << std::endl; tmcs->SetTestStatistic(mlets); htr = htc->GetHypoTest(); htr->Print(); std::cout<< "MLETS " << htr->Significance() << std::endl; tmcs->SetTestStatistic(nevts); htr = htc->GetHypoTest(); htr->Print(); std::cout<< "NEVTS " << htr->Significance() << std::endl; tmcs->SetTestStatistic(slrts); htr = htc->GetHypoTest(); htr->Print(); std::cout<< "SLRTS " << htr->Significance() << std::endl; tmcs->SetTestStatistic(roplts); htr = htc->GetHypoTest(); htr->Print(); std::cout<< "ROPLTS " << htr->Significance() << std::endl; regValue(htr->Significance(), "thtc_significance_hybrid"); if (_verb > 1) w->writeToFile("stressRooStats_OnOffModel.root"); delete htc; delete htr; delete w; delete data; } return kTRUE ; } } ; #include "RooStats/RatioOfProfiledLikelihoodsTestStat.h" #include "RooStats/MaxLikelihoodEstimateTestStat.h" #include "RooStats/NumEventsTestStat.h" static HypoTestCalculatorGeneric * buildHypoTestCalculator(const ECalculatorType calculatorType, RooAbsData &data, const ModelConfig &nullModel, const ModelConfig &altModel, const UInt_t toysNull, const UInt_t toysAlt) { HypoTestCalculatorGeneric *calc = NULL; if(calculatorType == kAsymptotic) { AsymptoticCalculator *ac = new AsymptoticCalculator(data, altModel, nullModel); calc = ac; } else if(calculatorType == kFrequentist) { FrequentistCalculator *fc = new FrequentistCalculator(data, altModel, nullModel); // set toys for speedup fc->SetToys(toysNull, toysAlt); calc = fc; } else { // kHybrid HybridCalculator *hc = new HybridCalculator(data, altModel, nullModel); // set toys for speedup hc->SetToys(toysNull, toysAlt); calc = hc; } assert(calc != NULL); // sanity check - should never happen return calc; } static TestStatistic *buildTestStatistic(const ETestStatType testStatType, const ModelConfig &nullModel, const ModelConfig &altModel) { TestStatistic *testStat = NULL; if (testStatType == kSimpleLR) { SimpleLikelihoodRatioTestStat *slrts = new SimpleLikelihoodRatioTestStat(*nullModel.GetPdf(), *altModel.GetPdf()); // TODO - different for HypoTestInverter and HypoTestCalculator RooArgSet nullParams(*nullModel.GetSnapshot()); if(nullModel.GetNuisanceParameters()) nullParams.add(*nullModel.GetNuisanceParameters()); if(nullModel.GetSnapshot()) slrts->SetNullParameters(nullParams); RooArgSet altParams(*altModel.GetSnapshot()); if(altModel.GetNuisanceParameters()) altParams.add(*altModel.GetNuisanceParameters()); if(altModel.GetSnapshot()) slrts->SetAltParameters(altParams); slrts->SetAlwaysReuseNLL(kTRUE); testStat = slrts; } else if (testStatType == kRatioLR) { RatioOfProfiledLikelihoodsTestStat *roplts = new RatioOfProfiledLikelihoodsTestStat(*nullModel.GetPdf(), *altModel.GetPdf(), altModel.GetSnapshot()); roplts->SetSubtractMLE(kFALSE); roplts->SetAlwaysReuseNLL(kTRUE); testStat = roplts; } else if (testStatType == kMLE) { MaxLikelihoodEstimateTestStat *mlets = new MaxLikelihoodEstimateTestStat(*nullModel.GetPdf(), *((RooRealVar *)nullModel.GetParametersOfInterest()->first())); testStat = mlets; } else if (testStatType == kNObs) { NumEventsTestStat *nevtts = new NumEventsTestStat(*nullModel.GetPdf()); testStat = nevtts; } else { // kProfileLR, kProfileLROneSided and kProfileLRSigned ProfileLikelihoodTestStat *plts = new ProfileLikelihoodTestStat(*nullModel.GetPdf()); if (testStatType == kProfileLROneSided) plts->SetOneSided(kTRUE); else if (testStatType == kProfileLROneSidedDiscovery) plts->SetOneSidedDiscovery(kTRUE); else if (testStatType == kProfileLRSigned) plts->SetSigned(kTRUE); plts->SetAlwaysReuseNLL(kTRUE); testStat = plts; } assert(testStat != NULL); // sanity check - should never happen return testStat; }